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6.1 ABSTRACT 
Individual brain MRI markers only show at best a modest association with long-
term occurrence of dementia. Therefore, it is challenging to accurately identify 
individuals at increased risk for dementia. We aimed to identify different brain MRI 
phenotypes by hierarchical clustering analysis based on combined neurovascular 
and neurodegenerative brain MRI markers and to determine the long-term dementia 
risk within the brain MRI phenotype subgroups. 

Hierarchical clustering analysis based on 32 combined neurovascular and 
neurodegenerative brain MRI markers in community-dwelling individuals of the Age-
Gene/Environment Susceptibility Reykjavik Study was applied to identify brain MRI 
phenotypes. A Cox proportional hazards regression model was used to determine 
the long-term risk for dementia per subgroup. 

We included 3056 participants and identified 15 subgroups with distinct brain MRI 
phenotypes. The phenotypes ranged from limited burden, mostly irregular white 
matter hyperintensity (WMH) shape and cerebral atrophy, mostly irregularly WMHs 
and microbleeds, mostly cortical infarcts and atrophy, mostly irregularly shaped WMH 
and cerebral atrophy to multi-burden subgroups. Each subgroup showed different 
long-term risks for dementia (min–max range hazard ratios (HRs) 1.01–6.18; mean 
time to follow-up 9.9 ± 2.6 years); especially the brain MRI phenotype with mainly 
WMHs and atrophy showed a large increased risk (HR 6.18, 95% CI 3.37–11.32). 

Distinct brain MRI phenotypes can be identified in community-dwelling older adults. 
Our results indicate that distinct brain MRI phenotypes are related to varying long-
term risks of developing dementia. Brain MRI phenotypes may in the future assist in 
an improved understanding of the structural correlates of dementia predisposition. 
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6.2 INTRODUCTION 
Most older adults have brain changes on MRI, such as cerebral atrophy or 
manifestations of cerebral small vessel disease (SVD).1 These brain MRI markers 
mostly represent late resulting damage of different underlying pathologies and are 
therefore largely unspecific. This makes differentiation of underlying pathology based 
on brain MRI challenging.1 Moreover, some brain abnormalities detected on MRI are 
regarded as related to normal ageing. It is currently unknown if specific brain MRI 
phenotypes represent an increased risk for dementia. The ability to determine an 
individual’s risk for dementia based on MRI may in the future be useful to determine 
patient prognosis and may aid in patient selection for future treatment studies. 
Common brain MRI markers of neurovascular and neurodegenerative diseases are 
white matter hyperintensities (WMHs), lacunes, microbleeds, enlarged perivascular 
spaces, and cerebral atrophy. These brain MRI markers have been studied previously 
and are associated with the occurrence of dementia.2-6 However, individual brain 
MRI markers only show at best a modest association with long-term occurrence of 
dementia.4 It, therefore, remains challenging to identify individuals who are at increased 
risk to develop dementia.2 Because of heterogenous etiology and mixed pathologies, 
methods combining different brain MRI markers into one model may likely aid in a 
more detailed characterization of, potential prognostically relevant, so-called brain 
MRI phenotypes. In a previous study within our group (in a different cohort), we aimed 
to detect an increased stroke and mortality risk in patients with manifest arterial 
disease and analyzed brain MRI markers in a combined way using a hierarchical 
clustering approach, resulting in the identification of different brain MRI phenotypes.7 
In that study, distinct brain MRI phenotypes were detected that were associated with 
a different risk of future stroke and mortality. These brain MRI phenotypes can aid 
to identify the structural correlates of predisposition to different disease outcome. 
The association of distinct brain MRI phenotypes with long-term dementia risk 
remains unknown. We therefore aimed to identify different brain MRI phenotypes in 
community-dwelling individuals by combined hierarchical clustering analysis based 
on neurovascular and neurodegenerative brain MRI markers. Within each of these 
brain MRI phenotype subgroups, we determined the long-term dementia risk.

6.3 METHODS 

6.3.1 Participants and study design 
The data set used for the current analysis was acquired as part of the population 
based Age-Gene/Environment Susceptibility (AGES) Reykjavik Study.8 The cohort 
study was originally established in 1967 to prospectively study cardiovascular disease 
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in a random sample from the general population in Iceland. Participants were born 
between 1907 and 1935 and were living in Reykjavik in 1967. Remaining participants 
of the cohort were randomly selected for a follow-up and underwent a baseline brain 
MRI scan between 2002 and 2006.

Baseline diagnosis of dementia was assessed in a 3-step process, as described 
previously.9 In short, participants underwent the Mini-Mental State Examination and 
the Digit Symbol Substitution Test. Participants were administered a second battery 
of diagnostic tests based on positive results in the previous tests and possibly a 
third stage, which included neurologic tests and a proxy interview.9 Based on 
these tests, participants were considered to have normal cognition, mild cognitive 
impairment, or dementia at baseline. Dementia diagnosis based on the Diagnostic 
and Statistical Manual, Fourth Edition, guidelines was made in a consensus meeting 
with a geriatrician, neurologist, neuropsychologist, and neuroradiologist. 

Education level and smoking status were collected using questionnaires. The highest 
completed education level (primary school, secondary school, college, and university) 
was entered. Participants who never smoked were categorized as non-smokers, 
participants who smoked regularly and at least 100 cigarettes or 20 cigars in a lifetime 
were categorized as former smokers, and participants who currently smoke were 
categorized as current smokers. Height (in centimeters) and weight (in kilograms) 
were measured and used to calculate body mass index. Hypertension was based 
on self-report, use of antihypertensive medication, or based on the measurements 
of systolic blood pressure >140 mm Hg and/or diastolic blood pressure >90 mm Hg. 
A standard mercury sphygmomanometer was used to measure systolic and diastolic 
blood pressure; the mean of 2 measurements was calculated. Diabetes mellitus was 
based on self-report of diabetes, use of antidiabetic medication, or fasting blood 
glucose level >7.0 mmol/L. Coronary artery disease was based on self-report plus 
the use of nitrates or evidence of a myocardial infarction on electrocardiogram. 

Participants were followed from the date of the baseline MRI scan until diagnosis 
of dementia, loss to follow-up, or end of follow-up. Loss to follow-up means that 
the participants died or could not be contacted. Tracking for dementia diagnosis 
was done through vital statistics and hospital records and by the nursing home 
and home-based resident assessment instrument. The dementia follow-up of the 
AGES Reykjavik Study was concluded in 2015 (end of follow-up). The inclusion and 
exclusion of participants from the AGES Reykjavik Study for the current study is 
illustrated in Figure 6.1. For example, participants who were demented at baseline 
were excluded. 
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Figure 6.1 Flowchart Illustrating the Inclusion and Exclusion of Participants.

6.3.2 Standard protocol approvals, registrations, and patient consents 
The study was approved by the Icelandic National Bioethics Committee, VSN:00-
063, and the institutional review board responsible for the National Institute on Aging 
research; all participants signed for informed consent. 

6.3.3 MRI Scanning protocol 
A baseline brain MRI scan was acquired on a 1.5 T Signa TwinSpeed system (General 
Electric Medical Systems, Waukesha, WI). The MRI protocol included a fluid-attenuated 
inversion recovery (FLAIR) sequence (repetition time = 8000 milliseconds; time to echo = 
100 milliseconds; inversion time = 2000 milliseconds; field of view = 220 mm; voxel size = 
0.86 × 0.86 × 3.00 mm3; interleaved slices) and a T1-weighted sequence (repetition time = 
21 milliseconds; time to echo = 8 milliseconds; field of view = 240 mm; slice thickness = 
1.5 mm; voxel size = 0.94 × 0.94 × 1.50 mm3).11 A T2*-weighted gradient echo-type echo 
planar sequence (time to echo = 50 milliseconds; repetition time = 3050 milliseconds; flip 
angle = 90°; field of view = 220 mm; matrix = 256 × 256) and a proton density/T2-weighted 
fast-spin echo sequence (time to first echo = 22 milliseconds; time to second echo = 90 
milliseconds; repetition time = 3220 milliseconds; echo train length = 8; flip angle = 90°; 
field of view = 220 mm; matrix = 256 × 256) were also part of the MRI protocol.
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6.3.4 Brain MRI markers 
The brain MRI markers included to determine the brain MRI phenotypes were brain 
tissue volumes for the estimation of brain atrophy, WMH volumes, WMH shape markers, 
brain infarcts, microbleeds, and enlarged perivascular spaces. Gray matter, white 
matter, CSF, and WMH were segmented automatically with a modified algorithm based 
on the Montreal Neurological Institute pipeline.12 Intracranial volume was calculated by 
adding gray matter, white matter, CSF, and WMH volumes.13 Brain parenchymal fraction, 
white matter fraction, gray matter fraction, and lateral ventricle fraction were calculated 
by expressing the volumes as a fraction of intracranial volume.

