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“Fear is the main source of superstition, and one of the main sources of cruelty.
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Chapter 1

Introduction

In the field of modern networking, Software-Defined Networks (SDNs) have
emerged as a novel paradigm transforming the way we conceptualize, deploy, and
manage computer network infrastructures. Defined by their programmability,
flexibility, and centralized control, SDNs represent a departure from traditional
networking approaches, offering a more dynamic and agile framework to meet the
evolving demands of today’s digital systems.

The evolution of networking paradigms leading to SDNs can be traced back to
the limitations of traditional network architectures [111]. Conventional networks
are characterized by their rigid and hardware-centric nature making them hard to
adapt to the rapidly changing requirements of modern applications and services.
The emergence of virtualization technologies, coupled with the growing complexity
of network management tasks made clear the need for more scalable, efficient, and
programmable networks.

SDNs address these challenges by decoupling the control plane from the data
plane and centralizing network intelligence and management in software-based
controllers [42]. Unlike traditional networks where control mechanisms are de-
centralized and embedded within network switches and routers, SDN logically
centralizes the control and thus simplifies network programming. Specifically,
SDN concentrates network control within one or more SDN controllers, enabling
greater programmability and automation, and facilitating dynamic provisioning,
configuration, and optimization of network resources. Moreover, the introduc-
tion of separated layers of abstraction simplifies network management tasks and
promotes interoperability across heterogeneous networking environments.
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1 INTRODUCTION

The main defining feature of a Software-Defined Network is the centralized
network control and management functions, which enhance orchestration and
policy enforcement across the network. This means that tasks like configuring
and managing network devices can be done more efficiently from a central con-
troller rather than locally on switches. SDN architectures are designed to be pro-
grammable. They expose APIs and interfaces that allow for the programmable
control of network behavior. This flexibility enables networks to adapt to specific
application requirements more effectively. Additionally, SDNs abstract the un-
derlying network infrastructure separating the logical network from its physical
implementation, offering more flexibility and scalability [53, 52, 42].

In terms of benefits, SDNs offer numerous advantages. They enable agility
and better scalability by decoupling network control from hardware. This leads
to greater flexibility and resource utilization as well as enabling rapid deploy-
ment [52], as network policies can be updated and enforced across the network
almost in real-time, with no need for manual and error-prone configuration of in-
dividual devices. SDNs also contribute to improved performance and reliability by
allowing for the automation of many routine network management tasks. Finally,
SDNs enhance network security by providing centralized visibility and control
over network traffic. This enables more effective threat detection, mitigation, and
policy enforcement, safeguarding against cyber threats and breaches [83].

Although widely applied with success in many large networks, SDNs present
a multitude of challenges inherent to the complexity of SDN architectures them-
selves. As SDNs decouple the control plane from the data plane and centralize
network intelligence, they introduce new layers of abstraction and dependencies,
which can lead to increased complexity in design, implementation, and manage-
ment. The dynamic and highly concurrent nature of SDNs amplifies the challenge
of ensuring the correctness and reliability of the controllers. This can result in
configuration errors, inconsistencies, and vulnerabilities that undermine the reli-
ability and security of the network.

Current methods for verifying and validating SDN configurations often rely on
manual testing, ad-hoc approaches, and proprietary tools, which are not scalable
or comprehensive enough to address the complexities of modern SDN deploy-
ments. As a result, there is a pressing need for rigorous formal methods that can
provide mathematical rigor and systematic approaches to analyzing, designing,
and verifying SDN systems [98, 101].
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1.1 Formal methods in SDN

1.1 Formal methods in SDN

Emphasizing the need for rigorous formal methods is essential in address-
ing these challenges effectively. Formal methods offer a systematic approach to
modeling, analyzing, and reasoning about SDN behaviors and properties. By
leveraging mathematical techniques such as formal specification languages, model
checking, and theorem proving, formal methods can provide rigorous guarantees
of correctness, reliability, and security in SDNs.

Formal models applied to SDN not only enhance our understanding of SDN
systems but also facilitate precise analysis. Controllers of SDNs are essentially
software entities, faults in a controller could lead the entire network to a catas-
trophic situation. Since networks are critical infrastructures, rigorous validation
is the only way to ensure that network policies are correctly implemented be-
fore deployment and do not lead to unintended consequences. Techniques such
as model checking and theorem proving enable exhaustive exploration of system
behaviors under various abstractions, ensuring that SDN deployments used, for
example, in data centers, enterprise networks, and cloud computing adhere to
specified requirements and constraints.

The potential benefits of employing formal methods in SDN infrastructures
are manifold. Increased reliability is achieved through rigorous verification and
validation of SDN configurations, reducing the likelihood of configuration errors,
protocol conflicts, and performance bottlenecks. VeriCon [14] is a tool designed
for the verification of network configurations and behaviors in SDN environments.
It provides a comprehensive platform that checks whether a given network con-
figuration satisfies certain safety and correctness properties. VeriCon employs a
combination of symbolic execution and model-checking techniques to verify prop-
erties such as security policies, reachability, and the absence of loops across all
possible packet transmissions in the network. Enhanced security is realized by
systematically analyzing and verifying security properties, ensuring that SDN de-
ployments are resilient to cyber threats, attacks, and intrusions [86, 103]. Finally,
improved maintainability is attained by precise modeling, enabling a deeper un-
derstanding of SDN systems and their behaviors, more efficient troubleshooting,
debugging, and evolution of SDN infrastructures over time. As a modeling lan-
guage designed for concurrent object-oriented systems, the Abstract Behavioral
Specification (ABS) language focuses on simulating and verifying network behav-
iors. ABS tool suite [2] is a collection of tools designed to analyze and verify
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1 INTRODUCTION

SDN, includes capabilities for model checking, simulation, and deductive verifi-
cation, providing a robust environment for testing and verifying the correctness
and performance of SDN configurations and policies.

In the context of SDNs, existing model-checking tools can be applied to ver-
ify various properties and behaviors of SDN architectures, protocols, and deploy-
ments. Examples include TLA+ [72], a high-level language for modeling programs
and systems, especially for concurrent and distributed ones. They can be checked
for logical consistency and correctness by writing precise specifications. Its model
checker TLC [112] can handle a subclass of TLA+ specifications that is suitable
for the behavior of a single switch in a SDN [61]. The Model checker SPIN [48]
uses Promela as its input modeling language, and the full Linear Temporal Logic
(LTL) as a specification language. We will see in this thesis how SPIN can be used
for modeling SDNs. Alloy [56] is a formal design language and a model-checking
tool, it uses the Alloy for specifying models and properties, and Alloy’s specifica-
tion language is based on a subset of first-order logic with relational operators. It
has been used to formally model the OpenFlow switch verifying a great part of
the properties of an OpenFlow switch [94].

Both PRISM [70] and UPPAAL [16] have been utilized for verifying quanti-
tative properties of SDNs such as performance, timing, reliability, and resource
utilization. PRISM is a probabilistic model checker supporting Probabilistic Com-
putation Tree Logic and Continuous Stochastic Logic. Although it is primarily
designed for probabilistic systems, it has been used to analyze performance, reli-
ability, Quality of Service (QoS), and security aspects of SDN deployments. UP-
PAAL supports temporal logic specifications expressed in Timed Computational
Tree Logic (TCTL). It is specialized in real-time systems and has been employed
for timing analysis, performance evaluation, resource allocation, and scheduling
and synchronization analysis in SDNs.

SDN testing strategies can increase our trust in SDN deployments ultimately
improving the reliability and robustness of SDN systems. However, the complexity
and diversity of SDN environments make it challenging to create comprehensive
test scenarios that accurately reflect real-world conditions. Additionally, the dy-
namic nature of SDN infrastructures introduces uncertainties and variability that
may not be fully captured in traditional testing approaches, leading to potential
gaps in test coverage and effectiveness [87].
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1.2 Research objectives

In this thesis, we explore the use of the coordination language Reo as a model of
SDNs. Reo [5] is a coordination language designed for specifying and orchestrating
the behavior of reactive and distributed systems. It provides a powerful and
visually appealing framework for expressing complex coordination patterns among
system components, facilitating the modeling of communication, synchronization,
and interaction protocols in a concise and modular manner.

Reo is characterized by its formal semantics given in terms of constraint au-
tomata [13]. It comes equipped with several tools for the rigorous analysis and
verification of system specifications, ensuring correctness and reliability. With
support for hierarchical composition and modularity, Reo promotes the reuse and
maintainability of coordination patterns, facilitating the development and evolu-
tion of distributed systems.

Our choice for Reo is justified by the easy and intuitive visual representa-
tion via user-defined channels and their composition. Reo offers a versatile tool
for designing and coordinating reactive systems, with applications ranging from
network protocols and distributed algorithms to software architectures and con-
current processes.

While Reo was not explicitly developed for SDN, we investigate in this thesis
if its principles and capabilities could potentially be applied to model and verify
certain aspects of SDN architectures, leading to our first research question:

Research question 1. Can the coordination language Reo and its semantic
model of constraint automata be used as a formal model of SDNs?

Because Reo was primarily designed for modeling reactive systems and dis-
tributed protocols, we found that certain features and concepts in SDN, such
as switch flow tables and specific communication messages between switches and
controllers, are not well-suited for being directly modeled using Reo. This moti-
vated us to investigate Chapter 3 for a non-trivial extension of Reo with variables
while maintaining the idea behind the synchronization operation of the original
Reo language.

Our Reo model of SDN switches and controllers together with their network
topology includes an abstraction of the OpenFlow communication protocol. While
OpenFlow is not the same as an SDN, it enables the programmability and cen-
tralized control of its network devices, such as switches and routers. It defines
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1 INTRODUCTION

a standardized interface between the control plane and the data plane of net-
work devices, allowing a centralized SDN controller to dynamically manage the
forwarding behavior of network switches and routers [42]. Our Reo model of the
OpenFlow protocol serves as a foundational study providing a formal model for
implementing and orchestrating network control in the programmable and dy-
namic environments of SDNs.

The advantage of using Reo as a formal semantics, of OpenFlow-based archi-
tectures of SDNs is the modularity of the approach and the possible leverage of
verification tools for SDNs. Reo is supported by various tools and frameworks
for simulation, model checking, and verification, however, that cannot be directly
used with the extension of Reo we considered for SDNs. This brings us to our
second research question:

Research question 2. Can we use existing model checkers to verify properties
of SDNs modeled by Reo?

We answer this question in Chapter 4, where we show how to generate auto-
matically Promela code from symbolic constraint automata, the semantic model
of the extension of Reo we use for SDNs. Promela (PROcess MEta LAnguage)
is a process modeling language specifically designed for modeling and verifying
concurrent and distributed systems using SPIN (Simple Promela Interpreter), a
powerful model-checking tool [48]. With SPIN, Promela models can be analyzed
for various linear time temporal properties, such as deadlock freedom, liveliness,
and safety, through exhaustive state space exploration. SPIN provides an inter-
face for specifying Promela models and defining verification properties, allowing
a systematic validation of the correctness of complex concurrent systems.

By modeling the SDN control plane and data plane in Reo and automatically
obtaining a Promela code, we can use the SPIN model checking tool to explore the
SDN model and verify properties. Another high-level domain-specific language
for expressing and reasoning about network policies and behaviors in Software-
Defined Networking (SDN) environments is NetKAT [4]. NetKAT is inspired by
Kleene algebra, a mathematical framework for describing the behavior of regular
expressions, and is extended to the domain of network policies. In NetKAT,
network policies are expressed as compositions of basic primitives, such as packet
filters, forwarding actions, and logical operators, allowing for the specification of
complex routing and forwarding behaviors in a concise and modular manner.

Similar to our Reo model, NetKAT provides formal semantics and mathe-
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1.2 Research objectives

matical foundations for reasoning about network policies, enabling verification
techniques such as equational reasoning and model checking to ensure correctness
and consistency. Since both Reo and NetKAT use automata-based semantics, a
natural question is whether the two models can be unified in a single framework:

Research question 3. Can we extend the automata-based model of NetKAT to
be stateful and allow concurrency in a way similar to Reo?

In Chapter 5 we extend NetKAT with ports, which basically are shared vari-
ables used by processes to communicate with each other. Differently from a
traditional variable, reading a value from a port is destructive, while writing is
only possible if the port is empty. The addition of ports to NetKAT and a simple
modification of its automata model are enough to be comparable with the Reo
model. In particular, the extension of NetKAT with ports allows for concurrency,
it is stateful, and it is backward compatible with the original NetKAT model.

So far, the automata model of Reo (and NetKAT) we introduced has been
mainly geared toward the verification of SDNs. However, another important as-
pect of SDN is causality, particularly in understanding and managing network
events, behaviors, and dependencies. In SDNs, where the control plane is cen-
tralized and programmable, causality helps determine the order of events and
actions that influence network behavior. Understanding causality enables SDN
controllers to make informed decisions about network policies, routing, and re-
source allocation based on the sequence of events and their causal relationships.
Moreover, causality is crucial for troubleshooting and debugging network issues,
as it helps identify the root causes of anomalies or failures by tracing the sequence
of events leading to the observed behavior. Our final research question is related
to causality:

Research question 4. Can we use Reo or NetKAT and their associated
automata-based models for avoiding hazard events in SDN using causality?

We partially answer this question in Chapter 6, where we investigate an ordi-
nary automata model incorporating causality into the design of the safety prop-
erties so that if a hazard event may occur then not only we must avoid it, but
we also offer an alternative sequence of action that does not cause that event to
happen. While the automata we consider are simpler than the one used as the
model for SDNs via either NetKAT or Reo, we see this result as a first step toward
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1 INTRODUCTION

causality reasoning for SDNs.

1.3 Publications

In this section, we present all publications upon which our research presented
in this thesis is based. They constitute the primary source of our theoretical
research and methodological framework.

Hui Feng, Farhad Arbab and Marcello Bonsangue. (2019). A Reo Model of
Software Defined Networks. In: Ait-Ameur, Y., Qin, S. (eds) Formal Methods
and Software Engineering. ICFEM 2019. Lecture Notes in Computer Science,
vol 11852. Springer, Cham. https://doi.org/10.1007/978-3-030-32409-4_5

In this paper, we use Reo to model SDN switches and controllers, according
to the OpenFlow protocol specification. We use a similar abstract syntax
and semantics of OpenFlow messages to model the interactions between the
control plane and data plane in an OpenFlow-based SDN architecture. We also
implement the data flow between different controllers and switches. The formal
semantics of Reo is given by a novel version of constraint automata with memory,
that we called symbolic constraint automata. Most of the content of Chapters 3
and 4 is based on this paper.

Hui Feng, Marcello Bonsangue and Benjamin Lion. (2022). From symbolic
constraint automata to Promela. Journal of Logical and Algebraic Methods in
Programming. vol 128. 100794. https://doi:10.1016/j.jlamp.2022.100794

In this paper, we implement an automatic translation from symbolic con-
straint automata to Promela code, the programming modeling language of the
model checker SPIN. The translation enables the analysis of packet forwarding
according to OpenFlow controllers, The focus is on verifying the functional
properties of the SDN model, such as reachability, consistency, and correctness
of network policies and configurations using linear temporal logic. As expected,
the model suffers from the state explosion problem, and more research needs to
be done on the scalability of our approach. This could involve simplifying the
OpenFlow protocol to reduce the state space to be analyzed. On the positive
side, our translation is not only for SND models but for any Reo circuit (with
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1.4 Overview

and without variables). The main results of this paper are presented in Chapter 5.

Hui Feng and Marcello Bonsangue. (2024). Concurrent NetKAT with ports.
In: Juw Won Park and Adam Przybyłek and Hossain Shahriar. (eds) SAC’24:
Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. As-
sociation for Computing Machinery. https://doi.org/10.1145/3605098.3636048

The starting point of this paper is the original definition of NetKAT automata,
which we extend so to support concurrency. The main idea is to use NetKAT
automata as a model of propositional Hoare logic for concurrent processes
communicating via shared ports.

Marcello Bonsangue, Georgiana Caltais, Hui Feng, and Hünkar Can Tunç
(2022). A Language-Based Causal Model for Safety. In: Yamine Aït-Ameur,
Florin Crăciun. (eds) Theoretical Aspects of Software Engineering. TASE
2022. Lecture Notes in Computer Science, vol 13299. Springer, Cham.
https://doi.org/10.1007/978-3-031-10363-6_20

This paper is a first step towards a notion of causality for SDNs. Using
ordinary automata we implemented an algorithm for finding and removing haz-
ards specified as regular expressions. Since Reo can be modeled by NetKat au-
tomata with concurrency, causality analysis for SDN should be relatively easy
to reach. By understanding the causal links between network events and con-
figuration changes, and resulting outcomes, causality analysis could be used for
diagnosing performance bottlenecks and troubleshooting issues helping in identi-
fying the root causes of anomalies and failures. The content of this paper forms
the basis for Chapter 7.

1.4 Overview

In this thesis, we applied Reo and constraint automata to formally model SDN
architectures based on OpenFlow, We translated our formal model into Promela,
so to allow for the use of state-of-the-art model-checking tools. More semantically,
we extend the automata semantics of NetKAT to handle concurrent components
communicating via shared ports. The latter model is exactly our Reo semantic
model of SDNs. Finally, we took a few first steps into a causal analysis for SDNs.
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1 INTRODUCTION

The thesis is organized as follows: In Chapter 2, we introduce the main con-
cepts of software-defined networking (SDN), paying specific attention to the three-
layer framework and OpenFlow protocol. Consequently, in Chapter 3 we present
the coordination language Reo and its formal semantics. Throughout this thesis,
Reo is our main modeling language for the analysis of SDNs. The focus is on com-
position methods at the semantic level. Subsequently, in Chapter 4 we address
research question 1 by constructing a Reo model that faithfully encapsulates
the data plane and control plane of an SDN, including the modeling of individual
OpenFlow switches and their interconnecting channels. In Chapter 5, we pro-
pose a compositional translation from symbolic constraint automata to Promela,
aligning with research question 2. In Chapter 6 we address the limitations of
NetKAT in handling concurrency and relating it to Reo, thus resolving research
question 3. Finally, Chapter 7 addresses research question 4, wherein we
introduce an automata-based causal model where hazards are expressed in terms
of regular expressions.

10



Chapter 2

Software-defined Networks

In this chapter, we briefly introduce software-defined networks (SDNs) starting
from the idea behind SDNs and their benefits over traditional computer networks.
We also discuss a few protocols and concentrate on OpenFlow, a protocol that
enables the centralized control of network switches and allows for programmable
networking capabilities.

2.1 Traditional networking vs. SDN

Traditional computer network architectures are based on the seven layers of
the Open Systems Interconnection (OSI) model: the physical layer, the data link
layer, the network layer, the transport layer, the session layer, the presentation
layer, and the application layer. More specifically these layers describe how data
is transferred and received over a network. Each layer is accountable for carrying
out particular tasks related to sending and receiving data, whereas, for a message
to be delivered and received, all of the layers must be utilized.

The seven layers above provide a conceptual framework for understanding
network communication[20]. When considering the functional components and
responsibilities we then classify network components depending on the control
logic, the forwarding functionality, and where applications are executed. In gen-
eral, the primary function of a network is to ensure the transport of packets via
routing decisions and packet forwarding. The actual forwarding part of the net-
work is called the data plane, whereas the part controlling how this has to be
executed is called the control plane. In a traditional network, the control and

11



2 SOFTWARE-DEFINED NETWORKS

Figure 2.1: Structure of the switch in a traditional network

data planes are closely tied together with the application plane, see Figure 2.1,
as they are in charge of packet forwarding, building, and maintaining the routing
tables. In fact, within the OSI model[102], switches are typically in the data link
layer, and are responsible for forwarding packets by using physical addresses that
identify devices on a network, the so-called MAC addresses. But switches can
also have routing functionality and are instead positioned in the network layer.
As such, if the behavior of this network needs to be changed the switches have
to update their local control planes accordingly. This is even more difficult when
more and more network devices are employed since the control plane is highly
distributed without a global view of the network. As a result, it is very diffi-
cult to program network-wide decisions and even more difficult to verify their
correspondence against global requirements.

The solution of an SDN architecture is to separate the data plane from the con-
trol plane and the application plane[62], moving the latter two from the switches
to the network as shown in Figure 2.2. The advantage is a much simpler way to
regulate the network behaviour allowing for more flexible and dynamic network
management, as well as improved scalability and security. Since the data plane is
only responsible for packet forwarding, modifying the networks can now be done at
the application level, using software, thus explaining the name “software-defined”
networking.

In an SDN, the control plane consists of a few controllers that are responsible
for managing a large part of a network. Each controller can be configured to
decide how to transfer packets over the network based on a variety of factors,
such as traffic patterns, security policies, and service-level agreements.

One of the key benefits of an SDN is that it allows for more efficient use of
network resources because each controller can make routing decisions in real-time,
without the need to stop the forwarding process of the switches, for example by
reconfiguring the network logical structure in response to changing conditions,
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Figure 2.2: SDN architecture

such as nodes or hardware link failures.

2.2 Protocols for SDNs

The architecture offered by SDNs simplifies the design and deployment of net-
work management tasks: the control plane is a logically centralized controller that
gathers information from the data plane and provides a global view to applica-
tions running on top of the controller. These applications make packet routing
decisions based on the global view and distribute these decisions to the data
plane via the control plane. There is a northbound interface (NBI) between the
application plane and the controller for permitting a specific entity of a network
to communicate with a higher-level entity, the interface is on the upper side of
the controller called the “northbound” interface. Different from the southbound
interfaces (SBIs) between controllers and the switches, NBIs are offered by the
controllers themselves and are vendor-dependent as there is no open standard
NBI.

On the contrary, the SBI supports communication between the control planes
and data plane and is typically subject to OpenFlow [82], a specific communi-
cations protocol developed by the Open Networking Foundation (ONF). While
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OpenFlow is the most famous communications protocol for SDNs, it is not the
only one. For instance, other popular protocols for the SBI of an SDN include:

• the Simple Network Management Protocol (SNMP), an Internet standard
protocol used for managing and monitoring network devices, allowing for the
collection of information and the control of network elements in a managed
network [115] [79];

• the Forwarding and Control Element Separation (ForCES) protocol that
separates the control plane from the data plane in network devices beyond
switches using a master-slave mechanism, and allowing for centralized con-
trol and management of forwarding elements [45];

• the Path Computation Element (PCE) protocol, a communication protocol
used to enable centralized path computation and optimization in multi-
domain or multi-layer networks, moving this functionality from the routes
operating systems to the control plane [105];

• the Border Gateway Protocol (BGP), used to exchange routing and reach-
ability information between autonomous systems (AS) on the Internet, en-
abling the interconnection and dynamic routing decisions among different
networks [91, 73].

• the NETwork CONFiguration Protocol (NETCONF), based on the Yet An-
other Next Generation (YANG), used for remote network device manage-
ment and configuration, providing a programmable interface for network
automation and orchestration [31].

Each of these protocols has its own set of features, capabilities, and use cases
and all can be used in an SDN architecture without competing with each other.
In this thesis, we only concentrate on the OpenFlow protocol.

2.3 The OpenFlow protocol

Next, we present an informal introduction to the basics of the OpenFlow
protocol, following the specifications released in [39]. We first recall the definition
of an SDN packet. Then we describe the three types of OpenFlow messages, from
where they flow, and how they are used to change the network behaviors.
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OpenFlow is a communications protocol that is used to control the flow of
data in SDN. It provides a standard way for SDN controllers to communicate
with switches and viceversa [97, 82, 52, 64, 17, 51].

2.3.1 SDN packets

A packet is a unit of data that carries information across a network, encap-
sulating the control information necessary for its transmission. Besides data, it
consists of a header containing fields storing, for example, source and destination
addresses, and protocol information. The example below shows two packets, both
with a header containing information about the tcp and ethernet destination
address of the packet:

tcp dst:22, eth dst:11 data: d1 tcp dst:23, eth dst:11 data: d2

2.3.2 OpenFlow flow tables and flow entries

In an SDN architecture, each switch in the data plane has a number of ports
that are used to receive and forward packets. Switches are connected to at least
one controller, from which they may receive or which they may send OpenFlow
messages to. The main task of a switch is to forward packets to other switches.

When a packet arrives at a port of a switch, the SDN controller, which has a
global view of the network, determines how the packet should be handled based
on its header information. The process of forwarding a packet involves forwarding
rules stored in a flow table. The table consists of an ordered set of pairs (b, a),
where b is a Boolean condition on the values in the header fields of a packet (the
so-called matching criteria) and a is the corresponding action to be executed on
the matching packet. The order of the matching-action pairs gives priority to the
application of the matching condition. There are basically three types of actions:
forwarding a packet to one or more ports of the switch, dropping a packet, and
updating a field of a packet with some value.

For example, the leftmost packet above matches the first rule of the table
below, and it is forwarded to the output ports 3 and 4. The rightmost packet
however matches only the last rule and it is forwarded to port 1 after its field
tcp dst is updated to 22.
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Matching Condition Action
tcp dst:22 Forward[3, 4]
tcp dst:23, eth dst:12 drop

true tcp dst := 22; Forward[1]

2.3.3 OpenFlow messages

Controllers and switches communicate through three types of messages. A
PktIn message is from a switch to a controller. It includes a packet with all its
header fields and data and some additional information such as the port from
where the packet entered into the switch. Typically a PktIn message would be
processed by the controller to trigger an update of the flow tables.

A PktOut message is from a controller to a switch. It consists of a packet
together with a flow table action to be executed by the switch. This way a packet
need not pass through the flow table but is, for example, immediately forwarded to
other switches. The PktOut message is used to implement a one-time redirection
of a packet to a different path after a decision of the controller.

The flow table of a switch is updated by a FlowMod message, and it is sent by
a controller to the switch. Each FlowMod message consists of a ModType t (Add,
Remove, Modify), a matching condition b and an action a. If t = Add then the
pair (b, a) is added on top of the table (having thus highest priority), while if t =
Modify then the first pair in the flow table (b′, a′) with b implying b′ is substituted
with the new pair (b, a). In the remaining case when t = Remove, the first pair
in the flow table (b′, a′) with b implying b′ is removed from the table. In this
case, the action a does not play any role and therefore can be considered empty.
The FlowMod message allows a controller to add or remove rules to the flow table,
enabling the programmatic control of the behavior of the network. Note that
the action of an entry in the flow table is executed only when a package arrives
matching the respective conditions.

Those three types of messages plus dedicated packets to communicate data
allow controllers to gather information about the network and manage it.

2.3.4 Evaluating the OpenFlow protocol

OpenFlow enables centralized control over network devices, allowing for a
global view of the network and centralized control decisions. This facilitates
dynamic and flexible network management and it enables programmatic control
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by SDN controllers [38, 93]. The controller can be programmed to reconfigure the
network automatically in response to changing the network status. This can help
to improve the network’s overall performance, reliability, and scalability.

OpenFlow primarily focuses on the communication between the control plane
and data plane of network switches. The centralized control and programma-
bility introduced by OpenFlow can also pose vulnerability and security chal-
lenges [107] [10]. Also, the centralized control model of OpenFlow can become a
scalability bottleneck, and distributing the management of switches among sev-
eral controllers may introduce race conditions. Finally, the matching criteria of
a flow table are limited by the fields of a packet header. For example, predicates
on the action result are not allowed, limiting some traffic patterns or specialized
requirements.

2.4 Two examples

Consider the scenario presented in Figure 2.3 in which Switch 1 forwards all
packets received from port A to port C, and sends packets received from port B

to port Q as a PktIn messages for the controller. The controller in this example
has a local view of the topology of the network. In particular, it is aware that
ports A and B are connected to the host devices with IP addresses 192.168.0.1

and 192.168.0.2, respectively, while port C is connected to the host device with
IP address 192.168.1.1. Further, the switch uses port P for incoming PktOut and
FlowMod messages and port Q for outgoing PktIn messages.

The first time a packet is received by Switch 1, by using the OpenFlow protocol
the controller will receive a PktIn message containing the packet and may, for
example, decide to update the flow table of the Switch by sending a FlowMod

message so that the action of the second line of the flow table is updated to
forwarding a packet to port C. By sending also PktOut message with the original
packet and the new action, the controller guarantees that no placket gets lost.

