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Abstract
The variational quantum algorithms are crucial for the application of NISQ computers. Such
algorithms require short quantum circuits, which are more amenable to implementation on
near-term hardware, and many such methods have been developed. One of particular interest is the
so-called variational quantum state diagonalization method, which constitutes an important
algorithmic subroutine and can be used directly to work with data encoded in quantum
states. In particular, it can be applied to discern the features of quantum states, such as
entanglement properties of a system, or in quantum machine learning algorithms. In this work,
we tackle the problem of designing a very shallow quantum circuit, required in the quantum state
diagonalization task, by utilizing reinforcement learning (RL). We use a novel encoding method for
the RL-state, a dense reward function, and an ϵ-greedy policy to achieve this. We demonstrate that
the circuits proposed by the RL methods are shallower than the standard variational quantum state
diagonalization algorithm and thus can be used in situations where hardware capabilities limit the
depth of quantum circuits. The methods we propose in the paper can be readily adapted to address
a wide range of variational quantum algorithms.

1. Introduction

In the last few decades, researchers from various scientific disciplines have come together to study and
develop quantum algorithms and their experimental realization. Among the originally proposed quantum
algorithms, many require millions of physical qubits to be implemented on quantum hardware to deal with
instance sizes of real-world importance. Unfortunately, the existing quantum hardware is limited to the order
of a few hundred physical qubits, and these are called noisy intermediate-scale quantum (NISQ) devices. The
NISQ algorithms are small and prone to noise and decoherence, and thus, one needs to consider Variational
Quantum Algorithms (VQAs) that can work under such restrictions.

Among the class of VQAs, variational quantum state diagonalization (VQSD) [1] is an algorithm that
utilizes a quantum–classical hybrid procedure to identify the unitary rotation under which a given quantum
state becomes diagonal in the computational basis, i.e. it diagonalizes a quantum state. It has several
applications, including quantum state fidelity estimation [2], device certification [3], Hamiltonian
diagonalization [4], and as a method to extract entanglement properties of a system [1, 5]. VQSD generalizes
the well-studied problem of quantum state preparation, which can be understood as quantum state
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tomography for pure states7. Considering it has applications that range from quantum information to
condensed matter physics, an efficient way to deal with quantum state diagonalization may lead to interesting
insights in these fields.

We note that there exist algorithmic exact methods for quantum state diagonalization based on quantum
principal component analysis (qPCA) [6]. However, they lead to deeper circuits that could, in principle, be
obtained with variational methods. However, to achieve this, the most challenging aspect of VQSD is to
construct an efficient ansatz (which refers to the unitary) that diagonalizes a given quantum state. For the
analysis in this paper, we consider the following factors as the indicators for ansatz efficiency: (1) the depth,
understood as the number of parallel operations in the ansatz; (2) the total number of quantum gates, and
(3) the accuracy in the estimation of eigenvalues.

In the standard VQSD methods [1, 5], a layered hardware efficient ansatz (LHEA) is utilized. A single
layer of the ansatz contains two-qubit gates acting on neighbouring qubits. Although the LHEA parameter
count increases linearly with the number of layers and qubits, it has trainability issues and often encounters
local minima [1]. To tackle the trainability issue, instead of using a fixed structure of LHEA, the authors
allow additional updates (i.e. changes in the ansatz structure) during the classical optimization process [1].
In this process, every optimization step minimizes the cost function with a small random change to the
ansatz structure. The new structure is approved or rejected based on a simulated annealing scheme [7].
Although the varying structure LHEA outperforms fixed structure LHEA, the number of gates in the
quantum circuit increases rapidly as we scale the size of the quantum state. Hence, the problem of finding a
method to construct an ansatz that satisfies all efficiency criteria is still an open problem.

In the case of some VQAs, to address the challenges of finding the architecture of ansatz, methods have
been introduced that draw on the insight and techniques of machine learning [8–12], such as a process of
automating the architecture engineering of quantum circuits is known as quantum architecture search
(QAS) [9, 13, 14]. Recent studies have strongly suggested that double deep Q-networks (DDQN) in
reinforcement learning (RL) can successfully solve QAS problems [8, 10], performance improvement in
QAOA variants [15] as well as the task of quantum compiling [16].

Contributions
Following the above line of work, we introduce a RL driven VQSD method (i.e. RL-VQSD), which automates
the search for optimal succinct ansatz (i.e. RL-ansatz). The RL-VQSD algorithm constitutes:

1. A novel depth-based binary encoding scheme [17] to encode the RL-state.
2. A dense reward function, which we introduce in the paper crafted particularly for the task of quantum

state diagonalization.
3. A DDQN with an ϵ-greedy policy for better stability.

Using these components we demonstrate that the ansatz proposed by the RL-agent can successfully
diagonalize arbitrary mixed quantum states of full-rank with a smaller number of gates and depth compared
to the existing ansatz structures. We exemplify the functioning of the RL-VQSD by diagonalizing the
quantum states arising in condensed matter physics while maintaining a short depth and gate count of the
resulting RL-ansatz. Moreover, a deeper investigation reveals that the combination of the binary encoding of
the RL-state and the dense reward function is responsible for the success of diagonalizing larger quantum
states. Finally, we demonstrate the hardness of the problems by utilizing a random agent in the VQSD
algorithm and show the performance of the random agent significantly decreases as we scale up the qubits in
the quantum state. Moreover, we show that the RL-agent not only provides us with a more consistent
outcome, but it gives significantly better circuit depth, gate count, and approximation quality compared to
the random agent.

The rest of this paper is organized as follows. In section 2, we review the standard methods for variational
quantum state diagonalization and provide an overview of the ansatz construction, and reinforcement
learning (RL). In section 3, we describe the proposed scheme for the construction of variational quantum
state diagonalization circuits, including the method for encoding quantum circuits, the dense reward
function, and the performance comparison of the encoding and the reward. Section 4 summarises the
numerical results obtained to demonstrate the application of the proposed RL-VQSD. Finally, in section 5,
we briefly summarize the contribution and provide some remarks concerning the possible extension of the
introduced approach.