Volumes of periventricular/confluent, deep, and total WMH were determined 
automatically using an in-house developed pipeline.14 Moreover, volumes of deep and 
periventricular WMH per lobe were calculated using a mask to delineate the lobes. 
WMH shape markers (fractal dimension, solidity, convexity, concavity index, and 
eccentricity15) were calculated, as previously described.14 A description of the shape 
markers, as well as their corresponding formulas, can be found in supplementary table 
S.6.8.1.  and supplementary figure S.6.8.1. links.lww.com/WNL/D459). Brain infarcts 
(subcortical, cerebellar, and cortical infarcts), microbleeds, and enlarged perivascular 
spaces were visually scored.9 Microbleeds were first scored by neuroradiologists 
and then by trained radiographers.11 Infarcts were defined as parenchymal defects 
with a signal intensity that is isointense to that of CSF on all MRI sequences (i.e., 
FLAIR, T2-weighted, proton density-weighted).9 Cortical infarcts were defined as 
infarcts involving or limited to the cortical gray matter and surrounded by a high 
signal intensity area on FLAIR images. Subcortical infarcts were categorized as such 
when they do not extend into the cortex and are surrounded by a high signal intensity 
area on FLAIR images of ≥4 mm in diameter.

Parenchymal defects in the subcortical area without a rim or area of high signal 
intensity on FLAIR images and without evidence of hemosiderin on the T2*-weighted 
scan were scored as enlarged perivascular spaces. Enlarged perivascular spaces 
were excluded from the definition of subcortical infarcts. Enlarged perivascular 
spaces were documented separately in the whole brain and in the basal ganglia. 
Cerebellar infarcts were scored without any size criteria. Infarcts covering 2 of the 
mentioned areas were attributed to the location in which the largest measured 
diameter was located (in millimeters).9
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6.3.5 Statistical analysis
6.3.5.1 Identification of subgroups with different brain MRI phenotypes 
All brain MRI markers were normalized as z-scores (after multiplication by 100 
and natural log transformation when not normally distributed). Variables that were 
not normally distributed were WMH volumes, solidity, number of WMH, and lateral 
ventricle volume fraction. Binary variables (presence of microbleeds, infarcts, and 
enlarged perivascular spaces) were used as −2 and 2 to approximate the z-score 
distributions of continuous variables. Hierarchical clustering was performed by 
applying Ward’s method in R version 4.1.0 (R Core Team, 2021) and packages 
factoextra,16 cluster,17 and dendextend18 on 32 brain MRI markers. Hierarchical 
clustering groups participants together based on similarities in brain MRI markers. 
The approach starts with every participant as a separate cluster and then repeatedly 
merging of the 2 closest clusters, subsequently updating the distance matrix. Thus, 
each cluster is the result of the merge of 2 subclusters, resulting in a hierarchical 
tree (dendrogram, Figure 6.2). At each level of the dendrogram, clusters are joined 
and the number of clusters therefore decreases. This is repeated until only 1 cluster, 
representing the total group of participants, remains. An optimal number of clusters 
need to be determined for further analysis. In an optimally clustered data set, the 
clusters have a high within-cluster cohesion, while having a high separation between 
different clusters. The optimal dendrogram cutoff, that is, the optimal number of 
clusters, was determined using the Dunn index (supplementary figure S.6.8.2., links.
lww.com/WNL/D459) and the heatmap (Figure 6.2). The Dunn index is the ratio of the 
smallest distance between observations in different clusters over the largest between 
cluster distance and should be maximal. After this procedure, a number of subgroups 
remained, representing the subgroups with different brain MRI phenotypes. 

Brain MRI markers and cardiovascular risk factors were compared between 
subgroups with chi-squared test for binary variables and 1-way analysis of variances 
for continuous variables by using SPSS version 25 (Chicago, IL). For these analyses, 
WMH volumes, number of WMH, solidity, ventricle volume fraction, and time to 
follow-up were log transformed due to a non-normal distribution. A p value <0.05 
was considered statistically significant. 

6.3.5.2 Sensitivity analysis 
To assess the robustness of the hierarchical clustering model, we reran the analysis 
with 2 random subsets of this dataset. 
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6.3.5.3 Long-term outcome assessment 
A Cox proportional hazard model was used to estimate the risk of future dementia 
occurrence within the brain MRI phenotype subgroups (adjusted for age, sex, 
and cognitive status at baseline (mild cognitive impairment or normal cognition). 
The reference subgroup was chosen based on having the fewest brain abnormalities. 
SPSS version 25 was used for statistical testing. 

Table 6.1. Baseline characteristics of the total study sample. 

Community-dwelling individuals (n = 3056)

Age (years) 75.6 ± 5.2

Time to follow-up (years) 9.9 ± 2.6

Female sex 1884 (62%)

Mild cognitive impairment 257 (8%)

BMI (kg/m2) 26.97 ± 4.19

Hypertension 2380 (78%)

Type 2 diabetes 277 (9%)

Cholesterol (mmol/L) 5.71 ± 1.14

Smoking status 

   Never 1397 (46%)

   Former 1334 (44%)

   Current 324 (11%)

Coronary artery disease 497 (16%)

Data are shown as means ± SD or percentages of individuals per subgroup. BMI, body mass index; SD, 
standard deviation. 

6.3.6 Data availability 
The AGES I-II data set cannot be made publicly available because the informed 
consent signed by the participants prohibits data sharing on an individual level, 
as outlined by the study approval by the Icelandic National Bioethics Committee. 
Requests for these data may be sent to the AGES Reykjavik Study Executive 
Committee, contact: Ms. Camilla Kritjansdottir, Camilla@hjarta.is. 
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6.4 RESULTS 
The total sample included 3056 community-dwelling older adults. The average time 
to follow-up for dementia outcome (yes/ no) was 9.9 ± 2.6 years (min–max range 
0.6–13.4 years). The baseline characteristics of the total sample are presented in 
Table 6.1. A hierarchical clustering model was applied on brain MRI markers (WMH 
volumes, brain volumes, WMH shape markers, infarcts, enlarged perivascular spaces, 
microbleeds). The optimal cut-off of the hierarchical clustering model was determined 
to be at 15 subgroups (Figure 6.2), based on the Dunn index (supplementary figure 
S.6.8.2., links.lww.com/WNL/D459) and the heatmap (Figure 6.2). The sizes of the 
subgroups ranged from 42 to 425 participants. As a sensitivity analysis to test the 
robustness of the clustering method, we reran the model on 2 random subsets (subset 
1: n = 2,311 and subset 2: n = 2,250). On average, 68% of participants remained in the 
same cluster compared with the main analysis. Baseline characteristics of the study 
sample per subgroup are shown in Table 2. The subgroups differed significantly in 
age (min–max range of mean age 71.6–78.8 years), sex (min–max range of mean sex 
distribution 37%–81% females), cognitive status at baseline (min–max range of mean 
prevalence 3%–15%), hypertension (min–max range of mean prevalence 64%–90%), 
type 2 diabetes mellitus (min–max range of mean prevalence 4%–15%), cholesterol 
levels (min–max range of mean 5.20–5.97 mmol/L), coronary artery disease (min–
max range of mean prevalence 7%–30%), and time to follow-up (min–max range of 
mean time to follow-up 8.2–10.9 years; Table 6.2). 

Brain MRI markers per subgroup are presented in Table 6.3. All brain MRI markers 
differed significantly between subgroups, as could be expected as the subgroups 
were based on the hierarchical clustering result. The main MRI markers per subgroup 
are illustrated in a simplified and summarized manner in Figure 6.3. The brain MRI 
phenotypes of the subgroups ranged from limited burden (subgroup 10), mostly 
irregular WMH shape and cerebral atrophy (subgroup 12), mostly irregularly shaped 
WMH and microbleeds (subgroup 9), mostly cortical infarcts and atrophy (subgroup 
15), mostly irregularly shaped WMH and cerebral atrophy (subgroup 3) to multi-
burden subgroups (subgroup 2, subgroup 14). A complete and detailed description 
of the main MRI markers of each subgroup can be found in S.6.8.1 supplementary 
results (links.lww.com/WNL/D459). 

