
How effective is UML modeling? An empirical perspective on costs and
benefits
Chaudron, M.R.V.; Heijstek, W.; Nugroho, A.

Citation
Chaudron, M. R. V., Heijstek, W., & Nugroho, A. (2012). How effective is UML modeling?
An empirical perspective on costs and benefits. Software And Systems Modeling, 11(4),
571-580. doi:10.1007/s10270-012-0278-4

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/4150048

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/4150048

Softw Syst Model (2012) 11:571–580
DOI 10.1007/s10270-012-0278-4

EXPERT’S VOICE

How effective is UML modeling ?
An empirical perspective on costs and benefits

Michel R. V. Chaudron · Werner Heijstek ·
Ariadi Nugroho

Received: 23 October 2011 / Revised: 23 July 2012 / Accepted: 27 July 2012 / Published online: 26 August 2012
© Springer-Verlag 2012

Abstract Modeling has become a common practice in
modern software engineering. Since the mid 1990s the
Unified Modeling Language (UML) has become the de facto
standard for modeling software systems. The UML is used in
all phases of software development: ranging from the require-
ment phase to the maintenance phase. However, empirical
evidence regarding the effectiveness of modeling in software
development is few and far apart. This paper aims to synthe-
size empirical evidence regarding the effectiveness of mod-
eling using UML in software development, with a special
focus on the cost and benefits.

Keywords Unified Modeling Language ·
Costs and benefits · Quality · Productivity · Effectiveness

1 Introduction

Over the past decade modeling has become a common activ-
ity in software development projects. There is however, very
little evidence about the effectiveness of using UML. As a
result of this lack of scientific knowledge, debates continue
about whether or not modeling helps to improve software
development in practice.

Communicated by Prof. Jon Whittle and Prof. Gregor Engels.

M. R. V. Chaudron · W. Heijstek (B)
Leiden Institute of Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
e-mail: heijstek@liacs.nl

A. Nugroho
Software Improvement Group, Amstelplein 1, 1096 HA
Amsterdam, The Netherlands
e-mail: a.nugroho@sig.eu

In this paper, we present a selection of empirical evidence
about the effectiveness of UML modeling in practice. We
define effectiveness as the combination of positive (benefits)
and negative (costs) effects on overall project productivity
and quality. To this end, we also review what is known about
the manner in which projects use UML. In particular, this
paper will discuss:

– Empirical evidence about the effectiveness of UML mod-
eling in software development, focusing on a costs and
benefits perspective, and on industrial practice.

– Gaps identified in the research concerning effective UML
modeling.

2 The practice of software modeling

The state of the practice of UML modeling has been surveyed
by several papers since 2006: Grossman [10], Dobing [6], and
Lange [19]. These papers survey the types of diagrams used,
the industries in which modeling is used and try to relate
this to other factors such as size of the project and manage-
rial involvement in UML use. The main findings from these
surveys are that three types of diagrams are most commonly
used: use case diagrams, class diagrams and sequence dia-
grams. In embedded system projects, behavioural diagrams
(sequence, state-charts and collaboration diagrams) are more
common than in information system type of projects. A sur-
vey with a slightly different focus, yet very interesting in
its findings, was performed by Forward and Lethbridge [8].
Their focus is on the perception of software professionals on
the pro’s and con’s of modeling. In addition to these surveys,
the authors of this paper have been visiting 20+ software
development projects that use UML over the last 10 years.
In the remainder of this paper, we present an empirical

123

572 M. R. V. Chaudron et al.

perspective on the cost and benefits of UML modeling in
industry based on these surveys and our industry visits. More-
over, we try to link cost and benefits to case studies and expe-
rience reports that have been published on this topic. Because
we are aiming at a qualitative synthesis of evidence, we will
combine findings regarding different approaches of UML
modeling also including model-driven development (MDD)
approaches which we define as approaches where code is
automatically generated out of UML models. Hutchinson et
al. [14] recently conducted a multi-method study of the state
of the practice of MDD for which over 250 professionals
were surveyed. The results of this study will be discussed
later.

2.1 To model or not to model—who decides?

We describe how the decision whether or not to model is
made. This section summarizes a discussion with 38 soft-
ware professionals at a developers-community meeting at
the university of Leiden in June 2012. These developers
form a community for exchanging technical experiences and
for general networking. Their experience ranges from 5 to
25 years of industrial experience in software development,
following either a B.Sc. or M.Sc. education. These devel-
opers work both in small-to-medium sized enterprises and
in large corporate IT departments. All 38 developers were
familiar with the UML, a small minority (2 developers) was
familiar with UML only as reader of diagrams, but had never
created a diagram.

