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Chapter 1

General introduction

Clinical overview of Hereditary Haemorrhagic Telangiectasia

Hereditary Haemorrhagic Telangiectasia (HHT), also known as Osler-Weber-
Rendu syndrome, is an autosomal dominant inherited disease characterized
by systemic angiodysplasia. Vascular malformations range from small
telangiectasias, which are characterized by dilated weak-walled blood vessels
that easily bleed and are located in the nasal spectrum, the oral mucosa and
gastrointestinal tract, to large Arteriovenous Venous Malformations (AVMs) in
the lungs, brain and liver. AVMs consist of direct connections between arterioles
and venules without an intervening capillary bed (Fig. 1). The disease prevalence
is estimated to be 1 in 5,000-8,000 affecting theoretically between 950,000
and 1,500,000 persons worldwide'3. However, HHT is certainly undiagnosed
since many people, as well as doctors, are not familiar with its wide range of
symptoms and only around 500,000 individuals around the world are officially
diagnosed with the disease. HHT can be diagnosed through DNA screening or
by the Curacao Criteria, which includes four criteria:

1. Spontaneous or recurrent epistaxis. It affects 95% of HHT patients and
appears around the age of six and intensifying with age®. Epistaxis episodes
occur spontaneously, irregularly, and repeatedly. Recurrent bleeding can
cause asthenia, dyspnoea and anaemia, thereby impairing the quality of
life® .

2. The presence of telangiectasias located on the lips, oral cavity, nose or
fingers. Their number and size increase with age. They are present in 30%
of cases before the age of 20, and in 75% of patients afterwards®. The lesions
are described as small, ruby-coloured, non-pulsatile, and blanch under
pressure. They are mainly visible on the face, lips, buccal mucosa, ears, and
fingers, especially on the fingertips. In addition to causing aesthetic damage,
these lesions can also bleed.

3. The presence of AVMs in gastrointestinal tract, lungs, liver, brain or
spine. Visceral lesions such as gastrointestinal telangiectasias affect
approximately 80-90% of patients with HHT. Primarily in the stomach and
small intestine, and less commonly in the colon. Nevertheless, symptoms
manifest in only 25-30% of these patients’. Symptoms can range from
external haemorrhage to acute or chronic anaemia that cannot be easily
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explained by epistaxis or simple iron deficiency. The symptoms typically
arise after the age of fifty and tend to deteriorate as the patient gets older.
Pulmonary AVMs (PAVMs) are also found in patients with HHT. It corresponds
to a direct connection between an artery and a vein without an intermediate
capillary (fistula) responsible for a right-to-left shunt. They affect almost half
of all patients® and can cause paradoxical embolisms (14% of the cases)?,
septic embolisms responsible for brain abscesses (5 to 17% of the patients
around 50 years of age)?, ischemic embolisms (9 to 37% of the patients)®°.
Hepatic AVM are more frequently diagnosed in women and depending on
the diagnostic technique used, 42% to 74% of patients are diagnosed with a
hepatic AVM (hepatic ultrasound, abdominal CT scan)' 2. Only 8% of patients
with hepatic AVM, generally from the age of 50, are symptomatic (dyspnoea,
right hypochondrium pain, pruritus, jaundice)?. These AVMs give rise three
types of shunt, which may coexist: hepatic artery (HA)-hepatic vein (HV), HA-
portal trunk (PT), PT-HV. HA-HV and PT-HV shunts, which increase cardiac
output and can lead to high-flow heart failure, is one of the most frequent
complications with pulmonary hypertension. Brain AVM have a prevalence
of approximately 14%'* and have been described as AVMs, arteriovenous
fistulas (no nidus), telangiectasias, developmental venous anomalies and
carvernomas™. The incidence of bleeding is low, at 0.5% per year, but the
consequences are serious in terms of morbidity and mortality. The risk of
bleeding also varies with the type of cerebral anomaly: itis higher in the case
of malformations and fistulas than in the case of cerebral telangiectasias’.
Spinal AVM prevalence is less than 1%'® and the vast majority are found in
children. Although they may be rare, these conditions can lead to severe and
possibly life-threatening bleeding complications'®,

4. Family member matching the above-mentioned criteria. A diagnosis of HHT
is considered definite if presented with three criteria, possible or suspected
if presented with two criteria, and unlikely if presented with fewer than two
criteria.