Subgroup 10 was determined to have the least amount of brain abnormalities and 
was used as the reference subgroup in the survival analysis (Figure 6.4). Dementia 
cases at follow-up ranged from 6% to 46% per subgroup. Compared with the 
reference subgroup, most other subgroups (except subgroup 4, subgroup 7, and 
subgroup 8) showed a higher long-term risk for dementia. The range of statistically 



121

Distinct brain MRI phenotypes and their association with long-term dementia risk

6

significant hazard ratios (HRs) across the subgroups varied between 1.01 and 6.18. 
The subgroup with relatively severe WMH and atrophy (subgroup 12) showed the 
largest long-term risk for dementia (HR 6.18, 95% CI 3.37–11.32) compared with 
the reference subgroup (subgroup 10). The multi-burden subgroups (subgroup 2: 
HR 3.68, 2.06–6.61; subgroup 14: HR 3.48, 1.96–6.16), the subgroup with mostly 
irregularly shaped WMH and cerebral atrophy (subgroup 3: HR 3.33, 1.94–5.73), the 
subgroup with mostly irregularly shaped WMH and microbleeds (subgroup 9: HR 2.99, 
1.60–5.56), and the subgroup with mostly cortical infarcts and atrophy (subgroup 
15: HR 3.16, 1.70–5.86) also showed a relatively high long-term risk for dementia. 

Figure 6.3. Symbolic illustration of the brain MRI markers per subgroup.  Small circles indicate low 
WMH volumes or low amount of cerebral atrophy. Big circles indicate high WMH volumes or cerebral 
atrophy. WMH shape is illustrated with symbols with three varying degrees of shape irregularity (regular, 
moderate, and irregular). Pie charts indicate percentages of participants with infarcts, enlarged PVS 
or microbleeds. S: subgroup; WMH: white matter hyperintensities; enlarged PVS: enlarged perivascular 
spaces in and around the basal ganglia. 
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Table 6.2. Baseline characteristics of the study sample per subgroup. S: subgroup; BMI: body mass 
index. 

S1
N=368

S2
N=161

S3
N=425

S4
N=239

S5
N=171

S6
N=333

S7
N=98

S8
N=42

S9
N=105

S10
N=241

S11
N=240

S12
N=87

S13
N=245

S14
N=190

S15
N=111

P value

Age (years) 74.4 ±
4.7

77.5 ±
5.3

77.8 ±
4.9

73.4 ±
4.1

75.6 ±
5.1

74.3 ±
4.8

74.2 ±
4.8

72.7 ±
3.2

76.8 ±
4.8

71.6 ±
3.4

76.5 ±
5.0

78.2 ±
4.9

75.6 ±
5.0

78.8 ±
5.3

77.3 ±
5.1

<0.001

Time to dementia 
follow-up (years)

10.33 ±
2.02

8.89 ±
2.80

9.27 ±
2.93

10.89 ±
1.83

9.94 ±
2.33

10.36 ±
2.25

10.41 ±
2.33

10.53 ±
1.66

9.43 ±
2.68

10.70 ±
1.54

9.54 ±
2.89

8.18 ±
3.10

10.28 ±
2.50

8.78 ±
2.85

9.14 ±
2.77

<0.001

Female sex 73% 52% 50% 74% 65% 54% 70% 62% 54% 81% 61% 37% 79% 45% 43% <0.001

Mild cognitive 
impairment 

7% 11% 12% 3% 9% 5% 3% 5% 12% 5% 9% 11% 8% 15% 15% <0.001

BMI (kg/m2) 26.74 ±
4.29

27.35 ±
4.29

27.02 ±
4.47

27.18 ±
4.07

26.85 ±
4.11

26.53 ±
4.13

26.99 ±
4.07

27.18 ±
4.28

25.91 ±
3.52

27.18 ±
3.99

26.90 ±
4.19

28.41 ±
4.52

27.29 ±
4.55

27.12 ±
3.51

26.72 ±
3.93

0.021

Hypertension 75% 88% 81% 76% 80% 70% 68% 79% 84% 64% 83% 90% 82% 88% 82% <0.001

Type 2 diabetes 6% 14% 10% 6% 10% 6% 9% 17% 10% 4% 9% 11% 11% 15% 15% <0.001

Cholesterol 
(mmol/L) 

5.82 ±
1.10

5.44 ±
1.08

5.67 ±
1.15

5.91 ±
1.16

5.55 ±
1.20

5.77 ±
1.04

5.75 ±
1.10

5.63 ±
0.87

5.69 ±
1.22

5.97 ±
1.07

5.76 ±
1.23

5.52 ±
1.08

5.75 ±
1.14

5.48 ±
1.22

5.20 ±
1.12

0.023

Smoking status   

Never 49% 35% 45% 47% 44% 44% 54% 36% 45% 54% 49% 38% 43% 44% 44% 0.034

Former 41% 53% 47% 42% 44% 44% 38% 45% 44% 39% 40% 47% 42% 46% 45% 0.295

Current 9% 11% 8% 10% 12% 12% 8% 19% 11% 7% 11% 15% 15% 10% 11% 0.214

Coronary artery 
disease

10% 24% 16% 14% 19% 10% 10% 7% 21% 7% 21% 23% 18% 29% 30% <0.001

Data are shown as means ± SD or percentages of individuals per subgroup. Baseline characteristics and 
cardiovascular risk factors were compared between subgroups with chi-square test for binary variables, 
and one-way ANOVAs for continuous variables. S, subgroup; BMI, body mass index; SD, standard deviation. 
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Table 6.2. Baseline characteristics of the study sample per subgroup. S: subgroup; BMI: body mass 
index. 

S1
N=368

S2
N=161

S3
N=425

S4
N=239

S5
N=171

S6
N=333

S7
N=98

S8
N=42

S9
N=105

S10
N=241

S11
N=240

S12
N=87

S13
N=245

S14
N=190

S15
N=111

P value

Age (years) 74.4 ±
4.7

77.5 ±
5.3

77.8 ±
4.9

73.4 ±
4.1

75.6 ±
5.1

74.3 ±
4.8

74.2 ±
4.8

72.7 ±
3.2

76.8 ±
4.8

71.6 ±
3.4

76.5 ±
5.0

78.2 ±
4.9

75.6 ±
5.0

78.8 ±
5.3

77.3 ±
5.1

<0.001

Time to dementia 
follow-up (years)

10.33 ±
2.02

8.89 ±
2.80

9.27 ±
2.93

10.89 ±
1.83

9.94 ±
2.33

10.36 ±
2.25

10.41 ±
2.33

10.53 ±
1.66

9.43 ±
2.68

10.70 ±
1.54

9.54 ±
2.89

8.18 ±
3.10

10.28 ±
2.50

8.78 ±
2.85

9.14 ±
2.77

<0.001

Female sex 73% 52% 50% 74% 65% 54% 70% 62% 54% 81% 61% 37% 79% 45% 43% <0.001

Mild cognitive 
impairment 

7% 11% 12% 3% 9% 5% 3% 5% 12% 5% 9% 11% 8% 15% 15% <0.001

BMI (kg/m2) 26.74 ±
4.29

27.35 ±
4.29

27.02 ±
4.47

27.18 ±
4.07

26.85 ±
4.11

26.53 ±
4.13

26.99 ±
4.07

27.18 ±
4.28

25.91 ±
3.52

27.18 ±
3.99

26.90 ±
4.19

28.41 ±
4.52

27.29 ±
4.55

27.12 ±
3.51

26.72 ±
3.93

0.021

Hypertension 75% 88% 81% 76% 80% 70% 68% 79% 84% 64% 83% 90% 82% 88% 82% <0.001

Type 2 diabetes 6% 14% 10% 6% 10% 6% 9% 17% 10% 4% 9% 11% 11% 15% 15% <0.001

Cholesterol 
(mmol/L) 

5.82 ±
1.10

5.44 ±
1.08

5.67 ±
1.15

5.91 ±
1.16

5.55 ±
1.20

5.77 ±
1.04

5.75 ±
1.10

5.63 ±
0.87

5.69 ±
1.22

5.97 ±
1.07

5.76 ±
1.23

5.52 ±
1.08

5.75 ±
1.14

5.48 ±
1.22

5.20 ±
1.12

0.023

Smoking status   

Never 49% 35% 45% 47% 44% 44% 54% 36% 45% 54% 49% 38% 43% 44% 44% 0.034

Former 41% 53% 47% 42% 44% 44% 38% 45% 44% 39% 40% 47% 42% 46% 45% 0.295

Current 9% 11% 8% 10% 12% 12% 8% 19% 11% 7% 11% 15% 15% 10% 11% 0.214

Coronary artery 
disease

10% 24% 16% 14% 19% 10% 10% 7% 21% 7% 21% 23% 18% 29% 30% <0.001

Data are shown as means ± SD or percentages of individuals per subgroup. Baseline characteristics and 
cardiovascular risk factors were compared between subgroups with chi-square test for binary variables, 
and one-way ANOVAs for continuous variables. S, subgroup; BMI, body mass index; SD, standard deviation. 
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Table 6.3. Between-group differences of brain MRI markers. 

