g
4
s

Universiteit
“dd) Leiden
W’b The Netherlands

)
bHa? 1

)
J}
B
B
=

=

o

&

o

Formal models of software-defined networks
Feng, H.

Citation
Feng, H. (2024, December 3). Formal models of software-defined networks.

Retrieved from https://hdl.handle.net/1887/4170508

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis
) in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170508

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170508

Chapter 1

Introduction

In the field of modern networking, Software-Defined Networks (SDNs) have
emerged as a novel paradigm transforming the way we conceptualize, deploy, and
manage computer network infrastructures. Defined by their programmability,
flexibility, and centralized control, SDNs represent a departure from traditional
networking approaches, offering a more dynamic and agile framework to meet the
evolving demands of today’s digital systems.

The evolution of networking paradigms leading to SDNs can be traced back to
the limitations of traditional network architectures [ITT]. Conventional networks
are characterized by their rigid and hardware-centric nature making them hard to
adapt to the rapidly changing requirements of modern applications and services.
The emergence of virtualization technologies, coupled with the growing complexity
of network management tasks made clear the need for more scalable, efficient, and
programmable networks.

SDNs address these challenges by decoupling the control plane from the data
plane and centralizing network intelligence and management in software-based
controllers [42]. Unlike traditional networks where control mechanisms are de-
centralized and embedded within network switches and routers, SDN logically
centralizes the control and thus simplifies network programming. Specifically,
SDN concentrates network control within one or more SDN controllers, enabling
greater programmability and automation, and facilitating dynamic provisioning,
configuration, and optimization of network resources. Moreover, the introduc-
tion of separated layers of abstraction simplifies network management tasks and

promotes interoperability across heterogeneous networking environments.

1 INTRODUCTION

The main defining feature of a Software-Defined Network is the centralized
network control and management functions, which enhance orchestration and
policy enforcement across the network. This means that tasks like configuring
and managing network devices can be done more efficiently from a central con-
troller rather than locally on switches. SDN architectures are designed to be pro-
grammable. They expose APIs and interfaces that allow for the programmable
control of network behavior. This flexibility enables networks to adapt to specific
application requirements more effectively. Additionally, SDNs abstract the un-
derlying network infrastructure separating the logical network from its physical

implementation, offering more flexibility and scalability [53} 52} 42].

In terms of benefits, SDNs offer numerous advantages. They enable agility
and better scalability by decoupling network control from hardware. This leads
to greater flexibility and resource utilization as well as enabling rapid deploy-
ment [52], as network policies can be updated and enforced across the network
almost in real-time, with no need for manual and error-prone configuration of in-
dividual devices. SDNs also contribute to improved performance and reliability by
allowing for the automation of many routine network management tasks. Finally,
SDNs enhance network security by providing centralized visibility and control
over network traffic. This enables more effective threat detection, mitigation, and

policy enforcement, safeguarding against cyber threats and breaches [83].

Although widely applied with success in many large networks, SDNs present
a multitude of challenges inherent to the complexity of SDN architectures them-
selves. As SDNs decouple the control plane from the data plane and centralize
network intelligence, they introduce new layers of abstraction and dependencies,
which can lead to increased complexity in design, implementation, and manage-
ment. The dynamic and highly concurrent nature of SDNs amplifies the challenge
of ensuring the correctness and reliability of the controllers. This can result in
configuration errors, inconsistencies, and vulnerabilities that undermine the reli-

ability and security of the network.

Current methods for verifying and validating SDN configurations often rely on
manual testing, ad-hoc approaches, and proprietary tools, which are not scalable
or comprehensive enough to address the complexities of modern SDN deploy-
ments. As a result, there is a pressing need for rigorous formal methods that can
provide mathematical rigor and systematic approaches to analyzing, designing,
and verifying SDN systems [98] [101].

1.1 Formal methods in SDN

1.1 Formal methods in SDIN

Emphasizing the need for rigorous formal methods is essential in address-
ing these challenges effectively. Formal methods offer a systematic approach to
modeling, analyzing, and reasoning about SDN behaviors and properties. By
leveraging mathematical techniques such as formal specification languages, model
checking, and theorem proving, formal methods can provide rigorous guarantees

of correctness, reliability, and security in SDNs.

Formal models applied to SDN not only enhance our understanding of SDN
systems but also facilitate precise analysis. Controllers of SDNs are essentially
software entities, faults in a controller could lead the entire network to a catas-
trophic situation. Since networks are critical infrastructures, rigorous validation
is the only way to ensure that network policies are correctly implemented be-
fore deployment and do not lead to unintended consequences. Techniques such
as model checking and theorem proving enable exhaustive exploration of system
behaviors under various abstractions, ensuring that SDN deployments used, for
example, in data centers, enterprise networks, and cloud computing adhere to

specified requirements and constraints.