A second example is given by a controller connected to four switches as shown
in Figure 2.4. Assume all switches have initially an empty flow table. When
switch 1 receives a packet at port A, since the packet does not match any entries
of the flow table, the switch sends it as a PktIn message to the controller. The
controller calculates a path to the destination device (say a device with IP number
192.168.1.1) and it returns a FlowMod message to all switches involved in the path
so that the packet is forwarded along ports B,C,D,E, F,G and H in the path
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Figure 2.3: A single switch SDN network

(see Figure 2.4). Subsequently, the controller sends a PktOut message to switch
1 only, containing the original packet and the action for forwarding it to port B.
As the packet moves along the path to its destination, the flow table of the other
switches may or may not have received the FlowMod message for updating the
table. If yes the packet is forwarded from one switch to another until it arrives
at its destination.

However, because of an eventual race condition, if one of the switches along
the path has not yet received the FlowMod message for updating the table, when
the packet arrives it will be forwarded again to the controller inside a PktIn

message, and the controller will have to send it back via a PktOut message with
the corresponding forwarding action. However, once the first packet arrives at its
destination, it can be guaranteed that the next packet that arrives at port A of
Switch 1 will go directly to its destination without the need for a controller to
intervene.
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Figure 2.4: A multi-switch SDN network
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Chapter 3

Reo and constraint automata

After having introduced SDNs in Chapter 2, we now turn to Reo, a coordina-
tion language that we will use in the next chapter to model SDNs. The advantage
of using Reo comes from its intuitive graphical syntax that comes equipped with
precise automata-based semantics. The emphasis in Reo is on data and synchro-
nization constraints, expressed by connectors, determining their behavior and
importance during composition. In fact, Reo has already been used for modeling
and analyzing a wide range of systems, including communication protocols [59],
workflow systems [85], and control systems [9].

3.1 A short introduction to Reo

Reo is a coordination language for the compositional construction of compo-
nent connectors [5]. Connectors in Reo are modeled as directed graphs describing
the way data flows through a system. The nodes of the graph are called ports
and can be used to connect a connector to other connectors. The behavior of a
Reo system is determined by the way these ports are connected together, as well
as the constraints that are imposed on the data flowing through the system. A
port that is used exclusively as the source of edges is called an input port and
represents an interface through which the connector receives data. Dually, a port
that is only the target of the edges of a connector is called an output port (or
sink), and represents an interface through which the connector offers data to the
environment. Ports that are both source and target of some edges of the con-
nector are "hidden" to the environment and have a ‘merge-replicate’ behavior: it
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accepts data from one (chosen non-deterministically) of the target edges of the
connector and immediately sends it to all edges with the hidden port as a source.
Isolated ports do not have any behavior by themselves. Note that, being an input
or an output port is a property that depends on the connector, and in fact, when
composing connectors, the same port can be input for one and output for the
other.

Figure 3.1 shows the graphical representation of three simple Reo connectors:
(a) is an isolated Reo port p, (b) is a connector representing a channel where the
data flows from the input port p to the output port q under the constraints g, and
(c) is a connector with an unnamed internal port that enables the flow of data
from q to both q1 and q2 under some data constraints. Besides data constraints,
connectors specify also synchronization constraints that are visualized by using
two different types of edges: synchronous and asynchronous. Specifically, all the
connectors in this example use synchronous edges implying that flow between the
input and output ports of the connector is logically happening at the same time,
i.e. they synchronize.

p

(a) Port

p q

g

(b) Single channel connector

q

q1

q2

g1

g2

g2

(c) Multiple channel connector

Figure 3.1: Port, channel, and connector

Synchronization constraints in Reo are strict, meaning that they impose syn-
chronization between ports connected by synchronous edges, and nothing else.
No flow among other input and output ports belonging to a connector is allowed.
This is of importance when two connectors are connected, as data is only allowed
to flow between the common input and output ports, as well as on input or output
ports that belong to one but not to the other connector.

3.2 Constraint automata

Constraint automata are a formalism to describe the behavior of Reo con-
nectors and their composition [13]. Constraint automata can be thought of as
conceptual generalizations of finite state automata where data and synchroniza-
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tion constraints influence which transitions are enabled on a given state.
We assume given a finite set D (ranged over by d) denoting all possible data

that can be sent and received by Reo connectors, and a finite set P of ports names
ranged over by p, q. Here p ∈ P is a port of a connector (a different concept than
a port of a switch in an SDN). While later we will distinguish between input and
output ports, for simplicity, and following the original presentation [13] we do not
consider this difference here. Given a non-empty subset N ⊆ P of ports, we define
the set DC(N) by the following grammar::

g :: = true | p = d | g1 ∧ g2 | ¬g .

Here p = d is the basic constraint imposing the data d to be available at port p ∈
N . Basic constraints can be composed using the usual Boolean operation. Since
D is a finite set, we sometimes use p = q to denote the constraint

∧
d∈Data((p =

d) ∧ (q = d)). As usual, we write p ̸= d for ¬(p = d).

Definition 3.1 ([13]). A constraint automaton is a tuple (S,N,−→, S0) where

• S is a finite set of states,
• N ⊆ P is a finite set of ports,
• −→⊆ S × (N × DC(N)) × S is a transition relation such that s

P,g−−→ s′

implies P ̸= ∅ and g ∈ DC(P ), and
• S0 ⊆ S is the set of initial states.

A transition s1
P,g−−→ s2 is enabled in state s1 when all ports in P have data

available (in the case of inputs) or no data (in the case of outputs). In this case,
the automaton moves to state s2 if all data constraints imposed by g are satisfied.

For example, the three automata corresponding to the connectors of Figure 3.1
are defined as follows

(a) A1 = ({s1}, {p}, ∅, {s1});

(b) A2 = ({s2}, {p, q},−→2, {s2}) with s2
{p,q}, g−−−−−→2 s2; and

(c) A3 = ({s3}, {q, q1, q2},−→3, {s3}) with s3
{q,q1,q2}, g1∧g2−−−−−−−−−−→3 s3.

The semantics of a constraint automaton describe how it behaves and evolves
over time. It is defined in terms of Timed Data Streams (TDS) [7] which associate
with each port an infinite sequence of events representing the data flowing through
the port and the time when this occurs. The transitions of the automaton then
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define the constraints that the data must satisfy, whereas synchronization relates
to the time of the data flow at the synchronizing ports.

The composition of two constraint automata is a fundamental operation in the
formal modeling and analysis of systems using Reo. It describes how data flow
events of the two automata should align with each other.

Definition 3.2. The product of the two constraint automata A1 = (S1, N1,−→1

, S1,0) and A2 = (S2, N2,−→2, S2,0) with disjoint sets of states S1 and S2, is
defined as the automaton

A1 ▷◁ A2 = (S, N, −→, S0)

where S = S1 × S2, N = N1 ∪ N2, S0 = S1,0 × S2,0 and −→ is defined by the
following three rules:

s1
P1,g1−−−→1 t1 s2

P2,g2−−−→2 t2 and P1 ∩ N2 = P2 ∩N1

⟨s1, s2⟩
P1∪P2, g1∧g2−−−−−−−−−→⟨t1, t2⟩

s1
P1, g1−−−−→1 t1 and P1 ∩N2 = ∅

⟨s1, s2⟩
P1, g1−−−−→ ⟨t1, s2⟩

and
s2

P2, g2−−−−→2 t2 and P2 ∩N1 = ∅

⟨s1, s2⟩
P2, g2−−−−→ ⟨s1, t2⟩

Similar to the product automaton the above composition combines the states
of the two automata into pairs to represent the possible configurations of the
composed system. Common ports at each transition are matched based on their
names. This step ensures that the time of flow events of one automaton coincides
with the time of flow events of the other automaton. Also, the data coincides,
as data constraints of both automata must be valid. Data flow at disjoint ports
remains unchanged and happens in an interleaving fashion.

For example, the automata A2 and A3 above share only the port q. When
composing them, the behaviors at the other ports are unchanged, but the flow
of data at the common port q must be the same. The resulting automaton is
A1 ▷◁ A2 = ({⟨s2, s3⟩}, {p, q, q1, q2}, −→, {⟨s2, s3⟩}) with only one transition,
namely:

⟨s2, s3⟩
{p,q,q1,q2}, g∧g1∧g2−−−−−−−−−−−−−→ ⟨s2, s3⟩ .

Note that all four ports synchronize and that data in p must satisfy the same
constraints g ∧ g1 ∧ g2 as data at all other ports because it flows from p to q1

and q2 passing through q. Formally there is no direction in this flow, and all
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ports are still open to the environment, while it may be desirable for port q to be
restricted to further communication with the environment after a composition.
We will consider an extension addressing both points in the next section.

3.2.1 Constraint automata with memory

In many systems, the current behavior may depend on past events. Constraint
automata lack the ability to retain information about past inputs or data, which
can influence the current behavior of components. While this capability could be
recovered by adding more states to the automaton in the case of finite data, the
presentation of the automaton’s behavior would enormously suffer and the number
of states would increase exponentially. Moreover, in the presence of infinite data
adding states would not suffice. By incorporating memory, an automaton gains
the ability to become stateful by storing data in local internal variables. And these
variables can be utilized in constraints just as input or output ports in ordinary
constraints automata.

Next, we extend constraint automata by adding local variables to store data
as recently studied in [57]. Except for the existential quantifier in constraints
that could be easily added, the main difference with the approach below is a
neater treatment of the values in the memory before and after the execution of a
transition.

In addition to the set D of data and P of ports as used in constraint automata,
we now assume another disjoint finite set M of memory cells ranged over by m.
Further, let F be a set of function symbols and P a set of predicate symbols. Each
predicate symbol and each function symbol comes with an arity, the number of
arguments it expects. A term is defined as follows:

t :: = d | p | m | m• | f(t, ..., t)

The idea is that p denotes the value at the port p, m evaluates the value stored
in the memory cell before the execution of a transition, and m• to the value
immediately after the execution of the transition. Evaluation of functions is as
usual. Terms are used in constraints that are defined by the following predicate
formulas:

ϕ :: = ⊤ | p = t | m = t | m• = t | P (t, ..., t) | ϕ ∧ ϕ | ¬ϕ
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The constraint p = t denotes the equality between the value passing through the
port p, and the value obtained by evaluating the term t; m = t is the equality
between the value stored in the memory m before evaluating the constraint and
the value denoted by t; and m• = t is the equality between the value stored in
the memory m immediately after the evaluation of the constraint and the value
denoted by t. The others are just the usual constraints.

In order to define the satisfaction of constraints, we assume the existence of
a function f̂ :Dn → D for each f ∈ F of arity n, and a subset P̂ ⊆ Dm for each
predicate symbol P ∈ P of arity m. For fixed sets of input ports I ⊆ P, output
ports O ⊆ P and hidden ports H ⊆ P, the evaluation of constraint is defined by
using the function α:I ∪O ∪M→ D⊥, and an environment η:H → D⊥ assigning
values to hidden ports. α is used for the visible components of a Reo connector.
Here α(p) represents the value passing through port p unless α(p) =⊥ denotes
the absence of data flow through port p. Similarly α(m) denotes the value stored
in the memory cell m.

We denote by At the set of all atoms α. Note that m• is not a part of an atom,
because it refers to the value of m after the evaluation of a transition. Therefore
we need pairs of atoms, one for the current values stored in memory cells, and
another for storing the side effect of an evaluation, i.e., the value of a memory cell
after the evaluation. Evaluation of guards is defined inductively as follows:

α1α2 |=η ⊤
α1α2 |=η p = t iff α1(p) = JtKηα1α2

α1α2 |=η m = t iff α1(m) = JtKηα1α2

α1α2 |=η m• = t iff α2(m) = JtKηα1α2

α1α2 |=η P (t1, ..., tn) iff ⟨Jt1Kηα1α2
, ..., JtnKηα1α2

⟩ ∈ P̂

α1α2 |=η ϕ1 ∧ ϕ2 iff α1α2 |=η ϕ1 and α1α2 |=η ϕ2

α1α2 |=η ¬ϕ iff α1α2 ̸|=η ϕ

Finally, we define the evaluation of a guard without hidden ports as follows:

α1α2 |= ϕ if and only if there is η such that α1α2 |=η ϕ.
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Here JtKηα1α2
denotes the value of the term t and is defined inductively by:

JdKηα1α2
= d

JpKηα1α2
=

{
α1(p) if p ∈ I ∪O

η(p) if p ∈ H

JmKηα1α2
= α1(m)

Jm•Kηα1α2
= α2(m)

Jf(t1, ..., tn)Kηα1α2
= P̂ (Jt1Kηα1α2

, ..., JtnKηα1α2
)

We are now ready for the definition of constraint automata with memory cells
describing operationally the behavior of a Reo connector.

Definition 3.3. A constraint automaton with memory is a tuple
(S, I,O,H,M,−→, S0) where S is a finite set of states with S0 ⊆ S the
set of initial states, I,O,H ⊆ P are sets of ports known by the automaton,
M ⊆ M is the set of memory cells, and −→ is a transition relation with
s

N,ϕ−−→ s′ denoting a transition from a state s to s′ synchronizing a set of ports
N ⊆ I ∪O ∪H under the data constraint ϕ. We assume that the ports appearing
in ϕ are a subset of N and the memory cells occurring in ϕ are a subset of M .

An execution of a constraint automaton is described by means of infinite
strings [55] in Atω. An infinite string α · w is an execution starting from the
state s, denoted by α ·w ∈ E(s) if and only if there is a transition s

N,ϕ−−→ s′ such
that the following three conditions hold:

1. ∀p ∈ I ∪O, p ̸∈ N iff α(p) =⊥;

2. w = α′ · w′ and αα′ |= ϕ;

3. w ∈ E(s′)

By the above definition, a constraint of a transition s
N,ϕ−−→ s′ is evaluated in

an execution α · w starting from a state s with respect to its first two atoms.
Furthermore, only the input and output ports in N fire, meaning that a value
passes through them as recorded by α, and the rest of the string w is an execution
of the target state s′.

Consider the following constraint automaton:
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s0start s1

{p?}, m• = p

{q!}, m = q

{p?, q!, h}, m• = h ∧m = q ∧ h = p

Here the suffixes "?" and "!" on a port are just syntactic means for indicating
which ports belong to I and O respectively. The unmarked ports belong to H. An
example of an execution of the above automaton starting from s0 is the infinite
string:

[p = 1, q =⊥,m = 22] · [p = 3, q = 1,m = 1] · [p = 5, q = 3,m = 3]·
[p =⊥, q = 5,m = 5] · [p = 7, q =⊥,m = 33] · . . .

Note that the value of the memory of the second element of the string is equal
to the value at port p of the first element, and the value of port q of the second
element. Similarly for the value of p in the second element and the value of q and
the memory m in the third element.

The above automaton has the same executions from the initial state as the
following automaton without hidden ports.

s0start s1

{p?}, m• = p

{q!}, m = q

{p?, q!}, m• = p ∧m = q

While in general it is not always possible to remove all hidden ports without
modifying the set of executions, for simplicity and when there is no problem, in
the sequel we will simplify a constraint automaton by removing hidden ports and
obtaining an automaton with the same structure (states and transitions) and the
same executions from its initial state.

The language of a constraint automaton consists of the projection with respect
to the input and output ports of all executions starting from the initial state. It
represents the behavior of the automaton as visible from the environment. As
such, only input and output ports are visible, but not hidden ports or memory
cells. For example, the language accepted by the above two constraint automata is
the same (i.e., they are language equivalent) and it includes the following infinite
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string

[p = 1, q =⊥] · [p = 3, q = 1] · [p = 5, q = 3] · [p =⊥, q = 5] · · · .

3.2.2 Basic and more complex connectors

In the following table, we associate constraint automata with memory to a few
basic Reo connectors here described by means of their usual graphical represen-
tation [5, 65].

p q

The synchronous connector accepts data
from its input port p, and it passes syn-
chronously to its output port q.

{p?, q!}, p = q

p q

The synchronous drain has two input ports
p and q, from which it accepts any data, but
only when the two ports can be synchronized.
The data received as input is not important,
only ports’ synchronization matters.

{p?, q?}

p q

The lossy synchronous connector accepts
data from its input port p, it either passes
them synchronously to its output port q, or
loses them in the channel without any reason.

{p?, q!}, p = q

{p?}

p1

p2

q

The non-deterministic merger receives data
from either its input ports p1 or p2 and sends
it to the output port q synchronously. If data
is available at both input ports, only one of
them is chosen non-deterministically.

{p1?, q!}, q = p1

{p2?, q!}, q = p2

p

q1

q2

The replicator connector receives data from
its input port p and replicates it to both out-
put ports q1 and q2.

{p?, q1!, q2!},
q1 = p ∧ q2 = p
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p q
•
m

The FIFO1 connector receives data from the
input port p if the internal buffer m is empty.
The data is stored in the buffer, which can
only contain at most one data item. When
m is full its content flows to the output port
q and it becomes empty. The behavior of a
similar connector with dots inside the box is
represented by the automaton with the other
state as the starting state.

{p?}, p = m•

{q!}, q = m

p q

f The transformer connector applies a function
f to a data item received through its input
port p, and synchronously offers the data re-
sulting from evaluating f(p) to it output port
q.

{p?, q!}, q = f(p)

p q

P

The pattern of a filter connector P ⊆ Data

specifies the type of data items that can be
transmitted through the channel. Any value
d ∈ P is accepted through its input port p

if the output port q can simultaneously dis-
pense d; all data items that do not satisfy P

are always accepted at the input p but they
are immediately lost.

{p?, q!},
q = p ∧ P (p)

{p?}, ¬P (p)

p1

q
p2

The pairing connector accepts two data items
through its input ports p1 and p2, and syn-
chronously output their pairing thorugh the
port q.

{p1?, p2?, q!},
q = ⟨p1, p2⟩

p q

m

The variable connector output the content of
m at the port q and update m with the data
at the input p. If only the input port is en-
abled then update m with the data received,
while if only the output port q is enabled,
then it sends the value of m to q and does
not change m.

{p?, q!},
m = q ∧m• = p

{p?},
m• = p

{q!}, m = q ∧m• = m

Note that the pairing connector is similar to a transformer but with two inputs
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3.2 Constraint automata

and using as a function the pairing ⟨−,−⟩. In all automata in the table, we assume
that the ports known by each automaton are those used in the connectors.

We are now ready to extend the product of constraint automata given in the
previous section so as to consider different types of ports, internal local memory,
and restrictions of the ports used during synchronization. As before, the join
operation guarantees synchronization and the same data flow at common ports
but leaves the behavior at ports unknown to one of the automata unchanged.

Definition 3.4. Assume S1 ∩ S2 = ∅, M1 ∩M2 = ∅, H1 ∩ (I2 ∪ O2 ∪ H2) = ∅
and H2 ∩ (I1 ∪ O1 ∪H1) = ∅. The product of the two constraint automata A1 =

(S1, I1, O1,

H1, M1, −→1, S1,0) and A2 = (S2, I2, O2, H2, M2, −→2, S2,0) is defined as the
following automaton:

A1 ▷◁ A2 = (S, I,O,H,M,−→, S0)

where S = S1 × S2, S0 = S1,0 × S2,0, M = M1 ∪M2 I = (I1 − O2) ∪ (I2 − O1),
O = (O1− I2)∪ (O2− I1), H = (I1∩O2)∪ (I2∩O1)∪H1∪H2, and −→ is defined
by the following rules:

s1
N1,ϕ1−−−−→1 t1 s2

N2,ϕ2−−−−→2 t2 and Prt1 ∩ N2 = Prt2 ∩ N1

⟨s1, s2⟩
N1∪N2, ϕ1∧ϕ2−−−−−−−−−→⟨t1, t2⟩

s1
N1,ϕ1−−−−→1 t1 and Prt2 ∩ N1 = ∅

⟨s1, s2⟩
N1, ϕ1−−−−→ ⟨t1, s2⟩

and
s2

N2,ϕ2−−−−→2 t2 and Prt1 ∩ N2 = ∅

⟨s1, s2⟩
N1, ϕ1−−−−→ ⟨s1, t2⟩

Here Prt1 = I1 ∪O1, and Prt2 = I2 ∪O2.

Example 1. Figure 3.2 shows an example of a composition of a variable (on
the left) on ports {A?, B!} with a FIFO1 connector (second automata from the
left) acting on port {B?, C!}. The result is a new automaton with B as the
hidden port (the last automaton), which however is the language equivalent to
the automaton of a non-deterministic merger (in Figure 3.3 on the right) on ports
{A?, C!}. Initially, variable stores a value of m1, and FIFO1 starts with m2 = ⊥.
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3 REO AND CONSTRAINT AUTOMATA

{A?, B!},

B = m1 ∧m•
1 = A

{A?}, m•
1 = A

{B!}, B = m1 ∧m•
1 = m1

▷◁

{B?}, m•
2 = B

{C!}, C = m2

=

{A?},

m•
1 = A

{A?},

m•
1 = A

{A?, B}, B = m1,m
•
2 = B,m•

1 = A

{B}, B = m1,m
•
2 = B

{C!}, C = m2

Figure 3.2: The composition of two automata

{A?},

m•
1 = A

{A?},

m•
1 = A

{A?, B}, B = m1,m
•
2 = B,m•

1 = A

{B}, B = m1,m
•
2 = B

{C!}, C = m2

≡

{A?},

m•
1 = A

{A?},

m•
1 = A

{A?}, m•
2 = m1,m

•
1 = A

m•
2 = m1

{C!}, C = m2

Figure 3.3: Removing hidden ports

Note that the port B is a hidden port in the resulting automaton because it is
an output port of one connector and an input port of the other. It is not hard to
see that the join operation is associative and commutative. The full conjunction
process is as follows.

Assume the first automaton is named A1, where the state in A1 is 1, the
transition above is t1, the right transition is t2, and the transition below is t3.
The second automaton is called A2, the first state from left is named 2, the second
state from left is 3, the transition from state 2 to state 3 is t4, the transition from
state 3 to state 2 is t5, then we have the following information:

For A1:
I1 = {A}, O1 = {B}, Q1 = {1}, q1 = 1, Prt1 = {A,B}, H = ∅,M1: m1 =

v

the transition t1: 1
N1,ϕ1−−−−→ 1, N1 = {A,B}, ϕ1: B = m1 ∧m•

1 = A

the transition t2: 1
N2,ϕ2−−−−→ 1, N2 = {A}, ϕ2:m

•
1 = A

the transition t3: 1
N3,ϕ3−−−−→ 1, N3 = {B, }, ϕ3: B = m1 ∧m•

1 = m1

For A2:
I2 = {B}, O2 = {C}, Q2 = {2, 3}, q2 = 2, Prt2 = {B,C}, H =

∅,M2: m2 = ⊥
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3.2 Constraint automata

the transition t4: 2
N4,ϕ4−−−−→ 3, N4 = {B}, ϕ4: m

•
2 = B

the transition t5: 3
N5,ϕ5−−−−→ 2, N5 = {C}, ϕ5: C = m2

Applying to Definition 3.4, the composition of A1 and A2 is (Q, I,O,H,M,−→
, q0), where

Q = Q1 ×Q2 = {⟨1, 2⟩, ⟨1, 3⟩},

I = (I1 −O2) ∪ (I2 −O1) = ({A} − {C}) ∪ ({B} − {B}) = {A} ∪ ∅ = {A},

O = (O1 − I2) ∪ (O2 − I1) = ({B} − {B}) ∪ ({C} − {A}) = ∅ ∪ {C} = {C},

H = (I1 ∩O2) ∪ (I2 ∩O1) ∪H1 ∪H2 = ({A} ∩ {C}) ∪ ({B} ∩ {B}) ∪ ∅ ∪ ∅ = {B},

M = [m1 = v,m2 =⊥].

The transitions are defined as follows:

▶ t1 join with t4:
∵ N1 ∩ Prt2 = N4 ∩ Prt1 = {B},
∴ t1 join with t4: ⟨1, 2⟩

N6, ϕ6−−−−→ ⟨1, 3⟩,
N6 (i.e., N1∪N4) = {A,B}, ϕ6 = ϕ1∧ϕ4: B = m1∧m•

1 = A∧m•
2 = B

▶ t1 join with t5:
∵ N1 ∩ Prt2 = {B}, N5 ∩ Prt1 = ∅,
∴ t1 join with t5: ⟨1, 3⟩

N5, ϕ5−−−−→ ⟨1, 2⟩, N5 = {C}, ϕ5: C = m2

▶ t2 join with t4:
∵ N2 ∩ Prt2 = ∅, N4 ∩ Prt1 = {B},
∴ t2 join with t4: ⟨1, 2⟩

N2,ϕ2−−−−→ ⟨1, 2⟩, N2 = {A}, ϕ2: m
•
1 = A

▶ t2 join with t5:
∵ N2 ∩ Prt2 = ∅, N5 ∩ Prt1 = ∅,
∴ t2 join with t5: ⟨1, 3⟩

N2,ϕ2−−−−→ ⟨1, 3⟩, N2 = {A}, ϕ2: m
•
1 = A,

⟨1, 3⟩ N5,ϕ5−−−−→ ⟨1, 2⟩, N5 = {C}, ϕ5: C = m2

▶ t3 join with t4:
∵ N3 ∩ Prt2 = N4 ∩ Prt1 = {B},
∴ t3 join with t4: ⟨1, 2⟩

N7,ϕ7−−−−→ ⟨1, 3⟩,
N7(i.e., N3 ∪N4) = {B}, ϕ7:m

•
2 = B ∧B = m1 ∧m•

1 = m1

▶ t3 join with t5:
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3 REO AND CONSTRAINT AUTOMATA

∵ N3 ∩ Prt2 = {B}, N5 ∩ Prt1 = ∅,
∴ t3 join with t5: ⟨1, 3⟩

N5,ϕ5−−−−→ ⟨1, 2⟩, N5 = {C}, ϕ5: C = m2

The list above has seven transitions after the conjunction, with regards to some
transitions that are overlapping, we keep one of them and remove the others. For
instance, the second transition of the list A1 ▷◁ A2 appears in the fourth and last
one, we only keep one transition as the result. Port B is removed in the final
automaton since it becomes the hidden port.

Example 2. As another more complex example, in Figure 3.4 we introduce a
three-input sequencer that regulates the flow of data from the input ports p1, p2,
and p3, in sequential order, one after the other. Similar sequencers can be defined
for any number of ports [41]. The connector is obtained by properly composing
three synchronous drain connectors (connecting p1 with i2, p2 with j2, and p3 with
k2), one non-deterministic merger (connecting j1 and j3 with j2) two replicators
(connecting i1 with i2 and i3, and k1 with k2 and k3), two FIFO1 connectors (one
from i3 to j1, and another from j3 to k1), and finally a FIFO1 connector from k3

to i1 with a buffer initially storing a token data.

p2p1 p3

i1

i2
i3

j1

j2

j3

k1 k2

k3

•
m1

•
m2

•

m3

Figure 3.4: A three-input sequencer

Starting from the constraint automata of the basic connectors we have given
above, and composing them according to Figure 3.4, we obtain the following
three-state constraint automaton, where we have removed all hidden ports.
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3.2 Constraint automata

s1

s2

s3

{p1?} m•
1 = m3 {p2?} m•

2 = m1

{p3?} m•
3 = m2
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Chapter 4

A Reo Model of SDNs

In this chapter, we present a formal model of SDNs based on the Reo lan-
guage. Using Reo we regard components in an SDN as constraints imposed on
the interactions among the parties engaged in the processing of network packets.
Starting with a small set of simple constraints, we obtain a declarative descrip-
tion of switches in the data plane as well as controllers in the control plane. The
composition of these components is supported through other simpler connectors
which give a global description of the topology of the network. Using the con-
straint automata semantics of Reo, the result is a compact finite state model for
SDN particularly suited for formal verification, a direction that we will explore in
the next chapter.

To scale up to handle large networks, our resulting SDN model is compositional
in the sense that the meaning of the entire computer network is obtained by
composing that of the individual models of the switches, network topology, and
controllers. Furthermore, the resulting model is independent of the (possibly
infinite) sequences of packets traversing the network.

4.1 Modeling the data plane

To begin with, we describe the switches of the data plane as Reo circuits,
and we translate them into their corresponding constraint automaton. Then, we
describe two examples of controllers managing a simple network with two switches.
The goal is to send packets from one host to another. We conclude by combining
the automata of these two layers with a network topology.
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4 A REO MODEL OF SDNS

In the context of software-defined networking, a packet refers to a discrete
unit of data that is transmitted over a network. It contains the actual data being
sent, along with a header that contains the control information necessary for its
routing and handling within the SDN infrastructure. We see a packet as a record
π : Fields → Data assigning fields from a finite set of Fields to data in Data.
We denote a packet by π = [f0 = d0, f1 = d1, ..., fn = dn], and use the notation
π.f to denote the value of the field f of the packet π.