7 If one is given a quantum state |ψ⟩, then VQSD can potentially find a short-depth circuit that approximately prepares |ψ⟩.
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2. Preliminaries

This section briefly reviews the standard methods of variational quantum state diagonalization. We also
outline the standard procedure of constructing an ansatz and introduce basic concepts from RL.

2.1. Variational quantum state diagonalization
Classical methods for diagonalization typically scale polynomially with the dimension of the matrix [18].
Similarly, the number of measurements required for quantum state tomography scales polynomially with the
dimension of the Hilbert space. Moreover, as discussed, the qPCA is costly to implement in NISQ devices.

To tackle these issues, a hybrid quantum–classical method for quantum state diagonalization—VQSD –
has been proposed in [1]. For a quantum state ρ, the algorithm is composed of three subroutines:

• TRAINING In this subroutine, for a given state ρ, one optimizes the parameters θ⃗ of a quantum gate sequence
U(θ⃗), which (ideally) after optimization satisfies

ρ ′ = U
(
θ⃗opt

)
ρU

(
θ⃗opt

)†
= ρdiag, (1)

where ρdiag is the diagonalized ρ in its eigenbasis and θ⃗opt are the optimal angles. One can utilize classical
gradient-based methods such as SPSA and Gradient-Descent or gradient-free optimization methods such
as COBYLA [19] and POWELL [20] in the training process.
• EIGENVALUE READOUT In this subroutine, using the optimized unitary U(θ⃗opt) and one copy of state ρ, one
can extract—for low-rank states—all the eigenvalues or—for full-rank state—the largest eigenvalues. This
is achieved by measuring the ρ ′ in the computational basis, b= b1b2 . . .bn, as follows

λ ′ = ⟨b|ρ ′|b⟩, (2)

where λ ′ are inferred eigenvalues.
• EIGENVECTOR PREPARATION In the final step, one can prepare the eigenvectors associatedwith the largest eigen-
values. If b ′ is a bit string associated with λ ′ then one can get the inferred eigenvectors |v ′b ′⟩ as follows

|v ′b ′⟩= U
(
θopt

)† |b ′⟩= U
(
θopt

)† (
Xb1 ⊗ . . .⊗Xbn

)
|0⟩. (3)

The workflow in the VQSD procedure is illustrated in figure 1.
The cost function proposed in [1] as a part of the training process is a function of the purity of the state

that needs to be diagonalized. It takes the following form

C
(
θ⃗
)
= Tr

(
ρ2
)
−Tr

(
D (ρ ′)

2
)
, (4)

whereD denotes a dephasing channel, that eliminates the off-diagonal elements. When C(θ⃗) is sufficiently
close to zero, one can say that the quantum state is diagonalized. It should be noted that there are many ways
to define a cost function that quantifies how far ρ ′ is from being diagonal [21]. However, due to
computational purposes, we choose the cost function of the form given in equation (4).

2.2. Ansatz construction
In the TRAINING subroutine of figure 1, the correct choice of the ansatz is crucial, as it is the main factor
determining whether the diagonalization task can be performed. Additionally, the choice of the ansatz can
also impact the execution of the EIGENVALUE READOUT and EIGENVECTOR PREPARATION, as one has to use it in
both cases.

In many instances of VQAs, the structure of the ansatz is dictated by the underlying problem. For
example, in Variational Quantum Eigensolver (VQE) [22] and the Quantum Approximate Optimization
Algorithm (QAOA) [23], the ansatz can be defined based on the problem Hamiltonian. In VQE, the ansatz is
constructed through the so-called Unitary Coupled Cluster (UCC) [24–26] method, and in QAOA, it is given
by first-order Trotterization of the time-dependent Hamiltonian corresponding to the adiabatic preparation
of the ground state. However, this is not the case for the VQSD algorithm; for an arbitrary unknown
quantum state, the algorithm has no problem-inspired ansatz.

In the previous works [1, 2] to solve the optimization part, the authors proposed a fixed structure for an
ansatz, namely LHEA. This type of ansatz is depicted in figure 2 where each layer L ∈ [1..l] of UL(θ⃗) consists
of a set of optimization parameters θ⃗ ≡ θji, where i denotes the total number of layers and j is the number of
parameters per layer. Each layer consists of two-qubit rotation gates which follow a periodic boundary

3
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Figure 1. Elements of Variational Quantum State Diagonalization (VQSD) algorithm. In the presented example, we consider the
diagonalization for the 2-qubit input state. It should be noted that to diagonalize the N qubit quantum state the algorithm
requires 2N number of qubits in the algorithm.

Figure 2. Structure of a layered hardware efficient ansatz, where the ansatz Ul(θ⃗) is decomposed into layer-wise unitaries Ul(θ⃗l)

for l= 1,2, . . . , l. Each gate Ul(θ⃗l) is further decomposed into two-qubit rotations. For θ⃗ji , index i denotes the layer number, and j
is the index specifying the parameter count.

condition. In LHEA, there are two possible ways to construct the two-qubit parameterized gates, which are
depicted in figure 3.

Instead of diagonalizing with a fixed structure ansatz, one can allow it to vary during the optimization
process. This scenario starts from a two-qubit parameterized gate on random qubits, and then the gate
sequence is optimized by minimizing the cost function and changing the gate-set structure. Hence, the gate
sequence is allowed to grow if the algorithm fails to minimize the cost function for a specified number of
iterations. Then, one adds an identity gate spanned by new variational parameters that are randomly added
to the ansatz. This step is equivalent to adding a layer to the ansatz. This method is discussed in more detail
in [7].

4
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Figure 3. Two possible decompositions of the two-qubit rotations in each layer-wise unitary Ui(θ⃗i). It can be constructed into two
forms with (a) one and (b) three parameters respectively.

To address the lack of a definitive structure for diagonalizing unitary, in this paper we utilize RL to
automate the exploration for an efficient ansatz construction.