The potential benefits of employing formal methods in SDN infrastructures
are manifold. Increased reliability is achieved through rigorous verification and
validation of SDN configurations, reducing the likelihood of configuration errors,
protocol conflicts, and performance bottlenecks. VeriCon [I4] is a tool designed
for the verification of network configurations and behaviors in SDN environments.
It provides a comprehensive platform that checks whether a given network con-
figuration satisfies certain safety and correctness properties. VeriCon employs a
combination of symbolic execution and model-checking techniques to verify prop-
erties such as security policies, reachability, and the absence of loops across all
possible packet transmissions in the network. Enhanced security is realized by
systematically analyzing and verifying security properties, ensuring that SDN de-
ployments are resilient to cyber threats, attacks, and intrusions [86} [I03]. Finally,
improved maintainability is attained by precise modeling, enabling a deeper un-
derstanding of SDN systems and their behaviors, more efficient troubleshooting,
debugging, and evolution of SDN infrastructures over time. As a modeling lan-
guage designed for concurrent object-oriented systems, the Abstract Behavioral
Specification (ABS) language focuses on simulating and verifying network behav-

iors. ABS tool suite [2] is a collection of tools designed to analyze and verify

1 INTRODUCTION

SDN, includes capabilities for model checking, simulation, and deductive verifi-
cation, providing a robust environment for testing and verifying the correctness

and performance of SDN configurations and policies.

In the context of SDNs, existing model-checking tools can be applied to ver-
ify various properties and behaviors of SDN architectures, protocols, and deploy-
ments. Examples include TLA+ [72], a high-level language for modeling programs
and systems, especially for concurrent and distributed ones. They can be checked
for logical consistency and correctness by writing precise specifications. Its model
checker TLC [112] can handle a subclass of TLA+ specifications that is suitable
for the behavior of a single switch in a SDN [61]. The Model checker SPIN [48]
uses Promela as its input modeling language, and the full Linear Temporal Logic
(LTL) as a specification language. We will see in this thesis how SPIN can be used
for modeling SDNs. Alloy [56] is a formal design language and a model-checking
tool, it uses the Alloy for specifying models and properties, and Alloy’s specifica-
tion language is based on a subset of first-order logic with relational operators. It
has been used to formally model the OpenFlow switch verifying a great part of

the properties of an OpenFlow switch [94].

Both PRISM [70] and UPPAAL [I6] have been utilized for verifying quanti-
tative properties of SDNs such as performance, timing, reliability, and resource
utilization. PRISM is a probabilistic model checker supporting Probabilistic Com-
putation Tree Logic and Continuous Stochastic Logic. Although it is primarily
designed for probabilistic systems, it has been used to analyze performance, reli-
ability, Quality of Service (QoS), and security aspects of SDN deployments. UP-
PAAL supports temporal logic specifications expressed in Timed Computational
Tree Logic (TCTL). It is specialized in real-time systems and has been employed
for timing analysis, performance evaluation, resource allocation, and scheduling

and synchronization analysis in SDNs.

SDN testing strategies can increase our trust in SDN deployments ultimately
improving the reliability and robustness of SDN systems. However, the complexity
and diversity of SDN environments make it challenging to create comprehensive
test scenarios that accurately reflect real-world conditions. Additionally, the dy-
namic nature of SDN infrastructures introduces uncertainties and variability that
may not be fully captured in traditional testing approaches, leading to potential

gaps in test coverage and effectiveness [87].

1.2 Research objectives

1.2 Research objectives

In this thesis, we explore the use of the coordination language Reo as a model of
SDNs. Reo [f] is a coordination language designed for specifying and orchestrating
the behavior of reactive and distributed systems. It provides a powerful and
visually appealing framework for expressing complex coordination patterns among
system components, facilitating the modeling of communication, synchronization,
and interaction protocols in a concise and modular manner.

Reo is characterized by its formal semantics given in terms of constraint au-
tomata [I3]. It comes equipped with several tools for the rigorous analysis and
verification of system specifications, ensuring correctness and reliability. With
support for hierarchical composition and modularity, Reo promotes the reuse and
maintainability of coordination patterns, facilitating the development and evolu-
tion of distributed systems.

Our choice for Reo is justified by the easy and intuitive visual representa-
tion via user-defined channels and their composition. Reo offers a versatile tool
for designing and coordinating reactive systems, with applications ranging from
network protocols and distributed algorithms to software architectures and con-
current processes.

While Reo was not explicitly developed for SDN, we investigate in this thesis
if its principles and capabilities could potentially be applied to model and verify

certain aspects of SDN architectures, leading to our first research question:

Research question 1. Can the coordination language Reo and its semantic

model of constraint automata be used as a formal model of SDNs?