Genetic basis of the disease

Mutations in the ENG gene (Endoglin, 9934.11)" or in the ACVRL1 gene (activin
receptor-like kinase 1 or ALK1, 12913.13)?° are responsible for HHT1 or HHT2,
respectively and account for more than 90% of cases of HHT. Both ENG and
ACVRL1 encode for receptors of Transforming Growth Factor-b (TGF-)/Bone
Morphogenetic Protein (BMP) (Fig. 1) that are expressed in endothelial cells
and share functions in signalling?'. All classical features of HHT can be seen in
both HHT1 and HHT2, but the prevalence of specific vascular anomalies varies
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according to the genotype. Pulmonary and cerebral AVMs are more common
in HHT1 than HHT2, 85% versus 35%22 and 20% versus 2%?2, respectively. While
HHT2 individuals have a higher incidence of hepatic AVMs and gastrointestinal
hemorrhages?223. A rare form of HHT disease in which vascular lesions are
combined with Juvenile Polyposis is associated with mutations in the gene
MADH4 (Mothers Against Decapentaplegic Homolog 4). MADH4 encodes for
SMAD4, a downstream effector of TGF-B/BMP family ligands?*. While HHT32°
and HHT42¢ have only been linked to a particular locus and no specific genes
have been identified yet, HHT5 is due to mutations in the Growth Differentiation
Factor 2 (GDF2) gene?’. GDF2 gene encodes for BMP9, a high-affinity ligand
for ALK1 that controls endothelial cell quiescence?®?°. Known gene mutations
include deletion, insertion, and missense mutations as well as splice site changes
and represent null allele indicating that haploinsufficiency is the underlying
mechanism of HHT. As consequence, the remaining wild-type allele is unable
to contribute sufficient protein for normal TGF-B/BMP signalling in endothelial
cells leading to blood vessel dysfunctions3°.

BMP9*/10

!

ENG*
ALK1*

— ap=aD
SMAD4*

BMPRII

v
—

Fig. 1 | BMP9/10 signalling pathway in endothelial cells.
* Indicates HHT gene mutations
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TGF-B/BMP signalling in vascular development and homeostasis
TGF-B/BMP signalling in endothelial cells

Classically, TGF- and BMP signalling pathways are each initiated by ligand-
mediated activation of distinct type | and type Il serine/threonine kinase
transmembrane receptors. Within the ligand-induced heteromeric receptor
complex, the constitutively active type Il receptor phosphorylates the
type | receptor on specific serine/threonine residues in the intracellular
juxtamembrane region named GS-domain leading to the phosphorylation of
TGF-B or BMP-specific-receptor-regulated Smad proteins (R-Smad). R-Smads
then associate with the common mediator (co)-Smad (Smad4) and translocate to
the nucleus to regulate the transcription of specific target genes in association
with other partner proteins. R-Smads are divided in two groups. The first group
consists of Smad1/5/8 and are preferentially activated by BMP type | receptors
that include ALK1, 2, 3 and 6. The second group contains Smad2 and 3 and is
activated by TGF-3 type | receptor ALK5%"32. TGF-3 and BMPs can also activate
Mitogen Activated Protein (MAP)-Kinase signalling pathways, Rho-like GTPase
and PI3K/Akt cascades independently of Smad signalling pathways=3. Genetic
studies in mice and humans have clearly demonstrated the importance of
TGF-B/BMP signalling pathways in vascular morphogenesis and angiogenesis.
Information gathered the various loss-of-function mouse models of TGF-3
signalling components have been reviewed in detail*’. In all cases, targeted
deletions of tgfb1%®, genes encoding TGF-B receptors, acvr/13%37, Alk5%, TBrll*°
or Eng**-4* as well as the downstream target Smad54+4> lead to embryonic
lethality at mid-gestation with severe cardiovascular defects including impaired
angiogenesis and differentiation of mural cells (Table 1). The primary target cells
for TGF-B/BMP are endothelial cells since mice deficient in endothelial TBRII%,
ALK14751, ALK54652 or endoglin#953-55 show various vascular defects ranging from
vessel hyper-branching, enlarged blood vessels to AVYM formation.

