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Quantum machine learning is often highlighted as one of the most promising
practical applications for which quantum computers could provide a com-
putational advantage. However, a major obstacle to the widespread use of
quantum machine learning models in practice is that these models, even once
trained, still require access to a quantum computer in order to be evaluated on
new data. To solve this issue, we introduce a class of quantum models where
quantum resources are only required during training, while the deployment of
the trained model is classical. Specifically, the training phase of our models
ends with the generation of a ‘shadow model’ from which the classical
deployment becomes possible. We prove that: (i) this class of models is uni-
versal for classically-deployed quantum machine learning; (ii) it does have
restricted learning capacities compared to ‘fully quantum’ models, but none-
theless (iii) it achieves a provable learning advantage over fully classical lear-
ners, contingent on widely believed assumptions in complexity theory. These
results provide compelling evidence that quantum machine learning can
confer learning advantages across a substantially broader range of scenarios,
where quantum computers are exclusively employed during the training
phase. By enabling classical deployment, our approach facilitates the imple-
mentation of quantum machine learning models in various practical contexts.

Quantum machine learning is a rapidly growing field" driven by its
potential to achieve quantum advantages in practical applications. A
particularly interesting approach to make quantum machine learning
applicable in the near term is to develop learning models based on
parametrized quantum circuits*®. Indeed, such quantum models have
already been shown to achieve good learning performance in bench-
marking tasks, both in numerical simulations’ ™ and on actual quantum
hardware”™, Moreover, based on widely believed cryptography
assumptions, these models also hold the promise to solve certain
learning tasks that are intractable for classical algorithms'", including
predicting ground state properties of highly-interacting quantum
systems's.

Despite these advances, quantum machine learning is facing a
major obstacle for its use in practice. A typical workflow of a machine
learning model involved, e.g., in driving autonomous vehicles, is divi-
ded into: (i) a training phase, where the model is trained, typically using
training data or by reinforcement; followed by (ii) a deployment phase,

where the trained model is evaluated on new input data. For quantum
machine learning models, both of these phases require access to a
quantum computer. But given that in many practical machine learning
applications, the trained model is meant for a widespread deployment,
the current scarcity of quantum computing access dramatically redu-
ces the applicability of quantum machine learning. One way of
addressing this problem is by generating shadow models out of
quantum machine learning models. That is, we propose inserting a
shadowing phase between the training and deployment, where a
quantum computer is used to collect information on the quantum
model. Then a classical computer can use this information to evaluate
the model on new data during the deployment phase.

The conceptual idea of generating shadows of quantum models
was already proposed by Schreiber et al.”?, albeit under the terminol-
ogy of classical surrogates. In that work, as well as in that of Landman
et al.”°, the authors make use of the general expression of quantum
models as trigonometric polynomials® to learn the Fourier
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Conventional quantum model

fo(x) = Tr[p(x)0(6)]

Flipped model
fo(x) = Tr[p(6)0(x)]

Shadow model

Classical poly-time
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Fig. 1| Quantum and shadow models. (left) Conventional quantum models can be
expressed as inner products between a data-encoding quantum state p(x) and a
parametrized observable O(6). The resulting linear model f4(x) = Tr[p(x)0(0)]
naturally corresponds to a quantum computation, depicted here. (middle) We
define flipped models f 4(x) = Tr[p(8)O(x)] as quantum linear models where the role
of the quantum state p(6) and the observable O(x) is flipped compared to con-
ventional models. (right) Flipped models are associated to natural shadow models:
one can use techniques from shadow tomography to construct a classical repre-
sentation p(@) of the parametrized state p(8) (during the shadowing phase), such

0(x)

Shadowing phase Evaluation phase

that, for encoding observables O(x) that are classically representable (e.g., linear
combinations of Pauli observables), p(8) can be used by a classical algorithm to
evaluate the model fg(x) on new input data (during the evaluation phase). More
generally, a shadow model is defined by (i) a shadowing phase where a (bit-string)
advice w(0) is generated by the evaluation of multiple quantum circuits

