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Abstract  
The mammalian circadian clock is located in the suprachiasmatic nucleus (SCN) and 
consists of a network of coupled neurons, which are entrained to the environmental 
light-dark cycle. The phase coherence of the neurons is plastic and driven by the 
duration of  day light. With aging the capacity to behaviorally adapt to seasonal 
changes in photoperiod reduces. The mechanisms underlying photoperiodic 
adaptation are largely unknown, but are important to unravel for the development 
of novel interventions to improve the quality of life of the elderly. We analyzed the 
phase coherence of single-cell PER2::LUC expression rhythms in the SCN of young 
and old mice entrained to either long or short photoperiod. The phase coherence was 
used as input to a two-community noisy Kuramoto model to estimate the coupling 
strength between and within neuronal subpopulations. The model revealed a 
correlation between coupling strength and photoperiod induced changes in the 
phase relationship among neurons, suggesting a functional link. We found that the 
SCN of young mice adapts in coupling strength over a large range, with weak coupling  
in long photoperiod and strong coupling in short photoperiod. In aged mice we also 
found weak coupling in long photoperiod, but a reduced capacity to reach strong 
coupling in short photoperiod. The inability to respond with an increase in coupling 
strength suggests that manipulation of photoperiod is not a suitable strategy to 
enhance clock function with aging. We conclude that the inability of aged mice to 
reach strong coupling contribute to deficits in behavioral adaptation to seasonal 
changes in photoperiod.  
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1. Introduction 
Many organisms increase their chance of survival and reproduction by anticipating 
seasonal changes in temperature and food availability. Internal clocks drive the 
circadian and seasonal rhythms, responsible for physiological and behavioral 
adaptation. In mammals, the endogenous clock is located in the suprachiasmatic 
nucleus (SCN) of the anterior hypothalamus. The SCN is a relatively small structure 
that consists of approximately 20,000 neurons (Hastings et al., 2018). Generation of 
circadian rhythms occurs autonomously in all individual neurons and is based on a 
negative feedback loop between clock genes and their protein products (Welsh et al., 
2010; Buijs et al., 2016; Hastings et al., 2019). This population of autonomous 
oscillators is able to produce a coherent rhythm of 24-h in electrical activity that acts 
as output of the SCN (Meijer et al., 2012; Herzog et al., 2017). The shape of this timing 
signal adapts to seasonal changes in photoperiod due to plasticity in phase coherence 
between the individual neurons. These changes in the phase coherence encode for 
the different seasons, reflecting day-length differences (vanderLeest et al., 2007; 
Ciarleglio et al., 2011; Buijink et al., 2016; Tackenberg et al., 2018).  

Although it is known that photoperiodic adaptation of the circadian clock is 
correlated with changes in phase relationship between SCN neurons, the mechanism 
is unknown. One possibility is that a decrease in coupling strength leads to a 
broadened phase distribution, when the day-length increases. Alternatively, phase 
differences can be driven by an active process, for example due to repulsive coupling 
between subpopulations of SCN neurons (Myung et al., 2015). In such a scenario, the 
coupling strength could be equally strong in long and short photoperiod. 
Subpopulations of SCN neurons form phase clusters, that map approximately to the 
core and shell SCN (Foley et al., 2011; Evans et al., 2013; Buijink et al., 2016). The 
question addressed in this study is whether we can explain the changes in phase 
coherence between the neurons in different photoperiods by changes in coupling 
strength.    

The coupling strength between neurons is largely determined by synaptic 
release of neurotransmitters and direct communication via gap junctions (Finger et 
al., 2020). We separately analyzed the coupling strength within and between 
neuronal subpopulations of the SCN. Based on neuropeptide expression, an 
anatomical subdivision can be made between the core and shell regions. Vasoactive 
intestinal polypeptide (VIP) and gastrin-releasing peptide (GRP) are primarily 
expressed in the core SCN, arginine vasopressin (AVP) in the shell SCN and γ-
aminobutyric acid (GABA) in almost all SCN neurons (Hegazi et al., 2019).  