TGF-B has been proposed to regulate the activation state of endothelial cells
by differentially activating two TGF-B type | receptors, ALK5 and ALK1. ALK5
is broadly expressed in almost all tissues whereas ALK1 is restricted to the
endothelium. Upon TGF-B stimulation, ALK5 phosphorylates Smad2/3 leading
to inhibition of endothelial cell proliferation and migration, whereas ALK1
phosphorylates Smad1/5 to induce opposite effects®®. The existence of two type
| receptors activated by one ligand, raises the question of how their activation is
controlled and why these two cascades coincide. Although not experimentally
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proven, one explanation is that ALK1 signalling first may dominate, leading to the
activation phase of angiogenesis triggered by VEGF, whereas ALK5 may induce
later vessel stabilization and extracellular matrix production. However, ALK5
kinase activity seems to be required for optimal ALK1 signalling whereas ALK1/
Smad1/5 signalling directly antagonizes ALK5/Smad2/3 signalling cascade’>’.
The net effect of TGF-B may therefore depend on the relative levels of ALK1/
ALKS5 expression and also on the different levels of TGF-3%. The type Il TGF-f3 co-
receptor endoglin is highly expressed on activated endothelial cells. It is required
for efficient ALK1 signalling. Interestingly, endothelial cells lacking endoglin do
not proliferate due to enhanced ALKS5 signalling cascade. Endoglin may therefore
regulate fine-tuning between ALK1 and ALK5 activated cascades?'>85°,

BMP9 and BMP10 have been shown to bind to ALK1 with a much higher affinity
than TGF-B282°€°, Since then, accumulative evidence indicates that BMP9/
BMP10 through the ALK1-Smad1/5 signalling pathway play essential functions in
vascular development and in the maintenance of the vascular quiescence?829.61-63
(Fig. 2). Although BMP10~~ mice exhibit a cardiac phenotype®, its role on the
vasculature should not be disregarded. BMP10 through ALK1 has been shown
to induce flow-arterial quiescence in zebrafish® and has recently been reported
to function independently of BMP9 for the development of the arteriovenous
network®®. BMP9~~ mice do not display defective vasculature®®4, unless BMP10
is removed from the circulation leading to impairment of the retinal vasculature
and defective closure of the ductus arteriosus®®2. BMP9/ALK1 signalling has
been shown to regulate target genes important for blood vessel maturation
and stabilization. These genes included Notch targets (Hes1, Jag1, Hey1, Hey2),
inhibitors of VEGF signalling (VEGFR1), Angiopoietin-2 (Angpt2) and suppression
of endothelial tip cell markers (Unc5b)*%6768, Their role in the context of HHT has
also been elucidated for some of them®7°.
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Fig.2 | Close physical endothelial cell-mural cell contacts promote paracrine TGF-p/
ALKS signalling in mural cells and differentiation. In endothelial cells, TGF-f3 signals
through ALK5-Smad2/3 and ALK1-Smad1/5 to mediate opposite responses on prolif-
eration and migration. In contrast, BMP9 that binds with much higher affinity to ALK5
promotes endothelial cell quiescence. TGF-B is secreted by both endothelial cells and
mural cells in an inactive form. Close physical contacts between endothelial cells and
mural cells are necessary to activate TGF-B3. The mechanisms leading to its activation
remain poorly understood, depends on the cell types and on different mediators that
include connexins, integrins, and tissue factor. Upon TGF-f binding to ALK5 on mural
cells, it stimulates the production of contractile proteins, mural cell quiescence and
differentiation.