Wi(), ..., Wp(0), and (ii) an evaluation phase where this advice is used by a classical
algorithm 4, along with new input data x to evaluate their labelsfg(x). In the Sec-
tion “General shadow models”, we show that under this general definition, all
shadow models are shadows of flipped models.

representation of trained models and evaluate them classically on new
data. However, these works also suggest that a classical model could
potentially be trained directly on the training data and achieve the
same performance as the shadow model, thus circumventing the need
for a quantum model in the first place. This raises the concern that all
quantum models that are compatible with a classical deployment
would also lose all quantum advantage, hence severely limiting the
prospects for a widespread use of quantum machine learning.
Therefore, two natural open questions are raised:
1. Can shadow models achieve a quantum advantage over entirely
classical (classically trained and classically evaluated) models?
2. Do there exist quantum models that do not admit efficiently
evaluatable shadow models?

In this work, we resolve both of these key open questions. We
propose a general definition for shadow models, rooted in the fun-
damental idea that quantum machine learning models can be uni-
versally expressed as linear models®. This formulation of shadow
models allows us to leverage various results and techniques from
quantum information theory for the analysis of this model class. From
a practical perspective, employing shadow tomography
techniques®2° allows to easily construct diverse shadow models that
will resonate with the practitioners of quantum machine learning.
Furthermore, in our exploration of the computational capabilities of
shadow models, we find them to capture a distinct computational
class. Specifically, we demonstrate that, under widely believed cryp-
tography assumptions, there exist learning tasks where shadow mod-
els exhibit a provable quantum advantage over fully classical models.
However, contrary to this advantage, we also establish that there exist
quantum models that are strictly more powerful than the class of
shadow models, based on common assumptions in complexity theory.

For ease of exposition, we will first adhere to a working definition
of a shadow model as a model that is trained on a quantum computer,
but can be evaluated classically on new input data with the help of
information generated by a quantum computer (i.e., quantum-
generated advice) that is independent of the new data. We will
(informally) call a model “shadowfiable" if there exists a method of
turning it into a shadow model. In the Section “General shadow mod-
els”, we will make our definitions more precise.

Results

The flipped model

The construction of our shadow models starts from a simple yet key
observation: all standard quantum machine learning models for
supervised learning can be expressed as linear models?. To delve into
this claim, we first draw upon early works that utilized parametrized
quantum circuits in machine learning”’2. These works proposed

quantum models that are naturally expressed as linear functions of the
form

fo(0)=Trp(x)0(0)] @

where p(x) are quantum states that encode classical data x € X and
0(0) are parametrized observables whose inner product with p(x)
defines fo(x) (see Fig. 1). In a regression task, one would use such a
model to assign a real-valued label to an input x, while in classification
tasks, one would additionally apply, e.g., a sign function, to discretize
its output into a class. From a circuit picture, such models can be
evaluated on a quantum computer by: (i) preparing an initial state po,
e.g., 10) (0|®", (ii) evolving it under a data-dependent circuit U(x),
(iii) followed by a variational circuit V(@), (iv) before finally measuring
the expectation value of a Hermitian observable O. Together, steps (i)
and (ii) define

p)=U0)poU' (x), @)
while steps (iii) and (iv) define
06)=V' @0V ). 3)

Since the early works, it is known that quantum linear models also
capture quantum kernel models as a special case”, simply by making
0(0) directly dependent on the training data of the learning task.
Perhaps more surprisingly, quantum linear models can also encom-
pass more general data re-uploading models, composed of several
layers of data encoding and variational processing U;(x)V1(0)U>(x)...
Indeed, data re-uploading models can be mapped to linear models
through circuit transformations (e.g., gate teleportation) that relocate
all data-encoding gates to the first layer of the circuit?.