2.3. Reinforcement learning
In reinforcement learning (RL), an agent interacts with its environment to learn an optimal policy by trial
and error approach [27]. An RL process can be modeled as a Markov decision process defined by the tuple
(S,A,P,R), where S and A represent the state and action spaces, the function P : S× S×A→ [0,1] defines
the transition dynamics, and R : S×A→ R describes the reward function of the environment. In this work,
we consider the action A and the state S to be finite and discrete sets. An episode describes all interactions
between an agent and its environment until a user-specified termination condition is met.

An agent’s behavior in the environment is governed by a stochastic policy π(a|s) : S×A→ [0,1], for
a ∈ A and s ∈ S. The metric that assesses an agent’s performance is given by the return and takes the form of a
discounted sum as follows

G(τ) =
T−1∑
j=0

rjγ
j+1,

where τ = (s0,a0, r0, . . . , sT−1,aT−1, rT−1) ∈ (S×A×R)T is the interaction sequence, T is a fixed length
called horizon, and γ is an environment-specific discount factor. The agent’s objective is to determine the
optimal policy that maximizes the expected return.

In a large unknown environment, the agent needs to be able to adapt to many different situations and
develop multiple strategies at the same time. Hence, highly expressive function approximators such as deep
neural networks to parametrize the agent’s policy π can be advantageous.

Here, we settled on using a DDQN [28]. DDQN is a Q-learning algorithm based on the standard
DQN [29], which features two neural networks (NN) to increase the stability of the prediction of Q-values
for each state and action pair. We represent the state space as an ordered list of layers that are composed of a
single depth of the quantum circuit. An action space is defined by a list of four numbers, corresponding to
RX, RY, RZ, and CNOT quantum gates. For the sake of brevity, we defer the detailed description of the DDQN
algorithm in appendix A.

2.4. Error quantification
To quantify the eigenvalue error throughout the paper, we use the following figure of merit [1]

∆i =
m∑
i=1

(λi −λ ′
i )

2
, (5)

wherem represents the number of the largest eigenvalues, λi is the true eigenvalue and λ ′
i is the inferred

eigenvalue obtained from the EIGENVALUE READOUT subroutine. In the ideal case, where the state is completely
diagonalized,m= 2n indicates all the eigenvalues have been considered. Throughout the paper, we set
m= 2n if not specified explicitly otherwise.

5
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Figure 4. Illustration of the RL-VQSD process. In this process, the VQA is represented as the environment and the ansatz as the
RL-state. The RL-agent receives the optimized cost function in the form of a reward and the RL-state from the environment.
Following an ϵ-greedy policy, the agent then decides on an action (i.e. a quantum gate), which in the next step updates the
RL-state. Utilizing the new RL-state the VQA optimizes the cost function and generates a new reward function to feed it to the
agent. This process is repeated until all the steps in an episode are exhausted, or the cost function reaches a predefined threshold
value. Throughout the paper, we start the RL-VQSD with an empty circuit and at each step, the agent chooses an action to
construct the RL-ansatz, indicating U(α⃗) = I.

3. Proposed approach

In this section, we give the details of the proposed RL-VQSD as depicted in figure 4. In our modeling of the
algorithm, the states of the environment encode the possible architectures of the quantum circuit (i.e. the
ansatz), and the actions correspond to a gate. At first, we briefly discuss the sub-components of the
RL-VQSD which include (1) a binary encoding for the RL-state, (2) a one-hot encoding to define actions,
and (3) the engineering of a dense reward function. Next, we discuss the agent-environment settings and
hyperparameters relevant to RL-VQSD. Finally, we benchmark the performance of the binary encoding
scheme and the dense reward function in comparison with the encoding and reward proposed in [8],
showing that the success of RL-agent is heavily dependent on a well-engineered encoding scheme for
RL-state and reward function.

3.1. Encoding scheme for state
Motivated by the ideas in [8, 30], in [17] a binary encoding scheme was introduced. In this scheme, the gate
structure of the ansatz is expressed as a tensor of dimension [Dmax× ((N+ 3)×N)], where N represents the
size of the problem and Dmax is the considered maximum depth of the ansatz. For VQSD, N represents the
number of qubits in the quantum state that need to be diagonalized. The proposed encoding can be
explained through the following two points:

1. Freedom in connectivity The encoding enables all-to-all qubit connectivity, but it can be restricted by
considering unidirectional nearest neighbour connections only. In this scenario, the matrix dimension
((N+ 3)×N) is reduced to (4×N). One should note that in the case of a two-qubit gate, one is not
required to keep track of the control and target simultaneously. Hence, defining one argument of the
two-qubit gate implicitly provides information about the other argument due to its nearest neighbour
and unidirectional nature. A similar encoding scheme is described in [30].

2. Depth-based encoding In previous work [8] each ((N+ 3)×N)matrix carries information
corresponding to each action taken by the agent, where each action represents either a single or a
two-qubit gate. Additionally, the information was integer-based, in the range 0 to N.
On the contrary, In our work, the encoding is binary and depth-based. For example, if Dmax = 3, then the
encoding initiates by filling up the [i × ((N+ 3)×N)] for i= 1 until a depth of RL-ansatz is encoded.

6
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Figure 5. Example of the proposed encoding for a 4-qubit ansatz into an RL-state. The first (N×N) square matrix is reserved for
the CNOT connectivity. The columns of the square matrix encode the target qubit, and the rows represent control qubits. The
remaining ((N+ j)×N) elements encode arbitrary rotation towards j direction where j= 1, 2, and 3, for X, Y and Z rotations,
respectively.