With aging there is a reduction in peptidergic function and there are significant 
changes in the GABAergic synaptic network of the SCN, as seen in a striking reduction 
of presynaptic terminals (Palomba et al., 2008). These alterations in the SCN network 
will cause reduced communication among neurons in the aged SCN (Nakamura et al., 
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2011; Farajnia et al., 2012). It has been shown that weakened circadian rhythmicity 
of the elderly have negative health effects, and is causal to a broad array of diseases 
(Leng et al., 2019). Therefore, strengthening the clock in the aged is important, and 
strategies to do so rely on an identification of underlying mechanisms. One 
intervention to strengthen the clock could be to subject old mice to short 
photoperiod, because this may increase the phase coherence among the neurons in 
the aged SCN. 

We used data from bioluminescence imaging of single-cell PER2::LUC gene 
expression rhythms and  Kuramoto models (Achterhof & Meylahn 2021a, 2021b) to 
estimate the coupling strength within and between neuronal subpopulations in 
young and old mice entrained to long (LP, LD 16:8) and short (SP, LD 8:16) 
photoperiod (Buijink et al., 2016; Buijink et al., 2020). Neuronal subpopulations of 
the SCN were identified with an unbiased clustering algorithm (Almog et al., 2019). 
We took into account that the coupling strengths are not the same within and 
between the different neuronal subpopulations, since it is known that in the SCN the 
core projects densely to the shell while the shell projects only sparsely to the core 
(Welsh et al., 2010). The Kuramoto model predicted that coupling strength within 
and between subpopulations of SCN neurons contributes to photoperiod induced 
changes in the phase relationship among neurons. We found that young animals can 
adapt their coupling strengths over a wide range. Therefore, young animals can 
easily adjust to both short and long photoperiod. On the contrary, old animals have a 
diminished range over which they can adapt their coupling strengths, making it more 
difficult for them to adjust to short photoperiod.  

 
2. Materials and Methods 
2.1 Bioluminescence Imaging and Analysis  
To obtain the parameters for the Kuramoto model, the PERIOD2::LUCIFERASE 
(PER2::LUC) expression data from the studies (Buijink et al., 2016, 2020) was used. 
The dataset consisted of bioluminescence data from young (4-8 months) and old (22-
28 months) homozygous PER2::LUC mice entrained to either long photoperiod (LD 
16:8) or short photoperiod (LD 8:16). For details on the data collection see Buijink 
et al. (2016). In short, mice were killed 1 to 3 h before lights-off. The brain was 
dissected and the SCN was sliced in coronal slices with a VT 1000S vibrating 
microtome (Leica Microsystems, Wetzlar, Germany). Slices containing the SCN were 
visually identified and placed in a petri dish. The dish was transferred to a 
temperature-controlled (37°C) light-tight chamber, equipped with an upright 
microscope and a cooled charge-coupled device camera (ORCA-UU-BT-1024, 
Hamamatsu Photonics Europe, Herrsching am Ammersee, Germany). 
Bioluminescence images were collected with a 1-h time resolution.  
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To analyze the time series of bioluminescence images a custom-made MATLAB-
based (Mathworks, Natick, MA, USA) program was used, as described in Buijink et al. 
(2016). Briefly, groups of three to nine adjacent pixels with luminescence intensity 
above the noise level were defined as regions of interest (ROIs). Each ROI is referred 
to as a ‘single cell’. The average bioluminescence of all pixels in each ROI was 
calculated for the image series, which resulted in the bioluminescence traces 
representing PER2::LUC expression for all single-cell ROIs. For the analysis of 
rhythm characteristics, the raw PER2::LUC expression traces were smoothed and 
resampled to one data point per minute. Only single-cell traces containing at least 
three cycles with a period length between 20-28 hours were included for further 
analysis.  