Flipped model definition
The definition of a quantum linear model in Eq. (1) can in general
accommodate any pair of Hermitian operators in place of p(x), 0(6).
However, due to how these models are evaluated on a quantum
computer, one commonly works under the constraint that p(x) defines
a quantum state (i.e., a positive semi-definite operator with unit trace).
Indeed, from an operational perspective, p(x) must be physically pre-
pared on a quantum device before being measured with respect to the
observable O(0) (which only needs to be Hermitian in order to be a
valid observable).

For reasons that will become clearer from the shadowing per-
spective, we define a so-called flipped model, where we flip the role of
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p(x) and O(). That is, we consider

fo(x)=Tr[p(6)0(x)] “)

where p(0) is a parametrized quantum state and O(x) is an observable
that encodes the data and can take more general forms than Eq. (3) as
we will see next. This model also corresponds to a straightforward
quantum computation as p(6) can be physically prepared before being
measured with respect to O(x).

A simple example of flipped model is for instance defined by:

m

PO=VO)p V') & 0= wix)P; 5)

J=1

for an initial state po, a variational circuit (@), and a collection of Pauli
observables {Pj}j’": , Weighted by data-dependent weights w;(x) € R.
One can evaluate this model by repeatedly preparing p(6) on a
quantum computer, measuring it in a Pauli basis specified by a P;, and
weighting the outcome by w;(x). For other examples of flipped models,
see Supplementary Section 1.

As opposed to conventional quantum linear models, flipped mod-
els are well-suited to construct shadow models. Since the variational
operators p(@) are quantum states, one can straightforwardly use tech-
niques from shadow tomography” to construct classical shadows p(@)
of these states. What we call classical shadows p(0) here are collections
of measurement outcomes obtained from copies of p(8) that can be
used to classically approximate expectation values of certain obser-
vables O (for a certain restricted family). If we take these observables to

be our data-dependent O(x), then we end up with a classical modelf,,(x)
that approximates our flipped model. Note here that one has total
freedom on the classical shadow techniques they may use to define their
shadow models, and a plethora of protocols have already been pro-
posed in the literature” 2. But it is important to keep in mind that each
of these protocols comes with its limitations, as it may restrict the class
of states p(0) or the class of observables O(x) for which an efficient and
faithful shadow model can be constructed. By “efficient” we refer here to
the number of measurements performed on p(@) and the time com-
plexity of estimating the expectation values of observables O(x) from
these measurements. And by “faithful” we refer to the approximation

error between the shadow model f,,(x) resulting from the shadow
protocol and the original flipped model fp(x). For instance, in the
example of Eq. (5), we know that if all Pauli operators {Pj}j’": , are k-local,

then O(3*B’¢~2) measurements of p(6), where B = max, > /" | |w,(X)|,

are sufficient to guarantee max, |j~’9(x) — fo(x)| < & with high probability.
But for non-local Pauli operators (i.e., large k), this protocol becomes
highly inefficient if we want to guarantee a low error ¢.

Importantly, shadowfied flipped models are not limited to con-
structions based on classical shadow protocols. Given that the states
p(0) are not given to us a black-box (as is generally assumed in shadow
tomography), one can use prior knowledge on these states to con-
struct efficient shadowing procedure. For instance, if p(0) is known to
be a superposition of a tractable number of computational basis states,
or well-approximated by a matrix product state (MPS) with low bond
dimension, then efficient tomography protocols may be used®.

Properties of flipped models
Flipped models are a stepping stone toward the claims of quantum
advantage and “shadowfiability” that are the focus of this paper.
Nonetheless, they constitute a newly introduced model, which is why it
is useful to understand first how they relate to previous quantum
models and what learning guarantees they can have.