A discussion was held on who would decide whether to
use modeling in a software development team/project. The
following emerged: in small project teams (of at most 5 per-
sons) the decision to model was either taken democratically1

through voting, or championed by leading developers in the
team. In small teams, the use of UML was not felt to be
critical for the success of the project. Leading developers
do consider fluency in, and use of UML as a sign of pro-
fessionalism. Teams that are larger or more geographically
dispersed are more inclined to decide in favour of modeling
using UML. In larger and distributed teams, the perceived
benefit of using UML is to have a shared common represen-
tation of the system to be built. The fact that such a commonly
agreed representation is needed is supported by Weigert [32],
who reports inconsistent interpretation and misunderstand-
ing as drawbacks of less rigorous specification methods in
comparison to model-based specifications. Also, for teams
in larger organizations, there are sometimes corporate stan-
dards for software development which prescribe the use of
UML. In this case, the decision to use modeling has been
endorsed at the corporate level.

1 This style of decision making in teams may well be very culturally
dependent.

Staron [29] reports criteria used for adoption of model-
driven development in Scandinavian companies that pro-
duce complex embedded systems. Adopting MDD has more
impact on the entire development process than only using
UML modeling. Adopting MDD puts more stringent require-
ments on the availability of professional tooling as well as
on the model-centric orientation of the end-to-end develop-
ment process; e.g. estimation and testing activities also need
to be(come) model based.

Summarizing, the factors that lead teams to chose for using
UML are: size of the team (and hence project), number of
development locations involved and the presence of cham-
pion developers.

Once a decision to use UML for design modeling is made,
there remains significantly different manners in which the
UML is used. These differences in styles are the topic of the
next section.

2.2 Styles of modeling

The costs and benefits of UML modeling depend on the man-
ner in which UML is used. Therefore, we discuss in this sec-
tion, the different styles of modeling in industrial projects.

2.2.1 Models for analysis and understanding

The most ‘loose’ style of modeling is ‘modeling for analysis
and understanding’ or ‘modeling as a sketch’. Because this
way of modeling is mostly done for own understanding, it
is often sufficient to create sketches on a whiteboard. Some-
times these sketchy models find their way into persistent doc-
umentation as a digital picture of the drawing that was made
on a whiteboard. The extra amount of effort required to meet
the rigour required to (re)create the design in a UML mod-
eling tool that insists on strict adherence to formal syntax is
considered not adding value to the understanding. Therefore,
this rigour is often not applied. The models created for this
purpose are loosely based on the UML notation and typically
no effort is made to make the models syntactically correct.

In this loose style of modeling, developers create an infor-
mal model of a system mainly for increasing their own
understanding of the essential parts of a system. Model-
ing is a way of ordering and creating a structured abstrac-
tion of the real world. In this way, a model is a way of
managing complexity—both mentally and of the problem
domain. The creating of models of the system to be built,
forces the designer to think hard about his system. While the
same claim is being made by ‘formal methods’ advocates,
one distinguishing feature of UML-based modeling is that it
allows a varying degree of details across different parts of
a model. Through developing an external representation, a
developer can reduce the cognitive complexity of managing
many details of the design in his mind.

123

How effective is UML modeling ? 573

If the representation and the method that are used for mod-
eling are more rigorous, then they offer more opportunities
for checking (validation and verification) the model. In this
sense, both modeling, formally specifying and prototyping
all share in their approach that they force the developers to
think deeply about issues of a system’s design before the
actual system is built [3]. These approaches differ in their
rigour and as a consequence they differ in the amount of
effort that they require to be spent on less significant aspects
of the system design to get a valid model.

Hutchinson et al. [14] report similar findings: 73.4 %
of the people that have adopted MDD in their development
process assert that models are used for understanding a prob-
lem at an abstract level.

Further benefits of increased understanding obtained via
this style of modeling are also incurred by the more elaborate
style of modeling that we discuss next.

2.2.2 Models as a vehicle for communication

Software is developed in teams. A representation of the
design is a way of sharing information regarding the design
amongst all team members. In this style of modeling, we see
whiteboard sketches and also models created using generic
drawing tools (such as PowerPoint and Visio) and sometimes
using UML CASE tools. However, the models used for this
purpose typically are not very detailed. The use of a well-
defined notation helps in reducing the ambiguity in the rep-
resentation, and hence in reducing misunderstanding within
a team. In their study on MDD in an automotive company,
Mellegard and Staron [22] cite an engineer’s justification for
using (use case) models: “without having these requirements
for interfaces clearly and correctly stated, one would risk
developing the function based on the wrong assumptions.”

Even if the UML syntax may not be followed very pre-
cisely, the concepts of UML form the de facto language
for discussing software designs. The findings of Hutchin-
son [14] support this finding: 73.7 % of the people that have
adopted MDD in their development process assert that mod-
els are used for team communication. Moreover, developers
from [14] find that using models in this way has a positive
impact on system quality and productivity of development of
the system. In their observational study, Cherubini [4] iden-
tify communication as the most common purpose of model-
ing.

A system’s design mostly crystallizes during the initial
20 % (see, e.g. Fig. 4) of project time and evolves only
a little during the remaining project time. As a result, we
see that projects that employ this style of modeling invest
effort in creating models in the early phases of a project and
that the interest in keeping the models updated with changes
decreases over time.