We abstract from the concrete information contained in a packet, such as
the source and destination IP addresses, protocol information, and source and
destination ports. To cater to the latter, we assume that the set Fields includes
a field IP t for storing the identity of the input port of the switch where the
packet is received and OPt for the output port of the switch where the packet is
forwarded. This information is crucial for making forwarding decisions within the
SDN network.

4.1.1 The Reo connector of a switch

As packets traverse the network, SDN switches perform specific actions on each
packet based on its header information, such as forwarding the packet to specific
ports or modifying its headers. Controllers can dynamically program these actions
based on their global view of the network. Figure 4.1 introduces the Reo connector
representing a switch with an interface consisting of input ports {P0, P1, ..., Pn}
and output ports {Q0, Q1, ..., Qm}. Here both n and m are greater than or equal
to 0 so that a switch has always at least two ports: P0 and Q0. Port P0 is used
to receive messages from the controller (or controllers) supervising the switch,
whereas port Q0 is meant for sending packets to the controller. All other ports
are connected to other switches or open to the environment for communication
with hosts. The input ports receive packets, and the output ports send packets.

We can describe the behavior of the Reo connector representing a switch using
three scenarios.

1. The first one is when a packet π is received from a host or another switch.
In this case, the input port receiving the packet is Pi for some 1 ≤ i ≤ n.
The transformer AddIpt_i of the channel connected to Pi assign π.IP t to i

and outputs to node A a triple (FlowMsg, π, ∅). The first component of the
triple is the tag FlowMsg indicating that π is an ordinary network packet
with no side effect on the flow table. The last component is the subset of
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4.1 Modeling the data plane

P0

P1

Pn

A CB D E

H
F

R0

Q0

R1

Rm

Q1

Qm

GFlowMod
PktOut

RmvAddIpt1

AddIptn

Msg

FM

Mtc

Upd

Sel0

Cut

Sel1

Selm

Cut1

Cutmτ

Figure 4.1: The Reo circuit of a switch

output ports of the switch where the packet needs to be forwarded. The
above triple is paired with the current flow table stored in τ and received
by the filters FM and Msg. These filters check the first component of the
triple. In our case, only the filter Msg will succeed, and will pass the triple
(FlowMsg, π, ∅) together with the table τ to the transformer Mtc via node
D. This transformer matches the packet π against the table τ , executes
the corresponding field assignment modifying π into a new packet π′ and
outputs the pair (π′, F ) to node E. Here the set F contains all output ports
where the packet π′ needs to be forwarded, according to the action of the
matching pair in the flow table τ .

The filters Seli regulate the forwarding by outputting the pair (π′, F ) to
node Ri if i ∈ F . Note that the same pair may be duplicated to many
nodes, and in case F = ∅ it will be dropped. Also, If 0 ∈ F then the
packet is forwarded to the controller. From the node Ri the transformer
Cuti receiving as input the pair (π′, F ) will output the packet π′, removing
the information about the forwarding ports.

2. The second situation is when a PktOut message from the controller is re-
ceived at the input port P0. A PktOut message is a triple ⟨FlowMsg, π, F ⟩
consisting of a tag FlowMsg as in the previous case, a packet pi and a set of
output ports F where π needs to be forwarded. Only the filter PktOut lets
this triple flow to the node G, where a transformer receives it, removes the
tag, and outputs the pair (π, F ) to node E. The selection and forwarding
of π to each port in F are as before.
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4 A REO MODEL OF SDNS

3. The third and last situation is when a FlowMod message from the controller
is received at the input port P0. Also in this case it consists of a triple
⟨t, B,A⟩, but unlike the previous cases, this message is meant to update the
table stored in τ . More specifically, B is a Boolean condition on Fields

matching the pair of τ to be updated, and A is the action for field updating
and packet forwarding. The tag t can be either add, remove or modify to
add (B,A) on top of table τ , remove the first pair (b, a) of τ with b implying
B, or to modify the first pair (b, a) of τ with b implying B into the new pair
(b, A). Note that in the case of t = remove, the action A does not play any
role.

Of the two filters with input at P0 only the filter FlowMod will succeed,
so the triple ⟨t, B,A⟩ can be paired with the current flow table τ and reach
node C. Here the filter Msg will fail but FM will succeed, passing all
⟨t, B,A⟩ and τ to the transformer Upd. This transformer will update the
table τ as described in the triple ⟨t, B,A⟩, and will output a new table τ ′.
The latter is stored as the new current table by the variable channel with
input node F .

4.1.2 Constraint automata for switches

While the Reo circuit of a switch may look complicated, its actual constraint
automaton is rather simple. It consists of only one state (because all channels
used have one single state) and three types of transitions (see Fig. 4.2).

{P0?},C0

{Pi?} ∪ {Qj !|j ∈ F},C2
{P0?} ∪ {Qj !|j ∈ F},C1

Figure 4.2: Constraint automaton of a switch

The conditions C0, C1 and C2 are:

1. C0: P0 = ⟨t, B,A⟩ ∧ t ̸= Msg ∧ τ• = Upd(⟨τ, P0⟩);
2. C1: P0 = ⟨Msg, π, F ⟩ ∧

∧
j∈F Qj = π;

3. C2: Mtc(⟨τ, ⟨Msg, π[i/Ipt], ∅⟩⟩) = ⟨π′, F ⟩ ∧ τ• = τ ∧
∧

j∈F Qj = π′.

Condition C0 specifies when a FlowMod message is received by a switch so
that the flow table is updated. Transitions labeled by condition C1 or C2 depend
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4.2 Modeling the control plane

on the subset of output ports F received as input from P0 or assigned after a
matching action. This means there is a concrete transition for each possible
subset of the output ports, but only one will eventually be chosen. Condition C1

concerns FlowMsg messages received by a controller, while condition C2 defines
the handling of a packet received from a host or another switch.

If we assume that in a switch the number of input ports is n and that the
number of output ports is m, then the resulting constraint automata will have
one state and 1 + 2m + (n− 1) ∗ 2m transitions.

Each switch in the data plane can be considered as a Reo connector interacting
with others only via its input and output ports, while all other nodes and memory
cells of the components are hidden. For example, while too large to depict here,
the constraint automaton of the data plane composed of two simple switches
connected by a synchronous channel as described in Figure 4.3 consists of one
state, two memory cells (one for each switch flow table) and 26 transitions, which
can be generated using automated tools [6].

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Figure 4.3: Two connected switches

O1 I O2

Controller

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Figure 4.4: A controller and two
switches

4.2 Modeling the control plane

The SDN control plane contains a set of controllers. Controllers are typically
programmed using various programming languages to define network policies by
handling events and configuring flow rules, e.g., matching criteria and actions.
Each controller behaves as a reactive system, responding to PktIn messages re-
ceived from switches by sending back either PktOut or FlowMod messages. We
abstract from any full-fledged controller programming language and assume they
are specified as Reo connectors, and thus with a behavior described using con-
straint automata. Input ports and output ports represent the connection of a
controller with the switches under its control. Controllers can communicate with
each other to allow for synchronization. Figure 4.4 shows a simple example of a
controller with two switches.
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4 A REO MODEL OF SDNS

We proceed with an example. The controller described in Figure 4.5 guarantees
a flow of messages from the host connected to port P1 to the host connected to
port Q2. It is connected to two switches through the output ports O1 and O2, and
receives PktIn messages from the two switches via the input ports I. By chasing
the circuit we see that the controller updates the flow table of both switches every
time a new packet is received by switch 1 that does not match any condition of the
table. The topmost sequencer regulates first the sending of a FlowMod message to
O1, then to O2 and finally, it allows for the sending of the corresponding PktOut

to O1.
The second controller shown in Figure 4.6, has a similar specification: it allows

for flowing a packet from P1 to Q2, but each time it reacts to incoming PktIn

messages by updating the flow tables of both switches without waiting to receive
a PktIn message from the second switch.

I

A

A2

B

C

D

B2

C2

D2

O1

E FSequencer

G

H

M

O2

E2 F2Sequencer

S1

S2

FlowMod

FlowMod

•
FIFO

•
FIFO

PktOut

PktOut

FlowMod

Figure 4.5: Reo circuit of controller 1

We combine the constraint automata of each controller, of the network
topology, and all the switches to get a complete model of an SDN. Typically,
the rate of a controller to receive messages from a switch is higher than the
time needed by the controller itself to process the message and react accordingly.
Therefore we use a Queue channel between the output ports of each switch and
the input port of the controller (instead of synchronous channels {Q0, I} and
{Q′

0, I} in Fig. 4.4). For the connections between switches and from controller
to switches we use synchronous channels, but, of course, other channels with
delay could be easily used instead. The Reo queue connector and its associated
constraint automata with memory are described below.
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I

A

A2

B

C

D

B2

C2

D2

O1

E FSequencer

O2

E2 F2Sequencer

S1

S2

FlowMod

FlowMod

•
FIFO

•
FIFO

PktOut

PktOut

Figure 4.6: Reo circuit of controller 2

p q
• ...

m
•

The Reo Queue connector behaves as a
FIFO1, but it has an unbounded internal
buffer m. As such, data can always be
received from the input port p and stored
in the buffer. If the buffer is non-empty
then the first element received by p flows
from the buffer to the output port q.

{p?}, m• = m · p

{q!}, q ·m• = m

Both Reo circuits of the controllers described in the example above guarantee
packets flowing from one host to another, but they are implemented differently
and their automata are language-distinguishable. For example, when controller 1
receives a PktIn message, it sends a FlowMod message to switch one and another
FlowMod to switch two so that a packet can pass the second switch directly without
needing to wait for the table to be updated. Controller 2 however, every time
receives a PktIn message, sends a FlowMod message only to the switch from which
it received the message, with a consequence the updating of the flow tables of each
switch happens only when a packet passes through it.

The constraint automata for controllers in Figure 4.5 and Figure 4.6 are shown
in Figure 4.7 and Figure 4.8, respectively. Both automata start from the initial
state 1 and always move to the state 2 when they receive a PktIn message from
the first switch. Receiving a PktIn message from the second switch changes the
state to 5 to the first controller and 4 to the second controller. They send either
one or two FlowMod messages to update the table of one or two switches, and
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4 A REO MODEL OF SDNS

then both send PktOut messages to let the packet continue its flowing to the host.
After that, both automata move back to the initial state and are ready to react
to new incoming messages.

1start

2

3

4

5 6

PktIn

F lowMod F lowMod

PktOut

PktIn

F lowMod

PktOut

Figure 4.7: Constraint automaton for controller 1

1start

2 3

4 5

PktIn

F lowMod

PktOut

PktIn

F lowMod

PktOut

Figure 4.8: Constraint automaton for controller 2

4.3 SDN models for two controller algorithms

In this section, we combine the data plane and control plane (as in 4.1 and
4.2) together with the channel Queue. Since we have two different models of the
controller (in Figure 4.5 and Figure 4.6), below shows two algorithms for each
controller.

Network :
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4.3 SDN models for two controller algorithms

Swith : S1 , S2
Cont r o l l e r : C1
Connection : S1 .Q1 −> S2 . P2
In_port : S1 . P1
Out_port : S2 .Q2

Cont r o l l e r 1 :
Def PktIn ( pkt ){
IF pkt . i npor t = In_port ( S1 )

Out = Out1 ; SwtP = Q1 ;
Match = "tcp_dst = pkt . tcp_dst " ;
Action1 = "Fwd(Q1) " ;
Action2 = "Fwd(Q2) " ;
FlowMod (<Add , Match , Action1 >) to Out1 ;
FlowMod (<Add , Match , Action2 >) to Out2 ;

ELSE
Out = Out2 ; SwtP = Q2 ;
Match = "tcp_dst = pkt . tcp_dst " ;
Action1 = "Fwd(SwtP ) " ;
FlowMod (<Add , Match , Action1 >) to Out ;

FI
}

PktIn ( pkt ) ;
PktOut (Msg , pkt , Action1 ) to Out

The constraint automaton of the whole SDN model by compiling Controller
1 is in Figure 4.9. In the automaton, each state has five loop transitions with
conditions:

1. {P1}, packet enter into the Queue of switch 1;
2. {P1}, packet enter into the Queue of switch 2;
3. {P1}, packet drop in the switch 1;
4. {P1}, packet drop in the switch 2;
5. {P1, Q2}, packet pass through the switch 1 and switch 2.

The initial state 1 chooses either switch 1 or switch 2 for receiving PktIn

message, then the controller sends a FlowMod message to the chosen switch for
installing a certain rule in it, after sending another FlowMod message to the alter-
native switch, the controller sends a PktOut message to the chosen switch. For
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Network :
Swith : S1 , S2
Cont r o l l e r : C1
Connection : S1 .Q1 −> S2 . P2
In_port : S1 . P1
Out_port : S2 .Q2

Cont r o l l e r 2 :
Def PktIn ( pkt ){
IF pkt . i npor t = In_port ( S1 )

Out = Out1 ; SwtP = Q1 ;
ELSE

Out = Out2 ; SwtP = Q2 ;
FI
}

PktIn ( pkt ) ;
Match = "tcp_dst = pkt . tcp_dst " ;
Action = "Fwd(SwtP ) " ;
FlowMod (<Add , Match , Action >) to Out ;
PktOut (Msg , pkt , Action ) to Out

example, if the first PktIn message comes from switch 1, the specific conditions
of this automaton are:

1. PktIn: q1 = q•1 · PktIn;
2. FlowMod: τ•1 = Upd(⟨τ1, ⟨t, b, Act1⟩⟩), t ̸= Msg;
3. FlowMod: τ•2 = Upd(⟨τ2, ⟨t, b, Act2⟩⟩), t ̸= Msg;
4. PktOut: Q2 = π ∧ PktOut = ⟨Msg, π,Q2⟩;

To note q1 means the memory of Queue in switch 1, τ1 means the flow table in
switch 1, τ2 means the flow table in switch 2, q2 means the memory of Queue in
switch 2. If the first PktIn message comes from switch 2, the specific conditions
of this automata are:

1. PktIn: q2 = q•2 · PktIn;
2. FlowMod: τ•2 = Upd(⟨τ2, ⟨t, b, Act2⟩⟩), t ̸= Msg;
3. PktOut: Q2 = π ∧ PktOut = ⟨Msg, π,Q2⟩.
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1start
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Figure 4.9: The automatons for the SDN with controller 1

The constraint automaton of the whole SDN model by applying controller 2
is in Figure 4.10.

1start
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4 5

PktIn

F lowMod

PktOut

PktIn

F lowMod

PktOut

Figure 4.10: The automatons for the SDN with controller 2

Similar to the first algorithm, each state in the Fig 4.8 has five loop transitions,
the conditions of these loops are the same, the difference is controller only installs
one rule in the flow table of the switch each time when it receives a PktIn message.
If the first PktIn message comes from switch 1, the specific conditions of this
automaton are:

1. PktIn: q1 = q•1 · PktIn;
2. FlowMod: τ•1 = Upd(⟨τ1, ⟨t, b, Act1⟩⟩), t ̸= Msg;
3. PktOut: PktOut = ⟨Msg, π, SwtP ⟩;
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If the first PktIn message comes from switch 2, the specific conditions of this
automaton are:

1. PktIn: q2 = q•2 · PktIn;
2. FlowMod: τ•2 = Upd(⟨τ2, ⟨t, b, Act2⟩⟩), t ̸= Msg;
3. PktOut: Q2 = π ∧ PktOut = ⟨Msg, π,Q2⟩.

It is easy to see these two algorithms are very similar, both in program and
automata. However they are distinguishable in the language, e.g., for the loop
above in these two automata, algorithm 1 has two FlowMods in sequence, but
algorithm 2 has only one FlowMod between PktIn and PktOut.

4.4 Related work

The recent interest in the application of formal methods to software-defined
networks started with VeriCon [14], an interactive verification system based on
first-order logic to model admissible network topologies and network invariants.
Similar to our model is a finite state machine model of SDN introduced in [113].
In this work model checking is possible via a translation to binary decision dia-
grams, under a similar assumption to ours: controllers are described as finite-state
machines. Our approach however is based on a declarative description of both
controllers, switches, and network topology as a Reo circuit, that is automatically,
and compositionally, translated into a finite automaton.

Different than our declarative approach, [2] proposes an actor-based modeling
to verify concurrent features of SDN via the ABS tool suite. The use of automata
in our work instead of actors makes it easier to specify real-time and other quan-
titative properties of SDN. We do not explore this direction in this paper, but
we leave it for future work. Variation of regular expressions has been very suc-
cessful in modeling network programming languages [90, 100, 4]. In particular,
NetKAT offers a sound and complete algebraic reasoning system with an inter-
esting coalgebraic decision procedure. However, NetKAT only models a stateless
snapshot of the data plane traversed by a single packet. There is no update of
flow tables and no multiple packages are possible. Also, TLA+ [72] has been used
to model the behavior of SDN but in a very restrictive manner allowing only a
single switch [61].

Formal models are used not only to verify properties of an SDN such as consis-
tency of flow tables, violation of safety policies, or forwarding loops, but also for
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finding flaws in security protocols using CSP and the model checker PAT [110].

4.5 Conclusion

In this chapter, we presented a Reo model of SDN, based on a novel semantics
for constraint automata with memory, recently studied in [57]. The difference is
in a neater treatment of the values in the memory before and after the execution
of a transition. The model is stateful and allows concurrency at the level of
controllers but also at the level of the packets. The model can immediately be
used for verification of quantitative and qualitative properties of SDN, such as
consistency of flow tables, violation of safety policies, or forwarding loops. In
the next chapter, we show how this model can be used for verification through
a translation of Reo into the language Promela of the model checker Spin. In
the future, we plan to verify these properties by using tools like ReoLive [29], or
mCRL2 [65], which are part of the Reo framework [89]. Another line of research
easily supported by our model is the development of simulation and visualization
tools for packets flowing into the network.
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Chapter 5

Implementing Reo into
Promela

In this chapter, we study a subclass of constraint automata with local variables.
The fragment denotes an executable subset of constraint automata for which syn-
chronization and data constraints are expressed in an imperative guarded com-
mand style, instead of a relational style as in ordinary constraint automata. To
demonstrate the executability property, we provide a translation scheme from
symbolic constraint automata to Promela, the language of the model checker
Spin. As a proof of concept, we model in Reo a software-defined network circuit,
translate it into Promela, and use the Spin model checker to verify that our model
satisfies some basic temporal properties.

5.1 A short introduction to Promela

Promela is a formal language widely used to specify concurrent systems and
is supported by Spin, a Linear Temporal Logic (LTL) model checker [48, 49].
Theoretically, any LTL formula φ can be converted into a Büchi automaton [40,
104], as well as the negative of φ. To verify if a system satisfies an LTL property φ,
we first construct an automaton A for the system, then compute the synchronous
product of the Büchi automaton BA(¬φ) and A. If the language of this product is
empty, then we called the original system to satisfy φ, otherwise φ is not satisfied
with the system, and the counter-examples will be provided, too.
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A Promela program is composed of a set of processes, each processes run
concurrently and interact through shared channels. Both synchronous and asyn-
chronous communication between processes is supported by its constructs since
the modeling and analysis of processes, communication channels, and synchroniza-
tion primitives are granted. For synchronous communication, a channel works in
a rendezvous mode with no buffer (zero capacity), for asynchronous communica-
tion, channels work as a Fifo buffer with a non-zero user-specified capacity. All
of these features make Promela suitable for verifying the correctness of complex
systems, including hardware and software.

One of the most powerful model checkers for Promela is SPIN, SPIN can
exhaustively explore all possible system behaviors and check various properties,
such as safety, liveness, and temporal logic properties automatically. In a nut-
shell, each Promela process is transformed by Spin into a finite state automaton,
processes are then synchronized into a single system automaton. Similarly, linear
temporal properties expressed in the usual LTL syntax, are transformed into fi-
nite state automata. The automata representing both the Promela program and
the LTL properties are exploited by Spin to verify and assert satisfaction of the
properties [48, 49].

The syntax of LTL are:

⊤ | ¬φ | a | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | φ1Uφ2 | ♢φ | □φ

The property φ could be true, false, an atom, or, and, next, until,
eventually, always. The semantics are:

α |= ⊤ iff α is true
α |= ¬φ iff α ̸|= φ

α |= a iff a ∈ α[0]

α |= φ1 ∨ φ2 iff α |= φ1 or α |= φ2

α |= φ1 ∧ φ2 iff α |= φ1 and α |= φ2

α |= Xφ iff suffix(α, 1) |= φ

α |= φ1Uφ2 iff ∃j ≥ 0, suffix(α, j) |= φ2 and suffix(α, i) |= φ1, ∀0 ≤ i < j

α |= ♢φ iff ∃i ≥ 0, suffix(α, i) |= φ

α |= □φ iff ∀i ≥ 0, suffix(α, i) |= φ

where α = α[0]α[1]α[2] . . . is an infinite sequence of states.
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5.2 Symbolic constraint automata

In this section, we give an idea of symbolic constraint automata, and show
how the composition method of Reo applies to the symbolic constraint automata.

We have seen in Chapter 3 that Reo circuits are usually specified using con-
straint automata [13]. In that case, each transition is labeled by synchronization
and relational data constraints. To enhance the expressive power, we have consid-
ered an extension of constraint automata with memories. In both cases data con-
straints are declarative, and serve more as a specification than an implementation
of an executable Reo circuits. In this section, we introduce a subset of constraint
automata with transitions labeled by symbolic guarded actions. We show that,
under some simple consistency conditions, symbolic constraint automata can be
implemented and systematically translated into the Promela language. In fact,
most of the original basic Reo connectors can be modeled as symbolic constraint
automata, with only exceptions filter channels with predicates that constraint
output ports and transformer channels that update input ports.

The basic building blocks of a symbolic constraint automaton include a finite
set D of data ranged over by d, and a set V of variables, ranged over by x, y

and z. We use variables to denote Reo ports shared between a connector and
its environment, with different read and write permissions. An input port is a
variable that the environment writes to (i.e., put a value into it), and from which
a Reo connector destructively reads (i.e., take a value from it). Symmetrically,
an output port is a variable that a connector writes to (i.e., put) and from which
the environment destructively reads (i.e., take). Local variables are internal to a
channel and can be used to store data. An assignment of variables to values is a
function σ:V→ D. We range over input, output, and local variables by i, o, and
v, respectively.

To abstract from concrete actions, we use function symbols (ranged over by
f) and predicate symbols (ranged over by P ). As usual, each function symbol f
comes equipped with an arity and coarity, i.e. the number of arguments it expects
and it returns, respectively. Similarly, predicate symbols come with an arity. We
assume the natural interpretation of such function and predicate symbols, as
executable function on Dn → Dm and as a decidable subset of Dn, respectively.
To simplify the notation, we identify predicate and function symbols with their
interpretations. Here, n is the arity and m the coarity. Syntactic substitution in
a term t of every occurrence of variable x for a term tx is denoted as usual by
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t[tx/x].
Terms of symbolic constraint automata are defined by the grammar:

t ::= d | x | f(t̄)

Terms denote tuples of data values. Here the (local or port) variable x denotes the
data value it stores, while t̄ is a shorthand notation for a finite sequence of terms
t1, . . . , tn, and f(t̄) represents a tuple of values resulting from the computation f

when executed with input values t̄. The size of these tuples depends on the arity
and coarity of f .

A guarded action α consists of a predicate and an assignment,

P (x̄)→ ȳ := t .

We call P (x̄) the guard of the guarded action α, and ȳ := t the action that is
executed when the guard is true. In general, we refer to the guard of a guarded
action α by g(α), and the assignment at the right-hand side of α by a(α). We
implicitly assume that the size of ȳ corresponds to the coarity of t. To avoid
problems with simultaneous assignments, and without loss of generality, only
different variables may occur on the left-hand side of the assignment in an action.
This way, for z ∈ ȳ, we can denote by a(α)z the z-projection of the tuple of values
resulting from evaluating the term a(α).

Given finite subsets I,O, and V of V denoting some input, output, and lo-
cal variables, respectively, let Act(I,O, V ) be the set of actions α such that all
variables occurring in g(α) are in I ∪ V , all variables on the left-hand side of the
assignment in a(α) are in O ∪ V , and all variables on the right-hand side of the
assignment in a(α) are either in V or occurring in g(α). The idea is that a guard
g(α) constrains what value input may take, based on the current value of its local
variables and pending values supplied by the environment. If the guard holds then
the right-hand side of a(α) can be satisfied using values from the local variables
and values given by the environment on its inputs. The result is assigned to the
variables on the left-hand side of a(α) changing the local store and communicat-
ing the result of the computation to the environment via the output variables.
Since output ports are only used to communicate a value to the environment, we
assume no occurrence of them on the guard g(α) and in the term on the right-
hand side of the assignment a(α). Dually, since input ports receive values only
from the environment, we assume no occurrence of them on the left-hand side
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of the assignment a(α). We denote by I(α) the set of all input ports occurring
in α. Similarly, we denote by O(α) and V (α) the sets of output ports and local
variables, respectively occurring on the left-hand side of the assignment in α. All
input ports occurring in a(α) must appear in the input of the guard g(α). The
test x = x denotes a guard that is true, and an assignment x := x denotes the
skip action. We often do not write them in a transition unless the context requires
it.

For example, the guarded action (i ≤ v → (o, v) := [i, i]) is an action in
Act(I,O, V ), with I = {i}, O = {o} and V = {v}. But the guarded action
(i ≤ v → (o, i) := [i, o]) is not because i and o appear both on the left-hand side
and on the right-hand side of the action, respectively. Here [−,−] is the pairing
function, with arity 2 and coarity 2, mapping two inputs into their corresponding
pair of values.

Definition 5.1. A symbolic constraint automaton is a tuple (Q, q0, I, O, V,−→),
where

• Q is a finite set of states including the initial state q0,

• I ⊆ V is a finite set of input ports, O ⊆ V is a finite set of output ports,
V ⊆ V is a finite set of local variables such that they are mutually disjoint,
i.e., I ∩O = I ∩ V = O ∩ V = ∅,

• −→ is a transition relation between states and labeled by actions in
Act(I,O, V ).

A transition q
α−→ q′ denotes the possibility of executing the action α from the

state q and moving to the state q′. In order for the actual execution of α to take
place, the guard of the action α must hold upon evaluation in the current state.
To simplify the notation, we will not write guards of actions that are always true.
Note that, differently from [57] and Chapter 3, we do not need to specify pre- and
post-values of a local variable, as our actions are imperative and thus the order
is implicitly given by the assignment operator.

In Figure 5.1, we show three symbolic constraint automata. The one on the left
has no internal state, and the data received at the input port i is synchronously
passed to the output o. This connector corresponds to the synchronous channel in
Reo. The one in the middle has three variables: one input variable i, one output
variable o, and an internal variable v. The automaton has two states: state 0 to
indicate that the internal variable can be rewritten (i.e., the buffer is empty), and
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state 1 to indicate that it cannot (i.e., the buffer is full). The connector assigns
to v the value taken from i if it is in the empty state 0, and puts to the port o

the value from v if it is in the full state 1. The two states symbolic constraint
automaton is simpler than the equivalent single-state automaton (see Figure 5.2),
as it avoids guards on the internal variable and the use of an extra special value
⊥ to indicate that a variable is ‘empty’. This connector corresponds to the Fifo1
channel in Reo. Finally, the rightmost automaton has a non-trivial guard labeling
each of its two transitions. If the predicate P holds when a value is available at
an input port i, then the connector behaves like a synchronous connector and
passes the input value to the output port o. Otherwise, ¬P holds on the value of
i and the value is taken from i and lost, meaning that the component waiting for
synchronization on port i is released.