Since conventional linear models of the form of Eq. (1) play a
central role in quantum machine learning, we start by asking the

question: when can these models be represented by (efficiently eva-
luatable) flipped models? That is, given a conventional model
fox) =Tr[p(x)0(@)], can we construct a flipped model
f,,(x) = Tr[p'(8)0'(x)] such thatf,,(x) =fo(x),¥x,0, and fa(x) is as effi-
cient to evaluate as fg(x). Clearly, a conventional model fo(x) for which
the parametrized operator O(@) is also a quantum state (i.e., a positive
semi-definite trace-1 operator) is by definition also a flipped model.
Therefore, a natural strategy to flip a conventional model is to trans-
form its observable O(0) into a quantum state p'(@). This transforma-
tion involves dealing with the negative eigenvalues of O(@), which can
be taken into account using an auxiliary qubit, without overheads in
the efficiency of evaluation (see Supplementary Section 2 for more
details). More importantly, the transformation involves normalizing
these eigenvalues, which affects the efficiency of evaluating the
resulting flipped model. Indeed, the normalization factor a that results

from normalizing O(0) corresponds to its trace norm || O||; = Tr {\/ 0?
and needs to be absorbed into the observable O'(x) = ap(x) of the

flipped modelfg(x) to guaranteefg(x) = fg(x). This directly impacts
the spectral norm || O'|| . = maxi, (0')y =a of the flipped model, and

lloo
therefore the efficiency of its evaluation, as O(|| O'||%,/€*) measure-

ments of p'(0) are needed in order to estimatef,,(x) to additive error &
(see Supplementary Section 2 for a derivation). Therefore, we end up
showing that, for a conventional model fg(x) acting on n qubits and
with a bounded observable trace norm ||O||; < &, we can construct a
flipped model acting on m =n+1 qubits and with observable spectral
norm || 0|, =a.

Interestingly, in the relevant regime where the number of
qubits n,m used by the linear models involved in this flipping is
logarithmic in ||O||; (e.g., where O is a Pauli observable and hence
[I0]l;=2"), we find that this requirement on the spectral norm | 0’|,
of the resulting flipped model is unavoidable in the worst case, up to
a logarithmic factor in ||O||;. We refer to Appendix Supplementary
Section 2 for proofs of these statements and a more in-depth
discussion.

Another property of interest in machine learning is the general-
ization performance of a learning model. That is, we want to bound the
gap between the performance of the model on its training set (so-
called training error) and its performance on the rest of the data space
(or expected error). Such bounds have for instance been derived in
terms of the number of encoding gates in the quantum model®, or the
rank of its observable®. In the case of flipped model, we find instead a
bound in terms of the number of qubits n and the spectral norm ||0||..
of the observable. Since these quantities are operationally meaningful,
this gives us a natural way of controlling the generalization perfor-
mance of our flipped models. Stated informally, we find that if a flipped
model achieves a small error | fg(x) — fix)| < i for all x in a training set of

njo|Z,
en?

a small expected error | fa(x) — f(x)| < 2n with probability 1- £ over the
entire data distribution.

size M, then we only need M to scale as ﬁ( ) in order to guarantee

Note that the dependence on n and ||O||.. is linear and quadratic,
respectively, which means that we can afford a large number of qubits
and a large spectral norm and still guarantee a good generalization
performance. This is particularly relevant as the spectral norm is a
controllable quantity, meaning we can easily fine-tune our models to
perform well in training and generalize well. E.g., in the case of the
model in Eq. (5), this spectral norm is bounded by maxxzj”’:l\w,-(xﬂ,
which scales favourably with the number of qubits n if m € O(poly (n))
or if the vector w(x) is sparse.

Quantum advantage of a shadow model
We recall that we (informally) define shadow models as models that
are trained on a quantum computer, but, after a shadowing
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procedure that collects information on the trained model, are eval-
uated classically on new input data. In this section, we consider the
question of achieving a quantum advantage using such shadow
models. It may seem at first sight that this question has a straight-
forward answer, which is “no": if the function learned by a model is
classically computable, then there should be no room for a quantum
advantage. However, as demonstrated in refs. 17,31, one can also
achieve a quantum advantage based on so-called trap-door func-
tions. These are functions that are believed to be hard to compute
classically, unless given a key (or advice) that allows for an efficient
classical computation. Notably, there exist trap-door functions
where this key can be efficiently computed using a quantum com-
puter, but not classically. This allows us to construct shadow models
that make use of this quantum-generated key to compute an other-
wise classically untractable function.