2.2.3 Models as a blueprint for the implementation

In this style, models are meant as the basis for programmers
to create the implementation. All details that are considered
informative for a programmer are included in a UML model.
For this purpose the model typically includes use cases, class
diagrams with methods and attributes, and sequence dia-
grams which list names of operations and sometimes types of
parameters. Even for this style, still some design decisions
are left open by the model. For this purpose of modeling,
UML case tools are used. Such tools assist in creating syn-
tactically correct diagrams. We found this style of modeling
used in projects that develop software with teams at multi-
ple geographic locations. In this context, the aforementioned
argument is used: the rigour of UML is used to avoid mis-
interpretation when personal communication is scarce and
difficult. Designers on one side of the ocean try to ensure
that programmers on the other side of the ocean do not get
important details wrong by explicitly including many design
details in the model.

2.3 Models as program

When the implementation is generated from the model auto-
matically (as is the case with model-driven development),
then the UML model needs to include all details needed in
the implementation code. The amount of information needed
for this purpose can be so large that it becomes a threat for
understandability and communication of the design. Fowler
has phrased this issue as: “comprehensiveness is the enemy
of comprehensibility”.

A benefit of having models as programs is that these rep-
resentations can be used as prototype for early feedback and
for automated test generation. According to Hutchinson [14]
37.8 % of people that have adopted MDD, use models in
testing and 41.7 % use model simulations (for verification
and validation purposes).

2.4 Modeling trade-off

All approaches to modeling except modeling as program
have to decide on the difficult question ‘how much modeling
is good enough?’ This requires making a trade-off between
the amount of effort that projects are willing to invest pre-
ventively in creating a high quality model, versus the extra
effort or costs that are incurred as a result of the need to
repair problems that arise due to imperfections in the model
(so-called “non-conformance” cost). This trade-off is illus-
trated in Fig. 1. Typical types of imperfections in UML
models are inconsistencies, incompleteness, and sometimes
redundancy [20]. Through experiments [18] and case stud-
ies [24], we know that such imperfections lead to diverging
interpretations of the model by different designers and to pro-

123

574 M. R. V. Chaudron et al.

Fig. 1 Cost of quality

grammers, filling in the underspecified parts in the model in
inconsistent ways in the implementation. For such deficien-
cies, it holds that repair at the downstream moment at which
it is detected costs more than it would have cost to eliminate
the imperfection in the model that caused the downstream
problem as part of the modeling activity. However, not all
imperfections in the model will cause downstream problems
and therefore eliminating all imperfections from the model
is considered impractical as it would require too much effort
for design that may potentially change in downstream devel-
opment.

Without further evidence, developers have no other option
than to approach assessing cost of non-conformance from a
stochastic perspective: what is the chance that the user of
the model will make a mistake if this information is left out
of the model and what will be the impact and cost of that?
However, we know from a survey among professional devel-
opers [23] that they focus their modeling effort on complex
and critical elements of the design. As a result, low risk and
low complexity aspects of the system design get less atten-
tion in the model, and in this way developers economize on
modeling.

These different styles of modeling found in industrial prac-
tice illustrate that different teams have different goals for their
models. Consequently, the ideal level of quality for each of
these approaches is different. However, currently there are no
means to even approximate the question of how much model-
ing is good enough because there is too little understanding
of the impact of lack of completeness of UML models on
downstream development quality and productivity.

In our research, we collected a set of 40 software archi-
tecture design documents that are all based on the RUP-
template. Architecture representations are at a high level of
abstraction and often used for communication rather than
implementation or code generation. We found that even
within individual project the choice of rigour differs per dia-
gram: 50 % of the diagrams can be considered as conforming
to UML, and 50 % of the diagrams use other looser notation

Fig. 2 Developer opinion on adherence to OMG’s UML standard

such as box-and-lines and/or includes domain-specific visu-
alizations [12]. This suggests that designers balance the com-
munication value of their representation with the rigour in
following UML standards.

Next, we present some graphs based on our survey [23]
that show the actual trade-offs that are made for modeling
with UML in practice. Figure 2 shows the degree to which
developers adhere to the OMG UML modeling standard.
Overall, the adherence seems normally distributed from very
loose to very strict with an average of loose. Furthermore,
within the UML model of a system the level of detail is
generally not uniformly applied. In a survey, we asked what
motivated developers to add or leave out details in a model.
The answers (Fig. 3) indicated that developers apply more
details to complex and critical parts. In industrial practice,
designs are moved into implementation stage while there are
still large degree of incompleteness and inconsistency in a
design. The developers of these projects currently feel that
this is an adequate trade-off between effort in modeling and
risk of problems in downstream development. To better sup-
port this practice of balancing modeling quality and down-
stream risk, methods for quality assurance are needed that
also vary the level of quality they require of different parts
of the system. In particular, more rigour must be exercised
in critical parts and less rigour in less critical parts. This
opens up the question how to distinguish critical parts in a
system design from less critical parts of the design. As far as
we know, this question has not been answered in the testing
community where this question also arises in the context of
ranking defects.