The involvement and activity of these TGF-B/BMP signalling components are
strictly linked to the development stage3* (Table 1). Interestingly, impaired
TGF-B/BMP signalling pathways not only affect endothelial cells but they are
also important for proper recruitment and differentiation of mural cells (Table
1). Moreover, mural cell specific deletion of TGF-/BMP components are linked
to vascular defects but at later stages of development indicating that TGF-/
BMP signalling pathways regulate vessel remodelling*® (Table 1). One important
issue over the past decade has been to identify whether the mural cell defects
observed in the TGF- mutants reflected the primary effects of TGF-f3 signalling
in mural cells or occurred secondarily to the impairment of endothelial cell
functions (Table 1). Both constitutive and conditional deletion of Acvrl1 or Eng

in the endothelial cells lead to impaired angiogenesis and the development
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Chapter 1

of vascular malformations indicating that these receptors share functions in
signalling#-153-%5, The situation is yet more complex for ALK5 since conflicting
data exist on its expression pattern in the endothelium. Using an acvr/7 (ALK1)-
Cre to delete TBRII and ALK5 specifically in the endothelium, Park et al., have
suggested that the effects of these receptors on vessel morphogenesis and
angiogenesis were not due to their functions in endothelial cells’ supporting
that ALK5 expression preferentially occurs in mural cells as suggested by Seki
et al.”2. However, floxed TBRII and floxed Alk5 mice crossed with transgenic mice
expressing the Cre-recombinase under control of the vascular endothelial
specific Tiel promoter resulted in embryonic lethality at E10.5 because of
aberrant angiogenesis as for the conventional TBRII and Alk5 knockout mice?.
Another Cre-driver where EGFP-Cre was knocked into the acvrl1 (active at
E9.5 in the endothelium) to delete TRRII and Alk5 also led to severe blood
vessel anomalies and intracranial hemorrhages’®. The temporal regulation
of the promoters used indicate that ALK5 expression in endothelial cells may
be required for angiogenesis only at certain developmental stages and may
be dispensable for the maintenance of the mature vasculature. Whilst this
hypothesis awaits further experiments for support, ALK1 is known to trigger
Smad1/5 pathway upon BMP9 or BMP10 stimulation to induce blood vessel
quiescence?29517¢ Bmp9~ and BMP107 mice do not display lethal defects in yolk
sac development®®4, but they seem to be importantin vascular remodelling post-
natally®"®3, The primary cause of HHT may thus be considered as dysfunctions
of BMP9/10 in endothelial cells. However, how defects in the delicate balance
between TGF-B/ALK5 and BMP9/10-ALK1-endoglin signalling in endothelial cells
lead to disease pathology remains to be clarified. Crosstalks in cellular signalling
between BMP9/10-ALK1-endoglin, VEGF, Notch and Angiopoietin signalling
pathways have also been reported 486° 515570 gand will be discussed in more
detail in the concluding chapter of this thesis.

TGF-3 signalling between endothelial cells and mural cells

The exact molecular changes leading to HHT are not clear yet. However, following
the recent identification of targets implicated in blood capillary stabilization,
this would suggest that the baseline situation in HHT is likely to be an abnormal
activation of the endothelium that may affect mural cell attachment. Indeed,
one of the best-understood roles of TGF-3 signalling in vascular development
is that of promoting mural cell differentiation’>’¢. Muscularization is achieved
when endothelial cells promote paracrine TGF-f3 signalling to the neighbouring
mural cells to promote their differentiation. Upon TGF-B binding to ALK5
expressed on mural cells, ALK5 phosphorylates Smad2/3 to promote the
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production of contractile proteins inducing cell quiescence and differentiation
to mature VSMCs or pericytes’”’® (Fig. 2). Importantly, the establishment of
close physical endothelial cell-mural cell contacts is absolutely required for
TGF-B activation and mural cell differentiation’®. The mechanism by which latent
TGF-B is converted into the active form to promote mural cell differentiation
is not fully understood, but Connexin-43 and Connexin-45, Tissue Factor, and
integrins such as avB8 have been suggested to play a role’>. How defective
TGF-B/BMP signalling in endothelial cells affect mural cell differentiation has
also been studied. Carvalho et al. have analysed TGF-f3 signalling in yolk sacs
from endoglin knockout embryos. They revealed that endothelial disrupted
TGF-B signalling in endothelial cells also affected TGF-B/ALKS5 signalling in
the adjacent mesenchymal cells. Interestingly, they also demonstrated that
application of exogenous TGF-f in cultured yolk sacs was sufficient to induce
VSMC differentiation®.