Thus, we have ((N+ 3)×N)︸ ︷︷ ︸
depth=1

,((N+ 3)×N)︸ ︷︷ ︸
all zeros

,((N+ 3)×N)︸ ︷︷ ︸
all zeros

 . (6)

Then, as i= 1 is filled up, we move to i= 2 to encode depth= 2 of the RL-ansatz, which yields((N+ 3)×N)︸ ︷︷ ︸
depth=1

,((N+ 3)×N)︸ ︷︷ ︸
depth=2

,((N+ 3)×N)︸ ︷︷ ︸
all zeros

 . (7)

Finally, the depth= 3 is encoded in i= 3 resulting in((N+ 3)×N)︸ ︷︷ ︸
depth=1

,((N+ 3)×N)︸ ︷︷ ︸
depth=2

,((N+ 3)×N)︸ ︷︷ ︸
depth=3

 . (8)

Each depth encoding follows the scheme shown in figure 5.

3.2. Actions
For constructing the quantum circuits, we use the scheme developed in [8] with CNOT and one-qubit
rotation gates, which are feasible on currently available quantum devices. The encoding of the action space
can be defined as follows. The CNOT gates are represented by a pair of values that indicate the positions of the
control and target qubits, with enumeration starting from 0. As for the rotation gates, they are encoded using
two integers, also starting from 0. The first integer identifies the qubit register, while the second integer
specifies the rotation axis. For an N-size quantum state, the agent can choose from 3×N single-qubit gates
and 2×

(N
2

)
two-qubit gates. As we are utilizing deep RL methods, we employ the one-hot encoding

technique to represent actions within the action space. Mathematically, one-hot encoding can be identified as
the Kronecker–Delta function as follows [31]. Suppose x is a discrete categorical random variable that takes n
distinct values x1, . . . ,xn. Then the one-hot encoding of a particular value xi is a vector v where every

7
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component of v is zero except for the ith component, which has the value 1. We refer the reader to figure 5
for a visual illustration of one-hot encoding for the actions (shaded in grey color).

3.3. Reward function
To guide the agent quickly towards the goal, we introduce a reward that is dense in time at each time step t.
The reward used in this work is given as

R=

 +R for Ct

(
θ⃗
)
< ζ + 10−5

−log
(
Ct

(
θ⃗
)
− ζ

)
for Ct

(
θ⃗
)
> ζ

, (9)

where the goal of the agent is to reach the minimum error for a predefined threshold ζ , i.e. the tolerance for
cost function minimization. The ζ is a hyperparameter of the model. The cost function at each step t is
calculated for the ansatz which outputs a state ρt(θ⃗) as

Ct

(
θ⃗
)
= Tr

(
ρ2
)
−Tr

(
ρt

(
θ⃗
)2
)
. (10)

3.4. Agent and environment specification
In this work, we use a [32] DDQN for better stability with an ϵ-greedy policy and the ADAM optimizer [33]
to optimize the weights of the NN. More details about the RL procedure are described in the next section. As
mentioned in the previous section, to obtain a reward R for the circuit (i.e. for each environmental state), an
optimization subroutine needs to be applied to determine the values of the rotation gate angles. We use
well-developed methods for continuous optimization, such as Constrained Optimization By Linear
Approximation [19] (COBYLA), which we utilize to optimize the parameters of the quantum circuit.

4. Numerical demonstrations

4.1. Setup details
We start with the parameter specifications given in [8], which uses the DDQN algorithm with a discount
factor of γ= 0.88 and an ϵ-greedy policy for selecting random actions. The value of ϵ is gradually decreased
from 1 to a minimum value of 0.05 by a factor of 0.99995 at each step. The size of the memory replay buffer is
set to 2× 104, and the target network in the DDQN training is updated with every 500 action. Following
each training episode, we conduct a testing phase where the probability of selecting a random action is set to
0, and the experience replay procedure is turned off. Experiences obtained during the testing phase are not
added to the memory replay buffer. The source code and the specifications of the numerical experiments
presented in this section are available from the publicly accessible code repository [34].

4.2. Experiment details
In the following numerical simulations, we consider 2-qubit random quantum states and the reduced
ground state of a 3-qubit Heisenberg model to benchmark the performance of RL-VQSD in comparison with
the VQSDmethod with l layers of LHEA. Further, to show the scaling of RL-VQSD we consider diagonalizing
the reduced ground state of the 4-qubit Heisenberg model. For the experiment, we consider 10000 episodes
(if not stated otherwise) where each episode is decomposed into Ns steps. The value of Ns is set to 20, 40 and
60 while diagonalizing 2, 3 and 4-qubit problems respectively. In each step of an episode, the RL-agent
decides on an action following the encoding provided in section 3.2, and then the action is translated into
either rotation or CNOT gate. The value of the parameter for a new rotation gate is always initialized with 0.
Then, the parameters of the circuit are optimized. In the next step, when the RL-agent decides on a new
action, the new rotation is initialized to 0, but the previous rotation gates are set to their optimized angles.
Then, the modified ansatz is optimized in the classical optimization subroutine (using COBYLA optimizer).
This process is repeated until the problem is solved or all the steps in an episode are exhausted. Mainly for
this work, at each step of an episode, we optimize all angles at once (global strategy), which we call global
COBYLA. In diagonalizing 2-, 3- and 4-qubit quantum state we use 400, 500 and 1000 iterations of COBYLA
optimizer respectively.

4.3. Analysis of RL-state encoding and reward function
Before diving into a rigorous investigation of the performance of RL-VQSD, we showcase the effectiveness of
the RL-state encoding method (provided in section 3.1) along with the dense reward function (as in
equation (9)). To benchmark the effectiveness, we compare the RL-ansatz proposed by the agent utilizing the
following two settings to diagonalize 2- and 3-qubit quantum state with RL-VQSD: (1) the binary encoding

8
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Table 1. Comparison of the binary encoding along with the reward function presented in the paper with the integer-based encoding and
the sparse reward function presented in [8]. We diagonalize a 2-qubit arbitrary state and the reduced ground state of the 3-qubit
Heisenberg model. The result shows that for 2-qubit, both the settings perform equivalently, but as we scale up the system to 3-qubit, the
integer encoding with sparse reward fails to give an efficient RL-ansatz with small gates and depth that can help us achieve a good
approximation of the eigenvalues. This study leads us to conclude that the success of an RL-agent significantly depends on appropriately
encoding the RL-state and designing the reward function.