Similarly to related results showing a quantum advantage in
machine learning with classical data’®*, we consider a learning task
where the target function (i.e., the function generating the training
data) is derived from cryptographic functions that are widely believed
to be hard to compute classically. More precisely, we introduce a
variant of the discrete cube root learning task", which is hard to solve
classically under a hardness assumption related to that of the RSA
cryptosystem™, In this task, we consider target functions defined on
Zy=1{0,...,N =1} as

1, if /xmodN e [s,s+ X1,
g,x)= vxmodN efss+ 7] ©)
0, otherwise

where N=pq is an n-bit integer, product of two primes p, g of the

form 3k+2,3k'+2, such that the discrete cube root is properly

defined as the inverse of the function y* mod N. These target func-
tions are particularly appealing because of a number of interesting
properties:

i. It is believed that given only x and N as input, computing
gx)=¥xmodN with high probability of success over
random draws of x and N is classically intractable. This
assumption is known as the discrete cube root (DCR)
assumption.

ii. On the other hand, computing x* mod N is classically efficient for
any a € 7. For a=3, this implies that g(y) =y® mod N is a one-
way function, under the DCR assumption.

iii. The function g(x)=Yx modN has a “trap-door”, in that there
exists another way of computing it efficiently. For every N (as
specified above), there exists akey d € Z,, such that g(x) =x? mod
N. Finding d is efficient quantumly by using Shor’s factoring
algorithm®*, but hard classically under the DCR assumption.

Observations (i) and (ii) can be leveraged to show that learning the
functions g, from examples is also intractable. Indeed, Alexi et al.”
showed that a classical algorithm that could faithfully capture a single
bit g,(x) of the discrete cube root of x, for even a1/2 + 1/poly(n) fraction
of all x € Z, could also be used to reconstruct g(x),vx € Z,, with
high probability of success. Since, from observation (ii), the training
data for the learning algorithm can also be generated efficiently clas-
sically from N, a classical learner that learns g5(x) correctly fora1/2 +1/
poly(n) fraction of all x € Zy, would then contradict the DCR
assumption.

Observation (iii) allows us to define the following flipped model:

fo@)=Trp(6)0(x)]
pO)=1d s )(d s &0X)= > &y X)ld' s )(d' 5. @)
da,s

That is, p(8) (for 8= (N, s")) specifies candidates for the key d’ and the
parameter s’ of interest, while O(x) uses that information to compute

1, ifx? modN e [s,s' + %1,

. (8)
0, otherwise.

gd’,s’ x)= {
The state p()=|d,s'){d,s'| for the right key d can be prepared effi-
ciently using Shor’s algorithm applied on N (provided with the training
data). As for O(x), it simply processes classically a bit-string to compute
84 +(x) efficiently, which corresponds to gyx) when (d',s")=(d,s).
Finding an s’ close to s is an easy task given training data and d’ =d.
Since p(B) is a computational basis state, this flipped model admits a
trivial shadow model where a single computational basis measurement
of p(0) allows to evaluate fg(x) classically for all x. Therefore, we end up
showing the following theorem:

Theorem 1. (Quantum advantage (informal)). There exists a learning
task where a shadow model first trained using a quantum computer
then evaluated classically on new input data, can achieve an arbitrarily
good learning performance, while any fully classical model cannot do
significantly better than random guessing, under the hardness of
classically computing the discrete cube root.

In Supplementary Section 3, we formalize the statement of this
result using the PAC framework and provide more details on the set-
ting and the proofs.