Answering the “How much modeling is good enough”—
question requires the development of a notion of quality for
UML models. The state of the are in the area of quality of
UML modeling has recently been summarized in [9]. How-
ever, most of the research in quality of modeling focuses on
syntactic issues of models. And while this has value, as wit-
nessed by common use of code-quality checkers for source
code, modelers are not so much interested in conforming to

123

How effective is UML modeling ? 575

Fig. 3 Respondent agreement over approaches in using detail in models

the precise syntax of UML or in inconsistencies in the model.
Instead modelers are mostly interested in weak spots of the
design. This triggers a research direction: we must develop
better methods and tools for identifying flaws at the semantic
level of designs.

3 Costs and benefits of modeling

In the literature concerning empirical studies into the use of
UML, the cost of UML modeling remains a big question
mark. Very few of the reported experiments show a clear
picture regarding the cost of modeling. In this section, we try
to gain insight into this matter by combining some studies that
do state results that relate to costs and benefits of modeling.

3.1 Costs of modeling

One obvious parameter that could explain the cost of model-
ing is the size of the model. However, naively measuring size
of a model is not a good indicator for the effort (and hence
cost) of modeling. The evidence that we know so far is the
following:

In an experiment, we offered 12 M.Sc. students a single
set of requirements on two pages of A4-paper and allowed
them 4 h to create a UML model for the system that meets
the requirements. The smallest solution contained 7 classes,
the largest solution contained 23 classes. No student felt that
they needed to cut corners because of time limitations. These
models were created within the same time span, but by devel-
opers with different skill levels.

In another experiment [17], participants were 106 M.Sc.
students grouped into 35 teams. This time, all teams were

asked to develop a model based on the same set of require-
ments, but now spread over a period of a semester (about
12 weeks). Here, the majority of the models were between
20 and 50 classes. Nugroho [25] comes to the conclusion
that class size is too coarse a measure for characterizing the
size of a model, and hence for predicting effort of modeling
projects. He argues that additional factors like the following
need to be taken into account: the level of abstraction used
in modeling, the level of detail in modeling (are methods,
attributes, labels, multiplicities etc. included or not) and last
but not least: designer’s capabilities (skills, knowledge and
experience).

We have collected data about size of models and effort
from a set of 14 industrial projects that employ modeling [19].
From these cases studies we found no statistically signifi-
cant correlation between model-size (in terms of number of
classes) and modeling effort. This may be explained by the
fact that different projects employ different styles (and hence
rigour) of modeling. In this dataset, a better predictor for the
effort spent on modeling seems to be the number of members
in the development team.

A comparison between the student experiments and the
industrial case study is interesting. While students apparently
manage to create a 20-class model in a 4-h session, industrial
projects report a modeling effort in the order of weeks or
months (i.e. a 10-fold increase) for creating models of the
twice the number of classes.

In addition, in a study of a large case of model-driven
development where over 90 % of code was generated from
diagrams, we could not find any relation between the size of
diagrams and the effort that was spent engineering them [11].

In a study of a large project, we collected data about the
growth of the size of the models and the growth of the source

123

576 M. R. V. Chaudron et al.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

ar
tif

ac
t g

ro
w

th

 (
%

 o
f t

ot
al

)

project progression
 (% of total)

source lines
model elements

Fig. 4 Model size versus code size across (normalized) project time

code. The size of the models was computed in a straightfor-
ward manner as the sum of the all modeling elements that
appeared in the model. In this MDD case, code was gener-
ated out of the model, hence needed to be as ‘complete’ as
any programming language implementation. This is typical
for MDD projects that there is no variation in level of detail
within a model. The graph in Fig. 4 shows the growth of the
model in an MDD project and compares this to the average
growth of the source code of three projects. Project duration
has been normalized at 100 % and the sizes of the artifacts
have been normalized at 100 % being equal to the size of
the final artifact. The graph shows that in the first 20 % of the
project time, 80 % of the model has been constructed. In the
remaining 80 % of the time, the size of the model grows only
very little. Given that the size does not change very much,
it seems that in these last 80 % of the time the work on the
model consists mostly of changes to it. The pattern for the
growth of the code looks very different. Code seems to grow
in an almost linear manner across the duration of the project.
The graph can be interpreted as follows: the model approach
starts with outlining the big picture and then goes on to flesh
out the details. The coding approach seems to continue to
add functionality across the entire project duration. Current
views on iterative development favour the early delivery of
value. This graph shows that this is very much compatible
with the model-driven approach to software development.

In conclusion, we can discard the conjecture that capturing
the models into a UML modeling tool is a time-consuming
activity. A more likely explanation is that for larger systems,
a majority of the time attributed to modeling is actually used
for establishing consensus about the problem domain, about
terminology and about the main design decisions across all
stakeholders. This effort grows with team size and decreases
with the skill level of the people on the team.