The phase distribution and the Kuramoto order parameter (r) were calculated 
for all SCN slices. Phase distribution was defined as the standard deviation (SD) of 
the peak times from all cells in a slice of the specified cycle in vitro. The order 
parameter is a measure for phase coherence and is based on the relative phase of the 
single cells. The order parameter was determined by first calculating the mean peak 
time �𝑡𝑡�̅�𝑝� of PER2::LUC expression of all cells (j = 1 … N) for the specified cycle: 

𝑡𝑡�̅�𝑝 =
� 𝑡𝑡𝑝𝑝,𝑗𝑗

𝑁𝑁
𝑗𝑗=1

𝑁𝑁
. (1) 

Then the relative phase of each cell was approximated by first subtracting the peak 
time of the individual cell from the averaged peak time of all cells to get the relative 
peak time and then converting the relative peak time to its relative phase (𝜃𝜃𝑟𝑟): 

𝜃𝜃𝑟𝑟,𝑗𝑗 =
(𝑡𝑡�̅�𝑝 − 𝑡𝑡𝑝𝑝,𝑗𝑗)

𝜏𝜏
2𝜋𝜋, (2) 

where τ is the period in hours. The relative phase can be approximated because the 
sin( )x function is linear for small x and the relative peak times are small in 

comparison with the period. Thereafter, the relative phase was transformed with 
Euler’s formula and the absolute value was taken to get the order parameter (r): 

𝑟𝑟 = �
� 𝑒𝑒𝑖𝑖𝜃𝜃𝑟𝑟,𝑗𝑗𝑁𝑁

𝑗𝑗=1

𝑁𝑁
�. (3) 

The order parameter can take values between 0 and 1, where 0 means that the 
neurons are completely unsynchronized and 1 means perfect synchrony.  
 
2.2 Community Detection  
To identify functional clusters in the SCN neuronal network, we used a community 
detection method that was previously described by Almog et al. (2019). In brief, from 
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the raw time series of PER2::LUC bioluminescence traces a cross-correlation matrix 
was constructed. Next, with the use of random matrix theory, the global (SCN-wide) 
and local (neuron-specific) noise components were filtered out of the cross-
correlation matrix. Clusters were detected with optimally contrasted functional 
signature, resulting in a positive overall correlation within clusters and a negative 
overall correlation between clusters, relative to the global SCN activity. Although the 
clustering algorithm was not bound to a pre-defined number of groups, the 
community detection method results consistently in two main groups of cells with a 
robust spatial distribution. The spatial distribution differed slightly for the anterior 
and posterior slices (Buijink et al., 2016, 2020). Hence, the resulting clusters were 
visually labeled as ventromedial and dorsolateral in the anterior SCN and as medial 
and lateral in the posterior SCN slices.  

 
2.3 Kuramoto model 
To model the SCN we used a Kuramoto model. The Kuramoto model is a simple model 
that only contains phase information (Gu et al., 2019). First we used a one-
community Kuramoto model to estimate the upper and lower bounds on the 
coupling strength and on the noise in the different experimental conditions. The 
noise term captures both the effect of the thermal environment in which the SCN 
resides (i.e., external noise) and the time-dependent variations in the natural 
frequencies of individual oscillators (see Rohling and Meylahn, 2020). The noise 
should be the same in all experimental conditions. With use of the one-community 
model we show that the amount of noise is indeed approximately the same in the 
different experimental conditions and therefore the differences in phase coherence 
are caused by changes in the coupling strength. Next, we extended our model to a 
two-community Kuramoto model. By treating the noise as a constant factor in the 
two-community Kuramoto model we could separate the influence of the noise from 
the influence of the coupling strength on the phase coherence. We used the two-
community Kuramoto model to assess the relationship between the coupling 
strength within each subgroup and the coupling strength between the two 
subgroups. 

The framework of the Kuramoto model we used in this study is extensively 
described in four recent papers (Garlaschelli et al., 2019; Meylahn, 2020; Achterhof 
and Meylahn, 2021a, 2021b). We will therefore not repeat all the steps involved, in 
detail, in the next two sections. However, we will show all main steps supported by 
references to the relevant parts of these papers.    