Settings Qubits Avg. err. Avg. 1q gate Avg. 2q gate Avg. depth

Binary encoding section 3.1 and dense reward (9) 2 5.23× 10−6 14.40 4.60 14.12
3 9.16× 10−5 18.19 12.08 20.32

Integer encoding and sparse reward [8] 2 6.51× 10−6 13.96 4.72 14.81
3 5.97× 10−4 15.49 24.50 35.65

Figure 6. The summary of results for diagonalizing full rank 2-qubit random density matrix. In (a) we illustrate eigenvalue
convergence for the diagonalization of a single mixed quantum state. In (b) we compare the performance of the
RL-agent-generated ansatz with the LHEA. It can be seen that the RL-agent-generated ansatz gives us a better approximation of
the eigenvalues. Additionally, the RL-based methods can achieve the accuracy of the LHEA using the circuit with significantly
reduced depth of the resulting circuit.

scheme along with the dense reward function presented in this paper and (2) the integer-based RL-state
encoding scheme (which we call integer encoding) and the sparse reward function described in [8] in solving
quantum chemistry problems. In both cases, we keep the agent and environment specifications unchanged.
Through this investigation, we show how the RL-state encoding and the engineering of the reward function
are responsible for the success of the RL-VQSDmethod. In table 1, we present the results, which confirm that
the integer encoding, along with sparse reward in [8], underperforms in finding a more accurate
diagonalization of the state with a smaller number of gates and depth as the size of the diagonalizing state
increases. Furthermore, it does not solve the diagonalization problem with a 10−4 threshold, a problem easily
tackled by binary encoding and the dense reward methods.

4.4. 2-qubit random quantum states
In the first numerical experiment, we utilize RL-VQSD to diagonalize (1) a single mixed quantum state and
(2) 50 random quantum states of the full rank of 2-qubit, to get the average eigenvalue approximation error
and count the gates in RL-ansatz. We utilized the random_density_matrix of the module quantum_info
of qiskit [35] to sample the quantum states from the Haar measure. By (1), we argue that RL-VQSD can
exactly diagonalize a quantum state. The results of (2) demonstrate that the average performance of
RL-VQSD is better than state-of-the-art ansatz.

In figure 6(a) we show that the agent can propose an ansatz that provides us with the exact eigenvalues
for a 2-qubit random quantum state with 12 gates, containing 10 rotations and 2 CNOT gates. The RL-ansatz
is depicted in figure 7.

Meanwhile, in figure 6(b), we benchmark the performance of RL-ansatz against LHEA. In the
illustration, we show that the agent not only gives us a small ansatz to diagonalize with a specific predefined
threshold ζ = 10−5 but also helps us achieve a lower error in eigenvalue estimation compared to LHEA.
Furthermore, in table 2, we provide a rigorous comparison of the RL-ansatz and 6 layers of LHEA (of the
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Figure 7. The ansatz proposed by RL-agent to diagonalize the 2-qubit state with eigenvalues convergence illustrated in figure 6(a).
This shows us that even with very few gates and small depth the RL-VQSD can give us accurate diagonalization of small quantum
systems.

Table 2. Comparison of the RL-ansatz (proposed by the RL-agent) and 6 layers of LHEA (utilized in the VQSD) used for diagonalizing
2-qubit arbitrary quantum states. For the comparison, we consider investigating the average error in eigenvalue estimation (Avg. error),
the average number of single-qubit gates (Avg. 1q gate), the average number of the two-qubit gate (Avg. 2q gate), the average depth
(Avg. depth) and the average number of total gates (Avg. total gate). The structure of the LHEA (depicted in figure 3(b)) utilized for the
investigation is of a fixed structure whose depth and gates scales as l× (depth or number of gates) where l denotes the layers of the
LHEA. It should be noted that the average is taken over 50 random quantum states. N.A. denotes not applicable.

Layer Avg. error Avg. 1q gate Avg. 2q gate Avg. depth Avg. total gate

RL-ansatz N.A. 9.33× 10−7 10.68 2.28 9.54 14.06

6 layers of LHEA

1 2.42× 10−4 12 1 7 13
2 1.31× 10−5 24 2 14 26
3 4.98× 10−5 36 3 21 39
4 1.02× 10−4 48 4 28 52
5 1.72× 10−4 60 5 35 65
6 1.53× 10−4 72 6 42 78

Figure 8. Statistics of error in eigenvalue estimation for 500 arbitrary quantum states. As an ansatz to diagonalize all the 500
random quantum states, we consider a fixed structure provided by the RL-agent. In this case, we consider the structure given in
figure 7.

structure depicted in figure 3(b)). For the comparison, we evaluate the average statistical error (which is
defined in equation (5)) in estimating eigenvalues, the mean count of one and two-qubit gates, the average
depth, and the overall average count of gates as metrics. From the table, we can conclude that the average
error of LHEA gets stuck around 10−5, where the 2nd and the 3rd layers of LHEA provide the lowest error in
eigenvalue estimation. Meanwhile, the RL-ansatz can, on average, give 102 times less error compared to
LHEA with an ansatz composed of 3 times fewer parameterized gates and smaller depth. In table 2, for depth
14 LHEA (which corresponds to the 2nd layer of LHEA with 26 gates), we see that the average error in
eigenvalue reaches to 1.31× 10−5. On the other hand, for the same depth, the RL-ansatz can achieve an error
of 9.33× 10−7 with an average (over the 50 random states) of 2.56 2-qubit and 11.58 1-qubit gates.