Concept of AVM and telangiectasia formation

Animal models have confirmed that Gdf2, Eng, Acvrl1, or Smad4 mutations
causes HHT and have brought important insights into the mechanisms by
which HHT mutations lead to the development of vascular malformations. These
models have employed classical null and heterozygous mice for either Eng or
Acvr[1404143708182 myjce bearing conditional loxP knockout alleles for Eng, Acvrl1, or
Smad4 crossed with endothelial or mural tissue specific Cre-recombinase mouse
lines®46783 mice injected with blocking antibodies targeting BMP9 and BMP10%
or zebrafish embryos harbouring a mutation in alk? or eng gene®>. From these
studies, it appears that HHT mutations are deleterious predominantly during
some forms of angiogenesis and that additional triggers to the gene mutations
are required for AVMs to form (Fig. 3). The heterozygous for Eng or AcvrlT mice
that are the closest genetic models of HHT patients in terms of genotype exhibit
a very mild phenotype with HHT-like features appearing only at low frequency
and in an unpredictable manner. Blood vessels develop and function normally
in these mice, although they have a widespread abnormality of the vascular
walls due to defective mural cell recruitment and attachment’075828587 Defective
blood vessel stability represents the baseline situation in HHT and is caused by
decreased TGF-B3 bioavailability®® and increased VEGF signalling in endothelial
cel|s®1:5455.70.88-90 (Fjg, 3). This is thought to favour inadequate responses of the
endothelial cells to angiogenic triggers leading to excessive angiogenesis and
the development of vascular malformations. Others and we have reported
that a second event such as inflammation, infection, wound healing and/or
angiogenesis is indeed required to initiate the formation of AV shunts’®°'-%3 (Fig.

21




Chapter 1

3). An additional somatic mutation in the remaining wild-type allele has also been
proposed to explain the clinical observation that vascular lesions occur focally®*.
This concept is supported by the recent generation of conditional knockout
mice for Eng, Acvrl1, or Smad4, which develop robust AVMs resembling those
seen in HHT individuals®*¢795, However, the local loss of heterozygosity concept
may be somehow simplistic to explain HHT pathogenesis. It seems unlikely that
many endothelial cells over the entire body could acquire somatic mutations
in the Eng or Acvrl1 gene to explain the multiplicity of vascular malformations
found in patients with HHT. Moreover, it has been reported that AVMs in HHT1
patients express the same level of endoglin as unaffected blood vessels, which is
approximately half of the normal level*2%¢, Alternatively, inflammatory cytokines
such as Tumour Necrosis Factor-a (TNF-a) that regulate receptor release from
the cell surface have been proposed to result in a transient and local null-
endoglin phenotype during inflammation, although this hypothesis needs to
be experimentally confirmed>3. Advanced real-time imaging technologies using
skinfold window chamber systems have revealed that the initial AV shunts are
able to remodel due to hemodynamic changes with veins and arteries that
dilate and adjacent blood capillaries that regress resulting in the maturation
of the AV shunts#4>%7_ Interestingly, recent studies point in the direction of a
specific synergy between blood flow and Endoglin-Alk1 signalling pathway for
the regulation of vessel calibre supporting the key role of shear stress in AVM
formation and maturation®>8>9398%9 Finally, several genetic modifiers have also
been described to play a role in susceptibility to HHT disease?1001%3 (Fig. 3).
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Fig. 3 | How gene mutations in HHT lead to the development of AVMs. Decreased
TGF-B/BMP signalling in endothelial cells is combined with increased VEGF signalling
leading to blood capillary destabilization and poor mural cell attachment. A second hit
such as inflammation, infection, wound healing or loss of heterozygosity is required
to induce pathological angiogenesis and the formation of vessel abnormalities that
subsequently remodel due to blood flow changes to form stable and mature AVMs. In
addition, modifier genes are contribution to the severity of the disease.