A recurring comment on the hurdles for modeling is the
effort needed for keeping models and code synchronized

e.g. [31]. This is also listed as the number 1 hurdle in [8].
In the same survey, the second and third most mentioned
problems with modeling in software development are: mod-
els cannot be easily exchanged between tools, and model-
ing tools are ‘heavyweight’ (install, learn, configure, use).
Whereas these impediments can be accounted as costs, they
are better attributed to inadequate tooling. Arguments of this
type should be categorized as hygiene factors. This terminol-
ogy is borrowed from [13] and in our domain refers to the
category of factors that is separate from positive motivation
for the use of UML, but instead lead to dissatisfaction with
the modeling activity in case of their absence.

Reviewing the evidence presented, we believe that the
trade-off for using modeling is not so much driven by a finan-
cial trade-off, but by a lack of tool support.

3.2 Benefits of modeling

In this section, we present empirical evidence regarding the
benefits of UML modeling.

The fact that the industrial engineers did not worry about
the large degrees of incompleteness and inconsistencies in
their UML models, begged the question as to whether these
characteristics do or do not lead to problems in downstream
development. We studied this through an experiment [18].
In this experiment, we showed UML models with and with-
out defects to subjects that consisted of both students (about
75 % of our population) and professionals (about 25 % of our
population). We asked our subjects to answer questions that
tested their understanding (or: interpretation) of the models.
The outcome of the experiment showed that the presence of
defects in UML models led to more variety in the interpreta-
tion of the models. Given that one of the key purposes of UML
models is to communicate one particular design to all team
members, this is already a serious indication that consistency
and completeness in modeling should be part of quality assur-
ance practises. Our industrial partners replied that the imple-
mentation process was robust to these inconsistency issues
and that communication between developers would filter out
any misinterpretation. Subsequently, we studied this claim by
studying the effects of the quality of the model on the qual-
ity of the implementation. To this end, we studied a project
repository that included (1) the UML models that were the
basis of the implementation, (2) the final source code and (3)
the defects found in the testing of the source code [24]. This
study showed that the defect density of classes in the imple-
mentation was negatively correlated with the quality of the
sequence diagrams in which these classes appeared. Hence a
lower quality of UML models correlates with a lower quality
of the final source code. At first, we were puzzled that we did
not find a similar correlation for the quality of class diagram
and the implementation. It is possible that this was just a ran-
dom effect of this particular case study. We did, however, find

123

How effective is UML modeling ? 577

Fig. 5 Effectiveness of defect detection methods (summarized by
McConnell [21], based upon work by Jones [15,16] and Shull [28])

a reasonable explanation for this observation: Defect reposi-
tories contain defects that are found through testing. Mostly
these are results of faults that cause an incorrect value or a
failure of the software. The nature of these defects is that
they relate to the behaviour of the system. This is the link
to sequence diagrams: these describe the behaviour. Never-
theless, we hypothesize that the quality of the class diagram
could correlate with a better structure (e.g. in terms of better
modularity) of a design. Currently, we only have the consent
of developers with this conjecture [23] and are performing
ongoing research in this direction.

From a quality assurance perspective, we can consider
modeling as a means of identifying defects. McConnel [21]
has compiled a graph which shows that modeling is an effec-
tive method for defect detection (Fig. 5).

In his seminal book on software engineering economics,
Boehm [2] reports on the relation between the stage of a
project (starting, middle, finishing) and the cost of repair-
ing defects. The relation is such that the cost of repairing
increases exponentially with the progress of a project. More
precisely, this principle is nowadays formulated as that the
cost of repairing a defect grows exponentially with the life-
time of a defect. From this perspective, it makes economic
sense to start removing defects as early in the development
as possible. Given that models are constructed early in devel-
opment, they can be for reviewing and challenging a design
rather than waiting until the implementation is ready and find
defects through unit- and integration testing.

Complementary to the support for modeling implied
by these quantitative studies, there are also more sub-
jective pieces of evidence—obtained through surveys and
interviews—in which designers and programmers state that

they feel that the use of modeling aids in achieving a common
understanding of a design within an team and that modeling
helps as an aid in communication. These benefits ultimately
lead to a positive effect on productivity and quality [23].
However, the impact of modeling on improved communi-
cation is very difficult to study. A noteworthy study in this
direction is reported by Pareto [26]. Additional evidence that
supports the importance of good documentation comes from
an interesting corner: the documentation-averse agile soft-
ware development community: a recent study amongst agile
development team showed that they would prefer to have
more documentation than they normally produce [30].

Hutchinson [14] specifically addressed the perceived
impact of MDD activities on productivity and maintainability.
They found that the largest impact was not code generation or
meta-model reuse, but “the use of models for understanding
a problem at an abstract level”. The second greatest impact
was thought to be “Use of models for team communication”.