0

o := i

(a) Synch connector

0 1

v := i

o := v

(b) Fifo 1 connector

0

P (i)→ o := i

¬P (i)→ skip

(c) Filter connector

Figure 5.1: Three examples of symbolic constraint automata

An execution of a symbolic constraint automaton (Q, q0, I, O, V,−→) is given
in terms of an infinite sequence (σi)i∈N of assignments of values to variables for
which we can find an infinite sequence of states (qi)i∈N starting from the initial
state q0 and such that for all n ≥ 0 there is a transition qn

α−→ qn+1 satisfying
the following three conditions:

1. the interpretation of the guard g(α) holds in the assignment σn,

2. for all x ∈ O(α)∪V (α) the value σn+1(x) is the x-projection of the evaluation
of the variables on the left-hand side of the assignment in a(α) in the state
σn, that is σn+1(x) = σn(a(α)x);

3. for all variables not involved in the guarded action α, the value does not
change, that is, σn+1(y) = σn(y) for all y ∈ (I∪O∪V )\(I(α)∪O(α)∪V (α)).

Consecutive assignments σn and σn+1 in a sequence represent the change of the
internal and observable state of the system. The above conditions guarantee that
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the guard must hold on to the values assigned to input variables in the current
state before an action is taken, and that, after the execution of an action, the
output variables and the local variables involved in the action change according
to the action taken. The last condition guarantees that only variables that occur
freely in an action get modified (for example by the environment) when executing
that action. Note that after the execution of an action, input variables in I(α)

change to a new value assigned by the environment. Dually, the value assigned to
an output variable before the execution of an action is presumably taken by the
environment before the new output value, assigned by the action, overwrites it.
In other words, a transition in symbolic constraint automata, likewise constraint
automata, assigns values to its output and local variables while being constrained
on input and local variables. Also, the environment is allowed to change the values
assigned to other variables not declared in the automaton, i.e., any variable in
V \ (I ∪O ∪ V ). This represents the effect of an independent action executed by
the environment in parallel with the automaton.

Local variables are used to store externally unobservable information. Only
communication via input and output ports should be observable. Therefore, we
define the semantics of a symbolic constraint automaton as the set of all possible
executions (σi)i∈N defined as above, but projected only on their input and output
variables. As usual, two automata are then equivalent if they have the same
semantics, i.e. they generate the same set of finite traces of assignments of input
and output variables.

v = ⊥ → v := i

v = ⊥ → v := i

v ̸= ⊥ → o, v := [v,⊥]

Figure 5.2: An equivalent symbolic constraint automaton for the Fifo 1 connector

Consider the symbolic constraint automaton in Figure 5.1.(b). The following
is an example of a sequence of assignments recognized by that automaton:

[i = 1, o = 0, v = 0][i = 2, o = 0, v = 1][i = 2, o = 1, v = 1][i = 3, o = 1, v = 2] · · ·

Initially, the automaton is in state 0, for example, with value 1 on the input port i. The
values of the two other variables do not matter at this point, and can be seen as previous
values that remained stored but not accessible. By taking the transition to the state
1, the connector assigns the value of i to the internal variable v. The output port o is
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blocked and cannot be changed while executing this transition, while the input port is
free and here is assumed to get the value 2 from the environment. When taking the next
transition the content of the variable v is put in the port o, the input is blocked and the
cycle can start again. For each such a sequence we can find an equivalent sequence for
the automaton in Figure 5.2, by using the extra value ⊥ to check if the buffer is empty

[i = 1, o = 0, v = ⊥][i = 2, o = 0, v = 1][i = 2, o = 1, v = ⊥][i = 3, o = 1, v = 2] · · ·

Conversely, for every sequence representing the behavior of the automaton in Figure 5.2
we can find an equivalent sequence of assignments for the automaton in Figure 5.1.(b)
by copying the previous value of v instead of ⊥, and assigning an arbitrary initial value
for v. In other words, the two automata are equivalent. Note that the initial state of the
automaton in Figure 5.2 forces the connector to start with an empty buffer. Without
this initial transition, the two automata would not be equivalent as one could start to
output on port o the value stored in v.

The central operation on symbolic constraint automata is synchronization via their
shared ports which are input ports for one automaton and output ports for another.
Shared ports become internal local variables in the automaton resulting from the com-
position. No other synchronization by shared variables is allowed, as local variables
are only visible within the scope of a connector. Our definition is similar in spirit to
that of [57], but, in addition to that work, our symbolic constraint automata could be
automatically translated to Promela. The explicit input and output variables, and the
guarded command structure on the label impose some prerequisites on the product to
avoid inconsistencies. In fact, we define composition only for pairs of symbolic constraint
automata A1 and A2 such that (1) no local variables are in common, and (2) for every
pair of actions α1 and α2 of the two automata, they synchronize only on some input
ports used by one action and some output ports used by the other, but not on both
input and output ports at the same time. More formally, we assume that, for all actions
α1 labeling a transition in A1 and α2 labeling a transition in A2, the following holds

I(α1) ∩O(α2) ̸= ∅ ⇒ O(α1) ∩ I(α2) = ∅

or, equivalently,

O(α1) ∩ I(α2) ̸= ∅ ⇒ I(α1) ∩O(α2) = ∅

We call two automata with these two properties consistent. The intuition behind syn-
chronizing two guarded actions α1 and α2 is that their data value should agree on their
shared ports so that it can flow from the output of one to the input of the other actions.
The above condition together with the fact that the two automata do not share local
variables - and thus V (α1) ∩ V (α2) = ∅ - in fact impose a causality in the execution of
their actions as input is needed to update the internal state and to be passed to output
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ports. Next, we define formally the synchronization of two guarded actions α1 and α2.
Assume I(α1) ∩O(α2) = ū ̸= ∅, and let

α1 = P1(x̄1 ∪ ū)→ ȳ1 := t1(z̄1 ∪ ū) and α2 = P2(x̄2)→ ȳ2 ∪ ū := t2(z̄2) .

where x̄1 ∪ ū is the sequence of input and local variables occurring in P1, z̄1 ∪ ū

the sequence of input and local variables occurring in t1, and ȳ2 ∪ ū the sequence of
output and local variables occurring at the left-hand side of the assignment a(α2). Note
that variables in ū cannot occur in P2 nor in t2 as they are output variables for α2.
Similarly, they cannot occur in ȳ1, as they are input variables for α1. By definition of
guarded action, they can occur in P1. Under these circumstances, we can define the
synchronization α1 ⊗ α2 as the following guarded action

α1 ⊗ α2 = P1[t2ū/ū] ∧ P2 → ȳ1, ȳ2 ∪ ū := t1[t2ū/ū], t2(z̄2).

Since the guard P2 does not depend on output variables, we can evaluate it. If it holds
we can then assign the values returned by t2 to the output and local variables at the
left-hand side of a(α2). The values assigned to the shared output values ū are then
used in P1 as constant replacing the input variables ū. If this predicate holds, then
the same substitution is applied to t1 so that we can compute the assignment. Note
that I(α1 ⊗ α2) = (I(α1) \ O(α2)) ∪ I(α2), O(α1 ⊗ α2) = O(α1) ∪ (O(α2) \ I(α1)),
and V (α1 ⊗ α2) = V (α1) ∪ V (α2) ∪ (I(α1) ∩ O(α2)). The definition of α1 ⊗ α2 for the
symmetric case when O(α1) ∩ I(α2) ̸= ∅ is similar.

Definition 5.2. Without loss of generality, let Q1 and Q2 be two disjoint sets of
states, and V1 and V2 be two disjoint sets of local variables. The composition of
two consistent symbolic constraint automata A1 = (Q1, q1, I1, O1, V1,−→1) and A2 =

(Q2, q2, I2, O2, V2,−→2) is defined as the automaton A1 ▷◁ A2 = (Q, q, I, O, V,−→)

where:

• Q = Q1 ×Q2,

• q = ⟨q1, q2⟩,

• I = (I1 \O2) ∪ (I2 \O1),

• O = (O1 \ I2) ∪ (O2 \ I1),

• V = V1 ∪ V2 ∪ (I1 ∩O2) ∪ (I2 ∩O1), and

• −→ is defined by the following rules:

q1
α1−−→1 q

′
1 and q2

α2−−→2 q
′
2 and IO(α1) ∩ IO(A2) = IO(α2) ∩ IO(A1)

⟨q1, q2⟩
α1⊗α2−−−−→⟨q′1, q′2⟩

q1
α1−−→1 q

′
1 and IO(α1) ∩ IO(A2) = ∅
⟨q1, q2⟩

α1−−→⟨q′1, q2⟩
q2

α2−−→1 q
′
2 and IO(α2) ∩ IO(A1) = ∅
⟨q1, q2⟩

α2−−→⟨q1, q′2⟩
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where IO(Ai) = Ii ∪Oi and IO(αi) = I(αi) ∪O(αi), for i = 1, 2.

Similar to the join operation on constraint automata the above synchronization oper-
ation on symbolic constraint automata synchronizes actions on shared ports and allows
independent parallel behavior for actions with no shared ports. The composition of con-
sistent symbolic constraint automata is symmetric and, when defined, associative. Here
are some other examples of symbolic constraint automata in below.

The primary distinction between symbolic constraint automata and the constraint
automata defined in Chapter 3 lies in the transition label. In the former, synchro-
nization relies on the ports used in the guarded action, whereas the latter explic-
itly declares which ports must synchronize. Furthermore, symbolic constraint au-
tomata are imperative and not declarative, utilizing variables as memory. For example,
the constraint automaton for the synchronous connector Sync{A?, B!} is denoted as

{A?, B!}, B = A , and the corresponding symbolic constraint automaton removes the
ports and changes the "equal to" to an "assignment" B := A , explicitly declaring
B as an output port and A as an input. Similarly, the Synchronous Drain connector
SyncDrain{A?, B?} is modeled by the constraint automaton {A?, B?} , ensuring
both inputs are lost synchronously when data arrives at both ports. The correspond-
ing symbolic constraint automaton is , where the guard of the action is always
true but involves the ports A and B, while the action is just a "skip." This way, input
ports A and B are forced to synchronize, but their received values are lost. The con-
nector Non − deterministicMerger{A?, B?, C!} has one output port C that receives
data from either input port A or B arbitrarily. The symbolic constraint automaton is
C := A C := B . The connector Replicator{A?, B!, C!} receives the data from the
input port A and copies it into the two output ports B and C. The symbolic constraint
automaton representing it is B,C := A,A . A Transformer{A?, B!} outputs on port
B the data received at input A after applying a function f . The symbolic constraint au-
tomaton is similar to the one for the synchronous channel, except for the use of f in the
action of its unique transition B := f(A) . The connector PairMerger{A?, B?, C!}
looks similar to Non− deterministicMerger{A?, B?, C!}, except that the output ports
C receive an ordered pair formed by the data of A and B, respectively: C := ⟨A,B⟩ .
Finally, the connector V ariable{A?, B!} contains an internal variable τ , that can store
input data from A that is available to the output port B. Note that reading from and

writing to τ can happen separately or contemporaneously:

B, τ := τ, A

τ := A

B := τ

.
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5.3 From Reo to Promela

Building on the work presented in [77], we translate Reo connectors into Promela
programs. We use symbolic constraint automata as a specification of Reo connectors,
and use the resulting Promela process as a protocol to coordinate messages exchanged
through the ports of other processes.

5.3.1 Implementing Reo ports in Promela

In Promela, a Reo port is expressed as a structure, as shown in Listing 5.1. It
contains two Promela channels of capacity one: a data and a trig channel. A port in
Reo is directional. We call putter the component that puts an element on the port, and
getter the component that gets an element from the port. Operations on a port are
blocking unless both a put and a get are performed at the same time. In which case the
port fires, and the data is forwarded from the putter to the getter.

The data channel in the Promela implementation of a Reo port is used to forward the
data message from the putter to the getter, while the trig channel is used to synchronize
the putter and the getter. The reason of using two channels of size one instead of a
rendezvous channel of size zero is that it is impossible in Promela to query whether a
process is currently waiting on a rendezvous channel. We will later see that querying
the state of a port is necessary for the protocol to coordinate the boundary processes.

Listing 5.1: definition of a Reo port in Promela
1 typedef port {
2 chan data = [1] of {Data};
3 chan trig = [1] of {int}; }

As described in Listing 5.2, two actions can be performed on a port: put and take.
The function call put(q, a) atomically fills the data channel of q with the datum a, and
blocks on the trig channel, waiting to synchronize with the component on the output
side of q. The integer variable x is used to get a value from the trig channel, and hence
to synchronize to it; the actual value communicated does not matter.

The function call take(q, a) atomically notifies, by outputting on the trig channel,
that there is a component willing to take data, and blocks on the data channel, until a
datum can be read and stored into the variable a. The integer value of −1 written into
the synchronization channel is arbitrary, as trig is used only for signaling.

Listing 5.2: put and take functions
1 inline put(q,a) {
2 int x;
3 q.data!a;
4 q.trig?x }
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5

6 inline take(q,a) {
7 q.trig!-1; q.data?a }

We describe two temporal properties in Listing 5.3 that reflect the synchronous
behavior of a port. We say that a port fires whenever a data is exchanged between the
putter and the getter. If a port does not fire, it is silent. In the case of an implementation
of a port with two buffers, the firing property occurs whenever a port has both an input
and an output request, i.e. both channels are full. We then know, due to the definition of
the put and take operations, that the putter and the getter will be released from blocking
on the port, and the getter will get the value from the data channel. We define some
macros in Listing 5.3 to encode firing and silent property of port p as an LTL property.

Listing 5.3: Macros for firing of ports
1 #define p_fires (
2 !(len(p.data) == 0) && !(len(p.trig) == 0) &&
3 X((len(p.data) == 0) || (len(p.trig) == 0)))
4

5 #define p_silent (! p_fires)

Ports are not typed as input or output, as that depends on the component/connector
that uses them. We have seen in the previous section that within a connector, a port
used in a guard must be an input port, whereas a port used on the left-hand side of the
assignment of an action is an output port.

5.3.2 Implementing Reo connectors in Promela

Next we describe how to implement Reo connectors expressed as symbolic constraint
automata in Promela. A symbolic constraint automaton is encoded, in Promela, as a
proctype. A Promela proctype has a name, a signature, and a body. The Spin model
checker executes each proctype of its main concurrently, while taking into account block-
ing operations on channels. As we will see, input/output variables of a symbolic con-
straint automaton lead to shared port channels in Promela between the protocol and
the boundary processes.

Let (Q, q0, I, O, V,−→) be a symbolic constraint automaton. Input ports I and
output ports O are passed as parameters to the Promela process resulting from the
translation. As expected, local variables in V are declared locally to the Promela process,
i.e., within theproctype body. For each port p ∈ I∪O, a new local variable _p is declared
so as to store the value taken if p is an input or passed if p is an output. We use mytype

as a generic type for input, output, and memory variables.
Each state in Q is encoded as a special value for the state variable. The state variable

therefore models the control flow between the states of the automaton. For simplicity,
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and without loss of generality, here we assume that q0 = 0 is the initial state and
Q = {0, 1, . . . , n}.

We use the Promela non-deterministic do− od construct to model concurrent appli-
cations of transitions of a symbolic constraint automaton. The guard (respectively, the
command) of the statements in the do− od results from the translation of the guard
(respectively, the command) in the action labeling the corresponding transition. As a
result, each guard in the do− od loop contains a clause that controls that variable state

has the value corresponding to the pre-state, and updates the value to the post-state
in the command. The Promela language allows for non-destructive reads of channel’s
value: the operation A.data?< _a> assigns to the variable _a the value stored in channel
A.data without actually removing the values from that channel. However, in Promela,
this operation cannot be executed in a guard within a do− od statement. We circumvent
this problem by using a control variable fi for each transition ti ∈−→ of the automaton.
The variable fi can take two values. By default, fi is 1. If the synchronization constraint
of the guard of the i-th transition is satisfied but the data constraint is not, then the
value of fi is set to 0. Every transition, if taken successfully, resets all the fi to 1.

More formally, for a symbolic constraint automaton (Q, q, I, O, V,−→) we show in
Listing 5.4 its translation to Promela:

Listing 5.4: Promela code generated for a symbolic constraint automaton
1 proctype SCA(port P ){
2 ∀p ∈ P , mytype _p;
3 ∀v ∈ V , mytype v;
4 ∀f ∈ {f1, . . . fk}. bool f = 1;
5 int state =0;
6 do
7 :: transition 1;

8
...

9 :: transition k;
10 od }

Here Q = {0, . . . , n}, q = 0, P = I ∪O, v = V , and the remaining overlined variables
are just consecutive sequences of them. For every (input or output) port p ∈ P there is
a variable _p associated with it on which we store the value communicated via the port.
The control variable state is used to store the current state of the automaton (thus it
ranges between 0 and n), and variables {f1, . . . fk} are used when evaluating predicates
on values received at input ports. Here k is the number of transitions. Let q α−→ q′ be the
j-th transition of the symbolic constraint automaton, with 1 ≤ j ≤ k, and remember that
the input ports in α are I(α) = {i1, . . . , im} the output ports are O(α) = {o1, . . . , ol},
and the local variables occurring in α are {v1, . . . , vh}. Then transition j in the listing
above is given by
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1 state ==q && fj==1 &&
∧

i∈I(α)

Full(i.data) &&
∧

o∈O(α)

Full(o.trig)

2 -> Atomic { i1.data?<_i1 >; . . .; im.data?<_im >;
3 if
4 :: P(i1,. . .,im,v1 ,. . .vh) == True -> take(i1,_i1);. . .; take(im,_im);
5 A(_i1 ,. . .,_im ,v1,. . .vh , _o1 ,. . .,_ol);
6 put(o1,_o1);. . .; put(ol,_ol);
7 state=q’;f1=1;. . .; fk =1;
8 :: else -> fj=0;
9 fi }

where P is a function encoding the guard of α and A is a function encoding the assignment
action of α. When the control variables are not used in a transition (for example because
there is no predicate on input variables), then it is possible to simplify the generated
Promela code by removing such control variables. Similarly, when there is only one
state, the variable state can be removed as its value is constant.

We list several examples of translation of symbolic constraint automata to Promela.
Listing 5.5 gives the Promela code resulting from the translation of the symbolic con-
straint automaton in Figure 5.1.(a) that models the Sync connector.

Listing 5.5: Promela code generated for a Sync connector
1 proctype Sync(port A; port B){
2 mytype _a; mytype _b;// internal values in Sync
3 int state = 0; // initial state
4 do
5 :: state ==0 && Full(A.data) && Full(B.trig)
6 -> Atomic{take(A, _a); _b =_a; put(B,_b); state = 0};
7 od }

Here the parameter port A is the input port of the Sync channel, and port B is the
output port. There are no local variables except those associated with the ports, and the
control variable state that we will discuss later. The condition full(A.data)&&full(B.trig)

is satisfied if and only if there is an ongoing put(A, a) operation on the input port A

and an ongoing take(B, x) operation on the output port B. In this case, the Sync process
atomically takes the data from port A, stores it in a local variable _a, executes the action
of the associated transition of the symbolic constraint automata, i.e. _a = _b, and puts
the value in port B. Of course, the single state automaton of the Sync connector could
have been modeled by a much simpler Promela process without such an extra variable,
but, as for the other connectors, we keep it for generality.

Listing 5.6 shows the Promela code for a two-state symbolic constraint automaton
of the Fifo1 Reo connector given in Figure 5.1.(b).

Listing 5.6: Promela code generated for Fifo1 connector
1 proctype Fifo1(port A; port B){
2 mytype _a; mytype _b; int state = 0;
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3 mytype v; //v is the buffer of the Fifo 1 connector
4 // _a ,_b,v are the input , output and local variables , respectively
5 do
6 :: Full(A.data) && state ==0
7 -> Atomic{take(A,_a); v=_a; state =1};
8 :: Full(B.trig) && state ==1
9 -> Atomic{_b=v; put(B,_b); state =0};

10 od }

Besides an input and an output port, we also have a local variable v for the buffer
of the Fifo1 connector. The control variable state is initially set to 0, corresponding to
the initial state of the automaton.

This time, the do− od loop contains two transitions, one for each transition of the
symbolic constraint automaton. One statement corresponds to the transition that moves
the control from state = 0 to state = 1 if there is a pending data on the input port A.
The value is then taken and assigned to the local variable v. The other statement
corresponds to the transition that moves the control from state = 1 to state = 0 when
there is a pending request at the output port. In which case, the stored value is forwarded
to the output port B.

Next, we show how to translate the Filter connector of Figure 5.1.(c) that, unlike the
other two examples, contains two transitions labeled with a non-trivial predicate on the
input variable. The Promela code of the Filter connector is presented in Listing 5.7.

Listing 5.7: Promela code generated for Filter connector
1 proctype Filter(port A; port B){
2 mytype _a; mytype _b; int state =0; bool f1=1; bool f2=1;
3 do
4 :: state ==0 && f1==1 && Full(A.data) && Full(B.trig)
5 -> Atomic{ A.data ? <_a >;
6 if
7 :: P(_a)== True -> take(A,_a); _b=_a; put(B,_b); state =0; f1=1; f2=1;
8 :: else -> f1=0;
9 fi }

10 :: Full(A.data) && state ==0 && f2==1
11 -> Atomic{ A.data ? <_a >;
12 if
13 :: P(_a)== False -> take(A,_a); state =0; f1=1; f2=1;
14 :: else -> f2=0;
15 fi }
16 od }

Initially the control variables f1 and f2 associated with the two transitions are set to
true, meaning that any transition can be potentially selected. As before, the satisfiability
of each guard depends on the presence of some data at the input port A and the presence
of some signal at the output port B. The predicate P is evaluated only after one of the
two statements of the do− od loop is chosen. If true, the action of the transition is
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taken, and the two control variables f1 and f2 are reset to true. Otherwise, the value
of the associated control variable fi is set to false and the control goes back to the loop
statement. In this way the i-th transition associated with fn will not be selected anymore,
even if all other predicates in the guard of the statement are true (for i = 1, 2), which
removes some undesirable livelocks.

We leave the detailed description of the encoding in Promela of a composition op-
erator mimicking that of symbolic constraint automata but just give an example below
corresponding to the composition of the Promela code generated for the Fifo1 and the
Filter connectors in Listings 5.6 and 5.7, respectively.

Listing 5.8: Promela code generated by composing Filter(port A;port B) with
Fifo1(port B;port C)

1 proctype FilterFifo1(port A; port C){
2 mytype _a; mytype _c;
3 mytype v; //v is the buffer of the Fifo 1 connector
4 mytype b; //b is a shared port that becomes a local variable
5 int state =0; // there are 1 x 2 states in total
6 bool f1=1; bool f2=1; bool f3=1; //there are 3 transitions in total
7 do
8 :: state ==0 && f1==1 && Full(A.data)
9 -> Atomic{ A.data ? <_a >;

10 if
11 :: P(_a)== True -> take(A,_a); _b=_a; v=_b; state =1; f1=1; f2=1; f3=1;
12 :: else -> f1=0;
13 fi }
14 :: state ==0 && f2==1 && Full(A.data)
15 -> Atomic{ A.data ? <_a >;
16 if
17 :: P(_a)== False -> take(A,_a); state =0; f1=1; f2=1; f3 =1;
18 :: else -> f2=0;
19 fi }
20 :: state ==1 && f3==1 && Full(C.trig)
21 -> Atomic{_c=v; put(C,_c); state =0; f1=1; f2=1; f3 =1;};
22 od }

5.3.3 Other Reo connectors in Promela

In this part, we show more examples of standard Reo connectors encoded as symbolic
constraint automata and translated to Promela. The symbolic constraint automata of
these Reo connectors are shown in the end of Section 5.2, it is important to remark
that the control variables fi do not introduce fairness or priority among the transitions,
they only control the flow so that Promela will not choose the same transition again
with a guard that has already been evaluated to false. Below in Listing 5.9 shows the
translation of SynchronousDrain, which has two input ports A and B, without any output
ports. SynchronousDrain process automatically takes two data items from A and B when
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the condition full(A.data)&&full(B.data) is satisfied, there is no data item be forwarded
to any ports.

Listing 5.9: Promela code generated for Synchronous Drain connector
1 proctype Syncdrain(port A; port B){
2 mytype _a; mytype _b;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.data) -> Atomic{take(A, _a); take(B, _b); state = 0;};
6 od }

The process of Non− deterministicMerger indicates two loops in do− od, it either
chooses to forward the data from port A to C when full(A.data)&&full(C.trig) is satisfied,
or choose to forward the data from port B to C when full(B.data)&&full(C.trig) is satisfied.
The state has not been changed and remains to be state = 0. The code is presented in
Listing 5.10.

Listing 5.10: Promela code generated for Non-deterministic Merger connector
1 proctype Merger(port A; port B; port C){
2 mytype _a; mytype _b; mytype _c;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(C.trig)
6 -> Atomic{take(A, _a); _c = _a; put(C, _c); state = 0;};
7 :: Full(B.data) && Full(C.trig)
8 -> Atomic{take(B, _b); _c = _b; put(C, _c); state = 0;};
9 od }

Listing 5.11 denotes the Replicator connector in Promela code, the process exe-
cutes replication of the input, then forward these two value to output port B and C

if full(A.data)&&full(B.trig)&&full(C.trig) is satisfied.

Listing 5.11: Promela code generated for Replicator connector
1 proctype Replicator(port A; port B; port C){
2 mytype _a; mytype _b; mytype _c;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.trig) && Full(C.trig)
6 -> Atomic{take(A, _a); _b = _a; _c = _a; put(B, _b); put(C, _c); state = 0;};
7 od }

Transformer process has a user defined inline function f which is distinct from other
processes. In Listing 5.12, f has a parameter x where x here indicates the value _a after
ongoing operation take(A,_a), then be forwarded to output port B when the condition
full(A.data)&&full(B.trig) is satisfied.

Listing 5.12: Promela code generated for Transformer connector
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1 proctype Transformer(port A; port B){
2 mytype _a; mytype _b;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.trig)
6 -> Atomic{take(A, _a); _b = f(_a); put(B, _b); state = 0;};
7 od
8 inline f(x){
9 % user defined

10 }

The PairMerger connector has a ⊗ connected to each channels, which here in Promela
implemented by _c = ⟨_a,_b⟩, after taking data from input port A and B, when con-
ditions be satisfied. It sends the result _c to the output port C at the end. The code is
in Listing 5.13.

Listing 5.13: Promela code generated for PairMerger connector
1 proctype PairMerger(port A; port B; port C){
2 mytype _a; mytype _b; mytype _c;
3 int state =0;
4 do
5 :: Full(A.data) && Full(B.data) && Full(C.trig)
6 -> Atomic{take(A, _a); take(B, _b); _c = <_a, _b >; put(C, _c); state = 0;};
7 od }

Listing 5.14 supports a three-choice Variable process. The variable τ could be up-
dated by the inputs of A when there is a input in A, output port B receives τ when
there is a pending request at B. However, B can only receive the not updated τ in one
transition.

Listing 5.14: Promela code generated for Variable connector
1 proctype Variable(port A; port B){
2 mytype _a; mytype _b; mytype τ ;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.trig)
6 -> Atomic{ take(A, _a); _b = τ ; τ = _a; put(B, _b); state = 0;};
7 :: Full(A.data) -> Atomic{ take(A, _a); τ = _a; state = 0;};
8 :: Full(B.trig) -> Atomic{ _b = τ ; put(B, _b); state = 0;};
9 od}

5.4 A case study: verifying a SDN

In this section, we apply our translation of symbolic constraint automata to Promela
on a software defined network model, and use the Spin model checker to verify several
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temporal properties. We use the model of software defined networks introduced in [33],
where all components of an SDN are represented as Reo connectors, and thus as symbolic
constraint automata. The model is stateful and reflects the SDN separation between
switches, controllers, and network. For each part, we briefly describe the Promela code
obtained from the Reo components, and how we model the basic data flow operations
of an SDN: PktIn, PktOut, FlowMod.

5.4.1 A Promela SDN model via symbolic constraint au-
tomata

According to the model of SDN presented in Chapter 4, we got the generated Promela
code for the Reo model of a switch Switch(P0,P1,P2,Q0,Q1,Q2) with two input ports
P1 and P2, two output ports Q1 and Q2 as shown in Figure 5.3. As explained in the
last chapter, those ports form the interface of the switch with the rest of the network.
Additionally, the switch interface is extended with an input port P0 and an output port
Q0 that serve to exchange flow messages with the SDN controller that we can model
directly in Promela code. Flow messages from the controller Controller(P,Q) to the
switch are exchanged synchronously, via the synchronous connector Sync(P,P0). On
the other direction, flow messages are exchanged asynchronously via a queue connector
Queue(Q0,Q) from the port Q0 of the switch to the port Q of the controller.