S1
N=368

S2
N=161

S3
N=425

S4
N=239

S5
N=171

S6
N=333

S7
N=98

S8
N=42

S9
N=105

S10
N=241

S11
N=240

S12
N=87

S13
N=245

S14
N=190

S15
N=111

P value

Total WMH volume 11.87 ±
4.69

35.85±

22.86

29.93 ±

16.76

7.50 ±
3.33

11.76 ±
7.66

8.02 ±
3.72

5.77 ±
2.25

6.07 ±
2.66

22.90 ±

12.89

3.20 ±
1.44

25.93 ±
15.89

50.32 ±
20.71

24.56 ±
9.63

41.11 ±
21.16

22.85 ±
16.85

<0.001

PV/C WMH volume 10.68 ±
4.59

33.76 ±
22.83

28.51 ±
16.81

6.05 ±
3.10

10.28 ±
7.04

7.57 ±
3.60

4.83 ±
2.14

5.18 ±
2.65

21.05 ±
12.86

2.37 ±
1.29

23.93 ±
15.72

46.99 ±
20.77

21.43 ±
9.71

39.19 ±
21.46

21.29 ±
16.60

<0.001

Deep WMH volume 1.18 ±
0.94

2.09 ±
1.52

1.42 ±
0.91

1.45  ±
0.85

 

1.49 ±
1.69

0.45 ±
0.39

0.94 ±
0.81

0.89 ±
0.75

1.85 ±
1.41

0.83 ±
0.51

2.00 ±
1.27

3.33 ±
1.51

3.13 ±
1.81

1.91 ±

1.36

1.57 ±
1.35

<0.001

Number of PV/C 14.69 ±
5.70

14.86±
5.03

14.96 ±
5.51

14.90 ±
5.89

14.71 ±
5.07

15.27 ±
6.19

15.53 ±
6.06

15.36 ±
5.94

14.78 ±
5.57

16.00 ±
5.98

14.93 ±
6.08

15.62 ±
6.12

15.23 ±
5.94

14.78 ±
5.46

14.57 ±
5.41

<0.001

Number of deep 
WMH

25.40 ±
15.29

44.69 ±
29.64

41.26 ±
25.69

21.23 ±
13.84

28.89 ±
26.73

16.39 ±
13.72

15.06 ±
10.83

14.67±
10.29

41.90 ±
22.40

8.20 ±
5.11

46.33 ±
26.79

86.90 ±
40.35

45.49 ±
16.62

46.88 ±
28.29

34.59 ±
23.67

<0.001

PV/C solidity 0.18 ±
0.07

0.15 ±
0.05

0.13 ±
0.05

0.23 ±
0.11

0.21 ±
0.13

0.20 ±
0.11

0.25 ±
0.11

0.25 ±
0.12

0.13 ±
0.05

0.39 ±
0.16

0.14 ±
0.05

0.03 ±
0.15

0.14 ±
0.04

0.14 ±
0.05

0.17 ±
0.07

<0.001

PV/C convexity 1.11 ±
0.12

0.87 ±
0.18

0.89 ±
0.14

1.13 ±
0.13

1.08 ±
0.14

1.13 ±
0.12

1.13 ±
0.11

1.15 ±
0.11

0.97 ±
0.16

1.12 ±
0.11

0.92 ±
0.19

0.67 ±
0.13

0.97 ±
0.14

0.81 ±
0.16

1.00 ±
0.17

<0.001

PV/C concavity 
index

1.22 ±
0.07

1.42 ±
0.14

1.41 ±
0.11

1.17 ±
0.07

1.22 ±
0.11

1.19 ±
0.08

1.15 ±
0.07

1.15 ±
0.06

1.35 ±
0.12

1.09 ±
0.06

1.38 ±
0.15

1.59 ±
0.11

1.34 ±
0.10

1.47 ±
0.13

1.31 ±
0.14

<0.001

PV/C fractal 
dimension

1.69 ±
0.09

1.84 ±
0.11

1.82 ±
0.08

1.65 ±
0.11

1.67 ±
0.14

1.62 ±
0.11

1.58 ±
0.12

1.58 ±
0.11

1.78 ±
0.10

1.48 ±
0.14

1.80 ±
0.11

1.92 ±
0.07

1.81 ±
0.09

1.87 ±
0.09

1.74 ±
0.12

<0.001

Deep WMH 
eccentricity

0.56 ±
0.06

0.61 ±
0.06

0.63 ±
0.06

0.61 ±
0.07

0.62 ±
0.08

0.65 ±
0.08

0.62 ±
0.08

0.60 ±
0.10

0.61 ±
0.07

0.64 ±
0.08

0.61 ±
0.06

0.66 ±
0.05

0.58 ±
0.05

0.63 ±
0.06

0.62 ±
0.06

<0.001

Deep WMH fractal 
dimension

1.79 ±
1.79

1.69 ±
0.12

1.65 ±
0.12

1.71 ±
0.13

1.69 ±
0.13

1.59 ±
0.12

1.69 ±
0.15

1.68 ±
0.12

1.68 ±
0.13

1.72 ±
0.13

1.69 ±
0.13

1.60 ±
0.11

1.77 ±
0.08

1.66 ±
0.12

1.70 ±
0.12

<0.001

% lateral ventricle 
volume

2.61 ±
0.97

3.23 ±
1.09

3.60 ±
1.15

2.18 ±
0.72

2.63 ±
1.08 

2.82 ±
0.93

2.19 ±
0.72

2.21 ±
0.91

3.09 ±
1.21

1.85 ±
0.64

2.92 ±
1.06

3.43 ±
0.98

2.50 ±
0.82

3.64 ±
1.21

3.08 ±
1.07

<0.001

% total brain 
volume

74.52 ±
3.02

71.48 ±
3.59

70.80 ±
3.02

74.27 ±
2.45

72.91 ±
3.07

72.25 ±
2.82

73.44 ±
3.62 

74.93 ±
3.16

72.02 ±
3.56

75.73 ±
3.07

71.94 ±
3.60

68.76 ±
4.15

74.55 ±
2.93

70.69 ±
4.01

71.75 ±
3.09

<0.001

% grey matter 
volume

46.84 ±
2.60

44.50 ±
2.96

43.97 ±
2.62

47.28 ±
2.04

45.95 ±
2.70

45.41 ±
2.43

46.49 ±
3.09

47.86 ±
2.32

45.06 ±
2.85

48.20 ±
2.58

44.96 ±
2.93 

42.71 ±
3.40

46.76 ±
2.41

43.72 ±
3.38

44.45 ±
2.83

<0.001

% white matter 
volume

27.68 ±
1.49

26.98 ±
1.93

26.83 ±
1.35

26.98 ±
1.55

26.96 ±
1.47

26.84 ±
1.49

26.95 ±
1.54

27.07 ±
1.35

26.96 ±
1.74

27.53 ±
1.48

26.98 ±
1.70

26.05 ±
2.03

27.79 ±
1.63

26.97 ±
1.85

27.30 ±
1.59

<0.001

PVS (basal ganglia) 0% 9% 8% 0% 5% 0% 4% 0% 0% 0% 8% 2% 0% 6% 8% <0.001
PVS 0% 0% 0% 3% 10% 0% 100% 0% 17% 0% 99% 2% 0% 17% 16% <0.001
Microbleeds 0% 14% 1% 16% 12% 0% 0% 5% 66% 0% 2% 1% 0% 9% 7% <0.001
Subcortical infarcts 0% 100% 0% 0% 8% 0% 0% 100% 0% 0% 0% 3% 0% 22% 5% <0.001
Cerebellar infarcts 0% 5% 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 99% 29% <0.001
Cortical infarcts 0% 4% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 4% 100% <0.001
Infarcts 0% 100% 0% 0% 100% 0% 0% 100% 0% 0% 0% 3% 0% 100% 100% <0.001

Data shown as mean ±SD or percentages of individuals per subgroup. Brain MRI markers were compared 
between subgroups with chi-square Test for binary variables, and one-way ANOVAs for continuous 
variables. The data for WMH volumes per lobe are shown in supplementary table S.6.8.2. S, subgroup; 
WMH, white matter hyperintensity; PV/C periventricular/confluent WMH; PVS, enlarged perivascular 
spaces; SD, standard deviation. 
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Table 6.3. Between-group differences of brain MRI markers. 