General shadow models

As mentioned at the start of this paper, shadow models are not
limited to shadowfied flipped models, and the main alternative pro-
posals are based on the Fourier representation of quantum
models™?. It is clear that Fourier models are defined very differently
from flipped models, but one may wonder whether they nonetheless
include shadowfied flipped models as a special case, or the other way
around.

In this section, we first start by showing that there exist quantum
models that admit shadow models (i.e., are shadowfiable) but cannot
be shadowfied efficiently using a Fourier approach. This then moti-
vates our proposal for a general definition of shadow models, and we
show that, under this definition, all shadow models can be expressed as
shadowfied flipped models. Finally, we show the existence of quantum
models that are not shadowfiable at all under likely complexity theory
assumptions.

Shadow models beyond Fourier

An interesting approach to construct shadows of quantum models is
based on their natural Fourier representation. It has been shown?-*
that quantum models can be expressed as generalized Fourier series of
the form

fo@)=)_c,@e @~ )

weQ)

where the accessible frequencies Q only depend on properties of the
encoding gates used by the model (notably the number of encoding
gates and their eigenvalues). Since these frequencies can easily be read
out from the circuit, one can proceed to form a shadow model by
estimating their associated coefficients c,(8) using queries of the
quantum model fg(x) at different values x and, e.g., a Fourier
transform'. Given a good approximation of these coefficients, one can
then compute estimates of fg(x) for arbitrary new inputs x. We will
refer to such a shadowing approach that considers the quantum model
as a black-box, aside from the knowledge of its Fourier spectrum, as
the Fourier shadowing approach.

Nature Communications | (2024)15:5676
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Although we will be explicit about this in the next subsection, we
will consider a shadowing procedure to be successful, if, with high
probability, the resulting shadow model agrees with the original model
on all inputs, i.e.,

MaXycx|fox) —foX)| <€, 10)
for a specified £>0. We want the shadowing procedure to be suc-
cessful independently of the data distribution under which the model
should be trained, which justifies this definition. We discuss this point
further in Supplementary Section 4.

We show that the Fourier shadowing approach can suffer from an
exponential sample complexity in the dimension of the input data x,
making it intractable for high-dimensional input spaces. To see this,
consider the linear model:

fy@)=Trip(x)0)]

n ) (11
Px0)=Q)._,Ry(x)I0)(OIR} (X)) & OW) = y) (¥

for x e R" and y € {0, }*". Let us first restrict our attention to the
domain x € {0, m}". It is quite clear that on this domain, f;,(x) = 0x/uy
plays the role of a database search oracle, where the database has 2"
elements and a unique marked element y. From lower bounds on
database search, we know that Q(2") calls to this oracle are needed to
find y”. This implies that a Fourier shadowing approach would require
Q2" calls to f(x)=6xmy in order to guarantee max,.y|fq(x)—
fe(x)|<1/4.In Supplementary Section 4, we explain how this result can
be generalized to the full domain x € R", and we relate this bound on
the sample complexity to the Fourier decomposition of the model.

On the other hand, note that the flipped model associated to f;,(x)
allows for a straightforward shadowing procedure. Indeed, by pre-
paring O(y) and measuring it in the computational basis, one
straightforwardly obtains y and can therefore classically compute the
expectation value of any tensor product observable p(x) as specified
by Eq. (11). Therefore, we have shown that there exist shadowfiable
models that are not efficiently Fourier-shadowfiable, i.e., for which a
shadowing procedure based solely on the knowledge of their Fourier
spectrum and on black-box queries has query complexity that is
exponential in the input dimension.