Figure 5.3: A simple example of an SDN architecture

Informally, the symbolic constraint automaton of a switch consists of a single state
and few transitions labeled by the following type of guarded actions:

• α0 is executed when a FlowMod message is received from the input port P0. The
action here consists in updating the flow table according to the information sent
by the controller.

• α1 is enabled when a PktOut message is received by the switch from port P0. The
resulting action forwards a packet to a subset (possibly empty) of output ports of
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the switch. This subset is contained in the PktOut message from the controller.

• α2 is enabled when one of the input port P1 or P2 of the switch receives a nor-
mal packet that is then forwarded to a subset (possibly empty) of output ports
according to the current information in the flow table of the switch.

The Promela code of the switch obtained via the translation from a symbolic constraint
automaton is presented (in a simplified manner for reason of space) below. The full code
and the results of its verification can be found in [32].

1 proctype Switch(port P0 , P1 , P2, Q0, Q1, Q2){
2 Message m; // either FlowMod or PktOut
3 Packet p;
4 Flowtable ft_old; ft_new
5 bool f1=1; f2=1; ...;fn=1; // control variables
6 int state =0; // automaton current state
7 do
8 // packet from P1 to Q1: this is a packet -forwarding α2 type of action
9 :: state ==0 && f1==1 && Full(P1.data) && Full(Q1.trig)

10 -> atomic{ take(P1 ,p); Match(ft_old ,p,[ Q1 ]); put(Q1,p); f1 =1;... fn=1}
11 // packet from P1 to both Q0 (PktIn message to controller) and Q2:
12 // this is a α2 type of action
13 :: state ==0 && f2==1 && Full(P1.data) && Full(Q0.trig) && Full(Q1.trig)
14 -> atomic{ take(P1 ,p); Match(ft_old ,p,[Q0 ,Q1]); put(Q0,p);put(Q1 ,p);
15 f1 =1;... fn=1 }
16 // message from P0 to Q1 and Q2: this is an PktOut α1 type of action
17 :: state ==0 && f3==1 && Full(P0.data) && Full(Q1.trig )&& Full(Q2.trig)
18 -> atomic{ P0.data?<m>;
19 if
20 :: m==<p,[Q1,Q2]> -> take(P0 ,m);put(Q1,p);put(Q2 ,p); f1 =1;... fn=1;
21 :: else -> f3=0;
22 fi }
23 // message from P0 to update flow table: this is a FlowMod α0 type of action
24 :: state ==0 && f4==1 && Full(P0.data)
25 -> atomic{ P0.data?<m>;
26 if
27 :: m==<p,ft_new > -> take(P0,p); update(ft_old ,ft_new ); f1 =1;... fn=1;
28 :: else -> f4=0;
29 fi }
30 // Similar actions follows here ....
31 ...
32 od}

Each transition synchronizes some of the actors in a network (hosts, switches, con-
trollers). Packet forwarding is done on the basis of the result of a function Match() of
the Reo transformer channel between ports D and E in Figure 4.1. Another non-trivial
function used here is update(), belonging to the transformer between ports F and E in
Figure 4.1 and used to model a FlowMod operation.

In our case study as described in Figure 5.3, the network consists of a switch pro-
grammed by a controller, where hosts A and B produce packets, and hosts C and D
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consume them. We abstract from the specific behaviour of the hosts and model them
simply as producers and consumers of messages, respectively.

1 proctype HostA(port A){
2 packet p1;
3 atomic{p1.header = 11; p1.ipt = P1; put(A,p1)}
4 }

Host A produces a single packet that is sent to port P1. Here we assume a packet
contains a header (with information such as the tcp/ip source or destination), and the
port of the switch it is supposed to be received directly from the host.

1 proctype HostB(port B){
2 packet p2;
3 p2.ipt = P2;
4 do
5 :: atomic{p2.header = 11; put(B,p2)};
6 :: atomic{p2.header = 22; put(B,p2)}
7 od
8 }

The above Promela code for host B is similar to that of A, except that host B

repeatedly sends packets with header 11 or 22 to port P2. Hosts C and D are consumers
that repeatedly execute the take action from their ports C and D respectively. Once a
packet is received, they update their own local counter storing the number of packets
with header 11 that they receive. Below we show the Promela pseudocode of host C,
that of D is similar.

1 proctype HostC(port C){
2 packet q1;
3 int counter =0;
4 do
5 :: atomic{take(C,q1); if q1.header ==11 -> counter ++;}
6 od
7 }

Finally we give the Promela code of the controller. The controller takes a packet from
port Q if available. If the packet originally passed through port P1 then the controller
adds a rule in the flow table to forward similar messages (i.e., coming from the same
address as in the header) to port Q1. Packets with header 22 need to be forwarded
to both ports Q1 and Q2 (thus to hosts C and D). Finally, the following firewall is
installed: packets with header 11 that have passed through port P2 must be dropped.
Note that the controller will insert rules into the flow table of the switch to execute
the above commands, and will apply the action itself only the first time a packet does
not match any rule in the flow table, i.e., the first time the packet is forwarded to the
controller.

Listing 5.15: an example of controller
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1 proctype Controller(port Q, P){
2 Flowtable ft;
3 Packet p;
4 Message m;
5 do
6 :: Full(Q.data) && (Q.data.ipt==P1) ->
7 take(Q, p);
8 ft.cond = p.header; ft.action = [Q1];
9 // create a rule: if match header then forward to Q1

10 m=<p,ft >; put(P, m); // update flow table
11 m=<p,[Q1]>; put(P, m); // Forward p to port Q1;
12 :: Full(Q.data) && (Q.data.header ==11) && (Q.data.ipt==P2) ->
13 // insert a firewall rule: no message from P2
14 take(Q,p);
15 ft.condition = p.header; f.action = []; // drop package if comes from P2
16 m=<p,ft >; put(P,m); // update flow table
17 :: Full(Q.data) && (Q.data.header ==22) ->
18 take(Q, p);
19 ft.cond = p.header; ft.action = [Q1 ,Q2];
20 // create rule: if match header then forward to Q1 and Q2
21 m=<p,ft >; put(P, m); // update flow table
22 m=<p,[Q1,Q2]>; put(P, m); // Forward p to port Q1 and Q2;
23 od
24 }

Port Q of the controller is linked to the output port of the queue connector
Queue(Q0,Q) which may store at most 10 packets. This number is reasonable as we
do not expect many PktIn messages to be forwarded to the Controller.

5.4.2 Verification and simulation

Figure 5.4 describes the scenario for which host A sends a packet with header 11

after host B sent a packet with header 22. Here the packet of A will arrive to C by first
passing through the controller, and the packet from host B will arrive to both hosts C

and D. The LTL properties associated with this scenario are

prop1 {[]((p1.header==11 && p1.ipt==P1)→<>(q1.header==11))}
/* satisfied */

prop2 {[]((p2.header==22)→(<>(q1.header==22)&&<>(q2.header==22)))}
/* satisfied */

Intuitively they says: The message of host A will receive B (no loop holes) and
always, if B sends a 22-message, then both eventually C receives a 22-message (but not
necessarily the same one), and eventually the same for D. Assuming that only B sends
22-messages then this means that every messages with header 22 received from hosts C

or D is originated from host B.
Figure 5.5 describes the scenario when the packet from host A is received at the

switch. As the flow table of the switch is empty, the switch forwards the packet to the
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Figure 5.4: Packets from A and B arriving both to C

controller. However, the packet with the same header arriving from B is dropped. Of
course, if the packet B arrives at the switch after the updates of the flow table due to
the first message from host A, then the packet of B will match the flow table and be
redirected to host C, violating the firewall rule. We can verify this formally in Spin via
the following LTL property:

prop3 {<>(msg1.header==11)&&(<>[](HostC_counter==1))} /* unsatisfied */

This property together with the code of the three hosts A, B and C, states that there
is a state in the system where a packet with header 11 is received (either from host A

or B) and eventually C receive a message with header 11 and no other such a message
afterwards.

Figure 5.5: Are packets from B with header=11 always dropped?
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We use the Spin model checker to verify the three LTL properties, with the follow-
ing parameters: Extra Compile-Time Directives is set to 20700; the number of hash-
functions in Bitstate mode to 5, and the Physical Memory Available to 102400 Mbytes.
We used depth-first search with partial order reduction and Bitstate/Supertrace in order
to achieve better performance [50]. The results of the verification are shown in Table 5.1.

Property Errors
found

Time
usage

Depth
reached

States
stored

States
matched

Transi
-tions

State-
vector

prop1 0 10.5s 479 214292 660445 1058424 2088 byte
prop2 0 8.64s 479 152057 373096 767167 2088 byte
prop3 2520 14.3s 500 183077 924560 1346688 2184 byte

Table 5.1: Verification results

Figure 5.6: Simulation result

We simulate the results of prop3 with the first founded error written in the “.trail"
file, the result of this simulation is shown in Figure 5.6, where we see the packet forwarded
by host B (here internally called prod2) to the switch (here called Protocol1). The flow
table in the switch is updated successfully (see in action 25!11, 2 ) but soon the packet
is dropped (see in action 25?11, 2). Before C (cons1) receives any other packets, the one
sent from host A matches the new flow table (header = 11) and thus will be dropped
(in action 1?11, 0) instead of being forwarded to C.
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5.5 Related work

The first automata based model for Reo connectors appeared in [13] where con-
straint automata have been introduced. The authors define a product on constraint
automata that implements the Reo composition operator on timed-data streams seman-
tics [7]. Since then, several other operational models followed, such as Büchi automata
of records [54], guarded automata [19], and Reo automata [99]. Those models extend
constraint automata by allowing some context-dependent reasonings. See [58] for an
overview of the main operational and denotational models of Reo. Constraint automata
with memory and their composition have been thoroughly studied in [57]. Our work is
based on a similar model and semantics, but while we aim for finding a subset of it that
can be easily implemented, the work in [57] concentrates on the efficient computation of
the main composition operator.

Also, model checking of Reo connectors has been a very active area of research. Vere-
ofy is a dedicated model checker developed explicitly to verify linear time and branch-
ing time temporal properties of Reo connectors expressed as constraint automata [12].
Vereofy, however does not allow for explicit data to be handled in the automata and
properties. For this reason, in [66] the authors encode Reo connectors as communicating
processes, and use mCRL2 to check some behavioral properties. The model checker
mCRL2 [22], is based on the Algebra of communicating processes [11] with properties
expressed as formulas in the modal µ-calculus with strong and branching bisimulation
as equivalences as well as strong and weak trace equivalence. UPPAAL is a model
checker [16], for linear time temporal property of networks of timed automata [3]. UP-
PAAL can perform reachability analysis, as well as simulation and error reports. See [28]
for a recent use of UPPAAL to verify behavioral properties of real time Reo connectors.
Our work differs from previous works on model checking Reo Connector in the following
points. First of all, Spin is a data sensitive model checker. Contrary to Vereofy, we
can verify temporal properties on connectors that involve data values and local memory.
Second, our use of the Spin model checker is designed specifically to verify LTL proper-
ties of Reo connectors, contrary to the strong bisimulation equivalence used in proving
equalities in the mCRL2 encoding of Reo channels in [66]. Thus is more in line with
Vereofy and the semantic basis of Reo that is trace based, without branching proper-
ties. In addition, the encoding of Reo described in [66] does not encompass memory.
Finally, our translation into Promela differs from the above works in the use of atomic
statements in order to enforce synchrony. Of course extension of our work to real time
systems and UPPAAL are imaginable, and can be pursuit in the near future. All in all
our work extends the literature by providing another tool chain to compile connectors
to Promela and use the Spin model checker.

In [53], the authors check network consistency properties in the model of SDN topol-
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ogy by using UPPAAL with the goal to detect an inconsistency or verify a flow against
real-time properties. An SDN model extended with synchronization barriers is consid-
ered in [1]. Their approach is based on encoding an SDN model into the ABS language,
and use the SYCO tool to verify properties about safety policies and network loops.
[35] uses Flow-LTL to specify the data flow in an extension of Petri nets. Concurrent
updates and packet coherence in the network are then checked with the hardware model
checker ABC.

5.6 Conclusion

In this chapter, we presented a full automatic translation from symbolic constraint
automata to Promela. Symbolic constraint automata are a characterization of constraint
automata with memory that can be used to compactly model almost all connectors of the
coordination language Reo. In particular, we restrict ourselves to an executable subset
of Reo, assuming predicate and actions to be decidable. On the one hand, symbolic
constraint automata cannot characterize relational constraints involving, for example,
output ports in predicates. On the other hand, our symbolic constraint automata and
their Promela translation easily allow for a generalization to lossy connectors by testing
the non-presence of a trigger in an output port before executing a lossy transition, as
shown, for example, in the following Promela code for a lossy synchronous connector:

1 proctype LossySync(port A; port B){
2 mytype _a; mytype _b;// internal values in Sync
3 int state = 0; // initial state
4 do
5 :: state = 0 && Full(A.data) && Full(B.trig) ->
6 Atomic{take(A, _a); _b =_a; put(B,_b); state = 0};
7 :: state = 0 && Full(A.data) && Empty(B.trig) ->
8 Atomic{take(A, _a); state = 0};
9 od }

The translation to Promela is interesting in itself as we had to circumvent the problem
of Promela not allowing for checking complex predicates on input ports in a guard of a
statement. This is however a crucial feature for Reo connectors, that we have taken care
of via delayed input and using control variables for recording transitions already taken
(and thus guaranteeing not only liveness, but also fairness in the transition selection
process).

As a proof of concept, we run our translation for the verification of an SDN model
in Spin. The intuitive and modular Promela code is internally translated to a large
transition system with more than 200.000 states and 100.000 transitions. It would be
interesting to look for an abstraction mechanism at the level of symbolic constraint
automata to help reduce the state explosion. An obvious candidate is the combination
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of partial order reduction techniques at the symbolic level of the automaton itself.

77



5 IMPLEMENTING REO INTO PROMELA

78



Chapter 6

Concurrent NetKAT with
Ports

In this chapter, we extend the symbolic constraint automata which has already been
introduced in chapter 5 to NetKAT [4], therefore NetKAT supports concurrency opera-
tion. To accomplish this goal, we define pNetKAT as the language of NetKAT with ports,
and pNKA as the NetKAT automata, which has a parallel operator that allows policy
communication through the ports. We also define ioNKA as the NetKAT automata
with I/O (input/output) ports, which can be transformed from the symbolic constraint
automata [34], ioNKA allows composition operation when there are no synchronization
causality problems just like the symbolic constraint automata. We proceed as follows.
In Section 2 we briefly present NetKAT with a focus on the automata model. While the
original model is deterministic, we present also an equivalent but more compact model
based on non-deterministic NetKAT automata (NKA). In Section 3 we extend NetKAT
protocols with communication actions and concurrency and define closed semantics using
non-deterministic NetKAT automata with ports (pNKA). We continue in Section 4 by
introducing non-deterministic NetKAT automata with input and output ports (ioNKA)
and use them to model NetKAT with ports. We then briefly recall Reo and its symbolic
constraint automata semantics and show how to compositionally translate them into
NetKAT automata.

6.1 Introduction

The rapid evolution of technology, increasing network traffic, and the need for flexible
and scalable computer networks have necessitated a paradigm shift in network manage-
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ment. Traditional network architectures use distributed switches to receive and forward
packets, each switch consisting of hardware and dedicated control software. Software
Defined Networks (SDNs) provide a centralized approach to network control and man-
agement by separating the control plane from the data plane [42]. This separation
allows for programmability and agility in network configurations, enabling dynamic pro-
visioning of resources, efficient traffic management, and the ability to adapt to changing
requirements.

The level of programmability of the software controllers in an SDN to handle traffic
flow, routing decisions, and network policies together with the use of protocols such as
OpenFlow [82] have generated increasing interest in the academic community to provide
a theoretical foundation for understanding the principles, components, and interactions
within SDNs. Examples include model-checking to verify controller programs [14, 15, 1,
34], formal models of OpenFlow [60, 33], or some specific part of it, such as the topology
discovery mechanism [109] or security protocols [27].

A policy-based approach is taken by NetKAT [4], a process algebraic model that em-
phasizes the policy-driven nature of SDNs. It consists of an extension of Kleene Algebra
with Tests tailored to define high-level policy specification and network components and
observe the network behavior from the point of view of a packet [69]. NetKAT, however,
is not stateful and does not allow modeling concurrent policies and multiple packets. In
this chapter, we present pNetKAT, a conservative extension of NetKAT, allowing multi-
ple concurrent policies to communicate via shared ports. In pNetKAT, ports are treated
as shared variables that can be undefined when no communication is possible. We give
an operational semantics to pNetKAT using non-deterministic NetKAT automata with
a slightly modified acceptance rule that enforces observability only if sequences with
successful synchronization steps). Without ports, both syntactically and semantically
pNetKAT and NetKAT coincide.

Under the assumption that ports are declared as either input or output, we give
another semantics to pNetKAT by refining the acceptance rule of non-deterministic
NetKAT automata so to allow for the system to interact with the environment along
the input and output ports. The new semantics is an extension of the previous one (and
thus the new equivalence is stricter, in general). We show that this model can be used
as semantics for the coordination language Reo [5]. from which we can borrow the join
composition operator and define it for NetKAT automata with input and output ports.

Unlike other methods, our pNetKAT extension to a stateful and concurrent NetKAT
is conservative as it remains in the semantic realm of language equivalence instead of
moving to pomset [106] or bisimulation equivalence [24]. The connection with Reo
paves the way to a more expressive concurrent NetKAT, with (concurrent, stateful)
policies declaring input and output ports (as switches and controllers in SDNs) that
can be composed using a join operation (only communication on common ports must
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synchronize, while policies using undeclared ports in another process can proceed in
parallel).

Related work. Several works are extending NetKAT in different directions. For
example, [81] introduces network event structures to model constraints on updates and
define an extension of NetKAT policies with mutable state to give semantics to stateful
SDN controllers. DyNetKAT [24] is a NetKAT extension with concurrency and a stateful
state to model SDNs with dynamic configurations. The extended language is a process
algebra with constructs for synchronization, sequential composition, and recursion built
on top of NetKAT policies. While DyNetKAT allows for multi-packet behavior, the syn-
tax does not allow for the basic NetKAT “dup” action. Also, the focus is on bisimulation
rather than our (and NetKAT) language equivalence, which comes equipped with sound
and ground-complete axiomatization.

Staying in the realm of Kleene algebra is the line of works followed by [106], where
CNetKAT is introduced as a combination of Kleene algebra with tests, concurrent Kleene
algebra, and network operators. The semantics is given in terms of pomset languages
and is thus based on true concurrency rather than interleaving.

Besides the work we already mentioned, there are other formal models for SDN
closely related to NetKAT that involve concurrency. For example, concurrent Net-
Core [95] extends NetCore with concurrency, while NetKAT is an extension of NetCore
with Kleene star. In terms of tools, SDNRacer [30] checks various concurrency-induced
errors in SDNs and precisely captures the asynchronous interaction between controllers
and switches.

Constraint automata are the first automata-based model for Reo connectors [13].
Since then, various other operational models have emerged (see [58] for an overview).
Relevant to our work here is the extension of constraint automata with memory [57]
and the more recent work of symbolic constraint automata [34] that focus on an imple-
mentable subset, instead of an efficient computation of the composition operator. In this
chapter, we show how to embed symbolic constraint automata into ioNKA. We follow
I/O automata [78] and constraint automata [13] by explicitly declaring at the interface
the ports that are used as input and output. Transitions in ioNKA, however, are neither
action-based nor imperative, but rather declarative using pre- and post-conditions in
the style of NetKAT automata.

6.2 NetKAT

In this section, we briefly introduce NetKAT [4], a language for specifying the flow
of a packet through a network, and give its semantics in terms of finite automata and
languages.
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We assume fixed a finite set of fields Fld, say of size k, and a finite set of values Val .
A packet π is a record of fields, that is, a function from Fld to Val that we represent
by [f1 = v1, · · · , fk = vk]. Tests for the value stored in a field form the basic building
block for the set of predicates B(Fld) defined by the following grammar:

a, b ::= 1 | 0 | f = v | a+ b | a · b | ¬a .

The set of all predicates (modulo the usual equations) forms a Boolean algebra, where
+ is interpreted as the disjunction, · as the conjunction, and ¬ as negation. Further,
1 is the truth predicate, and 0 denotes false. The set At of atoms α, β of the Boolean
algebra B(Fld) corresponds to the set of valuations, that is complete conjunctions of
basic tests f = v ranging over all fields in Fld. For simplicity, and with a convenient
abuse of notation, we denote an atom as a record α = [f1 = v1, · · · , fk = vk], allowing
us to switch between packets and atoms. The behavior of a packet through the network
is specified by policies

p, q ::= a | f ← v | dup | p+ q | p · q | p∗ .

Here a is a predicate in B(Fld), f ← v is the assignment of the value v to the field
f of a packet, p + q is the nondeterministic choice between the policies p and q, p · q
specify the sequential composition of two policies, and p∗ the iterative execution of a
policy p. The predicate 0 denotes failure and 1 is skip. As usual, we will often not write
“ ·” in policies. When applied to predicates, “+” and “ ·” act as logical disjunction and
conjunction operators, respectively.

The behavior of a packet π through the network is specified by a string in (At ·At) ·
At∗, denoting a sequence of conditions satisfied by the packet π before and after being
forwarded from one switch to another in the network. Syntactically, the forwarding is
specified by the action dup, which is thus the only observable action of a policy. The
semantics of a policy is then given by the set of all possible behaviors of a packet under
that policy. Since this is a regular subset of (At · At) · At∗, following [36], we use an
automaton to describe it.

Definition 6.1. A deterministic NetKAT automaton (dNKA) is a tuple
(S, F ld, δ, ξ, s0) where

• S is a finite set of states,

• Fld is a finite set of fields,

• δ : S ×At×At→ S is a transition map,

• ξ : S ×At×At→ 2 is an observation map, and

• s0 ∈ S is a distinguished initial state.
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s0 s1 s2
α, β β, γ

α, α β, α γ, α

else
else

all

all

Figure 6.1: An example of a dNKA

Here At is the set of atoms of B(Fld), and 2 is the two-element Boolean set.

Differently from an ordinary automaton, a dNKA uses pre- and post-conditions as
labels to specify the execution of an action in a computation. Here δ(s, α, β) = s′ denotes
a transition from state s to a state s′ executed by an action satisfying the pre-condition
α and resulting in a post-condition β. Further, the observation map ξ(s, α, β) = 1 if and
only if an action in state s satisfies the pre-condition α, results in the post-condition β,
and successfully terminates a computation.

Figure 6.1 shows a dNKA. There are four states but only {s0, s1, s2} are accepting
computations that end in the pair of atoms labeling the respective vertical down arrows.
The state s0 is the initial state, as marked by an incoming arrow without a source. As
usual, labeled arrows between two states represent the transition map. Here we assume
only three atoms: α, β, and γ.

The language accepted by a dNKA is a subset of strings in (At · At) · At∗ and is
defined with the help of the following auxiliary acceptance predicate:

Definition 6.2. For a dNKA M = (S, F ld, δ, ξ, s0), we say that a string σ ∈ (At ·At) ·
At∗ is accepted by M if and only if the deterministic acceptance predicate DAcc(s0, σ)

holds, where DAcc is defined inductively as follows:

• DAcc(s, αβ) = ξ(s, α, β),

• DAcc(s, αβ · τ) = DAcc(δ(s, α, β), β · τ),

where s ∈ S, α, β ∈ At, and τ ∈ At+. The language Ld(M) is defined as the set of all
strings accepted by M .

The language of the automaton in Figure 6.1 is {αα, αβα, αβγα}. In fact, for ex-
ample, DAcc(s0, αβα) = DAcc(s1, βα) = ξ(s1, β, α) = 1.

For a more compact representation of the operational semantics of NetKAT, we use
non-deterministic NetKAT automata as introduced in [108].
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Definition 6.3. A non-deterministic NetKAT automaton (NKA) is a tuple
(S, F ld, ∆, Ξ, s0), where

• S is a finite set of states;

• Fld is a finite set of fields;

• ∆: S ×At×At→ P(S) is a transition relation;

• Ξ:S ×At×At→ 2 is an observation map, and

• s0 ∈ S is a distinguished initial state.

As before, here At is the set of atoms of B(Fld).

For example, the sub-automaton defined by restricting the one in Figure 6.1 to the
three states s0, s1 and s2 is an NKA.

Having non-determinism is reflected in the definition of the language accepted, which
now selects only transitions leading to successful computations.

Definition 6.4. For an NKA N = (S, F ld, ∆, Ξ, s0), we say that a string σ ∈ (At ·
At) · At∗ is accepted by N if and only if the non-deterministic acceptance predicate
NDAcc(s0, σ) holds, where NDAcc is defined inductively as follows:

• NDAcc(s, αβ) = Ξ(s, α, β),

• NDAcc(s, αβ · τ) ⇐⇒ ∃s′ ∈ ∆(s, α, β) .NDAcc(s′, β · τ),

where s ∈ S, α, β ∈ At, and τ ∈ At+. The language Lnd(N) is defined as the set of all
strings in (At ·At) ·At∗ accepted by N .

Every dNKA can be easily seen as an NKA with a functional transition relation.
Conversely, given an NKA, we can construct a dNKA that is language equivalent.

Theorem 1. For every NKA N there exists a dNKA M such that Ld(M) = Lnd(N).

The result is similar to the powerset construction for ordinary finite automata.
In fact, given a NKA N = (S, F ld, ∆, Ξ, s0) we can define a dNKA M =

(P(S), F ld, δ, ξ, {s0}) with

• ξ(X,α, β) = 1 if and only if ∃s ∈ X.Ξ(s, α, β) = 1,

• s ∈ δ(X,α, β) if and only if ∃s′ ∈ X.s ∈ ∆(s′, α, β).

Then, for all X ⊆ S, α, β ∈ At, and σ ∈ At∗ we can prove that DAcc(X,αβ · σ) if and
only if there exists s ∈ X such that NDAcc(s, αβ · σ). Note that the above language
equivalence does not hold if ∆ and Ξ would take as input general Boolean predicates
instead of atoms.

In Table 6.1 we give the operational semantics of NetKAT policies in terms of an
NKA. States of the automaton are policies themselves, that we consider modulo as-
sociativity, idempotency, and commutativity of the “+” operation to guarantee local
finiteness. A state represents (an equivalence class of) what still needs to be executed.
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Table 6.1: Operational semantics of NetKAT

dup
α,α−−→ α

α≤a

a↓(α, α)

β≤(f=v)

f ← v↓(α, β)

p1
α,β−−→ p

p1 + p2
α,β−−→ p

p1↓(α, β)

p1 + p2↓(α, β)

p1
α,β−−→ p

p1 · p2
α,β−−→ p · p2

p1↓(α, β) p2↓(β, γ)

p1 · p2↓(α, γ)

p1↓(α, β) p2
β,γ−−→ p

p1 · p2
α,γ−−→ p

p
α,β−−→ p1

p∗
α,β−−→ p1 · p∗

p∗↓(α, α)

p↓(α, β) p∗
β,γ−−→ p1

p∗
α,γ−−→ p1

p↓(α, β) p∗↓(β, γ)

p∗↓(α, γ)

We have two types of rules: those specifying transitions (on the left-hand side of
Table 6.1), and those for observations, specifying the accepting states (on the right-hand
side). Intuitively, the behavior of a policy is to guide a given packet into a network. This
is described by the assignment of values to the fields to record, for example, where the
packet is, where it has to go, and other information. Policies filter out executions via
predicates. The basic transition step of a policy is given only by the execution of a dup

action. Predicate evaluations and field assignments are evaluated locally in the current
state. A policy execution may terminate in an accepting state (as specified on the right-
hand side of Table 6.1) or may diverge in an infinite computation (via the transition
rules of p∗) and not be observed. Note that since we consider states modulo associativity,
commutativity, and idempotency of the “+” operation, there is no need for symmetric
rules for the “+” for both the transition and the observation relation.