S1
N=368

S2
N=161

S3
N=425

S4
N=239

S5
N=171

S6
N=333

S7
N=98

S8
N=42

S9
N=105

S10
N=241

S11
N=240

S12
N=87

S13
N=245

S14
N=190

S15
N=111

P value

Total WMH volume 11.87 ±
4.69

35.85±

22.86

29.93 ±

16.76

7.50 ±
3.33

11.76 ±
7.66

8.02 ±
3.72

5.77 ±
2.25

6.07 ±
2.66

22.90 ±

12.89

3.20 ±
1.44

25.93 ±
15.89

50.32 ±
20.71

24.56 ±
9.63

41.11 ±
21.16

22.85 ±
16.85

<0.001

PV/C WMH volume 10.68 ±
4.59

33.76 ±
22.83

28.51 ±
16.81

6.05 ±
3.10

10.28 ±
7.04

7.57 ±
3.60

4.83 ±
2.14

5.18 ±
2.65

21.05 ±
12.86

2.37 ±
1.29

23.93 ±
15.72

46.99 ±
20.77

21.43 ±
9.71

39.19 ±
21.46

21.29 ±
16.60

<0.001

Deep WMH volume 1.18 ±
0.94

2.09 ±
1.52

1.42 ±
0.91

1.45  ±
0.85

 

1.49 ±
1.69

0.45 ±
0.39

0.94 ±
0.81

0.89 ±
0.75

1.85 ±
1.41

0.83 ±
0.51

2.00 ±
1.27

3.33 ±
1.51

3.13 ±
1.81

1.91 ±

1.36

1.57 ±
1.35

<0.001

Number of PV/C 14.69 ±
5.70

14.86±
5.03

14.96 ±
5.51

14.90 ±
5.89

14.71 ±
5.07

15.27 ±
6.19

15.53 ±
6.06

15.36 ±
5.94

14.78 ±
5.57

16.00 ±
5.98

14.93 ±
6.08

15.62 ±
6.12

15.23 ±
5.94

14.78 ±
5.46

14.57 ±
5.41

<0.001

Number of deep 
WMH

25.40 ±
15.29

44.69 ±
29.64

41.26 ±
25.69

21.23 ±
13.84

28.89 ±
26.73

16.39 ±
13.72

15.06 ±
10.83

14.67±
10.29

41.90 ±
22.40

8.20 ±
5.11

46.33 ±
26.79

86.90 ±
40.35

45.49 ±
16.62

46.88 ±
28.29

34.59 ±
23.67

<0.001

PV/C solidity 0.18 ±
0.07

0.15 ±
0.05

0.13 ±
0.05

0.23 ±
0.11

0.21 ±
0.13

0.20 ±
0.11

0.25 ±
0.11

0.25 ±
0.12

0.13 ±
0.05

0.39 ±
0.16

0.14 ±
0.05

0.03 ±
0.15

0.14 ±
0.04

0.14 ±
0.05

0.17 ±
0.07

<0.001

PV/C convexity 1.11 ±
0.12

0.87 ±
0.18

0.89 ±
0.14

1.13 ±
0.13

1.08 ±
0.14

1.13 ±
0.12

1.13 ±
0.11

1.15 ±
0.11

0.97 ±
0.16

1.12 ±
0.11

0.92 ±
0.19

0.67 ±
0.13

0.97 ±
0.14

0.81 ±
0.16

1.00 ±
0.17

<0.001

PV/C concavity 
index

1.22 ±
0.07

1.42 ±
0.14

1.41 ±
0.11

1.17 ±
0.07

1.22 ±
0.11

1.19 ±
0.08

1.15 ±
0.07

1.15 ±
0.06

1.35 ±
0.12

1.09 ±
0.06

1.38 ±
0.15

1.59 ±
0.11

1.34 ±
0.10

1.47 ±
0.13

1.31 ±
0.14

<0.001

PV/C fractal 
dimension

1.69 ±
0.09

1.84 ±
0.11

1.82 ±
0.08

1.65 ±
0.11

1.67 ±
0.14

1.62 ±
0.11

1.58 ±
0.12

1.58 ±
0.11

1.78 ±
0.10

1.48 ±
0.14

1.80 ±
0.11

1.92 ±
0.07

1.81 ±
0.09

1.87 ±
0.09

1.74 ±
0.12

<0.001

Deep WMH 
eccentricity

0.56 ±
0.06

0.61 ±
0.06

0.63 ±
0.06

0.61 ±
0.07

0.62 ±
0.08

0.65 ±
0.08

0.62 ±
0.08

0.60 ±
0.10

0.61 ±
0.07

0.64 ±
0.08

0.61 ±
0.06

0.66 ±
0.05

0.58 ±
0.05

0.63 ±
0.06

0.62 ±
0.06

<0.001

Deep WMH fractal 
dimension

1.79 ±
1.79

1.69 ±
0.12

1.65 ±
0.12

1.71 ±
0.13

1.69 ±
0.13

1.59 ±
0.12

1.69 ±
0.15

1.68 ±
0.12

1.68 ±
0.13

1.72 ±
0.13

1.69 ±
0.13

1.60 ±
0.11

1.77 ±
0.08

1.66 ±
0.12

1.70 ±
0.12

<0.001

% lateral ventricle 
volume

2.61 ±
0.97

3.23 ±
1.09

3.60 ±
1.15

2.18 ±
0.72

2.63 ±
1.08 

2.82 ±
0.93

2.19 ±
0.72

2.21 ±
0.91

3.09 ±
1.21

1.85 ±
0.64

2.92 ±
1.06

3.43 ±
0.98

2.50 ±
0.82

3.64 ±
1.21

3.08 ±
1.07

<0.001

% total brain 
volume

74.52 ±
3.02

71.48 ±
3.59

70.80 ±
3.02

74.27 ±
2.45

72.91 ±
3.07

72.25 ±
2.82

73.44 ±
3.62 

74.93 ±
3.16

72.02 ±
3.56

75.73 ±
3.07

71.94 ±
3.60

68.76 ±
4.15

74.55 ±
2.93

70.69 ±
4.01

71.75 ±
3.09

<0.001

% grey matter 
volume

46.84 ±
2.60

44.50 ±
2.96

43.97 ±
2.62

47.28 ±
2.04

45.95 ±
2.70

45.41 ±
2.43

46.49 ±
3.09

47.86 ±
2.32

45.06 ±
2.85

48.20 ±
2.58

44.96 ±
2.93 

42.71 ±
3.40

46.76 ±
2.41

43.72 ±
3.38

44.45 ±
2.83

<0.001

% white matter 
volume

27.68 ±
1.49

26.98 ±
1.93

26.83 ±
1.35

26.98 ±
1.55

26.96 ±
1.47

26.84 ±
1.49

26.95 ±
1.54

27.07 ±
1.35

26.96 ±
1.74

27.53 ±
1.48

26.98 ±
1.70

26.05 ±
2.03

27.79 ±
1.63

26.97 ±
1.85

27.30 ±
1.59

<0.001

PVS (basal ganglia) 0% 9% 8% 0% 5% 0% 4% 0% 0% 0% 8% 2% 0% 6% 8% <0.001
PVS 0% 0% 0% 3% 10% 0% 100% 0% 17% 0% 99% 2% 0% 17% 16% <0.001
Microbleeds 0% 14% 1% 16% 12% 0% 0% 5% 66% 0% 2% 1% 0% 9% 7% <0.001
Subcortical infarcts 0% 100% 0% 0% 8% 0% 0% 100% 0% 0% 0% 3% 0% 22% 5% <0.001
Cerebellar infarcts 0% 5% 0% 0% 98% 0% 0% 0% 0% 0% 0% 0% 0% 99% 29% <0.001
Cortical infarcts 0% 4% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 4% 100% <0.001
Infarcts 0% 100% 0% 0% 100% 0% 0% 100% 0% 0% 0% 3% 0% 100% 100% <0.001

Data shown as mean ±SD or percentages of individuals per subgroup. Brain MRI markers were compared 
between subgroups with chi-square Test for binary variables, and one-way ANOVAs for continuous 
variables. The data for WMH volumes per lobe are shown in supplementary table S.6.8.2. S, subgroup; 
WMH, white matter hyperintensity; PV/C periventricular/confluent WMH; PVS, enlarged perivascular 
spaces; SD, standard deviation. 
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Figure 6.4. Hazard ratios per subgroup based on the Cox regression analysis. Controlled for age, 
sex, and cognitive status at baseline. Subgroup 10 was used as the reference subgroup in the model, 
as it was the subgroup with the lowest amount of brain abnormalities. S: subgroup; HR: hazard ratio; CI: 
confidence interval.