Therapeutic options for patients with HHT

Anti-VEGF

After discovering severe angiogenesis defects and increased expression of
angiogenic factors, including VEGF, in the ALK1”- mouse model®, elevated levels
of VEGF were found in the serum of HHT patients'“. This led to consideration
of the potential of anti-angiogenic drugs targeting VEGF. In 2006, Bevacizumab,
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one of the most prominent anti-VEGF drugs still in use today, was tested on
a severely affected patient. The treatment resulted in a significant decrease
in transfusion frequency, improvement in haemoglobin concentration, and
physical condition immediately after treatment’®>'%, From this date, clinicians
have tested bevacizumab and pazopanib, a kinase inhibitor targeting VEGFR2
on patients with HHT and have demonstrated their efficacy in preventing
nosebleeding'’'"". Bevacizumab delivered by nasal spray has also been tested
but did not provide positive outcomes"?. Several studies including ours,
have deciphered the mechanisms by which HHT mutations lead to high VEGF
activity in blood vessels and have demonstrated that strategies targeting VEGF
signalling can prevent the formation of AVYMs in mice depleted of either Eng or
Acvrl15154557088-9011314 _ A|so, not fully proven, one explanation of the effects of the
anti-VEGF therapies in HHT might be a reduction of VEGFR2 signalling activity in
endothelial cells, VEGFR2 activity levels that may become normalized promoting
blood vessel stabilization’. This will be extensively discussed in the concluding
paragraph of this thesis. Bevacizumab is an expensive option. However, small
chemical inhibitors such as nintedanib and pazopanib, which block VEGFR2
activity, have been tested in animal models and patient case reports showing
positive results, including improvements in epistaxis and normalization of
haemoglobin and iron levels"®"" 1415 While showing promise, there remains
a necessity to thoroughly assess long term safety and efficacy of employing
anti-VEGF therapies. Primary and late resistance to anti-VEGF therapies are
quite common, and adverse effects including hypertension, proteinuria,
gastrointestinal perforation, endocrine dysfunction and cardiac impairment
have been reported.

Immunomodulatory Imide drugs (IMiDs)

We have revealed a novel mechanism of action of thalidomide, namely
stimulation of vessel stabilization and have reported that oral administration
of thalidomide reduced both the frequency and duration of nosebleeds with
significant decreases of blood transfusion requirement and improvement of
quality of life®. Few other cases have been reported so far, but the published
literature is concordant regarding the potential benefit of thalidomide in HHT
individuals (Table 2).
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General Introduction and Scope of the Thesis

All subjects treated with thalidomide had severe and recurrent epistaxis and they
were refractory individuals to standard medical and local surgical treatments.
Thalidomide was administrated orally and the doses given were comparable to
that prescribed in the 1960s to treat nausea in pregnancy, ranging from 50 mg
to 300 mg of thalidomide daily. In most cases, only minor side effects have been
reported and include mild constipation, loss of libido, drowsiness and lethargy.
However, three individuals stopped treatment due to peripheral neuropathies
in two individuals and deep vein thrombosis in one subject (Table 2). Therefore,
thalidomide appears to be a potential candidate for the treatment of severe
bleeding in HHT individuals unresponsive to conventional therapies. However,
these studies have not yet been supported by data from randomized controlled
trials and future research should be directed toward identifying the minimum
dose of thalidomide effective to prevent bleeding from HHT vascular anomalies
without inducing side effects.