 
2.4 One-community Kuramoto model 
In the one-community Kuramoto model we consider one-community of N oscillators. 
Each oscillator corresponds to a neuron in the SCN. The oscillators interact with a 
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strength K which gives a mean-field interaction strength K/N. The phase angles of 
the oscillators are denoted by θi, i=1, … ,N and represent the state of the neuron. The 

evolution of a single oscillator i is then given by:  

𝑑𝑑𝜃𝜃𝑖𝑖 =
𝐾𝐾
𝑁𝑁
� sin(𝜃𝜃𝑗𝑗 − 𝜃𝜃𝑖𝑖)
𝑁𝑁

𝑗𝑗=1

𝑑𝑑𝑡𝑡 + 𝐷𝐷𝑑𝑑𝑊𝑊𝑡𝑡, (4) 

where D is the noise strength and Wt is a standard Brownian motion. The model in 
equation 4 does not explicitly include the natural frequencies of the neurons or the 
external driving force of the light-dark cycle. This could be included explicitly, as 
done for the (noiseless) Kuramoto model in Childs & Strogatz (2008). The data we 
are considering, however, exhibits a number of properties that allow us to simplify 
the model as in equation 4. It is in steady-state and such that the period of the light-
dark cycle, the average period of the neurons and the period associated with 
the average intrinsic frequency are approximately equal. This allows us to consider 
the system in the rotating frame of reference which matches the period of these 
quantities. As a result, we can set the average phase of the neurons, the average 
intrinsic frequency and the phase of the driving force to zero. Furthermore, whereas 
most circadian models assume that each neuron has a fixed intrinsic frequency, we 
assume that this internal frequency is not fixed, but probabilistic around a mean. This 
is due to the probabilistic nature of the processes in the transcriptional-translational 
feedback loop (Barkai & Leibler, 2000) and is shown experimentally by Herzog et al. 
(2004), where they show that dispersed neurons have a higher cycle-to-cycle 
variation in period than neurons that are connected in a network. The effect of the 
variation of intrinsic frequencies of each neuron can thus be included as a 
modification of the noise strength in the model. Finally, the driving force in both long 
and short photoperiod both have a period of 24-h, we note that as the period of the 
driving force matches that of the neurons in steady-state, we can include its effect as 
a modification of the interaction strength of the neurons. The parameters D and K in 
equation 4 are therefore modified parameters that include the distribution of 
intrinsic frequencies and driving force, respectively. Note that these simplifications 
would no longer hold if we were considering a driving force with a different period. 
Using these simplifying assumptions and the standard rewriting of the Kuramoto 
model, as given on page 39 of Sakaguchi (1988), the equation for a single 
representative neuron is given by: 

𝑑𝑑𝜃𝜃(𝑡𝑡) = −𝐾𝐾𝑟𝑟sin𝜃𝜃(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝐷𝐷𝑑𝑑𝑊𝑊𝑡𝑡. (5) 

The noise can be understood as the effect of the thermal environment of the SCN and 
the time-dependent variations in the natural frequencies of individual oscillators. 
Now we will integrate the SDE in equation 5 from 0 to T, where we will take T to be 
one period of the average phase: 
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𝛥𝛥𝑇𝑇: = 𝜃𝜃(𝑇𝑇) − 𝜃𝜃(0)

= −𝐾𝐾𝑟𝑟� sin𝜃𝜃(𝑠𝑠)𝑑𝑑𝑠𝑠 + 𝐷𝐷(𝑊𝑊𝑇𝑇 −𝑊𝑊0)
𝑇𝑇

0
, (6) 

which, when taking the expectation, leads to 

𝔼𝔼[𝛥𝛥𝑇𝑇] = 0. (7) 

Equation 6 allows us to relate two measurements of the phase of a single oscillator 
at different times to the noise parameter D. Since we are only interested in the change 
of phase 𝛥𝛥𝑇𝑇 between these two measurements, we can set the phase of the first 
measurement to zero, i.e. 𝜃𝜃(0) = 0. Equation 7 then states that we expect the change 
in phase to be zero, which is a result of employing a rotating frame of reference. To 
derive upper and lower bounds for the noise strength parameter, we will first 
calculate bounds for the second moment of 𝛥𝛥𝑇𝑇  and solve these for D. To do this, note 
that we now have  