6.5 DISCUSSION 
We showed that distinct brain MRI phenotypes can be identified in community-
dwelling older adults. Some of the 15 distinct subgroups that were identified showed 
a different long-term dementia risk, with an increased risk, especially in individuals 
in the multi-burden brain pathology subgroups, and in the subgroup with relatively 
severe WMH and atrophy. Most subgroups showed a significantly increased risk for 
dementia compared with the reference subgroup that showed the least abnormalities 
on brain MRI. 

The exact underlying structural correlates of the early predisposition to dementia 
remain largely unknown. Many validated and commonly used brain MRI markers are 
nonspecific to pathology and disease and commonly occur with ageing.19 Nevertheless, 
previous studies frequently focused on single or small groups of MRI markers 
and their relationship with neurovascular or neurodegenerative diseases.20-23 A 
combined analysis of brain MRI markers could improve our understanding of the 
pathophysiology of and early predisposition for dementia, as different brain diseases 
usually lead to patterns of different brain abnormalities.24 In other fields of research, 
combined analysis to identify phenotypes has previously been performed. Examples 
are the identification of asthma phenotypes25,26 and subphenotypes of chronic 
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obstructive pulmonary disease.27,28 Moreover, it is frequently used in the field of 
genetics to identify genotypes, for example, to identify differences in DNA methylation 
and gene expression in breast cancer.29 

There are some previous studies on combined analysis of brain MRI markers or 
data-driven approaches in the field of dementia research. In a previous study, 
using an unsupervised deep learning approach on a large diverse data set of T1- 
weighted brain MRI scans showed that the difference between predicted brain age 
and chronological age is associated with the presence of different diseases (e.g., 
schizophrenia, and Alzheimer disease (AD)).30 In another study, a semi-supervised 
deep-clustering method identified 4 neurodegenerative brain MRI patterns based on 
atrophy regions of interests on T1 scans in a data set including cognitively healthy 
individuals and patients with cognitive impairment and dementia.31 Another study 
identified 3 brain MRI patterns (neurodegeneration, white matter disease, and typical 
brain ageing) on T1-weighted scans using a machine learning–based method that 
can be used to identify individual brain health.32 These previous studies used (semi) 
supervised deep learning approaches, which is a different approach compared with 
our unsupervised machine learning approach. There are also some previous studies 
that have used a more similar approach compared with ours, albeit in different patient 
populations. For example, a previous study has applied hierarchical clustering to 
identify patterns of markers (including brain MRI markers, blood values, and CSF 
markers) related to the conversion from mild cognitive impairment to AD.33 Here, 4 
subgroups were identified with a different risk for conversion to AD.33 The subgroup 
with the highest risk showed the most severe biomarker profile, for example, the 
highest WMH volumes, the lowest CSF amyloid beta, the highest CSF tau, and the 
lowest entorhinal cortical thickness.33 Another previous study showed that midlife 
white matter textural properties were associated with future dementia risk.34 A more 
heterogeneous normal appearing white matter intensity profile was associated 
with a higher WMH burden in the future, and a more heterogeneous intensity of 
normal appearing white matter was related to increased dementia risk. Another 
study found 2 distinct subgroups of mild cognitive impairment based on radiomics 
similarity networks.35 Significant differences between the 2 mild cognitive impairment 
subgroups were found, among others, in the regional radiomics similarity networks 
of the hippocampus, temporal lobe, parahippocampal gyrus, and amygdala, as well 
as in the gray matter volume and cortical thickness. Furthermore, the 2 subgroups 
were significantly different from each other in clinical measures and the number 
of participants progressing to dementia within 3 years.35 Our study is the first to 
apply an unsupervised machine learning approach in a large group of community-
dwelling individuals to assess the association of brain MRI phenotypes and long-term 
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dementia risk. The large sample size of community-dwelling individuals in our study 
aids the generalizability of our results. Our study is further strengthened by the long 
follow-up time to the assessment of occurrence of dementia. Because of our study 
design, in the future, our method could help in assessing an individuals increased 
dementia risk at an early stage to determine patient prognosis in clinical practice and 
may aid in patient selection for future treatment studies. 

A hierarchical clustering model allows combining of a spectrum of brain MRI markers 
and to find patterns in these data. We have previously applied the hierarchical 
clustering method in different data sets with different MRI markers to identify 
MRI phenotypes of the brain related to future stroke and mortality in patients with 
manifest arterial disease,7 as well as related to increased postoperative delirium 
risk in preoperative patients.36 To the best of our knowledge, this study assessed 
brain MRI phenotypes in relation to long-term dementia risk in community-dwelling 
older adults. Our results identified 15 distinct subgroups of individuals with different 
distributions of brain MRI markers of neurodegenerative and neurovascular disease. 
The multi-burden group with the highest long-term risk for dementia (subgroup 12) 
does show markers of SVD, such as high WMH volumes and an irregular WMH 
shape, but includes only few individuals with brain infarcts. In addition, subgroup 12 
showed the most severe cerebral atrophy, which may suggest that this subgroup 
has more underlying neurodegenerative pathology. Subgroup 2 has, similar to 
subgroup 12, high WMH volumes and an irregular WMH shape but also includes 
a high number of participants with subcortical, cerebellar, and cortical infarcts. 
Atrophy is less prominent in subgroup 2 compared with subgroup 12. Subgroup 
15 may include mostly patients with large vessel disease, as WMH volumes and 
shape are only moderately abnormal, while all participants in this group have cortical 
infarcts. We showed that different brain MRI phenotypes, characterized by a distinct 
combination of brain MRI markers, predispose to occurrence of dementia and are 
related to different long-term dementia risks.

Strengths of our study include the use of multiple brain MRI markers in one 
framework, a large sample size, and a long follow-up period for dementia outcome. 
Furthermore, we mostly included markers that can be (semi) automatically detected 
on brain MRI scans (e.g., WMH volumes and brain atrophy) and the inclusion of novel 
brain MRI markers (such as WMH shape). An automated, unsupervised approach 
to identify groups was applied that allowed us to identify novel patterns of brain 
MRI markers. Limitations of this study might be the somewhat subjective cut-offs 
within the model, such as the dendrogram cut-off. However, to increase objectivity, 
we used the Dunn index and the heatmap to determine the cut-off for the number of 
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subgroups. Another limitation could be that the model is dependent on the selection 
of brain MRI markers that were included in the model. We therefore chose to include 
etiologically and prognostically relevant and validated brain MRI markers of which 
many can be quantified automatically. Moreover, the hierarchical clustering results 
could also be influenced by the choice of linkage method (e.g., Ward’s, centroid), 
which is used to delineate the subgroups. We have chosen to use Ward’s criteria as 
a linkage method because it generates subgroups with minimal within subgroup 
variance and to maximize the between-subgroup variance, which we deemed as 
most suitable for this data set and type of analysis. Another general limitation of the 
clustering method could be that in our sensitivity analyses, we showed that there is 
some dependency of the clustering results based on the number and selection of 
participants. For future research the Subtype and Stage Inference (SuStaIn) method, 
an unsupervised machine learning technique that identifies population subgroups 
with common patterns of disease progression could be an interesting approach.37 
SuStaIn could provide additional insights since it combines traditional clustering with 
disease progression modeling, but the effect of this approach on reproducibility is 
also of interest. Another limitation of this study could be that most neuroimaging 
research 1.5T MRI scanners are nowadays replaced with a 3T MRI system, which 
was not yet the case at the time of the data collection for our study. Nevertheless, 
we did successfully identify distinct brain MRI phenotypes based on our data set.
In conclusion, distinct brain MRI phenotypes are related to varying long-term risks of 
developing dementia. Brain MRI phenotypes may assist in an improved understanding 
of the structural correlates of dementia predisposition. These findings may aid in the 
future to determine patient prognosis and for patient selection for future treatment 
studies. 
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Figure S.6.8.1. Simplified illustrations of the concepts of convexity and convex hull. A shape is convex 
if you can connect any two points (e.g. x and y) within the shape, while the connecting line (orange) is also 
always within the shape. If this is not possible the shape is concave. A convex hull (red) is the smallest 
convex set that contains the shape (blue). 