Furthermore, we explore the possibility of utilizing the ansatz proposed by the RL-agent, trained on a
specific quantum state, to diagonalize random quantum states that differ from the initial fixed state. We can
confirm that this is indeed possible in the case of the 2-qubit state. The corresponding results are presented
in figure 8. One can argue that, in this case, the diagonalization task is relatively easy. However, our results
show that it is possible to harness the RL-ansatz for a particular quantum state to diagonalize an arbitrary
state of the same dimension. To conduct this experiment, we start by selecting a random quantum state and
training it using the RL-agent. The RL-agent then provides us with an RL-ansatz specifically designed for that
particular state. By utilizing this RL-ansatz as a quantum circuit and employing VQSD (refer to figure 1), we
successfully diagonalize 500 arbitrary quantum states. Our results indicate that the RL-ansatz achieves a
reasonable accuracy, with the majority of quantum states falling within the range of 10−4 ⩽∆⩽ 10−3.
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Figure 9. Convergence of the eigenvalues of the reduced ground state of 3-qubit Heisenberg model by RL-VQSD. The labels on
the top of the figure correspond to the different eigenvalues. The black dots in the plot represent the true eigenvalues. There are
eight black dots. However, as some of the eigenvalues coincide up to three decimal places, they are indistinguishable.

4.5. 3-qubit reduced Heisenberg model
One of the important applications of VQSD is to study the entanglement in condensed matter systems [36].
Hence, in this experiment, to get a better understanding of the efficacy of our method in this regard, we
consider a 3-qubit reduced state of the ground state (|ψS1,S2⟩) of the one-dimensional Heisenberg model
defined on six qubits which have the following form

H=
2N∑
j=1

S⃗( j) · S⃗( j+1), (11)

where S⃗( j) = 1√
3

(
X( j)x̂+Y( j)ŷ+Z( j)ẑ

)
with periodic boundary condition S⃗(2N+1) = S⃗(1), where X, Y, and Z

are the Pauli operators. To perform entanglement spectroscopy on the ground state of the 6-spin Heisenberg
model (i.e. 2N= 6), we diagonalize the reduced state ρred = TrS2 [|ψS1,S2⟩⟨ψS1,S2 |]. We set the predefined
threshold ζ = 10−4. We decided to choose a higher value of ζ compared to the value considered for the
2-qubit problem because as we increase the number of qubits, the problem of diagonalizing quantum states
becomes more difficult, leading to complicated structures of RL-ansatz. Hence, we can choose a higher value
of ζ to lower the difficulty. In appendix B, we elaborate on how the number of gates and the depth of the
RL-ansatz varies as we make the problem more difficult by lowering the ζ .

The results presented in figure 9 confirm that the RL-agent can learn to construct an ansatz to find all the
eigenvalues with reasonable accuracy. In this case, one can see that the ansatz takes 18 quantum gates to give
us 6 out of 8 exact eigenvalues of a 3-qubit Heisenberg model. Additionally, the RL-ansatz finds the
remaining two smallest eigenvalues with 1.73× 10−7 accuracy. In figure 10, we present the RL-ansatz that
contains 10 rotations and 8 CNOT gates proposed by the RL-VQSD. In the table 3, we investigate the
performance of RL-ansatz (proposed by the RL-agent) and 4 layers of LHEA (used in VQSD) to solve 3-qubit
Heisenberg model. As the metrics for the comparison, we evaluate the minimum statistical error in
estimating eigenvalues, the minimum count of one and two-qubit gates, the minimum depth, and the overall
minimum count of gates. It can be seen that the RL-ansatz can give us 10 times lower energy compared to
LHEA with 4 layers. Meanwhile, the RL-ansatz comprises more than 3 times fewer parameters to achieve this
accuracy. This clearly shows that the RL-ansatz is more efficient than the LHEA in the VQSD task and returns
a smaller error in eigenvalue estimation. We also see that for depth 21 LHEA (which corresponds to the layer
1 with 39 gates), the average error in eigenvalue reaches 4.59× 10−4. On the other hand, for the same depth,
the RL-ansatz can achieve an error of 2.43× 10−5 with an average (over all the successful episodes) of 8
two-qubit gates and 14 one-qubit gates.

It should be noted from circuits in figure 7 and in figure 10 that the rotation in the Z direction, i.e. RZ
quantum logic gate, does not play a crucial part in the diagonalizing unitary. Thus, one might attempt to
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Figure 10. The ansatz proposed by the RL-agent for diagonalizing a state in the 3-qubit reduced Heisenberg model. The circuit
contains 10 rotations and 8 CNOT gates.

Table 3. Comparison of the RL-ansatz (proposed by RL-agent) with 4 layers of LHEA (utilized in VQSD) used for diagonalizing 3-qubit
Heisenberg model. For the comparison, we consider investigating the minimum error in eigenvalue estimation (Min. error), the
minimum number of single-qubit gates (Min. 1q gate), the minimum number of the two-qubit gate (Min. 2q gate), the minimum depth
(Min. depth) of the ansatz and the minimum number of total gates (Min. total gate). N.A. denotes not applicable.

Layer Min. error Min. 1q gate Min. 2q gate Min. depth Min. total gate

RL-ansatz N.A. 2.43× 10−5 10 8 12 18

4 layers of LHEA

1 4.59× 10−4 36 3 21 39
2 3.63× 10−4 72 6 42 78
3 4.35× 10−4 108 9 63 117
4 5.82× 10−4 144 12 84 156

Figure 11. The convergence of individual (left panel) and the overall error (right panel) in the estimation of eigenvalues for the
reduced ground state of 4-qubit Heisenberg model. This provides a significant improvement in terms of gate count and depth
compared to the result reported in [1].

diagonalize a random quantum state of two and three qubits, excluding RZ rotation from the list of quantum
gates. This gives us a hint concerning the action space that could be significantly reduced in these examples.

4.6. 4-qubit reduced Heisenberg model
We extend the results of the previous section for the ground state of 8-spin Heisenberg model (i.e. 2n= 8).
We diagonalize the 4-qubit reduced state of the ground state of the 8-spin Heisenberg model.

The convergence of the eigenvalues is illustrated in the figure 11. For our investigation, we show that it
takes 53 gates to find the first 6 largest eigenvalues with an error below 10−5. Out of 53 gates, 16 are CNOT,
and the remaining are 1-qubit rotations. Throughout the experiment, we consider choosing the predefined
threshold ζ = 10−3.