Thalidomide was first introduced as a sedative used to prevent nausea during
pregnancy in the late 1950s. In 1961, it was withdrawn from the market due
to teratogenicity and neuropathy'®. The use of thalidomide resulted in one
of the biggest tragedies in the history of drug development. As a result of
using thalidomide, it caused an estimated 10,000 children in 46 countries to
be born with birth defects, marked by limb malformations and congenital
defects affecting ears, eyes, heart and kidney. These defects occurred when
drug exposure took place within a short, time-sensitive window between
day 20 and day 36 of gestation. Just one 100 mg tablet of thalidomide was
enough to cause limb defects'”"8, This drug was abandoned but has
recently undergone a renaissance. Emerging insight into thalidomide’s anti-
inflammatory, immunomodulatory and anti-angiogenic activity led to clinical
trials in AIDS-related aphthous ulceration, Behcet's syndrome, Crohn'’s disease
cutaneous lupus and various malignancies™. In 1999, effectiveness against
multiple myeloma (MM) was reported™. In respect to Erythema Nodosum
Leprosum (ENL) and MM, the US FDA approved thalidomide for use under
strict guidelines and carefully controlled inclusion criteria in 1998 and 2006,
respectively. Decades of investigation have identified a multitude of biological
effects that are regulated by thalidomide. In addition to suppression of Tumour
Necrosis Factor-a (TNF-a), thalidomide affects the generation and elaboration
of a cascade of pro-inflammatory cytokines that activate cytotoxic T-cells even
in absence of co-stimulatory signals. Furthermore, VEGF and basic Fibroblast
Growth Factor (bFGF) secretion and cellular response are suppressed by
thalidomide, thus antagonizing angiogenesis and altering the bone marrow
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stromal microenvironment in hematologic malignancies'®™?'. More recently,
it has been discovered that cereblon (CRBN) is the main target through which
thalidomide exerts its anti-cancer and teratogenic effects. CRBN, along with
DDB1, CUL4A, and ROC1 forms the CRBN-CRL4 E3 ubiquitin ligase (CRL4REN)
and regulates the enzyme’s substrate specificity. This leads to the ubiquitination
of proteasomal degradation of specific neo-substrates. Thalidomide has been
reported to act as a molecular bridge that links selected neo-substrates to CRBN
and ubiquitin-proteasome system'?*'2>, The neo-substrates identified include
the Ikaros family zinc finger transcription factors 1 and 3 (IKZF1 and IKZF3),
casein kinase 1Ta and ARID2 that all, contribute to the efficacy in the treatment
of MM. Conversely, spalt-like transcription factor 4 (SALL4), PLZF and p63 have
been implicated in the teratogenic effects induced by IMiD’s treatments'>132
(Fig. 4). The mechanisms by which thalidomide inhibits angiogenesis, promotes
blood vessel stability and integrity are much less understood.

Glutarimide ring O Phthalimide ring
Cereblon
44— O —] TNF-a
Therapeutic effects:
Anti-inflammatory

@®—.  |kzr1 Therapeutic effects: Hematologic cancers
3 [ 1kzr2 Immunomodulatory activity