For a given policy p, in [36] a dNKA M(p) is constructed using syntactic derivatives.
Similarly, Let N(p) denote the NKA constructed using the rules in Table 6.1, with as
initial state (the equivalence class of) p. We then have the automata M(p) and N(p)

accept the same language [108].
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6.3 NetKAT with ports

Next, we extend NetKAT protocols with a parallel operator and allow policies to
communicate via ports. A port x is a shared variable between two processes that can
be updated with a value v by an output operation x!v and can be destructively read
by an input operation x?f which stores the communicated value into a field f . Unlike
a variable, however, a port may be undefined, here denoted by the symbol ⊥ that we
assume is not a value in Val . Intuitively, a port x is undefined, i.e. x = ⊥, if it can
be used by an output operation. Dually, input on a port x can only take place if x is
not undefined, i.e. ¬(x = ⊥) that, as usual, we denote by x ̸= ⊥. In other words, we
see an output x!v as the atomic execution of the guarded command x = ⊥ · x ← v,
whereas an input x?f can be seen as the atomic execution of the guarded command
x ̸= ⊥ · f ← x ·x← ⊥. Here we use the assignment f ← x of a variable to a field, which
is just an abbreviation for the protocol Σv∈Val(x = v · f ← v) because V al is assumed
to be finite. Communication of two parallel protocols via a port x in an undefined state
is then the atomic execution of an output command on x followed by an input on x,
resulting in the command

(x = ⊥ · x← v) · (x ̸= ⊥ · f ← v · x← ⊥)

which, because is executed atomically, can be thought of as equivalent to x = ⊥ · f ←
v · x← ⊥.

Formally, we assume a finite set of variables Var partitioned in a set of fields Fld

and a set of ports Prt . As for NetKAT, fields are ranged over by f , while ports are
by x. All variables can store values from Val but only ports can be undefined, which
we denote with ⊥ ̸∈ Val . The set of predicates B(Var) extends those of NetKAT by
allowing basic tests on all variables, including ports, as defined by the grammar

a, b ::= 1 | 0 | f = v | x = v | x = ⊥ | a+ b | a · b | ¬a ,

where, f ∈ Fld, x ∈ Prt , and v ∈ Val . We use f = x as a shorthand for the test
Σv∈Valx = v · f = v. This is well defined because the set Val is finite. The behavior
of a packet in pNetKAT through a network subject to several communicating parallel
policies is specified by the following grammar that extends the one of NetKAT with
communication actions and a parallel operator:

p, q ::= a | f ← v | dup | x?f | x!v | p+ q | p · q | p||q | p∗ .

As discussed above, here x?f is an input action that is executed only when the port x

has a value available that is assigned immediately to the field f . The output action x!v

is executed if the port x is not busy (there is no value) and makes available the value
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v at the port. Note that only fields can be assigned directly by policies, whereas ports
can change values only through successful communications. Policies can be executed
in parallel via the operator “||”. Parallel policies executing an input, respectively an
output, action on the same port synchronize.

The operational semantics of pNetKAT are given in terms of NKA as presented in
Definition 6.3. The only addition to the rules given in Table 6.1 is the transition and
observation map for input and output actions and for the parallel composition of policies.
The extra rules are presented next.

Input and output actions are, like dup, primitive actions that have a transition step
and do not terminate for any observable pairs of atoms:

α ≤ (x = v) β = α[⊥ /x][v/f ]

x?f
α,β−−→ β

α ≤ (x =⊥) β = α[v/x]

x!v
α,β−−→ β

The conditions in the premises of the two rules express the precondition and postcondi-
tion of the input and output, respectively, as we already discussed. Here α[v/x] (α[v/f ])
is the atom assigning a port x to v (a field f to v, respectively) and all other variables
are as in α.

The transition relation of the parallel composition p1||p2 of two policies p1 and p2

is described by three types of rules, namely: synchronization, interleaving, and termi-
nation. When they occur in parallel, an input and an output action on the same ports
synchronize:

p1
α1,β1−−−−→ p p2

α2,β2−−−−→ q

p1||p2
α,β−−→ p||q

p1
α1,β1−−−−→ p p2

α2,β2−−−−→ q

p2||p1
α,β−−→ q||p

under the condition that there is a port x ∈ Prt and a field f ∈ Fld such that α(x) =

β(x) = α1(x) = β2(x) =⊥ and β1(x) = α2(x) = β2(f), whereas for all other variables
y ∈ Var different from x, α1(y) = α2(y) = α(y) and β1(y) = β2(y) = β(y). The above
condition says that the pair (α1, β1) describes the output of the value v on a port x,
that is received and assigned to field f by the input action specified by (α2, β2). For all
other variables, the preconditions and the postconditions of all transitions involved do
not change.

If the transition of a policy does not have a visible effect on the state of a port, then
when in parallel with any other policy it can proceed in an interleaving fashion:

p1
α,β−−→ p

p1||p2
α,β−−→ p||p2

p1
α,β−−→ p

p2||p1
α,β−−→ p2||p
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6 CONCURRENT NETKAT WITH PORTS

where α(x) = β(x) for all port x ∈ Prt . Note that, the above symmetric rules in
combination with the synchronization rules imply that there cannot be multiparty syn-
chronization.

Similar to the shuffle of languages, if a policy p1 terminates when in parallel with
another policy p2, then p2 can continue alone from the postcondition observed at the
termination of p1:

p1↓(α, β) p2
β,γ−−→ p

p1||p2
α,γ−−→ p

p1↓(α, β) p2
β,γ−−→ p

p2||p1
α,γ−−→ p

p1↓(α, β) p2↓(α, β)

p1||p2↓(α, β)

Generally, the parallel composition of two policies does not terminate immediately, as it
may involve input and output actions. However, if no communication action is involved,
then it terminates observing the pair (α, β) if both policies do the same. Note that this
means inconsistent policies cannot terminate successfully, as they both act atomically
on the same packet.

As in the previous section, we denote by N(p) the NKA constructed using the rules
in Table 1 and the above ones for the parallel composition, with as states equivalence
classes of policies modulo commutativity and associativity of both “+” and “||”, and
idempotency of only “+”, and with as initial state (the equivalence class of) p. To enforce
synchronization, we impose that ports are undefined at all times in every accepted string
(a condition satisfied by the synchronization step but not by the postcondition of an open
output and a precondition of an open input). We thus refine the acceptance predicate
for NKA with ports (thus, pNetKAT) as follows:

Definition 6.5. Let At be the set of atoms of the Boolean algebra B(Var). For an NKA
(with ports) N = (S, Var , ∆, Ξ, s0), we say that a string σ ∈ (At ·At) ·At∗ is accepted
by N if and only if the predicate PAcc(s0, σ) holds, where PAcc is defined inductively as
follows:

• PAcc(s, αβ) ⇐⇒ Ξ(s, α, β) and ∀x ∈ Prt .α(x) = β(x) = ⊥,

• PAcc(s, αβσ) ⇐⇒ ∃s′ ∈ ∆(s, α, β) .PAcc(s′, βσ) and ∀x ∈ Prt .α(x) = ⊥,

where s ∈ S, α, β ∈ At, and σ ∈ At+. The language Lp(N) is defined as the set of
all strings in (At · At) · At∗ accepted by N . We refer to NKA with PAcc predicates as
pNKA.

Because of the symmetry in the rules of the parallel composition, we have that “ ||”
is a commutative and associative operator. It is not idempotent in general, except for
policies with no occurrences of dup, input, or output actions. For example a||b = a · b
and f ← v||f ← v = f ← v.

If there are no ports in Var (i.e. Var = Fld) then they do not appear in atoms
in At. In this case, the definition of PAcc coincides with the usual definition NDAcc
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Figure 6.2: A SDN with two switches and two controllers

of accepted strings for an NKA. Note that because ports are undefined in every atom
occurring in a string accepted by PAcc ports can be removed (or added) to an NKA
without changing its language equivalence. Using the Kleene theorem for NetKAT [36],
we can relate (non-compositionally) pNetKAT with NetKAT:

Theorem 2. For every pNetKAT policy p there is a NetKAT policy q such Lnd(N(q))

is equal to Lp(N(p)) after removing the ports from every atom.

This implies that for every process in pNetKAT, we can find an ’equivalent’ process
in NetKAT, basically by compiling parallel processes into interleaved ones if no open
communication is involved and transforming synchronizations into assignments. In other
words, the semantics of pNetKAT is closed, meaning that it does not allow any external
communication after the system is defined. In the next section, we define an open
semantics that allows for the synchronization of several ports at the same time.

We conclude this section with an example adapted from [24] and sketched in Fig-
ure 6.2. Two switches SX and SY have 3 ports each: x1, x2, x3 and y1, y2, y3, respec-
tively. Their behavior depends on their current flow table and it is described by the
following set of policies:

SX0 = 0 SY0 = 0

SX1 = (f = x1) · f ← x3 SY1 = (f = y3) · f ← y1

SX2 = (f = x2) · f ← x3 SY2 = (f = y3) · f ← y2 ,

where f is a field of a packet that records the last passed port. The switches are linked
through ports x3 and y3:

L = (f = x3) · dup · f ← y3 .

Under the flow tables SX1 and SY1, for example, a packet that arrives at port x1 of
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6 CONCURRENT NETKAT WITH PORTS

switch SX is forwarded to port x3. The latter is linked to port y3 of switch SY , which
forwards the packet to port y1. Note the role of the dup action to record that a packet
moves from one switch to another.

Each switch is linked with a controller via the ports sx and sy. CX is the controller
of switch SX and CY of switch SY . The two controllers are concurrently acting on their
switch by updating their flow tables. The task of the two controllers is to guarantee that
incoming packets at port x1 arrive at port y1 and incoming packets at port x2 arrive at
port y2. No mixing of flow is allowed. To avoid race conditions, the controllers have to
synchronize and guarantee a proper order of execution of their concurrent behaviors:

CX = (f = x1) · (sx!0 · c!1 · c?g · sx!1)
+ (f = x2) · (sx!0 · c!2 · c?g · sx!2)

CY = c?g · ((g = 1 · sy!1) + (g = 2 · sy!2)) · c!0 .

Here sx and sy are the ports connecting the controllers to their controlled switches.
When sending the flow message 0, 1, or 2, the flow table will be updated accordingly.
The two controllers use port c to synchronize each other and pass the information about
which flow table they have updated. While waiting for the update of the flow table of
switch SY , the switch SX first drops all incoming packets, and only after SY is updated
then SX accept packets from the correct port.

The behavior of the entire network is given by

(ft1← 0) · (ft2← 0) · (N∗||CX||CY )∗ ,

where

N = Σ2
j=0(ft1 = j) · SXj +Σ2

j=0(ft2 = j) · SYj + L+ sx?t1 + sy?t2

Initially, both switches start with empty flow tables that are updated when a controller
sends a flow message to its switch via the port sx or sy, respectively.

6.4 NetKAT automata with I/O ports

In the previous section, we used NKA for giving a closed semantics of our concurrent
policy language pNetKAT using the acceptance predicate PAcc that takes into account
ports. Next, we consider NetKAT automata for open concurrent systems and use them
as a model of pNetKAT.

To begin with, we partition the set of ports Prt into input ports IPrt and output
ports OPrt . Together with the disjoint set of fields Fld they form a finite set of variables
Var . Input ports are ranged over by i and output ports by o. As before, all variables
can store values from Val but only input and output ports can be undefined, which we
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denote with ⊥ ̸∈ Val . Intuitively, an input port i of a connector is enabled if it contains
a value different from ⊥ so that this value is ready to be taken by the connector when
synchronizing on i with the environment that puts the value in it. Dually, an output
port o of a connector is undefined (i.e., o = ⊥) when the port o is ready to receive a
value from the connector and synchronizes with the environment when it will read from
o.

We use input and output ports to define a novel operational behavior of NKA by an
acceptance predicate that, differently from PAcc, does not enforce synchronization and
leaves the system open to communication instead of closing it in the style of [21].

Definition 6.6. Let At be the set of atoms of the Boolean predicates B(Var), where
Var = IPrt ∪OPrt ∪Fld. For an NKA N = (S, Val , ∆, ξ, s0) with atoms At involving
input and output ports, we say that a string σ ∈ (At×At)+ is accepted by N if and only
if the predicate IOAcc(s0, σ) holds, where IOAcc is defined inductively as follows:

• IOAcc(s, (α, β)) ⇐⇒ Ξ(s, α, β),

• IOAcc(s, (α, β)σ) ⇐⇒ ∃s′ ∈ ∆(s, α, β) . IOAcc(s′, σ) and β ▷ head(σ),

where s ∈ Q, α, β ∈ At, σ ∈ (At × At)+. The language LIO(N) is defined as the set
of all strings in (At× At)+ accepted by N . We refer to NKA with IOAcc predicates as
ioNKA

A pair (α, β) in a string accepted above represents the pre/post condition of an action
executed by a component. In between two pairs, the environment can communicate
with the components and change the values at its ports. We formalize this using the ▷

predicates. In fact, for every string in (At×At)+, we define head((α, β)σ) = α, and for
every two atoms α and β we say that the predicate β ▷ α holds if and only if:

a. local variables cannot be modified by the environment, i.e., β(f) = α(f) for every
field f ∈ Fld;

b. the environment can put a value to an input port only if the port is not already
enabled, i.e. either β(i) = α(i) or β(i) = ⊥;

c. the environment can take a value from an output port only if there is one, i.e.,
either β(o) = α(o) or α(o) = ⊥.

Here we see β as the postcondition of an action, and α as the precondition of the
next action both to be executed by the component, or, dually, they are the pre- and
postcondition of actions executed by the environment. The conditions on the second
and third items above allow the environment to communicate with a component only
through input ports that are not enabled and output ports that contain values. As such
the semantics of a component caters to all possible interactions with the environment
and is open. For example, if a component executes an action ending in a postcondition
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[f = 1, i = ⊥, o = 3] then the environment could assign a value to the input port i so
that at the next step the component would start with a precondition [f = 1, i = 2, o =

3]. Alternatively, the environment could take the value from the output port o and
put a value in the input variable i resulting in the next step component precondition
[f = 1, i = 2, o = ⊥]. However, the environment could never change the value of the
field f as it is local to the component.

The set of input and output ports used by a pair (α, β) is defined by

I(α, β) = {i ∈ IPrt | α(i) ̸= β(i) = ⊥} and
O(α, β) = {o ∈ OPrt | β(o) ̸= α(o) = ⊥} .

The above reflects the fact that an input port must be enabled in the precondition and
is available for communication after the value has been taken, and dually for an output
port.

In the absence of input and output ports, the condition on the first item ensures
that for any two consecutive pairs (α1, β1)(α2, β2) occurring in an accepted string, the
postcondition β1 is equal to the precondition α2. In this case, we can transform a strings
σ ∈ (At×At)+ into essentially equal strings in t(σ) ∈ (At ·At) ·At∗ as follows:

t((α, β)) = αβ t((α, β)σ) = α · t(σ) .

The transformation t unifies the subsequent postcondition and precondition because they
are equal. The inverse t−1 of t maps strings in (At ·At) ·At∗ into strings in (At×At)+

by equating subsequent postcondition and precondition:

t−1(αβ) = (α, β) t−1(αβσ) = (α, β) · t−1(βσ) .

Here σ ∈ At+ and α, β are atoms in B(V ar), with V ar = IPrt ∪OPrt ∪ Fld.

Theorem 3. For every NKA automaton with no (input and output) ports, IOAcc(s, σ) =

PAcc(s, t(σ)) = NDAcc(s, t(σ)), for any state s and string σ ∈ (At×At)+.

Proof. The proof follows immediately by induction on the length of σ using the fact
that there are no ports and the definitions of the predicate IOAcc, PAcc(s, t(σ)), and
NDAcc, as well as the definition of the transformation t.

In other words, the predicate IOAcc is a conservative extension of NDAcc in the
context of NetKAT automata when there are no ports. However, if we assume Prt =

IPrt ∪Oprt and V ar = Prt ∪ Fld so that atoms in B(V ar) are of the correct type for
both predicates PAcc and IOAcc, we then have the following result.

Theorem 4. Let V ar = Prt ∪ Fld and Prt = IPrt ∪ Oprt and (S, V ar, ∆, Ξ, s0) be
a NKA. For every string σ ∈ (At ·At) ·At∗ where At is the set of atoms of B(V ar) and
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s ∈ S if the predicate PAcc(s, σ) holds then also IOAcc(s, t−1(σ)) holds.

Proof. The proof is by induction on the length of σ ∈ (At ·At) ·At∗. For the base case,
assume σ = αβ. We then have

PAcc(s, αβ) =⇒ Ξ(s, α, β) Definition of PAcc
⇐⇒ IOAcc(s, (α, β)) Definition of IOAcc

⇐⇒ IOAcc(s, t−1(αβ)) Definition of t−1.

Assume now σ′ = γσ′′ where γ ∈ At and σ′′ ∈ At∗ > Consider the induction step with
the string σ = αβσ′. First of all, note that t−1(αβσ′) = (α, β) · t−1(βσ′) and similarly,
t−1(βσ′) = (β, γ) · t−1(σ′′). Thus β = head(t−1(βσ′)). We have

PAcc(s, αβσ′) =⇒ ∃s′ ∈ ∆(s, α, β).PAcc(s, βσ′) Def. of PAcc
=⇒ ∃s′ ∈ ∆(s, α, β).IOAcc(s, t−1(βσ′)) Ind. hypothesis
⇐⇒ ∃s′ ∈ ∆(s, α, β).IOAcc(s, t−1(βσ′)) & β ▷ β Def. of ▷
⇐⇒ ∃s′ ∈ ∆(s, α, β).IOAcc(s, t−1(βσ′)) & β ▷ head(t−1(βσ′))

⇐⇒ IOAcc(s, (αβ) · t−1(βσ′))) Def. of IOAcc

⇐⇒ IOAcc(s, t−1(αβ)σ′) Def. of t−1.

As a consequence of the above, we have that if two policies of pNetKAT are language
equivalent with respect to the IOAcc then they are also language equivalent for PAcc.
The converse is, in general, not true, meaning that the equivalence generated by pNKA

is coarser than that of ioNKA.

6.4.1 From symbolic constraint automata to ioNKA

Next, we show that NetKAT automata can be used to express the semantics of the
coordination language Reo [5] too. We use symbolic constraint automata as a semantic
model of Reo connectors as presented in Chapter 5, in Definition 5.1 with the addition
of accepting states to consider only finite executions.

Definition 6.7. A symbolic constraint automaton with accepting states (SCA) is a tu-
ple (S, s0, I, O, F, −→, A) such that (S, s0, I, O, F, −→) is an ordinary symbolic con-
straint automaton and A ⊆ S is a set of accepting states.

An execution of a symbolic constraint automata with accepting states is defined as
in Chapter 5 with the obvious adaptation to finite sequences.

Given a guarded action ϕ(x̄, ȳ) = P (x̄)→ ȳ ..= a(x̄) and atoms α, β assigning values
to all variables (and possibly ⊥ to some input or output ports) we denote by P (α) the
evaluation of P (x̄) where all occurrences of (free) variables z ∈ x̄ are substituted with
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α(z) ∈ Val . Similarly, we denote by a(α) the list of values obtained by evaluating a

when all variables z ∈ x̄ get value α(z) ∈ Val . Finally, we say that the Hoare triple
{α}ϕ{β} holds if

• ϕ is executable under α, that is α(i) ̸= ⊥ for all input ports i ∈ x̄ and α(o) = ⊥
for all output port o ∈ ȳ.

• α is a precondition of ϕ enabling its guard, that is α ≤ P (α); and

• β is a postcondition of ϕ changing only the variables in ȳ and consuming the value
from all input ports in x̄, that is α[a(α)/ȳ, ⊥̄/̄i] ≤ β

where α[v̄/ȳ, ⊥̄/̄i] is the atom mapping variables in ȳ to the respective values in v̄,
enabling input ports in x to receive values, and remaining unchanged otherwise.

Pre and postconditions of guarded actions are used to construct an ioNKA from a
symbolic constraint automaton

Definition 6.8. A SCA with accepting states (S, s0, I, O, F, −→, A) can be trans-
formed into a ioNKA (S, V ar∆, Ξ, s0) with V ar = I ∪O ∪ F and

• s′ ∈ ∆(s, α, β) if and only if s ϕ−→ s′ and {α}ϕ{β};

• Ξ(s, α, β) if and only if s ϕ−→ s′ ∈ A and {α}ϕ{β}.

Here α and β are atoms in B(V ar).

Consider, for example, the symbolic constraint automaton in Figure 5.1.(b) of a
Fifo1 connector. The corresponding NetKAT automaton has the following transition
and observation maps:

∆(0, α, β) = {1} ∆(1, α′, β′) = {0} , and Ξ(1, α′, β′)

for any atom α ≤ i = v, β ≤ (i = ⊥·f = v), α′ ≤ (o = ⊥·f = u) and β′ ≤ (o = u·f = u).
A string accepted by this automaton is, for example, ([i = v, o = ⊥, f = u], [i = ⊥, o =

⊥, f = v]) · ([i = ⊥, o = ⊥, f = v], [i = ⊥, o = v, f = v]).

As another example, the ioNKA obtained from the symbolic constraint automaton
in Figure 5.1.(c) denoting a filter connector has the following transition and observation
maps:

∆(0, α, β) = {0} ∆(0, α′, β′) = {0} , and Ξ(0, α, β) Ξ(0, α′, β′)

for any atom α ≤ i = v ∈ P (v), β ≤ (i = ⊥·o = v), α′ ≤ i = v ̸∈ P (v), and β′ ≤ (i = ⊥).
Correctness of the translation from symbolic constraint automata to NKA with re-

spect to the following notion of bisimulation is immediate by construction. However,
this bisimulation relation will become more interesting when proving the correctness of
the parallel composition of two automata.
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Definition 6.9. Given a symbolic constraint automaton with accepting states C =

(S, s0, I, O, F, −→, A) and an NKA N = (Q, V ∆, Ξ, q0) with V = I ∪ O ∪ F , we
say that a binary relation R ⊆ S × T is a bisimulation if (s0, q0) ∈ R and whenever
(s, q) ∈ R then

• for all s ϕ−→ s′ and {α}ϕ{β} there exists q′ ∈ ∆(q, α, β) such that (s′, q′) ∈ R;

• for all q′ ∈ ∆(q, α, β) there exists s
ϕ−→ s′ such that {α}ϕ{β} and (s′, q′) ∈ R;

• Ξ(q, α, β) holds for all s ϕ−→ s′ ∈ A and {α}ϕ{β};

• for all Ξ(q, α, β) there exists s
ϕ−→ s′ such that {α}ϕ{β} and s′ ∈ A.

Transitions with guarded actions must be matched by transitions with all pre and
postconditions of those actions, and vice-versa, every pair of pre and postconditions must
be related to at least one guarded action. Note that if two states q and q′ of an ioNKA
are language equivalent with respect to IOAcc, and a state s of an SCA is bisimilar to
q then s is bisimilar to q′ too, where bisimilarity is the largest bisimulation between an
SCA and a ioNKA.

6.4.2 Composing ioNKA

We conclude this section with a very brief presentation of a composition operator
between NetKAT automata with input and output ports inspired by the one used in
Reo [13]. The idea is that the two automata synchronize via all (and only) the shared
ports that are input for one automaton and output port for another. To avoid broadcast-
ing, shared ports become local fields. No other synchronization is allowed, as all fields
are only visible within the scope of an automaton. The composition is defined only when
no causality problem can arise when the input and output ports of two automata are
synchronized in the same step.

Definition 6.10. Let N1 = (S1, V1 ,∆1, Ξ1, s1) and N2 = (S2, V2, ∆2, Ξ2, s2) be two
non-deterministic NetKAT automata with Vi = Ii ∪Oi ∪Fi for i = 1, 2 such that F1 and
F2 are disjoint sets of fields in Fld. Assume that for every pair of (α1, β1) and (α2, β2)

and state s1 and s2 such that either ∆1(s1, α1, β1) ̸= ∅ and ∆2(s2, α2, β2) ̸= ∅ or both
Ξ1(s1, α1, β1) and Ξ2(s2, α2, β2) holds, the two automata synchronize only on the input
ports used by one and output ports used by the other, but not on both input and output
ports at the same time, that is

I(α1, β1) ∩O(α2, β2) ̸= ∅ ⇒ O(α1, β1) ∩ I(α2, β2) = ∅ .

Then the composition N1 ▷◁ N2 is defined as the ioNKA (S, V ∆, Ξ, s0) where:

• S = S1 × S2;

• s0 = ⟨s1, s2⟩;
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..= m1

Figure 6.3: Symbolic constraint automata for Fifo 1 composed with Fifofull

• V = I ∪ O ∪ F with I = (I1 \ O2) ∪ (I2 \ O1), O = (O1 \ I2) ∪ (O2 \ I1), and
F = F1 ∪ F2 ∪ (I1 ∩O2) ∪ (I2 ∩O1);

• ⟨s′, t′⟩ ∈ ∆(⟨s, t⟩, α, β) if s′ ∈ ∆1(s, α1, β1) and t′ ∈ ∆2(t, α2, β2) such that if
x ∈ I1 ∩O2 then α1(x) = β2(x) ̸= ⊥, and if x ∈ O1 ∩ I2 then α2(x) = β1(x) ̸= ⊥;

• Ξ(⟨s, t⟩, α, β) holds if both Ξ1(s, α1, β1) and Ξ2(t, α2, β2) hold, such that if x ∈
I1 ∩O2 then α1(x) = β2(x) ̸= ⊥, and if x ∈ O1 ∩ I2 then α1(x) = β2(x) ̸= ⊥,

where, in the last two items, for all i ∈ I, o ∈ O and f ∈ F ,

α(i) =

{
α1(i) if i ∈ I1 \O2

α2(i) if i ∈ I2 \O1

β(i) =

{
β1(i) if i ∈ I1 \O2

β2(i) if i ∈ I2 \O1

α(o) =

{
α1(o) if o ∈ O1 \ I2
α2(o) if o ∈ O2 \ I1

β(o) =

{
β1(o) if o ∈ O1 \ I2
β2(o) if o ∈ O2 \ I1

α(f) =

{
α1(f) if f ∈ F1 ∪ (I1 ∩O2)

α2(f) if f ∈ F2 ∪ (I2 ∩O1)
β(f) =

{
β1(f) if o ∈ F1 ∪ (O1 ∩ I2)

β2(f) if o ∈ F2 ∪ (O2 ∩ I1)

The above operation is congruence with respect to language equivalence as defined in
Definition 6.6 and is correct with respect to the parallel operator for symbolic constraint
automata as given in [34] in the sense that if there is a bisimulation relation between two
symbolic constraint automata and two ioNKA then we can find a bisimulation between
their respective parallel composition.

As an example, we show the composition of two SCA constraints automata, one
representing a FIFO buffer of size 1 taking values from the input port i, buffering the
field m1 and outputting the buffered value at the port x, and the other similar but with
input port x output port o and starting with a full buffer m2 instead of the empty m1.

The two symbolic constraint automata are described at the top of Figure 6.3, while
their composition is the SCA depicted at the bottom. We concentrate on the synchro-
nization of the transition execution of the action m1

..= i with that executing the action
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1 2

α1 · β1

· · ·

▷◁ a b

α2 · β2

· · ·

= 1,a 2,b

α · β

· · ·

Figure 6.4: pNKA for Fifo 1 composed with Fifofull

o ..= m2. They are implemented in the ioNKA in Figure 6.4, where α1 = [i = v1, x =

v2, m1 = v0], β1 = [i = ⊥, x = v2, m1 = v1], α2 = [x = u1, o = ⊥, m2 = u2], and
β2 = [x = u1, o = u2, m2 = u2]. Here v1 is the data received as input by the first
connector and u2 the one output by the second connector, while v2 and u1 are values
(possibly bottom) already present at the output and input port of the two connectors,
respectively. Following the definition we get the following sets of "used" ports:

I(α1, β1) = {i} O(α1, β1) = ∅ ,

I(α2, β2) = ∅ O(α2, β2) = {o} .

The resulting composition of the above transitions results in the precondition α = [i =

v1, x = v2, o = ⊥, m1 = v0, m2 = u2], and postcondition β = [i = ⊥, x = v2, o =

u2, m1 = v1, m2 = u2], where x becomes a local field. Note that if we create a loop
and let the port o = i in the second SCA then we have a problem of causality and
the composition cannot take place. The problem could be solved by inserting e.g., a
(synchronous) connector between o and i.

We leave it as future work the extension of the syntax of pNetKAT with an explicit
declaration of input and output ports for each policy, that can be combined with the
join operation ▷◁ as defined above.