The summary of our results is provided in table 4. One can notice that there is a relation between the
number of CNOTs and the dimension of the state that we want to diagonalize. The number of CNOTs grows
exponentially with the number of qubits. As for the two-qubit case, we find all the eigenvalues with 10−10

error with just two CNOTs. Whereas for three qubits, we can find the first 6 eigenvalues with an error below
10−8 but the smallest two eigenvalues we find with 1.73× 10−7 error with 8 CNOTs. Finally, for 4-qubit, we
see the first 6 eigenvalues with an error below 10−8 and the remaining eigenvalues with an error in the range
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Figure 12. Comparison of accuracy obtained using a random agent and RL-based method in diagonalizing 2 and 3-qubit states.
For this simulation, we utilized 104 episodes to solve the full rank (a) random quantum state of 2-qubit and (b) the reduced
ground state of 3-qubit Heisenberg model. It can be seen that the RL-agent can give us more frequent solutions, whereas the
random agent can hardly solve the problem. The red line denotes the predefined tolerance for the approximation of the cost
function.

Table 4. Summary of the required minimum number of one (min. 1q gate), the minimum number of two-qubit gates (min. 2q gate)
required, and the depth (min. depth) in RL-ansatz to diagonalize 2-, 3- and 4-qubit systems. To gather this data we run 104 episodes of
the RL-VQSD for each qubit case utilizing the settings provided in setup and experimental details in the first two paragraphs of section 4.

Qubits Min. depth Min. 1q gate Min. 2q gate

2 8 9 2
3 12 10 8
4 33 28 16

10−4 ⩽∆⩽ 10−6 with 16 CNOTs. This observation suggests that for a full-rank quantum state of N⩾ 3, we
require at least as many CNOTs as the rank of the quantum state to get a good approximation of the largest
eigenvalues. It should be noted that to find the first 5 largest eigenvalues with error 10−5 the ansatz proposed
by the RL-agent is of depth 18 and a total of 30 gates, among which 12 are CNOT gates and the remaining are
rotations. This significantly improves the depth, and the gate count in the diagonalizing ansatz compared to
the results in [1, 5].
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Figure 13. The comparison reaching accuracy in the order of 10−6 while diagonalizing 2-qubit state by RL-agent and the random
agent as a function of number of gates in the circuit. To get the result we illustrate the variation of error in eigenvalue estimation
with respect to the number of gates. It can be seen that the random agent halts after a certain error in eigenvalue estimation,
whereas the RL-agent can go below the 10−6 in fewer gates.

4.7. Performance of random agent
To demonstrate the hardness of the variational diagonalization task, we utilize a random agent to find an
efficient ansatz in this section. Unlike the previous examples where an RL-agent selects an action based on a
policy, here in the random agent settings, the action at each step is chosen randomly from a uniform
distribution.

In figure 12 (in the first column), we show the results for a random agent to diagonalize a 2- and 3-qubit
quantum state. It can be seen that the number of successful episodes (the episodes that pass the predefined
tolerance of cost function) drastically reduces as we scale the number of qubits in the state. At the same time,
the RL-agent (in the second column) provides us with a more consistent outcome. This occurs because in the
scenario of a random agent, even though the RL process is active, the NN do not utilize the information (the
reward) from the environment to determine the subsequent actions. Whereas in the case of the RL-agent
each subsequent action is decided based on the cumulative reward received from the environment after each
step. In appendix C we investigate the training time for the RL-agent and show that the time it takes to
complete an equal number of episodes by a random agent and an RL-agent is comparable.

Additionally, from the results presented in figure 13, one can conclude that even in the successful
episodes, the number of gates in the ansatz proposed by the random agent is longer compared to RL-ansatz.
Hence, one can argue that a random agent cannot be reliably utilized to find an efficient ansatz for the VQSD
and a higher level of sophistication in learning is necessary to attain consistent results.

5. Final remarks

This paper proposed a novel method to construct the ansatz for the VQSD based on RL and compared its
performance with the conventional fixed-depth ansatz. To this end, we introduced an RL-based algorithm
that utilizes a novel binary encoding scheme and a dense reward function with the particular problem in
mind. We showed that in solving the diagonalization problem the combination of the binary encoding and
the dense reward function outperforms the previously proposed encoding and rewards proposed for solving
quantum chemistry problems [8]. Indicating that proper engineering of the reward function and an efficient
RL-state encoding is responsible for the agent’s success. In particular, we show, for the VQSD task, a DDQN
algorithm with ϵ-greedy policy can be utilized to construct an ansatz (which is termed RL-ansatz), shorter
than the standard LHEA. As such, compared to LHEA, the RL-ansatz is of smaller depth and a smaller gate
count with better accuracy in the eigenvalue estimation. This makes RL-ansatz more suitable for
implementation in near-term quantum devices. Hence, the provided numerical results suggest that our
approach is suitable for improving the readiness of quantum computers in tasks related to quantum data
processing. The proposed state encoding method and the reward function can be readily adapted to address
various variational quantum algorithms. It should be emphasized that like to emphasize that the RL-VQSD
does not depend on the system size, and in principle can be used to diagonalize larger systems. However, we
are currently limited by classical simulation capabilities and existing quantum devices. This is because the
VQSD requires 2n number of qubits for n size quantum state and the training time required to get the
optimal ansatz increases rapidly with system size.
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Additionally, we demonstrated the hardness of the diagonalization task by replacing the RL-agent with a
random agent, where the actions are chosen randomly from a uniform distribution. The results indicate that
we can not reliably utilize a random agent in the diagonalization task as the number of successful episodes,
where the cost function passes a predefined threshold, reduces rapidly as we scale up the size of the quantum
state. Moreover, in the successful episodes, the random agent produces lengthy circuits compared to
RL-agent.