Figure S.6.8.2. The Dunn index is shown on the y-axis, and on the x-axis the number of clusters/
subgroups is shown. The Dunn index should be maximized for an optimal number of groups. The red 
line indicates 15 groups, which is the number of groups used in the analysis. ks, number of clusters; DI, 
Dunn index. 
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Table S.6.8.2. Between-group differences of WMH volumes per lobe. 

S1
N=368

S2
N=161

S3
N=425

S4
N=239

S5
N=171

S6
N=333

S7
N=98

S8
N=42

S9
N=105

S10
N=241

S11
N=240

S12
N=87

S13
N=245

S14
N=190

S15
N=111

P value

PV/C WMH volume 
frontal lobe

2.84 ±
1.66

12.89 ±
12.26

10.33 ±
9.30

1.86 ±
1.34

3.16 ±
3.24

1.74 ±
1.07

1.23 ±
0.75

1.35 ±
0.81

6.99 ±
6.30

0.71 ±
0.46

8.35 ±
7.36

18.00 ±
11.01

7.28 ±
5.08

15.71 ±
12.19 

6.91  ±
7.89

<0.000

PV/C WMH volume 
parietal lobe

1.78 ±
1.63

8.06 ±
6.48

6.75 ±
5.42

0.78 ±
0.93

1.76 ±
2.06 

0.98 ±
0.89

0.44 ±
0.45

0.66 ±
0.78

4.55 ±
3.84

0.16 ±
0.23

±
5.15

10.91 ±
6.03

4.80 ±
3.27

9.50 ±
6.50

4.79 ±
5.31

<0.000

PV/C WMH volume 
temporal lobe

2.16 ±
1.15

5.10 ±
2.74

4.44 ±
2.23

1.17 ±
0.69

1.89 ±
1.34

1.54 ±
0.87

0.98 ±
0.53

1.11 ±
0.68

3.61 ±
2.04

0.46 ±
0.35

3.93 ±
2.26

7.15 ±
3.13

4.03 ±
1.85

5.66 ±
2.68 

3.66 ±
2.33

<0.000

PV/C WMH volume 
occipital lobe

1.68 ±
1.01

3.35 ±
2.41

3.25 ±
1.73

0.55 ±
0.59

1.42 ±
1.26

1.71 ±
1.03

0.85 ±
0.76

0.75 ±
0.65

2.62 ±
1.58

0.21 ±
0.32

2.69 ±
1.77

5.54 ±
3.14

1.83 ±
1.07

3.80 ±
2.31

2.87 ±
2.02

<0.000

Other PV/C WMH 
volume

2.23 ±
0.75

4.36 ±
2.02

3.74 ±
1.41

1.69 ±
0.66

2.04 ±
0.98

1.60 ±
0.65

1.33 ±
0.55

1.31 ±
0.58

3.28 ±
1.38

0.84 ±
0.43

3.61 ±
1.58

5.39 ±
1.69

3.49 ±
1.04

4.53 ±
 1.65

3.05 ±
1.58

<0.000

Deep WMH volume 
frontal lobe

0.79 ±
0.72

1.44 ±
1.20

0.98 ±
0.71

0.46 ±
0.50

0.79 ±
1.09

0.24 ±
0.28

0.27 ±
0.36

0.27 ±
0.36

1.27 ±
1.05 

0.10 ±
0.14

1.36 ±
0.96

2.11 ±
1.11

2.14 ±
1.43

1.30 ±
1.05

1.03 ±
1.14

<0.000

Deep WMH volume 
parietal lobe

0.21 ±
0.25

0.33 ±
0.34

0.22 ±
0.19

0.11 ±
0.13

0.21 ±
0.34

0.07 ±
0.09

0.07 ±
0.13

0.07 ±
0.08

0.32 ±
0.32

0.03 ±
0.04

0.31 ±
0.26

0.60 ±
0.50

0.56 ±
0.47

0.34 ±
0.33

0.26 ±
0.24

<0.000

Deep WMH volume 
temporal lobe

0.03 ±
0.05

0.07 ±
0.09

0.04 ±
0.05

0.06 ±
0.09

0.05 ±
0.08

0.02 ±
0.03

0.03 ±
0.05

0.04 ±
0.05

0.06 ±
0.09

0.03 ±
0.04

0.07 ±
0.09

0.29 ±
0.29

0.11 ±
0.14

0.07 ±
0.09

0.04 ±
0.06 

<0.000

Deep WMH occipital 
lobe

0.10 ±
0.17

0.11 ±
0.20

0.09 ±
0.18

0.74 ±
0.47

0.37 ±
0.52

0.09 ±
0.14

0.52 ±
0.60

0.47 ±
0.44

0.09 ±
0.15

0.64 ±
0.48

0.13 ±
0.23

0.11 ±
0.11

0.18 ±
0.34

0.09 ±
0.12

0.17 ±
0.27

<0.000

Other deep WMH 
volume

0.05 ±
0.06

0.13 ±
0.12

0.09 ±
0.10

0.08 ±
0.09

0.08 ±
0.10

0.03 ±
0.04

0.04 ±
0.06

0.05 ±
0.07

0.11 ±
0.11

0.04 ±
0.05

0.14 ±
0.14

0.22 ±
0.14

0.14 ±
0.14

0.12 ±
0.11

0.07 ±
0.09

 <0.000

Data are shown as means ± SD. Brain MRI markers were compared between subgroups with one-way 
ANOVAs. S, subgroup; WMH, white matter hyperintensity; PV/C periventricular/confluent WMH; SD, 
standard deviation. Other PV/C WMH volume or other deep WMH volume are defined as lesions or parts 
of lesions that outside of the brain lobe masks, towards the brain stem, and internal capsule. 
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Table S.6.8.2. Between-group differences of WMH volumes per lobe. 