6.5 Conclusion and future work

We extended NetKAT with concurrency and communication via shared ports. We
followed two semantics lines using non-deterministic constraints automata: one observ-
ing successful synchronization only, and another allowing interaction with the environ-
ment. In both cases, communication by ports played an important role, and the second
one can be used as a compositional model of the Reo coordination language too.

We focussed on the operational semantics and compositionality. A possible next step
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is the study of axiomatizations of our two extensions. From a more practical point of
view, we could use our work on model checking Reo with SPIN [34] to obtain a model
checker for concurrent NetKAT. An orthogonal extension is to combine concurrency with
stacks to model VLANs [108].
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Chapter 7

Towards causality reasoning
for SCA

In this chapter, we introduce an NFA causal model based on counterfactuals, in-
spired by the seminal works on causal analysis by Halpern and Pearl, adapted to finite
automata models and with safety properties defined by regular expressions [26]. The
latter encodes undesired execution traces. We devise a framework that computes actual
causes, or minimal traces that lead to states enabling hazardous behaviors. Further-
more, our framework exploits counterfactual information and identifies modalities to
steer causal executions toward alternative safe ones. This can provide systems engineers
with valuable data for actual debugging and fixing erroneous behaviors. Our framework
employs standard algorithms from automata theory, thus paving the way to further
generalizations from finite automata to richer structures like probabilistic, KAT, and
NetKAT automata. The ultimate goal is to extend the framework to symbolic con-
straint automata [34], so as to be applied for causal reasoning on SDNs, for example by
using our Reo model presented in Chapter 4.

7.1 Introduction

Causal models and associated causal inference machinery are precious tools for the in-
terpretation and explanation of systems failures. Current testing and verification frame-
works such as equivalence checking, for instance, assess whether or not systems comply
with their specifications, and at most will produce a counterexample in case the system
fails. Causal analysis, instead, plays an important role in explaining complex phenom-
ena that are actual sources of hazards by adding, for example, additional information to
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counterexamples on how to avoid the hazard.

A notion of causality often embraced and adopted by computer scientists was intro-
duced by Halpern and Pearl in their seminal works [47, 46]. Their causal model encodes
complex logical structures of multiple events that contribute to undesired effects, or
hazards. In essence, the model is based on the so-called alternative worlds, originally
proposed by Lewis [76]. In short, Lewis assumes the existence of worlds satisfying a
sufficiency condition, where both the cause and the effect occur, and other worlds satis-
fying a necessity condition, in which neither the cause nor the effect occurs. This enables
formulating the counterfactual argument, which defines a first condition to be satisfied
by a cause, namely: when the presumed cause does not occur, the effect will not occur
either. More complex aspects such as redundancy and preemption are also captured by
the causal model in [47, 46]. For intuition, redundancy refers to simultaneous events
that play the same role in enabling an undesired effect. Orthogonally, preemption refers
to subsequent events that have the same power to enable the effect. In both cases, the
counterfactual test alone cannot determine the actual cause. Last, but not least, causes
in the spirit of [46] comply with a minimality requirement which guarantees that only
the relevant set of causal events is identified.

Related work. Over time, several notions of causality have been proposed, each
of which is tailored to the type of the system under analysis, and associated correct-
ness specifications. Of particular interest for this chapter are the works in [74, 23, 25].
The aforementioned results propose trace-based adoptions of causality á la Halpern and
Pearl, applicable to automata models. These, in combination with model checking-
based methodologies, enabled computing causes for the violation of safety and liveness
properties in Kripke structures and labeled transition systems, for instance.

Our work is closely related to the contribution in [25]. Given an automaton model,
the naive goal is to identify the shortest sequence of actions that enable the effect, i.e.,
that can bring the system into a hazardous state. These are called “causal traces". Note
that, in contrast with the often tedious counterexamples identified by model-checkers,
the minimality of causal traces implies concise descriptions of systems faults. Thus,
causal traces encode essential information for systems engineers, for instance, and they
can serve as a debugging aid. As previously stated, in the spirit of Halpern and Pearl,
our definition of causality imposes a sufficiency condition: namely, whenever a causal
trace is executed, the effect is reached as well. However, important information on how
to avoid/fix hazardous behaviors can be extracted based on the aforementioned set of
alternative worlds (or traces in our model), that do not lead to an undesired effect.
Hence, we designed our causal model in the spirit of the counterfactual criterion of
Lewis and identified modalities to avoid hazardous scenarios. Similarly to [74, 23, 25],
we call these escape options – “events causal by their non-occurrence". This information
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can be exploited to steer an execution towards an alternative safe one, with immediate
applicability in synthesizing schedulers, for instance.

A rich body of work successfully exploited the counterfactual argument for fault
analysis and debugging techniques. Examples related to counterexample explanation in
model checking are the works in [44, 43, 92], for instance. In [43] the authors propose
a framework for understanding errors in ANSI C programs, based on distance metrics
for program executions. In [44] the cause describing the error includes the identification
of source code fragments crucial to distinguishing success from failure and differences
in invariants between failing and non-failing runs. Distance criteria have also been ex-
ploited in [92], in combination with the so-called nearest neighbor queries to perform
fault localization. The why-because-analysis in [71] was used to reason about aviation
accidents, in a framework where Lamport’s Temporal Logic of Actions (TLA) described
both the behavior of a system, the (history of) hazards and the sequence of the states
leading to an accident. The work in [114] provides a comprehensive approach to sys-
tematic debugging including, among others, delta debugging – a technique for isolating
minimal input to reproduce an error.

For finer notions of causal dependencies that distinguish between interleaving and
true concurrency, for instance, we refer to event structures [8, 88]. Nevertheless, in our
work, we adhere to the approaches in [74, 23, 25], and do not take into consideration
the order of events along execution traces.

Our contributions. We propose a shifting from the bisimulation setting presented
in [25] to a trace-based setting in the context of regular languages and automata theory.
The benefits are multifold. For instance, the paradigm change facilitates the application
of more standard algorithms from automata theory, in contrast with the rather ad-hoc
procedures in [74, 23, 25]. Furthermore, the current framework enables the use of an ex-
pressive logic for defining safety properties in terms of regular expressions (or automata),
instead of the ordinary Hennessy-Milner logic. The language-based approach to causal-
ity enables representing both hazards and causal explanations in terms of automata –
a format better accepted by engineers. In addition, in this chapter, we use regular lan-
guages (or full regular expressions including Kleene-star) to encode the non-occurrence
of events. Previous related works such as [74, 23, 25] can only provide finite sets of runs
steering an execution towards an alternative safe one. Orthogonal to the aforementioned
results, the current approach entails a “may" semantics of causality, instead of “must";
nevertheless, we believe that the approach can be easily modified to cater to the “must"
version. Besides, in contrast with the results in [25], steering executions are guaranteed
not to jump over hazardous states by simply concatenating sequences causal by their
non-occurrence and the causal trace. The ultimate goal of the current work is to gener-
alize from finite automata to richer structures like probabilistic automata and NetKAT
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automata [4, 37].

Structure of the chapter. In Section 7.2 we provide an overview of regular lan-
guages and associated automata theory aspects. A running example is introduced in
Section 7.3. Section 7.4 defines the language-based model of causality, whereas in Sec-
tion 7.5 we show how to compute actual causes and safe computations. In Section 7.6
we provide an experimental evaluation of our method and in Section 7.7 we discuss how
our model can be extended with tests and assignments. Section 7.8 concludes our work.

7.2 Preliminaries

In this section, we recall a few basic facts about regular languages, finite automata,
and regular expressions [80].

Let A be a finite set of actions that we refer to as an alphabet. A word or string over
A is a finite sequence a1 . . . an of elements from A. We denote by ε the empty word,
i.e. the sequence of length 0, and write A∗ to denote the set of (possibly empty) words
over A. A language L is just a subset of words, that is L ⊆ A∗. We call a word w′ to
be a prefix of a word w whenever w = w′w′′. A word w′ is said to be a sub-word of a
word w, if w′ is obtained by deleting one or more elements of A at some not necessarily
adjacent positions in w. We denote by sub(w) the set of all sub-words of w. Note that
sub(ε) = ∅. Also, ε ∈ sub(w) but w ̸∈ sub(w) for every non empty word w.

A finite automaton (FA) is a 5-tuple M = (S,A, i,−→, F ), where S is a finite set of
states, i ∈ S is the initial state, F ⊆ S is the set of accepting states and −→⊆ S×A×S

is the transition relation. For simplicity, we write s
a−→ t whenever (s, a, t) ∈−→. A

transition relation is called deterministic if for all s ∈ S and a ∈ A if s a−→ t1 and s
a−→ t2

then t1 = t2.
A string w ∈ A∗ is accepted by an automaton M from a state s if either (1) w = ε and

s ∈ F , or (2) w = aw′ and there exist s a−→ t such that w′ is accepted by M from the state
t. The language accepted by a FA M is the set L(M) = {w ∈ A∗ |M accepts w from i}.
Since for every FA M , we can build an FA N with a deterministic transition relation
such that L(M) = L(N), without loss of generality we will consider only finite automata
with a deterministic transition relation.

A language L over the alphabet A is said to be regular if there exists a finite automa-
ton M accepting it, that is L(M) = L. The class of all regular languages is closed under
union, intersection, concatenation, complement, and Kleene star. Here language union
and intersections are the usual set-theoretic operations, whereas concatenation of two
languages L1 and L2 is given by the set L1 ·L2 = {w1w2 | w1 ∈ L1 ∧w2 ∈ L2}. Finally,
for a language L, its Kleene star closure is defined by L∗ =

⋃
n∈N Ln where L0 = {ε}

and Ln+1 = L · Ln for all n ∈ N, thus denoting the concatenation of a language with
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itself a finite number of time.

In this chapter, we are interested in system communicating by message passing, and
thus we will always assume that the alphabet A is partitioned in three disjoint subsets
AI , AO, and AP of input, output, and private actions, respectively. Notationally, for
a ∈ A, we write a? if a is an input action in AI and a! if a is an output action in AO,
and use no markings for private actions in AP . We use σ to denote an action that can
be either input, output, or private.

Let A and B be two alphabets with disjoint private actions, and assume the set
P is disjoint from Q. Given two finite automata M = (P,A, i,−→M , E) and N =

(Q,B, j,−→N , F ) their parallel composition is defined by the finite automaton M || N =

(P×Q,Σ, ⟨i, j⟩,−→, E×F ) where ΣI = (AI\BO)∪(BI\AO), ΣO = (AO\BI)∪(BO\AI),
ΣP = (AP ∪BP )∪ (AI ∩BO)∪ (AO ∩BI), and −→ is the least transition relation such
that

p
σ−→M p′ σ ̸∈ B

⟨p, q⟩ σ−→ ⟨p′, q⟩
q

σ−→N q′ σ ̸∈ A

⟨p, q⟩ σ−→ ⟨p, q′⟩

p
a?−→M p′ q

a!−→N q′

⟨p, q⟩ a−→ ⟨p′, q′⟩
p

a!−→M p′ q
a?−→N q′

⟨p, q⟩ a−→ ⟨p′, q′⟩
The topmost rules are about either private actions that are not affected by the other
automaton or communication actions that do not involve the other automaton. The two
rules at the bottom are about complementary communication actions a! and a? that are
synchronized resulting in the private action a. Note that when A = B with AI = BO,
AO = BI , and AP = BP = ∅ then parallel composition reduces to the product automata
where all actions synchronize. In the case A is completely disjoint from B then parallel
composition results in the so-called shuffle product. Other variations of synchronization
products could be defined similarly, including multi-process synchronization, hiding of
successful communication, value passing synchronization (for a finite value domain), and
synchronization parameterized by a finite subset of actions.

For the characterization of the parallel composition of two languages, we need first
to introduce the projection function. Given two alphabets A1 and A2 we define the
projection πi:(A1 ∪ A2)

∗ → A∗
i by πi(ε) = ε, and πi(σ · w) = σ · πi(x) if σ ∈ Ai, and

πi(w) otherwise. Because projections are surjective functions they have inverse π−1
i

returning the set of strings that are projected into a given one. More precisely, we define
the inverse projection by π−1

i (w) = {x ∈ (A1 ∪ A2)
∗ | πi(x) = w} for every w ∈ A∗

i .
Projections and their inverses can extended to languages by applying them to all the
strings in the language. In general we have that πi(π

−1
i (L)) = L but for the converse

it only holds that L ⊆ π−1
i (πi(L)). Note that if two alphabets A1 and A2 have disjoint

private actions and we partition A1 ∪A2 as in the alphabet of the parallel composition
of two automata, then projections will assign private actions of A1∪A2 to either private,
input or output actions in Ai unambiguously. Similarly, inverse projections assign private
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actions to private actions but may assign input and output actions to private ones.

The parallel composition of two languages L1 ⊆ A∗
1 and L2 ⊆ A∗

2 is the language L1 ||
L2 on the alphabet A1∪A2 defined as π−1

1 (L1)∩π−1
2 (L2). The intersection takes care that

dual communication actions will be synchronized, and that disjoint private events will
be shuffled with the others. As expected, we have that L(M1 ||M2) = L(M1) || L(M2),
implying that regular languages are closed under parallel composition [96].

We conclude this section by introducing extended regular expressions, that we may
use as alternative syntax to FAs to reason about causality in complex systems composed
of several components potentially communicating with each other.

Given an alphabet A including communication actions, extended regular expressions
are given by the following grammar:

e :: = 0 | 1 | a | a? | a! | e ; e | e+ e | e || e | e∗ , (7.1)

where a ∈ AP , a? implies a ∈ AI , and a! implies a ∈ AO. In process theoretic terms, 0
denotes no behavior, and 1 denotes a terminating process. The further building blocks
of processes are (communication) actions. Processes can be composed sequentially, non-
deterministically, in parallel, or can loop a finite number of times. Communication
between process terms is performed based on synchronizations between opposite com-
munication actions, that play thus a sender, respectively, receiver role. In the sequel, we
often use A as shorthand for the regular expression obtained by the finite set of every
action in A, and ¬a as a shorthand for the set of every action in A except a. Note that
in general, we could extend negation to all regular expressions, as regular languages are
closed under complement.

Ordinary regular expressions are expressions without any parallel composition. Ex-
cept for the parallel composition, we assume that an action cannot be used as input and
output in the same ‘sequential’ expression, i.e., regular expression with no occurrence of
the || operator. With this mild restriction, we can associate each regular expression e a
language L(e) inductively as follows:

L(0)=∅
L(1)={ε}
L(a)={a}

L(e1 ; e2)=L(e1) · L(e2)
L(e1 + e2)=L(e1) ∪ L(e2)

L(e1 || e2)=L(e1) || L(e2)
L(e∗) = L(e)∗

It is well known [63] that the language of an ordinary regular expression is regular. The
same holds for our extended regular expressions, as we have seen that regular languages
are closed under parallel composition. This implies that for every (extended) regular
expression e there exists an automaton M such that L(e) = L(M). We will not describe
the construction here as it is outside the scope of this chapter.
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7.3 A Railway crossing Example

In this section, we recall the railway crossing example from [25] and adapt it to our
present setting. The example consists of a car, a train, and a gate of a crossing that
communicates with the train. The gate can communicate its status of being closed (Gc!)
or open (Go!). The status changes to closed only after the gate receives a message from
the train that is approaching the crossing (Ta?), and it can change to open only after it
receives the message that the train leaves the crossing (T l?). The behavior of the gate
is described by the following regular expression:

G = (Go!∗ ; (1 + Ta? ;Gc!∗ ;T l?))∗ .

When a train is approaching the crossing, it sends a message (Ta!). After that, it
will enter the crossing (Tc) and then send a message informing its departure from the
crossing (T l!). This behavior is described by the following regular expression:

T = Ta! ;Tc ;T l! .

Finally, a car can approach the crossing (Ca), wait as long as the gate is closed (Gc?),
eventually observe the gate being open (Go?), and only then it may enter the crossing
(Cc) and leave the crossing afterward (Cl). The regular expression encoding is given by:

C = Ca ;Gc?∗ ;Go? ;Cc ;Cl .

The FAs corresponding to the above three regular expressions are illustrated in Fig-
ure 7.1. Note that the car can enter the crossing only after the gate is open, whereas
the gate enters the state of being open only after a train signals its departure.

FA of Car: 1start 2 3 4 5
Ca

Gc?

Go? Cc Cl

FA of Train: 1start 2 3 4
Ta! Tc T l!

FA of Gate: 1start 2

Ta?

Tl?
Go!

Gc!

Figure 7.1: The Car, Train, and Gate as
FAs

1start 2 3
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6 7 8
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19 20

Ca Go Cc Cl

Ta

Ca

Ta

Gc

Tc Tc

Ca
Gc

T l T l

Ca Go

Ta

Tc

T l

Cc Cl

Ta Ta

Tc Tc

Cc Cl

Cc Cl

T l T l

Figure 7.2: The Railway System as
a FA

In Figure 7.2 we see the automaton describing the railway system that results from
the parallel composition of the three regular expressions: C || T || G where, for simplicity,
we renamed the states. For example, the initial state 1○ corresponds to the state ⟨1, 1, 1⟩
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and the only accepting state is 8○ corresponding to ⟨5, 4, 1⟩. The red states 3○ and 4○
will be used in the next section as examples of states leading to a hazard situation: a
car entering the crossing and not leaving it before the train enters the crossing too.

7.4 A Language-based causal model

In this section, we introduce a notion of causality with respect to a so-called hazard,
or effect expressed in terms of regular expressions. The current causal framework is
inspired by the model introduced in [25] and massaged into the setting of FAs to use
trace semantics instead of bisimulation, and define different system properties in terms
of regular expressions (such as reachability) instead of the ordinary Hennessy-Milner
logic.

In short, a hazard is a regular language specified by a regular expression e (or
the corresponding automaton). It is said to occur in a FA M representing our model
whenever there is a finite (and possibly empty) string c = a0 . . . an in M such that after
c we may observe the hazard, that is, L(c ; e) ∩ L(M) ̸= ∅. In this case, we say that
c may enable the hazard e in M . Additional conditions that have to be satisfied by c,
such as minimality and non-occurrence of events, are formalized in Definition 7.1.

For an intuition, consider the railway crossing example of the previous section. A
hazardous situation can happen whenever both the train and the car enter the cross-
ing, and none of them leaves the crossing before the other one enters it. The regular
expression encoding this hazard is:

e = (Cc ; (¬Cl)∗ ;Tc+ Tc ; (¬T l)∗ ;Cc) ;A∗ (7.2)

Note that the hazard situation can terminate with any string in A∗. This is to guarantee
that after a trace c enables e, their concatenation will contain behaviors accepted by the
automaton, and thus the hazard is observed. It is straightforward to see that in the FA
in Fig. 7.1 it is possible to reach the above hazard with the string c1 = CaGo leading
to the state 3○, but also with the string c2 = CaGoTa leading to the state 4○. The
intersection of the language of the hazard e with that of the automaton M starting from
either state 3○ or 4○ instead of 1○ is non-empty. Furthermore, state 3○ and 4○ are both
reachable from the initial state 1○.

We may say that c1 does a better job at describing the relevant sequence of ac-
tions that, if triggered, lead to a hazard because it is a minimal sequence enabling it.
Moreover, we see that it is possible to avoid the hazard by “decorating” the string c1

with the strings Ta, Tc T l and, respectively, CcCl. This can result, for instance, in the
string w = TaCaTc T l GoCcCl which does not lead to a hazard. Sequences such as
Ta, Tc T l and CcCl are called causal by non-occurrence in works such as [23, 25]. Non-
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occurrence is essential for describing how certain dangerous situations, if controllable,
can be avoided within a system. This concept plays an important role in our definition
of causality.

As formalized in Definition 7.1, the non-occurrence of events is captured in terms
of the so-called computations [25]. The latter are strings in a regular language, typi-
cally denoted by π, built on top of a string c = a0 . . . an, and “decorated" with strings
di0, . . . , d

i
n+1, with i ∈ I, where I is a finite set of integers, such that:

w ∈ π ⇒ w = di0a0d
i
1 · · · and

i
n+1 .

Intuitively, given a trace c that enables a hazard, strings in π describe all the alter-
native runs (such as w above) that execute all actions in c and avoid the hazard. The
only requirement is that all strings specified by π are observable executions of M ; i.e.,
for a given FA M , π ⊆ L(M). Notice that π being a regular language means that it can
be expressed as a regular expression r, and because all strings in π contain c as subword,
we have r = Σj,kr

j
k with rjk = rj0; a0; r

j
1; . . . ak; r

j
k+1 for some finite indexes j and k and

regular expressions rjk+1. For simplicity, we sometimes write r instead of π.
The next definition formally introduces decorated causes for an FA M with respect

to a hazard e.

Definition 7.1 (Causality for FAs). Let M = (S,A, s0,→, F ) be a FA, e be a regular
expression over A, denoting a hazard, and c ∈ A∗. We say that the computation π built
on top of c, with π ⊆ L(M), is a decorated cause of the hazard e if

AAC1: The string c may enable e – L(c ; e) ∩ L(M) ̸= ∅

AAC2.1: If the effect e is not observed then it has not been caused by c –
∀w ∈ L(M) \ L(A∗ ; e) : (L(w ; e) ∩ L(M) = ∅)⇒ (c ̸∈ sub(w) ∨ w ∈ π).

AAC2.2: Strings of π are safe, i.e., they do not cause the effect e –
∀w ∈ π :w ̸∈ L(A∗ ; e) ∧ (L(w ; e) ∩ L(M) = ∅)

AAC3: Minimality –
for all c′ ∈ sub(c) there is no computation π′ built on top of c′ with π′ ⊆ L(M),
that satisfies AAC1–AAC2.2 with respect to the string c′ and the hazard e.

We call c as above a causal trace and sometimes write Causec(e,M) to denote the
corresponding decorated cause π. We let Causes(e,M) be the union of all Causec(e,M).

Intuitively, AAC1 identifies a scenario where the string c enables the hazard e in
M . Note that AAC1 entails a “may" semantics of causality, instead of “must", as c

does not always have to lead to e. Catering for the “must" version requires modifying
AAC1 to L(c ; e) ⊆ L(M). AAC2.1 is a necessity condition according to which, if a
word w cannot enable e, then either w does not contain the causal trace c (meaning it
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is an execution bringing not to the hazard), or it has been decorated with events that
eliminate the possibility of executing the hazard. Note that AAC2.1 can be equivalently
expressed (by modus tollens) as a sufficiency condition stating that a string w enables
the hazard e whenever the causal trace is contained in w but it is not decorated with
elements causal by their non-occurrence that would avoid the execution of the hazard:

∀w ∈ L(M) \ L(A∗ ; e) : (c ∈ sub(w) ∧ w ̸∈ π)⇒ (L(w ; e) ∩ L(M) ̸= ∅)

AAC2.2 requires causal traces decorated with events causal by their non-occurrence
to avoid the hazard. Furthermore, note that c itself cannot be a safe computation in
π, because otherwise AAC2.2 would contradict AAC1 . Observe that AAC2.2 is
reminiscent of the traditional counterfactual criterion of Lewis, as it allows us to test
the dependence of e on c under certain contingencies encoded, in our case, in terms of
non-occurrence of events. We refer to [47] for more insight on the so-called structural
contingencies. AAC3 is the minimality condition that requires considering decorated
causes entailed by the shortest causal traces c satisfying AAC1 –AAC2.2 .

We conclude the section with a few examples intended to clarify certain aspects of
the above definition and the differences with the work [25]. To begin with, we illustrate
the role played by loops in the decorations of computations.

Example 1. Consider the automaton M1 in Figure 7.3 and let the hazard be expressed
by the regular expression e = c ;A∗, meaning that we have to avoid executing action c.

s0 s1 s2 s3

s4 s5 s6

a

f

b c

b g
h

Figure 7.3: Automaton M1

s0 s1 s2

s3 s4

s5 s6 s7

a

b

d

c

c

b f

Figure 7.4: Automaton M2

Clearly, the string a b is a possible cause for the hazard. Hence, Causeab(e,M1) for this
example can be encoded via the regular expression: a ; f ;h∗ ; b ; g. Note that as a result
of considering the decorations as regular expressions, all finite repetitions of the loop are
conveniently represented with the Kleene star operator. The work in [25] handles loops
in the decorations by unfolding the loop only a finite number of times specified a priori,
hence, only the string afhnbg would be describing hazard avoidance, for all n ≤ k and
some fixed k.

In the second example, we consider the case when there are no possible decorations
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to steer a causal trace away from its hazard.

Example 2. Consider the automaton M2 in Figure 7.4 and let the hazard be as before
expressed by the regular expression e = c ;A∗.

In this example, there are two possible causal traces, namely, a and b. There are no
possible decorations for the causal trace a to make it avoid the hazard, whereas, there
exists a decoration for the causal trace b with Causeb(e,M2) = d ; b ; f . Whenever there
are no computations π satisfying Definition 7.1 for e in M w.r.t. a trace c, we say that
the hazard e, if enabled by c, is unavoidable in M .

In the above two examples, there was no actual difference if we had used c as a
hazard instead of the regular expression c ;A∗. In the next example, we show an FA
where the two expressions entail different decorated causes.

Example 3. Consider the automaton M3 in Figure 7.5 and the hazards e = c ;A∗

and e′ = c. For both hazards, ab is the causal trace, but

s0 s1 s2 s3 s4

s5 s6 s7

a b c d

f
b g

Figure 7.5: Example 3

Causeab(e,M3) = a ; f ; b ; g

Causeab(e
′,M3) = a ; f ; b ; g + a ; b ; c ; d

Observe that the string abcd is considered safe (i.e., avoids the hazard) according to
Causeab(e

′,M3) but is not considered safe in Causesab(e,M3), where the string afbg is
considered safe in both cases. This is different than the usual notion of safety (modeled
as in e and thus forbidding any possible continuation after the hazard) as e′ allows to
overpass the hazard if the system does not stop there. The expression e′ asserts that
the trace cannot halt with the action c. Accordingly, both abcd and afbg are valid
strings that satisfy this condition and thus avoid the hazard e′. On the other hand, the
expression e asserts that the action c followed by any possible sequence of actions (i.e.,
in A∗) constitutes a violation, hence, the action c cannot be observed at any point in
execution. Therefore, only afbg is a valid execution that will avoid the hazard e. It is
essentially not possible to define properties similar to e with the approach in [25], as
they allow jumping over a hazardous state while executing strings in π.
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7.5 Computing causes

Given a FA M = (S,A, i,−→, F ) and an effect specified by a regular expression e on
A, we show an algorithm for computing the set Causes(e,M) using standard operations
on automata and graphs. The algorithm first computes the set of loop-free traces that
lead to the hazard e. Then, for each one of them, it determines the associated com-
putation satisfying conditions AAC2.1 – AAC2.2 in Definition 7.1. The union of all
such computations will give a first approximation of the set Causes(e,M). We will then
show below how to obtain precisely the set Causes(e,M) by requiring the minimality
condition AAC3 in Definition 7.1.

Algorithm 1: Computing Causes
Input: A FA M = (S,A, i,−→, F ), an effect e.
Output: The set of decorated causes Causes(e, M).

(1) Compute the set of traces that lead to e by following the steps:

(1.1) For all s ∈ S, construct the FA Ps = (S, A, s, −→, F ) and compute
the following intersection:
L(P ′

s) = L(Ps) ∩ L(e).

(1.2) Construct the automaton P = (S,A, i,−→, F ′) where
F ′ = {s |L(P ′

s) ̸= ∅}.
(1.3) Compute all simple paths from the intial states i and a final state

f ∈ F in P .

(1.4) Let CausalTraces be the set of all strings in L(P ) labeling the paths
computed in (1.3).

(2) For all c = a0 . . . an ∈ CausalTraces, compute Causec(e, M) by :

(L(A∗;a0;A
∗; . . . ;A∗;an;A

∗) \ {c}) ∩ (L(M) \ (L(A∗;e) ∪ L(P )))

(3) Return the union of all the languages computed in step (2) as Causes(e,
M).