The fact that the use of models forces developers to think
about these issues early in the project is considered to be
economical in the sense that it prevents repair work that is
typically more expensive the later the issues are found in the
development [2]. In an early study that compares prototyping
and specifying [3], Boehm reports comparable benefits for
both approaches and explains this effect as the result of the
fact that both approaches force early, yet thorough, thinking
about design.

The evidence that we discussed is synthesized in Fig. 6,
which shows how modeling leads to beneficial effects for
software development projects. The complementary Table 1
lists from left to right along its columns the different styles
of modeling in increasing order of level of rigour. The rows
“model quality/rigour” and Archetypical approach charac-
terize these different modeling styles. The next rows list an
assessment on an ordinal scale about the relative costs and
benefits of the corresponding modeling style. The assessment
should be interpreted as relative to the other styles of mod-
eling. Table 1 shows that modeling as a Blueprint for imple-
mentation and modeling for code generation have a relatively
higher initial investment in creation of the model, but they
also have higher benefits. In practice, the long term invest-
ment vision for IT development is influential in companies’
decisions on which style of modeling they chose.

4 Related work

A large portion of the empirical research in modeling focuses
on understandability by comparing different styles of UML
modeling from the perspective of developers. More atten-
tion is needed for in-vivo studies of modeling where the
creation, use and maintenance of UML models are stud-
ied. From our experience, the best level at which to per-

123

578 M. R. V. Chaudron et al.

Fig. 6 An overview of the benefits of UML modeling

form experiments is at the level of tasks, rather than projects
or phases or teams. Anda [1] reports experiences from the
introduction of UML modeling in a large project in Norway:
developers experienced improvements with traceability from
requirements to code, design of the code, and development of
test cases as well as in communication and documentation.
A study by Arisholm [7] evaluates the effect of availability
of documentation on the efficiency and quality of perform-
ing maintenance tasks on source code. Their main findings
were that “[t]he quantitative results show that UML did not
have a significant impact on the time that it took to perform
the change tasks. […] However, in terms of the functional
correctness of the changes, UML had a practically and sig-
nificantly positive impact.” Given the theory of increased
impact of early decisions in software projects, it is likely that
the effect of using UML during maintenance on productivity
is smaller than the effect of improved modularity that may
result from modeling during the design stage.

Several case studies about use or adoption of UML and
MDD have been published. Weigert and Weill [32] report
their positive experiences about use of MDD at Motorola.
Staron [29] reports a critical attitude, especially towards
maturity of tooling, in a study of two cases (ABB and Erics-
son).

5 Conclusion and future directions

Modeling is a common practice in software development
and will become more common with the adoption of
model-driven technology. The industrial practice of soft-
ware modeling using UML is very diverse. Over the last

decade, very little evidence has been obtained regarding the
(in)effectiveness of modeling, especially quantitative data are
very scarce. Some data have been published based on indus-
trial case studies. The quantitative aspects of this data is very
diverse. This is to be expected given the large diversity of con-
text of the case studies. Yet, from a qualitative angle, there
seems to be agreement on many findings (both positive and
negative). Especially for larger and distributed project, UML
modeling is believed to contribute to shared understanding
of the system and more effective communication. This in
turn avoids expensive rework that occurs in projects that skip
modeling. Another important benefit is that early modeling
help validation: ensuring that the right system is being built.
Moreover, we have shown that the actual inputting of a model
into a tool is not a time-consuming task. The actual effort
is more likely spent on designing and communicating and
agreeing on a design.

The evidence reviewed in this paper suggests that decision
whether or not to modeling in a software project is not so
much driven by cost factors. Instead, this decision is strongly
influenced by a hygiene factor: inadequate tooling.

5.1 Future directions

The focus of this paper is empirical evidence about effective-
ness of modeling. An important gap in the knowledge about
using UML is related to the impact of poor quality UML
models on downstream development quality and productiv-
ity. The research methods needed for studying this problem
are difficult to design and perform. A promising approach is
presented by Premraj [27] who trace back defects found in

123

How effective is UML modeling ? 579

Table 1 Summary of costs and benefits for different styles of modeling

Model quality/rigour
archetypical approach

Modeling for analysis
and understanding
(very) low whiteboard

Modeling as vehicle
for communication
somewhat low drawing
tool

Models as Blueprint
for the implementation
somewhat high modeling
tool

Models for code genera-
tion high modeling tool
and code generator

Model creation effort + A - - -

Early validation ⇒
improved requirements
validity

+ + ++ ++

Early verification ⇒
improved requirements
consistency

- - - + ++

Shared understanding and
improved communication

+ + ++ A

Maintaining design and
implementation
synchronized

Not applicable - - - ++

Code quality No data No data + ++

Improved design ⇒ less
rework

A + ++ No data

Improved design ⇒ more
efficient maintenance

- A ++ ++

A average, - - much worse than average, - worse than average, + better than average, ++ much better than average

the project repositories to architecture issues. Furthermore,
in such studies attention must be paid to distinguish between
design activities and modeling activities.