All shadow models are shadows of flipped models

We give a general definition of shadow models that can encompass all
methods that have been proposed to generate them. In contrast to the
definition of classical surrogates proposed by Schreiber et al.”’, we give
explicit definitions for the shadowing and evaluation phases of shadow
models which makes explicit the need for a quantum computer in the
shadowing phase. Indeed, as mentioned in the introduction, the term
“classical surrogate” has been used to describe both a classically eva-
luatable model obtained from a quantum shadowing procedure and a
fully classical model trained directly on the data. We want to avoid this
confusion in the definition of shadow models. We view a general sha-
dowing phase as the generation of advice that can be used to classically
evaluate a quantum model. This advice is generated by the execution
of quantum circuits that may or may not depend on the (trained)
quantum circuit from the training phase. For instance, when we sha-
dowfy a flipped model, we simply prepare the parametrized states p(0)
and use (randomized) measurements to generate an operationally
meaningful classical description. In the case of Fourier shadowing, this
advice is instead generated by evaluations of the quantum model f(x)
for different inputs x € R? that are rich enough to learn the Fourier
coefficients of this model. We propose the following definition:

Definition 2. (General shadow model). Let W;(6),..., W(0) be a
sequence of O(poly (m))-time quantum circuits applied on all-zero

states |0)®”, and that can potentially be chosen adaptively. Call
w(0) = (w(6), ..., wp(0)) the outcomes of measuring the output states
of these circuits in the computational basis. A general shadow model is
defined as:

fox)=Ax,0(0)) 12)
where A is a classical O(poly (M,m,d)) time algorithm that processes
the outcomes () along with an input x € R to return the (real-
valued) label fp(x).

From this definition, a shadow model is a classically evaluatable
model that uses quantum-generated advice. Crucially, this advice must
be independent of the data points x we wish to evaluate the model on
in the future. We distinguish the notion of a shadow model from that of
a shadowfiable quantum model, that is a quantum model that admits a
shadow model:

Definition 3. (Shadowfiable model). A model fg acting on n qubits is
said to be shadowfiable if, for €, 6 > 0, there exists a shadow model f
such that, with probability 1- 6 over the quantum generation of the
advice w() (i.e., the shadowing phase), the shadow model satisfies?

MaXyc vl foX)| —fo(x) <€, 13)
and uses m,M € O(poly (n,1/€,1/6)) qubits and circuits to generate its
advice w(6).

While we have seen that there exist shadowfiable models that
cannot be shadowfied efficiently using a Fourier approach, we show
that all shadowfiable models as defined above can be approximated by
shadowfiable flipped models.

Lemma 4. (Flipped models are shadow-universal). All shadowfiable
models as defined in Defs. 2 and 3 can be approximated by flipped
models fg(x) = Tr[p(8)O(x)] with the guarantee that computational
basis measurements of p(@) and efficient classical post-processing can
be used to evaluate fp(x) to good precision with high probability.

This result is essentially based on the observation that the eva-
luation of a general shadow model as defined in Def. 2 can be done
entirely coherently. Instead of classically running the algorithm A
using the random advice w(@), one can quantumly simulate this algo-
rithm (using a reversible execution) and execute it on the coherent
advice p(0) = |w(6))(w(0)| generated by {Wy(0), ..., Wj(6)} before the
computational basis measurements. We refer to Supplementary Sec-
tion 4 for a more detailed statement and proof.

Not all quantum models are shadowfiable

From the discrete cube root learning task, we already understand that
a learning separation can be established between classical and sha-
dowfiable models. We would also like to understand whether a learn-
ing separation exists between shadowfiable models and general
quantum models, or equivalently, whether all quantum models are
shadowfiable. We show that this also is not the case, under widely
believed assumptions (see Fig. 2).

Theorem 5. (Not all shadowfiable). Under the assumption that
BQP ¢ P/poly, there exist quantum models, i.e., models in BQP, that are
not shadowfiable, i.e., that are not in BPP/qgenpoly.