Next, we discuss the underlying ideas behind the certain steps of Algorithm 1 and
then provide a proof of correctness for the algorithm. We first compute all traces that
enable e by constructing in steps (1.1) and (1.2) the automaton P that accepts exactly
all traces in M possibly causing the effect e. The only difference between the automata
P and M is their set of final states. The procedure for constructing P first involves
constructing a set of automata Ps, for all the states s of the automaton M , such that
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s is the initial state in Ps and accepts strings of the language of the hazard e. If the
intersection of L(Ps) with L(e) is non-empty, then the corresponding state is considered
as a final state in the automaton P (step (1.2)). As a result, the strings in L(P ) are
exactly those strings bringing M to a state where the hazard is activated. For our
railway crossing example in Section 7.3 with the hazard given by the regular expression
in (7.2), the automaton P would be the one in Figure 7.2 with states 3○ and 4○ as the
only final states.

In step (1.3) we compute CausalTraces as the subset of strings accepted by P

via a simple path starting from the initial state and ending in a final state. These
paths correspond to the set of loop-free traces that lead to the hazard e. While this
condition does not guarantee minimality (see discussion below) it already reduces the
set of possibly causal traces to a finite set. In general, L(P ) will be infinite, if it involves
a loop in the automaton.

For each of the above finitely many causal traces, in step (2), we compute the set of
associated computations. For a given possibly causal trace c, this is done by subtracting
all the traces that enable the effect (i.e., L(P )) and all the traces that observe the effect
(i.e., L(A∗;e)) from L(M) and then take the intersection of the resulting language with
the language resulted from c decorated with non-occurrence in all possible ways. Note
that the intersection computed in step (2) may be empty, meaning that the hazard e is
unavoidable when executing the actions of c. For our running example in Section 7.3, the
possible causal traces computed by the algorithm are CaGo and CaGoTa. Examples of
strings in the associated computations are CaGoTaCcClTcT l and CaGoCcClTaTcT l.
Note that the first string avoids the hazard for both possibly causal traces, while the
latter is a string that avoids the hazard for CaGo.

Finally, the union of the resulting languages in the step (2) of Algorithm 1 is returned
as a first approximation of the set of all decorated causes of M for the hazard e. For this
set, the following theorem guarantees that conditions AAC1 – AAC2.2 hold. However,
condition AAC3 may fail to hold.

Theorem 5. The computations in Causes(e,M) returned by Algorithm 1 satisfy con-
ditions AAC1 – AAC2.2 by construction.

Proof. The set Causes(e,M) returned by Algorithm 1 is obtained as the union of all
Causesc(e,M) for all c ∈ CausalTraces. Elements in this set are obtained in step (1.4).
These strings are computed based on the language that the automaton P (constructed
in step (1.2)) recognizes. By construction, x ∈ L(P ) implies there is y ∈ L(e) such that
xy ∈ L(M). Hence L(x ; e)∩L(M) ̸= ∅. Since CausalTraces ⊆ L(P ), condition AAC1
holds.

In order to show that AAC2.1 holds for some c ∈ CausalTraces, take a string x

accepted by M that is not in L(A∗ ; e). Assume that L(x ; e)∩L(M) = ∅. Then x ̸∈ L(P )
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because otherwise, as we have just seen above, there would exist y ∈ L(e) such that
xy ∈ L(M). Therefore, x ∈ L(M) \ (L(A∗;e) ∪ L(P )). Because CausalTraces ⊆ L(P ),
it follows that x ̸= c for any possibly causal trace c. We have now two cases: for every
c ∈ CausalTraces either c ∈ sub(x) or not. In the latter case AAC2.1 holds. In the
other case c ∈ sub(x) and thus x ∈ L(A∗;a0;A

∗; . . . ;A∗;an;A
∗), from which it follows

based on step (2) that x ∈ Causesc(e,M), and thus AAC2.1 holds.
It remains to show that AAC2.2 . For some possible causal trace c ∈ CausalTrace

let x ∈ Causec(e,M). We must show that x ̸∈ A∗e and that L(x;e) ∩ L(M) = ∅.
The first part of the conjunction in AAC2.2 holds because the construction in step (2)
Causec(e,M) cannot contain strings from L(A∗;e). Similarly, the second part of the
conjunction holds because L(P ) is subtracted from L(M) in the same step.

Condition AAC3 does not necessarily hold for Causec(e,M) used by the Algo-
rithm 1. In fact, for possibly causal traces x, y ∈ CausalTraces, if x ∈ sub(y) then any
sub-string of x is also a sub-string of y. In other words, for a0 · · · an = x ̸= y = b0 · · · bm
we have

L(A∗;a0;A
∗; . . . ;A∗;an;A

∗) ⊆ L(A∗;b0;A
∗; . . . ;A∗;bm;A∗) (7.3)

By step (2) of Algorithm 1 we thus have that Causesx(e,M) ⊆ Causesy(e,M). Note
that it must be the case that m > n for x ∈ sub(y). We can therefore easily compute the
smallest sets of safe computations by removing from the set CausalTraces all strings y

that have another possible causal trace x ∈ CausalTraces of smaller length as sub-word.
In our running example, the trace CaGo is a sub-word of the other one CaGoTa, and
indeed, the computation for CaGoTa is included in the computation for CaGo as well.
Hence, only the causal trace CaGo satisfies the minimality condition AAC3 .

7.6 Experimental evaluation

In this section, we provide an experimental evaluation and assess the applicability of
our method. We developed a tool prototype implementing our approach and evaluated
the time performance by computing the decorated causes on randomly generated FAs
with growing size. The implementation is based on Python and closely follows Algo-
rithm 1. The inputs to our tool are an FA and a regular expression which describes
the effect on the given FA. The output of our tool is an automaton that characterizes
the set of all decorated causes with respect to the given inputs. In our implementa-
tion, we utilized the BRICS automaton library [84] for performing standard automaton
operations.

We evaluated our tool in the following experimental setting: we generated random
FAs by using the libalf [18] framework. In the process of generating FAs, we fixed the
size of the alphabet to 5. We then generated over 1000 FAs with an increasing number
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of states and achieved a maximum of 300 states. Figure 7.6 shows an example of an
FA with 5 states that was generated randomly by libalf. For each generated FA we also
randomly computed an effect for which the decorated causes are determined. We fixed
the size of the effect length to 3. All the experiments were conducted on a computer
running Ubuntu 20.04.3 with an 8-core 1.8GHz Intel i7-10510U processor and 16 GB
RAM.

s0 s1

s2 s3 s4

a, e

b
a,e

e

d

b

e

c,b

Figure 7.6: Randomly generated FA
with 5 states. Figure 7.7: Experimental Results

The results of our experiments are displayed in Figure 7.7. We group the randomly
generated FAs by their number of states and report the average running times in each
group. We only report the times of the experiments in which the decorated causes were
not empty. The results indicate that for relatively small FAs with less than 100 states,
a result is obtained within 10 seconds. For larger FAs with 250 to 300 states, a result
is obtained in 3 minutes on average and within 15 minutes at maximum. We remark
that these results are obtained without any attempts to tailor the standard automaton
operations to our setting.

Number of States in the Input FA
1-49 50-99 100-149 150-199 200-249 250-300

# States 71 185 266 422 484 560
# Transitions 236 654 997 1565 1862 2177
# Potential Causes 81 328 10476 21932 44750 73318
# (Minimal) Causes 3 8 10 18 10 22

Table 7.1: Average size of obtained decorated causes.

In Table 7.1 we summarize some information on the automata that recognize the
decorated causes returned by the algorithm. Depending on the number of states of
the automata given as input, we report the average number of states and transitions
of the returned automata, the average number of causes, and the average number of
minimal causes obtained. As expected, the size of the automata of the output increased
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linearly with that of the input. However, the number of potential causal traces computed
increases exponentially. That is not the case for the number of minimal causal traces, as
it increases only marginally when the size of the input increases. In fact, in the majority
of the cases, the number of minimal causes is less than 5, regardless of the size of the
given input automaton.

7.7 Extensions

To illustrate the generality of our causal model we briefly discuss possible extensions
to consider the addition of tests and assignments.

Adding tests: KAT The set of regular expressions we considered in (7.1) can be
extended with a set B of Boolean tests that we assume generated from a finite set At

of atoms, meaning that every b ∈ B is equivalent modulo the equations of the Boolean
algebra to a finite disjunction of atoms in At. This way one can model basic programming
constructs, like conditionals, loops, guarded actions, and assertions using tests in B and
actions in A.

Kozen [67] showed that the above extensions of regular expressions, called KAT
(Kleene algebra with tests) expressions, play the same role with regular sets of guarded
strings as ordinary regular languages play for regular expressions. Here a guarded string
is an ordinary string over the alphabet A ∪ At, such that the symbols in A alternate
with the atoms At. Formally, a guarded language is a subset of (At×A)∗ ×At.

A deterministic KAT automaton recognizing guarded strings [68] is just a determin-
istic finite automaton (S,Σ, i,−→, F ) with Σ = At × A and F ⊆ S × At. The only
differences are thus the transitions that are now labeled by guarded actions (α, a), and
the accepting states, which are now labeled with atoms marking the end of an accepted
string. The idea is that an action a is executed only when its guard α (pre-condition) is
true, and a string is accepted only in states where the post-condition holds. We say that
a guarded string w ∈ (At×A)∗ ×At is accepted by a KAT automaton M from a state
s if either (1) w = α and (s, α) ∈ F , or (2) w = (α, a)w′ and there exists s

α,a−−→ t such
that w′ is accepted by M from the state t. The language accepted by a KAT automaton
M is the set L(M) = {w ∈ (At×A)∗ ×At |M accepts w from i}.

Our causal model for automata extends naturally to KAT automata by considering
hazards e as KAT expressions and causes c as strings in (At×A)∗. Safe computations in
M for the hazard e with respect to c are non-empty strings of L(M) satisfying AAC1 as
in Definition 7.1 but with respect to the alphabet (At×A) instead of A only. Also, the
algorithm for computing causes needs no adjustment, but for the way how operations
on automata are computed.
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Adding assignments: NetKAT NetKAT[4] is a network programming model,
which is used for specifying and verifying the packet-processing behavior of software-
defined networks. In a nutshell, it is a variation on KAT that considers actions not as
abstract elements of an alphabet A but rather as state transformers, like assignments,
that are executed when a precondition α is satisfied and modified into a post-condition
β.

For a given set of atoms At of a Boolean algebra B, a deterministic NetKAT au-
tomaton [37] is a deterministic FA M = (S,Σ, i,−→, F ) such that σ = At × At and
F ⊆ S × (At×At). The transition relation −→ is thus labeled by pairs of atoms (α, β)

and so are the accepting states. The interpretation of these pair of atoms is that they
represent pre-conditions and post-conditions of one-step executions.

A string w ∈ At×At×At∗ is accepted by M from a state s only when post-conditions
match the subsequent pre-condition, meaning that either (1) w = αβ and (s, α, β) ∈ F ,
or (2) w = (αβ)w′ and there exists s

α,β−−→ t such that βw′ is accepted by M from the
state t. Note that in the last condition is crucial that w′ is not the empty string. The
language accepted by a NetKAT automaton M is the set L(M) = {w ∈ At× A× At∗ |
M accepts w from i}.

As for KAT automata, our causal model for automata extends naturally to NetKAT
automata too, with hazard represented by NetKAT expressions [37], causes as strings
in At∗, and safe computations as strings in L(M) that can be projected into a cause by
deleting some atoms and satisfying the rest of the conditions of Definition 7.1.

7.8 Conclusions

In this chapter, we moved the causal model proposed in [25] from labeled transition
systems to finite automata to obtain a language-based causal model for safety. The
model is in line with the notion of causality described in a logical context in [46] in the
sense that a hazard may be observed if and only if it has been caused. Analogously to
the alternative worlds of Lewis [75], we also considered decorated causes as alternatives
to causes in the sense that they allow executing all actions of a cause interleaved with
other actions that guarantee hazard avoidance.

We treated only the case when causes may enable a hazard while strings of the
decorated causes must avoid it. While it can be interesting to consider a stronger
notion of causes as strings c that bring the automaton M to states where the hazard e is
inevitable for any of its possible extensions (i.e., by changing AAC1 to L(c ; e) ⊆ L(M)),
such a change would imply that there would be no causes in our railway system example.

We have also presented an algorithm to compute decorated causes, relying only on
basic automata-theoretic operations. The algorithms could be improved, using model
checking techniques for marking those states in which a hazard is enabled, and search
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techniques to find the decorated causes avoiding marked states. Also, it would be inter-
esting to move from automata back to labeled transition systems but remain in a trace
setting, with hazards specified as LTL properties.

Finally, we briefly discussed extensions of our work to KAT and NetKAT automata.
More work needs to be done here, both to precisely set the definitions and to show the
applicability of the method to, for example, find causes of a hazard in a software-defined
network.
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Chapter 8

Conclusions

With the explosive development of the Internet, traditional network architectures
have struggled to meet the increasing demands for network scale, complexity, and dy-
namism. Software-defined networking (SDN) emerged in response, offering a novel ar-
chitecture that separates the control plane from the data plane, achieving centralized
control and flexibility of the network. SDN introduces a new paradigm for network
management, making it more flexible and efficient, and capable of quickly adapting to
changing network requirements and application scenarios.

The core advantage of SDN lies in its high programmability, allowing network ad-
ministrators to directly control network behavior through software interfaces rather than
relying on the physical configurations of traditional network devices. This design not
only simplifies network configuration and management but also accelerates the deploy-
ment of new network services and policies, enabling the network to adapt more swiftly
to new business requirements. Moreover, the openness standards and protocols of SDN
promote innovation of third-party applications and services, providing possibilities for
customized network functions and services.

However, as an innovative technology, SDN also faces several challenges, including
network security issues, performance bottlenecks, and compatibility issues with existing
network devices and protocols. To overcome these challenges, researchers and engineers
are continuously exploring and developing new technologies and methods, such as using
formal methods to verify and ensure the correctness of SDN controllers and applications
and developing more efficient data plane technologies to enhance network performance.

Classic formal verification methods for Software-Defined Networking (SDN) can be
implemented using model checking, a process where the properties of a system are veri-
fied against a formal model of the system. The formal model for SDN is indeed complex,
as it needs to accurately represent various aspects of the network, including the behavior
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of the control plane, the data plane, and the interactions between them. This complexity
is further compounded by the dynamic and programmable nature of SDN, which allows
network behavior to be modified at runtime through software. Model checking of SDN
involves creating a formal model of the network’s behavior, including all possible states
and transitions that the network can undergo. This model must also incorporate the
SDN controller’s logic, which dictates how the network’s configuration can change in
response to different events. The verification process then checks if this model adheres
to certain specified properties or invariants, such as connectivity, security policies, or
absence of loops, under all possible scenarios.

In this thesis, we apply model checking to check SDN properties via the language
Reo and its operational semantics constraint automata. Due to the language provided
by Reo accurately describing the coordination and communication protocols in systems,
it is more suitable for SDN, which separates the network control plane from the data
plane. Also, the Reo is particularly suited to describing concurrent and synchronous
processes, it can explicitly represent the synchronization and asynchronous transmission
of data flows, as well as dependencies between components. In the following section, we
summarize the main research contributions of this thesis and analyze the limitations or
challenges that we encountered during the research.

8.1 Main contributions

In Chapter 2, we concretely analyzed the composition structure of SDN and
contrasted it with the traditional network architecture by how data is transferred in
different layers. By implementing the OpenFlow protocol used in SDN, we described
three basic OpenFlow messages that communicated in the control plane and data plane.
To formalize this process, we built a Reo model of SDN controllers and switches which
answered the first research question:

Research question 1. Can the coordination language Reo and its semantic model of
constraint automata be used as a formal model of SDNs?

Reo is a powerful tool for designing and reasoning about communication, co-
ordination, and data flow in concurrent systems, which are key aspects of SDNs.
As we discussed in Chapter 4, our SDN model is based on Reo circuits which take
semantics on a novel definition of constraint automata with memory (defined in
Chapter 4). The model is based on the OpenFlow protocol, which is formalized via
PktIn, PktOut, and FlowMod messages. A small case study shows the details of
the model, highlighting the complicacy of a stateful and concurrent behavior. To be
able to use the model for verification purposes we answered the second research question.
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Research question 2. Can we use existing model checkers to verify properties of
SDNs modeled by Reo?

To address this question, we gave a translation of symbolic constraint automata used
in our model of SDNs to Promela in Chapter 5. Since Promela can be used for both model
checking and simulation by SPIN, our answer to the research question is affirmative, We
modeled a simple SDN and verified that a safety property was not satisfied.

While the Reo model of SDNs has typically very few states and many transitions,
because of the memory involved, the translation to Promela generates a transition sys-
tem with a very large number of states, making the verification of a real SDN challenging.

Research question 3. Can we extend the automata-based model of NetKAT to be
stateful and allow concurrency in a way similar to Reo?

NetKAT was originally designed as a network programming language that uses a
formal algebraic approach to describe and reason about network behaviors. It allows
executions for packet filtering, modification, and forwarding rules, but it primarily
operates under a stateless and sequential paradigm. Without changing the NetKAT
automata model, in Chapter 6 we extended NetKAT with concurrent processes that
communicate via shared ports. It turns out that the extended model is very similar to
our symbolic constraint automata, and therefore can model a large subset of Reo. Our
focus was purely semantics, and we left as a future direction an axiomatization for the
extended NetKAT.

Research question 4. Can we use Reo or NetKAT and their associated automata-
based models for avoiding hazard events in SDN using causality?

Another crucial aspect of SDN is causality, in a scenario where packets need to be
processed and forwarded through the network, causality ensures that packets are handled
correctly, and avoids any hazards that may cause their loss. We gave a partial answer
to the above research question in Chapter 7, where we study causality in the context of
ordinary automata. We presented an algorithm for detecting hazardous events returning,
if possible, an alternative action sequence that will guarantee not to cause the occurrence
of the event. Although the type of automata we considered are simpler than those used
for modeling SDNs, we consider this result as the first step towards causal reasoning for
SDN.
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8.2 Future research directions

We conclude by presenting potential avenues for future research that build upon the
work we presented in this thesis.

Verification for SDNs models

When answering our second research question we notice a state explosion problem
because in Promela, explicit modeling of memory states can rapidly escalate the size
of the state space, leading to computational infeasibility for the verification of large-
scale SDNs. Transitioning from model checking in Promela to a symbolic model checker
could offer a better approach to mitigate the state explosion problem, as it is based on
a symbolic representation of data structures and variables, enabling the exploration of
large state spaces more efficiently through symbolic manipulation. By abstracting mem-
ory operations and representing them symbolically, a symbolic model checker for SDNs
could analyze system properties across entire classes of flow tables and messages rather
than exhaustively enumerating individual ones. This paradigm shift would allow for a
more scalable and tractable analysis of SDN verification in contrast to traditional model
checking approaches including ours but also, for instance, ReoLive [29] and mCRL2 [65]
as provided by the Reo framework [89].

Optimizing the Promela model

Another strategy aimed at reducing the computational complexity and state space of
our Promela model for SDNs could be to simplify the Reo model of SDNs by abstracting
away details that are not essential for the verification task at hand. This can involve
removing transitions in the Reo model of a switch that we know will not be involved in
the verification or simplifying the network structure by using smaller bounds for queues
used between a switch and a controller. Additionally, employing partial-order reduction
techniques can help reduce the number of explored states by considering only relevant
interleavings of concurrent processes. Finally, exploiting symmetry in the model, such as
identical processes or state transitions, can further reduce the state space by eliminating
redundant exploration.

Formal verification of NetKAT

Our automata model for concurrent NetKAT with ports is a fine-grain description
of the dynamics of a system through assertions, in terms of pre- and post-conditions.
It would be interesting to see if a combination of symbolic techniques with deductive
verification methods could be devised to enable more efficient and scalable verification
of network properties.
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Causality for SDNs

An obvious direction is to extend the causality framework we presented in Chap-
ter 7 from ordinary automata to symbolic constraint automata and NetKAT automata.
While this direction should not present too many technical difficulties, in practice the
computational complexity of hazard discovering and avoiding could be intractable. A
promising alternative could be combining a formal automata-based model of SDNs with
artificial intelligence methods to explore causality within SDN environments. One pos-
sible strategy would be to utilize machine learning algorithms, to analyze the causal
relationships inferred from (large) subsets of sequences accepted by the automata model
to identify causal dependencies between events. Additionally, reinforcement learning al-
gorithms could be utilized to infer causal relationships and optimize execution to avoid
hazardous events.
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Samenvatting

SDN (Software-Defined Networking) vertegenwoordigt een revolutionaire benadering
van netwerkarchitectuur die het dynamische en flexibele beheer van netwerkbronnen mo-
gelijk maakt via softwaregebaseerde besturing. Dit wordt bereikt door het besturingslag
los te koppelen van het gegevenslag en softwareplatforms te benutten voor programmeer-
bare besturing. Het besturingslag is de controller, die het hele netwerk beheert, bestuurt
en beleid formuleert. Het verzamelt netwerkstatusinformatie, ontwikkelt doorstuurbeleid
en instrueert de onderliggende netwerkapparaten via southbound-interfaces (bijv. Open-
Flow) over hoe datapakketten moeten worden doorgestuurd. Het gegevenslag bestaat uit
verschillende netwerkapparaten (bijv. switches) die verantwoordelijk zijn voor het doors-
turen van datapakketten op basis van instructies van het besturingsvlak. Dit proefschrift
introduceert het idee van SDN en het OpenFlow-protocol in Hoofdstuk 2 en presenteert
vervolgens formele modellen in de volgende hoofdstukken.

Hoofdstuk 3 duikt in de Reo-coördinatietaal en de toepassing ervan bij het mod-
elleren van SDN’s. Reo wordt gepresenteerd als een krachtig hulpmiddel voor het speci-
ficeren en orkestreren van het gedrag van reactieve en gedistribueerde systemen door het
gebruik van connectoren, wat grafiekgebaseerde representaties zijn van gegevensstromen
en synchronisatiebeperkingen. Verder word ook de samenstelling van constraint auto-
maten, die de modulaire constructie van complexe systemen mogelijk maken door een-
voudigere componenten te combineren besproken. Verschillende basis-Reo-connectoren
worden geïntroduceerd en hun bijbehorende beperkingsautomaten worden beschreven,
waarbij wordt gedemonstreerd hoe deze modellen kunnen worden gebruikt om verschil-
lende netwerkscenario’s weer te geven en te analyseren. Het hoofdstuk eindigt met
een illustratie van hoe Reo en constraint automaten een rigoureus en flexibel raamwerk
bieden voor het modelleren van het ingewikkelde gedrag van SDN’s, waarmee de ba-
sis wordt gelegd voor de formele verificatie en analyse van deze systemen in volgende
hoofdstukken.

Het onderzoek in Hoofdstuk 4 presenteert een nieuw Reo-gebaseerd model dat het
gedrag van SDN-switches en SDN-controllers nauwkeurig weergeeft. Dit model abstra-
heert ook het OpenFlow-communicatieprotocol, en biedt een formeel raamwerk voor de
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implementatie en analyse van SDN’s.
Hoofdstuk 5 gebruikt Promela om het constraint automaten model van SDN te

implementeren en het formele model te verifiëren met de SPIN model checker. Om
een rigoureuze verificatie van SDN-eigenschappen mogelijk te maken, worden de Reo-
modellen vertaald naar Promela, de invoertaal voor de SPIN model checker. Deze ver-
taling vergemakkelijkt de formele verificatie van essentiële SDN-kenmerken, waaronder
bereikbaarheid, consistentie en de juistheid van de netwerk gedrag.

In Hoofdstuk 6 wordt de modellering taal NetKAT uitgebreid. NetKAT is en formele
taal voor het specificeren van netwerk gedrag, die hier is uitgebreid om concurrent gedrag
te ondersteunen door de introductie van poorten. Deze uitbreiding verbetert de mogeli-
jkheid van NetKAT om stateful en concurrent systemen te modelleren, waardoor het
aansluit bij het op Reo gebaseerde formalisme en de toepasbaarheid ervan wordt uitge-
breid naar complexere SDN-scenario’s.

Om een pioniersrol te vervullen bij de integratie van causaliteitsredeneringen in
SDN-modellen, is de aanpak in Hoofdstuk 7 cruciaal voor het diagnosticeren van
netwerkanomalieën en het voorkomen van gevaarlijke gebeurtenissen. Hiermee wordt
de basis gelegd voor geavanceerdere causaliteitsanalyses in toekomstig werk.



Summary

SDN (Software-Defined Networking) represents a revolutionary approach to network
architecture that enables the dynamic and flexible management of network resources
through software-based control. It achieves this by decoupling the control plane from
the data plane and leveraging software platforms for programmable control. The con-
trol plane lies controller, which manages, controls, and formulates policies for the entire
network. It collects network state information, develops forwarding policies, and in-
structs the underlying network devices through southbound interfaces (e.g., OpenFlow)
on how to forward data packets. The data plane consists of various network devices
(e.g., switches) that are responsible for forwarding data packets based on instructions
from the control plane. This thesis introduces the idea of SDN and OpenFlow protocol
in Chapter 2, then presents the formal expressions in the following chapters.

Chapter 3 delves into the Reo coordination language and its application in modeling
SDNs. Reo is presented as a powerful tool for specifying and orchestrating the behavior
of reactive and distributed systems through the use of connectors, which are graph-based
representations of data flows and synchronization constraints. Furthermore, it also dis-
cusses the composition of constraint automata, which enables the modular construction
of complex systems by combining simpler components. Several basic Reo connectors are
introduced, and their corresponding constraint automata are described, demonstrating
how these models can be used to represent and analyze various networking scenarios.
The chapter concludes by illustrating how Reo and constraint automata provide a rig-
orous and flexible framework for modeling the intricate behaviors of SDNs, laying the
groundwork for the formal verification and analysis of these systems in subsequent chap-
ters.

The research in Chapter 4 presents a novel Reo-based model that accurately rep-
resents the behavior of SDN switches and controllers. This model also abstracts the
OpenFlow communication protocol, providing a formal framework for the implementa-
tion and analysis of SDNs.

Chapter 5 uses Promela to implement our constraint automata model of SDN, and
verify the formal model by SPIN model checker. To enable rigorous verification of SDN



SUMMARY

properties, the Reo models are translated into Promela which is the input language for
the SPIN model checker. This translation facilitates the formal verification of essential
SDN characteristics, including reachability, consistency, and the correctness of network
policies.

Moreover, the exploration in Chapter 6 extends NetKAT, a formal language for
specifying network policies, to support concurrency through the introduction of ports.
This extension enhances NetKAT’s capability to model stateful and concurrent systems,
aligning it with the Reo-based formalism and broadening its applicability to more com-
plex SDN scenarios.

To pioneer the integration of causality reasoning into SDN models, the approach in
Chapter 7 is crucial for diagnosing network anomalies and preventing hazardous events,
laying the groundwork for more sophisticated causality analyses in future work.
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Propositions

pertaining to the thesis
Formal models of Software-Defined Networks

by Hui Feng

1. Incorporating formal models and languages into software-defined network
development enhances overall system reliability by enabling thorough veri-
fication of network behavior and policies. [Chapter 1 & 2]

2. The coordination language Reo can be used to model software-defined net-
works, allowing for compositional and formal specification of network com-
ponents and their interactions. [Chapter 3 & 4]

3. By translating Reo models into Promela code, developers can utilize the
SPIN model checker to perform exhaustive verification of software-defined
networks for correctness and reliability. [Chapter 5]

4. Constraint automata can be used to provide extended formal semantics
for concurrent NetKAT programs, enabling modeling and analysis of SDN
policies. [Chapter 6]

5. OpenFlow is a protocol for controlling network devices, but it is not
synonymous with software-defined networking. The latter is a broader
paradigm that encompasses various architectures and technologies beyond
just protocol-level control.

6. Testing software-defined networks remains difficult due to their dynamic
nature and the complex interactions between the control and data planes,
which can obscure subtle errors.

7. One of the primary challenges in the formal verification of software-defined
networks is ensuring scalability as network size and complexity increase,
requiring advanced algorithms and heuristics to manage the computational
load.

8. Temporal logic and other formal logic systems can be effectively utilized to
specify and verify dynamic properties of software-defined networks, such as
flow consistency and packet forwarding correctness.



9. The PhD process, with its intense focus on critical thinking and deep anal-
ysis, remains the gold standard for intellectual mastery and is increasingly
critical in today’s fast-paced, skills-based economy.

10. Engaging with new information has become a practical necessity, demanding
constant adaptation to stay relevant. The true challenge lies in knowing
what to prioritize and when to disengage.

Hui Feng
Leiden

December 3rd, 2024
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