From the studies discussed in this paper, we can also learn
about needs of practitioners that are not fulfilled by current
modeling tools. We mention some of these next.

For developers a practical problem that limits the adop-
tion of UML is the insufficient integration of UML model-
ing tools with programming tools. A particularly bothersome
tasks for which tool support seems feasible, but is currently
not adequately supported, is the automated updating of UML
models following progression of source code. In [29] Staron
reports a consistent finding: tools for different activities in the
software development lifecycle are not well integrated and
not sufficiently model-centric. Following Dekel [5], software
development tooling must acknowledge that modeling is not
an isolated activity, but that it is integrated with sketching
and explaining. Hence, software design tooling must inte-
grate sketching, modeling and textual explanations.

References

1. Anda, B., Hansen, K., Gullesen, I., Thorsen, H.K.: Experiences
from introducing uml-based development in a large safety-critical
project. Empir. Softw. Eng. 11(4), 555–581 (2006)

2. Boehm, B.W.: Software Engineering Economics. Prentice Hall,
Englewood Cliffs, NJ (1981)

3. Boehm, B.W., Gray, T.E., Seewaldt, T.: Prototyping vs. specifying:
a multi-project experiment. In: Proceedings of the 7th international
conference on Software engineering, pp. 473–484. IEEE Press,
Piscataway (1984)

4. Cherubini, M., Venolia, G., DeLine, R., Ko, A.J.: Let’s go to the
whiteboard: how and why software developers use drawings. In:
Proceedings of the SIGCHI conference on human factors in, com-
puting systems, pp. 557–566 (2007)

5. Dekel, U., Herbsleb, J.D.: Notation and representation in collabora-
tive object-oriented design: an observational study. In: Proceedings
of the 22nd annual ACM SIGPLAN conference on object-oriented
programming systems and applications, pp. 261–280 (2007)

6. Dobing, B., Parsons, J.: How UML is used. Commun. ACM 49(5),
109–113 (2006)

7. Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical eval-
uation of the costs and benefits of UML in software maintenance.
IEEE Trans. Softw. Eng. 34(3), 407–432 (2008)

8. Forward, A., Lethbridge, T.: Perceptions of software modeling: a
survey of software practitioners. Technical Report TR-2008-07,
School of Information Technology and Engineering, University of
Ottawa, 800 King Edward Ave. Ottawa, Ontario, Canada K1N 6N5
(2008)

9. Genero, M., Fernández-Sáez, A.M., Nelson, H.J., Poels, G., Piat-
tini, M.: Research review: a systematic literature review on the
quality of UML models. J. Database Manag. 22(3), 46–70 (2011)

10. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML make
the grade? insights from the software development community. Inf.
Softw. Technol. 47(6), 383–397 (2005)

11. Heijstek, W., Chaudron, M.R.V.: Empirical investigations of model
size, complexity and effort in large scale, distributed model driven
development processes—a case study. In: Proceedings of the 35th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2009) Patras, Greece (2009)

12. Heijstek, W., Chaudron, M.R.V.: On the use of UML diagrams
in industrial software architecture documents. Technical Report
TR2011-02, Leiden Institute of Advanced Computer Science, Lei-
den University, Niels Bohrweg 1, 2333 CA Leiden, The Nether-
lands (2011)

13. Herzberg, F.: One more time: how do you motivate employees?
Harv. Bus. Rev. 46(1), 53–62 (1968)

14. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of mde in industry. In: Proceeding of the

123

580 M. R. V. Chaudron et al.

33rd international conference on Software engineering, pp. 471–
480. ACM Press, London (2011)

15. Jones, C.: Software defect-removal efficiency. Computer 29(4),
94–95 (1996)

16. Jones, C.: Programming Productivity. McGraw-Hill, New York
(1986)

17. Lange, C.F.J., Bois, B.D., Chaudron, M.R.V., Demeyer, S.: An
experimental investigation of UML modeling conventions. In: Pro-
ceedings of the 9th international conference on Model Driven Engi-
neering Languages and Systems, pp. 27–41 (2006)

18. Lange, C.F.J., Chaudron, M.R.V.: Effects of defects in UML mod-
els: an experimental investigation. In: Osterweil L.J., Rombach
H.D., Soffa M.L., (eds.) Proceedings of the 28th international con-
ference on Software engineering. pp. 401–411. ACM Press, Lon-
don (2006)

19. Lange, C.F.J., Chaudron, Michel R.V., Muskens, J.: In practice:
UML software architecture and design description. IEEE Softw.
23(2), 40–46 (2006)

20. Lange, C.F.J., Chaudron, M.R.V., Muskens, J., Somers, L.J., Dort-
mans, H.M.: An empirical investigation in quantifying inconsis-
tency and incompleteness of UML designs. In: Proceedings of
the Workshop on Consistency Problems in UML-based Software
Development (2003)