Because Reo was primarily designed for modeling reactive systems and dis-
tributed protocols, we found that certain features and concepts in SDN, such
as switch flow tables and specific communication messages between switches and
controllers, are not well-suited for being directly modeled using Reo. This moti-
vated us to investigate Chapter 3 for a non-trivial extension of Reo with variables
while maintaining the idea behind the synchronization operation of the original
Reo language.

Our Reo model of SDN switches and controllers together with their network
topology includes an abstraction of the OpenFlow communication protocol. While
OpenFlow is not the same as an SDN, it enables the programmability and cen-

tralized control of its network devices, such as switches and routers. It defines

1 INTRODUCTION

a standardized interface between the control plane and the data plane of net-
work devices, allowing a centralized SDN controller to dynamically manage the
forwarding behavior of network switches and routers [42]. Our Reo model of the
OpenFlow protocol serves as a foundational study providing a formal model for
implementing and orchestrating network control in the programmable and dy-
namic environments of SDNs.

The advantage of using Reo as a formal semantics, of OpenFlow-based archi-
tectures of SDNs is the modularity of the approach and the possible leverage of
verification tools for SDNs. Reo is supported by various tools and frameworks
for simulation, model checking, and verification, however, that cannot be directly
used with the extension of Reo we considered for SDNs. This brings us to our

second research question:

Research question 2. Can we use existing model checkers to verify properties
of SDNs modeled by Reo?

We answer this question in Chapter 4, where we show how to generate auto-
matically Promela code from symbolic constraint automata, the semantic model
of the extension of Reo we use for SDNs. Promela (PROcess MEta LAnguage)
is a process modeling language specifically designed for modeling and verifying
concurrent and distributed systems using SPIN (Simple Promela Interpreter), a
powerful model-checking tool [48]. With SPIN, Promela models can be analyzed
for various linear time temporal properties, such as deadlock freedom, liveliness,
and safety, through exhaustive state space exploration. SPIN provides an inter-
face for specifying Promela models and defining verification properties, allowing
a systematic validation of the correctness of complex concurrent systems.

By modeling the SDN control plane and data plane in Reo and automatically
obtaining a Promela code, we can use the SPIN model checking tool to explore the
SDN model and verify properties. Another high-level domain-specific language
for expressing and reasoning about network policies and behaviors in Software-
Defined Networking (SDN) environments is NetKAT [4]. NetKAT is inspired by
Kleene algebra, a mathematical framework for describing the behavior of regular
expressions, and is extended to the domain of network policies. In NetKAT,
network policies are expressed as compositions of basic primitives, such as packet
filters, forwarding actions, and logical operators, allowing for the specification of
complex routing and forwarding behaviors in a concise and modular manner.

Similar to our Reo model, NetKAT provides formal semantics and mathe-

1.2 Research objectives

matical foundations for reasoning about network policies, enabling verification
techniques such as equational reasoning and model checking to ensure correctness
and consistency. Since both Reo and NetKAT use automata-based semantics, a

natural question is whether the two models can be unified in a single framework:

Research question 3. Can we extend the automata-based model of NetKAT to

be stateful and allow concurrency in a way similar to Reo?

In Chapter 5 we extend NetKAT with ports, which basically are shared vari-
ables used by processes to communicate with each other. Differently from a
traditional variable, reading a value from a port is destructive, while writing is
only possible if the port is empty. The addition of ports to NetKAT and a simple
modification of its automata model are enough to be comparable with the Reo
model. In particular, the extension of NetKAT with ports allows for concurrency,

it is stateful, and it is backward compatible with the original NetKAT model.
So far, the automata model of Reo (and NetKAT) we introduced has been

mainly geared toward the verification of SDNs. However, another important as-
pect of SDN is causality, particularly in understanding and managing network
events, behaviors, and dependencies. In SDNs, where the control plane is cen-
tralized and programmable, causality helps determine the order of events and
actions that influence network behavior. Understanding causality enables SDN
controllers to make informed decisions about network policies, routing, and re-
source allocation based on the sequence of events and their causal relationships.
Moreover, causality is crucial for troubleshooting and debugging network issues,
as it helps identify the root causes of anomalies or failures by tracing the sequence
of events leading to the observed behavior. Our final research question is related

to causality:

Research question 4. Can we use Reo or NetKAT and their associated

automata-based models for avoiding hazard events in SDN using causality?

We partially answer this question in Chapter 6, where we investigate an ordi-
nary automata model incorporating causality into the design of the safety prop-
erties so that if a hazard event may occur then not only we must avoid it, but
we also offer an alternative sequence of action that does not cause that event to
happen. While the automata we consider are simpler than the one used as the

model for SDNs via either NetKAT or Reo, we see this result as a first step toward

1 INTRODUCTION

causality reasoning for SDNs.