To summarize our contribution, we opened up the possibility of utilizing RL to explore the quantum
state diagonalization problem. Compared to the previous works on VQSD, we show that RL can boost the
performance of this procedure by reducing the number of gates in the diagonalizing ansatz. As such, it
provides a viable method for increasing the readiness of the VQSD algorithm for implementation on
near-term quantum computers. The possibility of harnessing the cost function landscape using other search
algorithms remains an open problem.
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Appendix A. Double deep Q-network

Deep RL methods employ NN to adapt the agent’s policy for optimizing the return

Gt =
∞∑
k=0

γkrt+k+1,

with the discount factor γ ∈ [0,1). Each state and action pair (s, a) can then be assigned an action-value that
quantifies the expected return from state s in step t taking action a under policy π

qπ (s,a) = Eπ [Gt | st = s,at = a] .

The aim is to find the optimal policy that maximizes the expected return. Such a policy can be derived from
the optimal action-value function q∗, defined by the Bellman optimality equation:

q∗ (s,a) = E
[
rt+1 +max

a ′
q∗ (st+1,a

′) | st = s,at = a

]
.

Instead of directly solving the Bellman optimality equation, in value-based RL, the aim is to learn the optimal
action-value function from data samples. One such prominent value-based RL algorithms is Q-learning,
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where each state-action pair (s, a) is assigned a so-called Q-value Q(s,a) which is updated to approximate q∗.
Starting from randomly initialized values, the Q-values are updated according to the following rule:

Q(st,at)← Q(st,at)+α

(
rt+1 + γmax

a ′
Q(st+1,a

′)−Q(st,at)

)
,

where α is the learning rate, rt+1 is the reward at time t+ 1, and st+1 is the next encountered state after taking
action at in state st. In the limit of visiting all (s, a) pairs infinitely often, this update rule is proven to converge
to the optimal Q-values in the tabular case [37]. In practice, to ensure sufficient exploration in Q-learning
setting, a so-called ϵ-greedy policy is used. Formally, stated as,

π (a | s) =
{

1− ϵt for a=maxa ′ Q(s,a ′)
ϵt otherwise.

The ϵ-greedy policy is only used to introduce randomness to the actions selected by the agent during
training, but once training is finished, a deterministic policy follows.

We employ NN as function approximators to extend Q-learning to large state and action spaces. NN
training typically requires independently and identically distributed data, which is not naturally available in
the sequential RL data. This problem is circumvented by experience replay. This method divides past
experiences into single-episode updates, creating batches that are randomly sampled from a memory. To
stabilize training, two NNs are employed, a policy network, that is continuously updated and a target
network that is an earlier copy of the policy network. The policy network estimates the current value, while
the target network provides a more stable target value, represented by Y :

YDQN = rt+1 + γmax
a ′

Qtarget (st+1,a
′)

In the DDQN algorithm, the action for the target value is sampled from the policy network to reduce the
overestimation bias inherent in standard DQN. The corresponding target is defined as:

YDDQN = rt+1 + γQtarget

(
st+1,argmax

a ′
Qpolicy (st+1,a

′)

)
.

This target value is approximated using a selected loss function, in this case, a smooth L1-norm loss.

Appendix B. Dependency of gates and depth on predefined threshold

Throughout the paper, we have chosen the predefined threshold ζ constant for a fixed problem. For example,
while solving two-qubit random states we choose ζ = 10−5, which is increased to ζ = 10−4 and later
ζ = 10−3, for the task of diagonalizing a 3 and 4-qubit Heisenberg model respectively. Here, we investigate
the dependency of the number of gates and the depth of an RL-ansatz for a varying ζ . It is straightforward to
understand that the lower the ζ , the more difficult it is to solve the diagonalizing problem, as a lower
threshold corresponds to higher accuracy in eigenvalue estimation. Hence, we expect to observe an apparent
increase in the number of gates and depth of the circuit as the threshold moves towards a lower value.

The results are summarized in table 5 where we consider the RL-VQSD to diagonalize the 3-qubit
Heisenberg model while the ζ is set from 10−3 to 10−9 in an interval of 10−2. We see that the number of
gates in the circuit and the depth increase gradually as we lower the threshold.
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Table 5.We summarize the influence of the threshold on the number of gates and depth of the RL-ansatz. To gather data, we run 3000
episodes of RL-VQSD to solve the 3-qubit Heisenberg model, and the results are averaged over all the successful episodes.

ζ Avg. 1q gate Avg. 2q gate Avg. depth Avg. num gate

10−3 13.46 9.62 16.63 23.08
10−5 17.24 10.62 19.67 27.86
10−7 21.10 20.03 31.63 41.13
10−9 25.30 20.85 36.80 46.15

Table 6. The details of GPU and CPU resources utilized to record the training time.

CPU Intel(R) Core(TM) i7-10 700KF CPU @ 3.80GHz

GPU NVIDIA GA102 [GeForce RTX 3080 Ti] 64 bits

Table 7. The record of the training time it takes for the RL-agent and the time it takes for the random agent to complete the same
number of episodes in diagonalizing a 2 and 3-qubit state. As for the 2-qubit, we choose an arbitrary full-rank state, and for 3-qubit, we
consider the reduced ground state of the Heisenberg model. The time is recorded for 3000 episodes, which is more than sufficient to
solve the diagonalization problem with the predefined threshold in the range 10−4 to 10−5.

System Method Time per episode (in seconds) Total time (in hours)

2 qubit RL-agent 9.21 11.45
Random agent 9.29 11.15

3 qubit RL-agent 37.74 31.45
Random agent 37.70 31.42

Appendix C. Training time

Here we discuss the time it takes to train the RL-agent in diagonalizing 2- and 3- qubit states. To record the
time we run the RL-VQSD algorithm to diagonalize 2-qubit arbitrary quantum state and the reduced ground
state of 3-qubit Heisenberg model for 3000 episodes. The details of the CPU and GPU that are utilized to
gather data are provided in table 6. To gain more insight in table 7 we compare the training time of the
RL-agent with the time it takes to complete an equal amount of episodes by a random agent setting and show
that in case of diagonalizing the 2- and 3-qubit both the methods takes the same amount of time.
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