We start by noting that shadow models can be characterized by a
complexity class we define as BPP/qgenpoly, which stands for “Boun-
ded-error Probabilistic Polynomial-time with quantumly generated
(polynomial-time) advice of polynomial size”. This class contains all
functions that can be computed efficiently classically with the help of
polynomially-sized advice generated efficiently by a quantum com-
puter. This class is trivially contained in the standard class BPP/poly,
which doesn’t have any constraint on how the advice is generated and
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Quantum models

(BQP)

Shadow models
(BPP/qgenpoly)

Classical models
(BPP)

* DLP

Fig. 2 | Separations between classical, shadow, and quantum models. Under the
assumption that the discrete cube root (DCR) cannot be computed classically in
polynomial time, we have a separation between shadow models (captured by the
class BPP/qgenpoly) and classical models (in BPP). Under the assumption that there
exist functions that can be computed in quantum polynomial time but not in
classical polynomial time with the help of advice (i.e., BQP ¢ P/poly), we have a
separation between quantum models (universal for BQP) and shadow models (BPP/
qgenpoly). A candidate function for this separation is the discrete logarithm (DLP).

can be derandomized to P/poly (i.e., BPP/poly = P/poly*). Note how-
ever that BPP/qgenpoly constitutes a physically relevant class, since it
only contains problems that can be solved efficiently by classical and
quantum computers, as opposed to P/poly, which contains undecid-
able problems, such as a version of the halting problem. We refer to
Supplementary Section 1 for formal definitions of these complexity
classes, and an in-depth discussion.

On the other hand, it is easy to show that quantum models (more
precisely quantum linear models) can also represent any function in
BQP, i.e., all functions that are efficiently computable on a quantum
computer. For this, one simply takes a simple encoding of an n-bit
input x:

px) = ), XF10)(0IX}" (14)

along with an observable

0,=UlzZ,U, (15)

specified by an arbitrary n-qubit circuit U, in BQP and the Pauli-Z
operator applied on it first qubit. The resulting model
fn(x)=Tr[p(x)0,] can then be used to decide any language in BQP.

Combining these two observations, we get that the proposition
“all quantum models are shadowfiable” would imply that BQP < BPP/
qgenpoly < P/poly, which violates the widely believed conjecture®
that BQP ¢ P/poly (see Supplementary Section 4 for a formal proof).
To give an example of candidates of non-shadowfiable quantum
models, the discrete logarithm log,x mod p (or even one bit of it) is
provably in BQP but is not believed to be in P/poly. Therefore, a model
that could be used to compute the discrete logarithm (e.g., the
quantum model of Liu et al.*) is likely not shadowfiable.

Discussion
In this work, we examined the class of quantumly trainable, classically
evaluatable models we refer to as shadow models. Our analysis has
shown that these models can be universally captured by a restricted
family of quantum linear models, wherein data-encoding and varia-
tional operations are flipped compared to conventional quantum
models. Furthermore, we demonstrated that shadow models belong to
an intriguing complexity class, coined BPP/qgenpoly, exhibiting
superiority over classical models (in BPP) but inferiority to fully
quantum models (in BQP), based on prevalent complexity theory
assumptions.

By presenting shadows models as flipped linear models, we
illustrated how shadow tomography protocols could be applied

straightforwardly to construct shadow models in practice. Yet, it is
important to note a crucial distinction between a shadow tomo-
graphy scenario and a shadow model: in the latter, one has control
over the quantum state intended for shadowing. This distinction
introduces new possibilities for devising ‘state-aware’ shadow
tomography protocols aimed at constructing shadow models. This
could potentially alleviate some of the limitations of current classical
shadow protocols.

Considering our findings on learning separations, we identified a
noteworthy characteristic of shadow models: their ability to quan-
tumly compute useful advice for a classical evaluation algorithm,
enabling them to tackle otherwise classically intractable tasks. The
example we presented, based on trap-door functions, readily allows
for such constructions, but it remains somewhat contrived. Exploring
similar constructions for physically relevant problems, such as pre-
dicting ground state properties of complex quantum systems, would
be an intriguing avenue for future research.

Data availability
Data sharing is not applicable to this paper as no datasets were gen-
erated or analyzed during the current study.
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