21. McConnell, S.: Code Complete. Microsoft Press, Redmond (2004)
22. Mellegård, N., Staron, M.: Characterizing model usage in embed-

ded software engineering: a case study. In: Proceedings of the
Fourth European Conference on Software Architecture: Compan-
ion Volume. pp. 245–252 (2010)

23. Nugroho, A., Chaudron, M.R.V.: A survey into the rigor of UML
use and its perceived impact on quality and productivity. In:
ESEM ’08: Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement,
pp. 90–99. ACM Press, New York (2008)

24. Nugroho, A., Flaton, B., Chaudron, M.R.V.: Empirical analysis
of the relation between level of detail in UML models and defect
density. In: Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems, pp. 600–614.
Springer, Berlin (2008)

25. Nugroho, A., Lange, C.F.J.: On the relation between class-count
and modeling effort. In: Proceedings of the ACM/IEEE 10th Inter-
national Conference on Model Driven Engineering Languages and
Systems, vol. 5002/2008, pp. 93–104. Springer, Berlin (2007)

26. Pareto, L., Eriksson, P., Ehnebom, S.: Architectural descriptions
as boundary objects in system and design work. In: Proceedings
of the 13th international conference on Model driven, engineering,
pp. 406–419 (2010)

27. Premraj, R., Nauta, G., Tang, A., van Vliet, H.: The boomeranged
software architect. In: Proceedings of the 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture, WICSA ’11, pp.
73–82. IEEE Computer Society, USA (2011)

28. Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall,
M., Port, D., Rus, I., Tesoriero, R., Zelkowitz, M.: What we have
learned about fighting defects. In: Proceedings of the Eighth IEEE
Symposium on Software Metrics, pp. 249–258. IEEE Press, USA
(2002)

29. Staron, M.: Adopting model driven software development in
industry—a case study at two companies. In: MoDELS, pp. 57–72
(2006)

30. Stettina, C.J., Heijstek, W.: Necessary and neglected? an empiri-
cal study of internal documentation in agile software development
teams. In: Proceedings of the 29th ACM International Conference
on Design of Communication (SIGDOC 2011), Pisa, Italy, (Octo-
ber 2011)

31. Thörn, C., Gustafsson, T.: Uptake of modeling practices in SME’s.
In: Proceedings of the ICSE workshop on Modeling in Software
Engineering (MiSE), ACM Press, New York (2008)

32. Weigert, T., Weill, F.: Practical experiences in using model-driven
engineering to develop trustworthy computing systems. In: Pro-
ceedings of the IEEE International Conference on Sensor Net-
works, Ubiquitous, and Trustworthy, Computing (2006)

Author Biographies

Michel R. V. Chaudron is an
Associate Professor at Leiden
University, the Netherlands. Prior
to this [he] has worked at the TU
Eindhoven. His research inter-
ests are centered around soft-
ware architecure & design and
software modeling, with a spe-
cial focus on effectiveness of
modeling in practice. To this
end he favours empirical stud-
ies and data collection in indus-
trial settings. Michel Chaudron is
a steering committee member of
the Euromicro SEAA conference

and is organiser of workshops on Quality of Modeling and Empirical
Studies on Modeling at the MODELS conference. Contact him via:
mrvchaudron@gmail.com.

Werner Heijstek is a Ph.D. can-
didate at the Leiden Institute
for Advanced Computer Science
(LIACS) at Leiden University.
His doctoral dissertation (which
is accepted for defence) deals
with the challenges associated
with representation, dissemina-
tion and coordination of soft-
ware architecture design in the
context of global software devel-
opment. It particularly addresses
model-centric development and
explores the impact of model-
driven development (MDD) in a

distributed development setting. From October 2012, Werner Heijstek
will work as a consultant at the Software Improvement Group in Ams-
terdam. Contact him at w.heijstek@gmail.com.

Ariadi Nugroho is researcher
at the Software Improvement
Group, the Netherlands. His
research interests include soft-
ware quality, software economics,
software architecture and model-
driven software development.
Ariadi received his Ph.D. in
computer science from Leiden
University. His Ph.D. research
focused on quality assurance in
model-driven software develop-
ment, via empirical analyses of
software models’ metrics. One of
the results of Ariadi’s research

was the definition and validation of a new suite of metrics for UML
models. Contact him at a.nugroho@sig.eu.

123

	How effective is UML modeling ?
	An empirical perspective on costs and benefits
	Abstract
	1 Introduction
	2 The practice of software modeling
	2.1 To model or not to model---who decides?
	2.2 Styles of modeling
	2.2.1 Models for analysis and understanding
	2.2.2 Models as a vehicle for communication
	2.2.3 Models as a blueprint for the implementation

	2.3 Models as program
	2.4 Modeling trade-off

	3 Costs and benefits of modeling
	3.1 Costs of modeling
	3.2 Benefits of modeling

	4 Related work
	5 Conclusion and future directions
	5.1 Future directions

	References