CKia  Anti-tumour activity

ARID2 Anti-angiogenic

0 SALL4
ANP63  Teratogenic effects

TAP63
PLZF

Fig. 4 | Mechanism of action of thalidomide

Previously, my lab has reported that the anti-haemorrhagic property
of thalidomide is not the result of direct inhibition of endothelial cell
proliferation and migration but is rather due to increased mural cell coverage
of the vasculature. Thalidomide increased the number of pericytes and their
recruitment to blood vessels, enhancing the apposition between the inner
endothelial and supportive pericyte layers and resulting in vessel stabilization
in Eng*- mutant mice, a well-characterized model of HHT. Moreover, high doses
of thalidomide (150 mg/kg body weight) stimulated the number of pericytes that
expressed a-SMA, an established marker of the pericyte contractile phenotype.
At the molecular level, thalidomide treated mouse retinas unexpectedly showed
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only marginally reduced VEGF mRNA levels compared to untreated controls.
However, we observed a marked and rapid increase of PDGF-B mRNA levels
in endothelial cells in response to thalidomide. PDGF-B is a key molecule in
pericyte chemotaxis that promotes endothelial-pericyte cell-cell contact. The
observation that the anti-angiogenic effects of thalidomide were prevented by
concurrent administration of STI-571, a kinase inhibitor that blocks PDGFR-[3 but
not VEGF signalling suggests a functional role for PDGF-B in this thalidomide-
stimulated reduction in angiogenesis. Moreover, we took advantage of the
Pdgfetmouse model, in which PDGF-B is secreted but is not retained by the
extracellular matrix and so does not form the gradient required to stimulate tight
adhesion of pericytes to the abluminal surface of microvessels and showed that
thalidomide did not rescue the pericyte recruitment defect in post-natal Pdgfr”
rtmice. Finally, we revealed that thalidomide might target mural cells directly
to stimulate their proliferation and ability to form protrusions independently
of effects on PDGF-B signalling. The exact mechanisms underlying this effect
need further investigation. These data provide to our knowledge, the first
evidence that a therapy targeting pericytes to stimulate vessel maturation can
have beneficial effects on bleeding from vascular malformations®. Recently, it
has been reported that thalidomide treatment prevented Blood Brain Barrier
leakage and cognitive decline induced whole brain ionizing radiation in both
humans and mice. This effect was partly mediated through PDGFr-f3 signalling
confirming that thalidomide might be beneficial in treating diseases associated
with vascular dysfunction':.

Lenalidomide and pomalidomide are IMiD analogue of thalidomide. They
have been approved by the US Food and Drug Administration (FDA) for the
treatment of MM in June 2006 and February 2013, respectively. They share a
common glutarimide ring that binds to CRBN, linked to a phthaloyl ring with
minor chemical variations dictating their interactions with a limited number of
neo-substrate proteins. Therefore, their mechanisms of action are similar in
some aspects, but lenalidomide and pomalidomide are more potent compared
to thalidomide. A clinical trial using pomalidomide to treat patients with HHT
has recently been completed (NCT03910244) and preliminary data show a
reduction in epistaxis severity score (tool used to evaluate the current severity
of HHT patient nosebleeds) and improvement in quality of life in treated
patients compared with placebo™4. The use of pomalidomide is not without
risk and neutropenia, thrombocytopenia and an increased risk of second solid
tumours and haematopoietic malignancies, primarily MDS and AML'35'3¢ have
been reported. Moreover, pomalidomide is a potent teratogen'’. The clinical
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implementation of thalidomide’s analogues will require the identification of
the mechanisms of action and protein targets as well as the generation of safer
drugs to treat chronic diseases such as HHT.

Scope of the thesis

This thesis provides insights into the mechanism underlying HHT. Novel and
promising treatments are also introduced, along with an innovative imaging
technique designed to assess drug efficacy.

Chapter 2 examines tissue-specific characteristics in HHT1, revealing a
correlation between low endoglin levels and vascular malformations in organs.

Chapter 3 demonstrated the significant role of VEGFR1 in HHT2 pathogenesis
and provided mechanisms explaining why HHT2 blood vessels respond
abnormally to angiogenic signals. This supports the use of anti-VEGF therapy
in HHT2.

In Chapter 4, we focused on pericyte-endothelial cell interactions in endoglin-
deficient mice. Additionally, we used revolutionary ultrasound imaging
techniques to reveal cerebral blood flow deregulation. In addition, our study
highlights the important role of TGF-B1 in this phenotype.

Chapter 5 explains the mechanism of action of Thalidomide and introduces new
analogues that could potentially treat HHT and other cerebral microvascular
disorders.

Chapter 6 critically discusses the main findings of the studies included in this

thesis in the context of recent literature and presents promising prospects for
future research and treatment.
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