S1
N=368

S2
N=161

S3
N=425

S4
N=239

S5
N=171

S6
N=333

S7
N=98

S8
N=42

S9
N=105

S10
N=241

S11
N=240

S12
N=87

S13
N=245

S14
N=190

S15
N=111

P value

PV/C WMH volume 
frontal lobe

2.84 ±
1.66

12.89 ±
12.26

10.33 ±
9.30

1.86 ±
1.34

3.16 ±
3.24

1.74 ±
1.07

1.23 ±
0.75

1.35 ±
0.81

6.99 ±
6.30

0.71 ±
0.46

8.35 ±
7.36

18.00 ±
11.01

7.28 ±
5.08

15.71 ±
12.19 

6.91  ±
7.89

<0.000

PV/C WMH volume 
parietal lobe

1.78 ±
1.63

8.06 ±
6.48

6.75 ±
5.42

0.78 ±
0.93

1.76 ±
2.06 

0.98 ±
0.89

0.44 ±
0.45

0.66 ±
0.78

4.55 ±
3.84

0.16 ±
0.23

±
5.15

10.91 ±
6.03

4.80 ±
3.27

9.50 ±
6.50

4.79 ±
5.31

<0.000

PV/C WMH volume 
temporal lobe

2.16 ±
1.15

5.10 ±
2.74

4.44 ±
2.23

1.17 ±
0.69

1.89 ±
1.34

1.54 ±
0.87

0.98 ±
0.53

1.11 ±
0.68

3.61 ±
2.04

0.46 ±
0.35

3.93 ±
2.26

7.15 ±
3.13

4.03 ±
1.85

5.66 ±
2.68 

3.66 ±
2.33

<0.000

PV/C WMH volume 
occipital lobe

1.68 ±
1.01

3.35 ±
2.41

3.25 ±
1.73

0.55 ±
0.59

1.42 ±
1.26

1.71 ±
1.03

0.85 ±
0.76

0.75 ±
0.65

2.62 ±
1.58

0.21 ±
0.32

2.69 ±
1.77

5.54 ±
3.14

1.83 ±
1.07

3.80 ±
2.31

2.87 ±
2.02

<0.000

Other PV/C WMH 
volume

2.23 ±
0.75

4.36 ±
2.02

3.74 ±
1.41

1.69 ±
0.66

2.04 ±
0.98

1.60 ±
0.65

1.33 ±
0.55

1.31 ±
0.58

3.28 ±
1.38

0.84 ±
0.43

3.61 ±
1.58

5.39 ±
1.69

3.49 ±
1.04

4.53 ±
 1.65

3.05 ±
1.58

<0.000

Deep WMH volume 
frontal lobe

0.79 ±
0.72

1.44 ±
1.20

0.98 ±
0.71

0.46 ±
0.50

0.79 ±
1.09

0.24 ±
0.28

0.27 ±
0.36

0.27 ±
0.36

1.27 ±
1.05 

0.10 ±
0.14

1.36 ±
0.96

2.11 ±
1.11

2.14 ±
1.43

1.30 ±
1.05

1.03 ±
1.14

<0.000

Deep WMH volume 
parietal lobe

0.21 ±
0.25

0.33 ±
0.34

0.22 ±
0.19

0.11 ±
0.13

0.21 ±
0.34

0.07 ±
0.09

0.07 ±
0.13

0.07 ±
0.08

0.32 ±
0.32

0.03 ±
0.04

0.31 ±
0.26

0.60 ±
0.50

0.56 ±
0.47

0.34 ±
0.33

0.26 ±
0.24

<0.000

Deep WMH volume 
temporal lobe

0.03 ±
0.05

0.07 ±
0.09

0.04 ±
0.05

0.06 ±
0.09

0.05 ±
0.08

0.02 ±
0.03

0.03 ±
0.05

0.04 ±
0.05

0.06 ±
0.09

0.03 ±
0.04

0.07 ±
0.09

0.29 ±
0.29

0.11 ±
0.14

0.07 ±
0.09

0.04 ±
0.06 

<0.000

Deep WMH occipital 
lobe

0.10 ±
0.17

0.11 ±
0.20

0.09 ±
0.18

0.74 ±
0.47

0.37 ±
0.52

0.09 ±
0.14

0.52 ±
0.60

0.47 ±
0.44

0.09 ±
0.15

0.64 ±
0.48

0.13 ±
0.23

0.11 ±
0.11

0.18 ±
0.34

0.09 ±
0.12

0.17 ±
0.27

<0.000

Other deep WMH 
volume

0.05 ±
0.06

0.13 ±
0.12

0.09 ±
0.10

0.08 ±
0.09

0.08 ±
0.10

0.03 ±
0.04

0.04 ±
0.06

0.05 ±
0.07

0.11 ±
0.11

0.04 ±
0.05

0.14 ±
0.14

0.22 ±
0.14

0.14 ±
0.14

0.12 ±
0.11

0.07 ±
0.09

 <0.000

Data are shown as means ± SD. Brain MRI markers were compared between subgroups with one-way 
ANOVAs. S, subgroup; WMH, white matter hyperintensity; PV/C periventricular/confluent WMH; SD, 
standard deviation. Other PV/C WMH volume or other deep WMH volume are defined as lesions or parts 
of lesions that outside of the brain lobe masks, towards the brain stem, and internal capsule. 
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S.6.8.1 Supplementary results 
Our model resulted in 15 distinct subgroups with unique combinations of brain MRI 
markers. Below is a more detailed description of the brain MRI markers and the most 
important characteristics per subgroup. Subjective and relative cut-off points where 
used for the below used description of the subgroups. For continuous variables 
the subgroups were split into three thirds, with the highest, moderate and lowest 
values. WMH shape was considered as regular/moderate/irregular looking at all 
shape markers together and assessing the main shape. A low solidity, low convexity, 
high concavity index, and high fractal dimension indicate a more irregular shape. 
A high eccentricity indicates a rounder shape, while a low eccentricity indicates a 
more elongated shape. Total WMH volumes were used to describe relatively low/
moderate/high WMH volumes. WMH below ~20 ml were considered relatively low 
volumes, between ~20 ml and ~30 ml relatively moderate volumes and above ~30 
ml as relatively high volumes. Total brain volumes above ~74% of intracranial volume 
were considered as relatively low atrophy, between ~72 and ~74% of intracranial 
volume as relatively moderate atrophy and below ~72% of intracranial volume as 
relatively severe atrophy. 

Subgroup 1 has relatively low WMH volumes, no infarcts, microbleeds or enlarged 
PVS, a moderately irregular WMH shape and relatively low atrophy. 

Subgroup 2 has relatively high WMH volumes, a high prevalence of subcortical 
infarcts (100%), some cortical, and cerebellar infarcts, an irregular WMH shape, some 
enlarged PVS (in and around the basal ganglia) and microbleeds, and relatively severe 
cerebral atrophy. 

Subgroup 3 has relatively high WMH volumes, some enlarged PVS (in and around 
the basal ganglia), an irregular WMH shape, and relatively severe cerebral atrophy. 

Subgroup 4 has relatively low WMH volumes, no infarcts, almost no enlarged PVS, a 
relatively regular WMH shape, some microbleeds, and relatively low cerebral atrophy. 

Subgroup 5 has relatively low WMH volumes, cerebellar infarcts (98%), some 
enlarged PVS (in and around the basal ganglia, and white matter) and microbleeds, 
a moderately irregular WMH shape, and moderate cerebral atrophy. 

Subgroup 6 has relatively low WMH volumes, a moderately irregular WMH shape, no 
infarcts, no enlarged PVS or microbleeds, and moderate cerebral atrophy. 
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Subgroup 7 has relatively low WMH volumes, no infarcts, a relatively regular WMH 
shape, enlarged PVS (in the white matter 100%), no microbleeds, and moderate 
cerebral atrophy. 

Subgroup 8 has relatively low WMH volumes, a relatively regular WMH shape, enlarged 
PVS (mostly in and around the basal ganglia, and some in the white matter), a high 
prevalence of subcortical infarcts (100%) and a relatively low amount of cerebral atrophy. 

Subgroup 9 has moderately high WMH volumes, a relatively irregular WMH shape, 
the most microbleeds (66%), no infarcts, some enlarged PVS (in the white matter), 
and moderate cerebral atrophy. 

Subgroup 10 has the lowest WMH volumes, no infarcts or enlarged PVS, the most regular 
WMH shape, and the lowest amount of cerebral atrophy (the highest brain volumes). 
Furthermore, this subgroup has the lowest number of participants with hypertension 
(64%), type 2 diabetes (4%), and includes the most female participants (81%). 

Subgroup 11 has moderately high WMH volumes, a relatively irregular WMH shape, 
no infarcts, some microbleeds, enlarged PVS (mostly in the white matter, 99%; basal 
ganglia: 8%), and moderate cerebral atrophy. 

Subgroup 12 has the highest WMH volumes, some subcortical infarcts, some PVS 
(in and around the basal ganglia, and whole brain), the most irregular WMH shape, 
and the most severe cerebral atrophy. Moreover, this subgroup has the highest deep 
WMH volumes in the temporal lobe (0.29 ± 0.29 ml) and the highest percentage of 
participants with hypertension (90%). 

Subgroup 13 has moderately high WMH volumes, no infarcts or enlarged PVS, a 
relatively irregular WMH shape, and a relatively low amount of cerebral atrophy. 

Subgroup 14 has relatively high WMH volumes and a relatively irregular WMH shape, 
some enlarged PVS (in and around the basal ganglia, and in the white matter), some 
subcortical infarcts, a large amount of cerebellar infarcts (99%), some cortical 
infarcts, and a relatively high amount of cerebral atrophy. 

Subgroup 15 has moderately high WMH volumes, a moderately irregular WMH shape, 
some cerebellar infarcts (29%), a large amount of cortical infarcts (100%), some 
subcortical infarcts, a relatively high amount of cerebral atrophy, some microbleeds, 
and some enlarged PVS (in and around the basal ganglia, and in the white matter). 