1.3 Publications

In this section, we present all publications upon which our research presented
in this thesis is based. They constitute the primary source of our theoretical

research and methodological framework.

Hui Feng, Farhad Arbab and Marcello Bonsangue. (2019). A Reo Model of
Software Defined Networks. In: Ait-Ameur, Y., Qin, S. (eds) Formal Methods
and Software Engineering. ICFEM 2019. Lecture Notes in Computer Science,
vol 11852. Springer, Cham. https://doi.org/10.1007/978-3-030-32409-4 5

In this paper, we use Reo to model SDN switches and controllers, according
to the OpenFlow protocol specification. We use a similar abstract syntax
and semantics of OpenFlow messages to model the interactions between the
control plane and data plane in an OpenFlow-based SDN architecture. We also
implement the data flow between different controllers and switches. The formal
semantics of Reo is given by a novel version of constraint automata with memory,
that we called symbolic constraint automata. Most of the content of Chapters 3

and 4 is based on this paper.

Hui Feng, Marcello Bonsangue and Benjamin Lion. (2022). From symbolic
constraint automata to Promela. Journal of Logical and Algebraic Methods in
Programming. vol 128. 100794. https://d0i:10.1016/j.jlamp.2022.100794

In this paper, we implement an automatic translation from symbolic con-
straint automata to Promela code, the programming modeling language of the
model checker SPIN. The translation enables the analysis of packet forwarding
according to OpenFlow controllers, The focus is on verifying the functional
properties of the SDN model, such as reachability, consistency, and correctness
of network policies and configurations using linear temporal logic. As expected,
the model suffers from the state explosion problem, and more research needs to
be done on the scalability of our approach. This could involve simplifying the
OpenFlow protocol to reduce the state space to be analyzed. On the positive

side, our translation is not only for SND models but for any Reo circuit (with

1.4 Overview

and without variables). The main results of this paper are presented in Chapter 5.

Hui Feng and Marcello Bonsangue. (2024). Concurrent NetKAT with ports.
In: Juw Won Park and Adam Przybytek and Hossain Shahriar. (eds) SAC’24:
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. As-
sociation for Computing Machinery. https://doi.org/10.1145/3605098.3636048

The starting point of this paper is the original definition of NetKAT automata,
which we extend so to support concurrency. The main idea is to use NetKAT
automata as a model of propositional Hoare logic for concurrent processes

communicating via shared ports.

Marcello Bonsangue, Georgiana Caltais, Hui Feng, and Hinkar Can Tung
(2022). A Language-Based Causal Model for Safety. In: Yamine Ait-Ameur,
Florin Craciun. (eds) Theoretical Aspects of Software Engineering. TASE
2022. Lecture Notes in Computer Science, wvol 13299. Springer, Cham.
https://doi.org/10.1007/978-3-031-10363-6_ 20

This paper is a first step towards a notion of causality for SDNs. Using
ordinary automata we implemented an algorithm for finding and removing haz-
ards specified as regular expressions. Since Reo can be modeled by NetKat au-
tomata with concurrency, causality analysis for SDN should be relatively easy
to reach. By understanding the causal links between network events and con-
figuration changes, and resulting outcomes, causality analysis could be used for
diagnosing performance bottlenecks and troubleshooting issues helping in identi-
fying the root causes of anomalies and failures. The content of this paper forms
the basis for Chapter 7.

1.4 Overview

In this thesis, we applied Reo and constraint automata to formally model SDN
architectures based on OpenFlow, We translated our formal model into Promela,
so to allow for the use of state-of-the-art model-checking tools. More semantically,
we extend the automata semantics of NetKAT to handle concurrent components
communicating via shared ports. The latter model is exactly our Reo semantic

model of SDNs. Finally, we took a few first steps into a causal analysis for SDNs.

1 INTRODUCTION

The thesis is organized as follows: In Chapter [2| we introduce the main con-
cepts of software-defined networking (SDN), paying specific attention to the three-
layer framework and OpenFlow protocol. Consequently, in Chapter [3] we present
the coordination language Reo and its formal semantics. Throughout this thesis,
Reo is our main modeling language for the analysis of SDNs. The focus is on com-
position methods at the semantic level. Subsequently, in Chapter [4] we address
research question 1 by constructing a Reo model that faithfully encapsulates
the data plane and control plane of an SDN, including the modeling of individual
OpenFlow switches and their interconnecting channels. In Chapter [5, we pro-
pose a compositional translation from symbolic constraint automata to Promela,
aligning with research question 2. In Chapter [6] we address the limitations of
NetKAT in handling concurrency and relating it to Reo, thus resolving research
question 3. Finally, Chapter [7] addresses research question 4, wherein we
introduce an automata-based causal model where hazards are expressed in terms

of regular expressions.

10