𝔼𝔼[𝛥𝛥𝑇𝑇2 ] = 𝔼𝔼[𝜃𝜃(𝑇𝑇)2], (8) 

and by Itô’s lemma in its integral form, we have that 

𝑓𝑓(𝜃𝜃(𝑇𝑇)) = 𝑓𝑓(𝜃𝜃(0)) + �
𝑑𝑑𝑓𝑓
𝑑𝑑𝜃𝜃

𝑑𝑑𝜃𝜃(𝑡𝑡) +
1
2
�

𝑑𝑑2𝑓𝑓
𝑑𝑑𝜃𝜃2

𝑑𝑑𝑡𝑡.
𝑇𝑇

0

𝑇𝑇

0

 (9) 

Plugging in 𝑑𝑑𝜃𝜃(𝑡𝑡), as given by equation 5, leads to 

𝜃𝜃(𝑇𝑇)2 = −2𝐾𝐾𝑟𝑟� 𝜃𝜃(𝑠𝑠)sin𝜃𝜃(𝑠𝑠)𝑑𝑑𝑠𝑠 + 2𝐷𝐷� 𝜃𝜃(𝑠𝑠)𝑑𝑑𝑊𝑊𝑠𝑠 + 𝑇𝑇𝐷𝐷2.
𝑇𝑇

0

𝑇𝑇

0

 (10) 

The samples of the phase difference in subsequent cycles, show that 𝛥𝛥𝑇𝑇 is much 
smaller than one. This allows us to employ a Taylor expansion of the sine function in 
the first integral of equation 10. Since this expansion is alternating and has higher 
order terms smaller than lower order terms, we can find an upper bound for the 
second moment of  𝛥𝛥𝑇𝑇 by truncating the expansion at a negative term and find a 
lower bound by truncating the expansion at a positive term (note the reversal here 

due to the sign of the integral containing sine in equation 10). Taking sin𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥3

3!
 

gives 

𝔼𝔼[𝛥𝛥𝑇𝑇2 ] = 𝐷𝐷2𝑇𝑇 − 2𝐾𝐾𝑟𝑟� 𝔼𝔼��𝜃𝜃(𝑠𝑠)2 −
𝜃𝜃(𝑠𝑠)4

3!
+ 𝑜𝑜(𝜃𝜃(𝑠𝑠)6)��

𝑇𝑇

0

𝑑𝑑𝑠𝑠. (11) 

As explained above, using only the first term of the expansion implies that 
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𝔼𝔼[𝛥𝛥𝑇𝑇2 ] ≥ 𝐷𝐷2𝑇𝑇 − 2𝐾𝐾𝑟𝑟� 𝔼𝔼[𝛥𝛥𝑠𝑠2]
𝑇𝑇

0
𝑑𝑑𝑠𝑠. (12) 

Since we are in stationarity, this gives an upper bound for the noise strength (D+) 

𝐷𝐷2 ≤
𝔼𝔼[𝛥𝛥𝑇𝑇2 ]
𝑇𝑇

(1 + 2𝐾𝐾𝑟𝑟𝑇𝑇) =:𝐷𝐷+2. (13) 

Using one more term in the expansion for sine gives 

𝔼𝔼[𝛥𝛥𝑇𝑇2 ] ≤ 𝐷𝐷2𝑇𝑇 − 2𝐾𝐾𝑟𝑟� 𝔼𝔼�𝜃𝜃(𝑠𝑠)2 −
𝜃𝜃(𝑠𝑠)4

3!
�

𝑇𝑇

0

𝑑𝑑𝑠𝑠

= 𝐷𝐷2𝑇𝑇 − 2𝐾𝐾𝑟𝑟𝑇𝑇𝔼𝔼[𝛥𝛥𝑇𝑇2 ] + 𝐾𝐾𝑟𝑟
𝔼𝔼[𝛥𝛥𝑇𝑇4 ]

3!
, 

(14) 

so that the noise strength is bounded from below (D-) by 

𝐷𝐷2 ≥
𝔼𝔼[𝛥𝛥𝑇𝑇2 ]
𝑇𝑇

(1 + 2𝐾𝐾𝑟𝑟𝑇𝑇) − 2𝐾𝐾𝑟𝑟
𝔼𝔼[𝛥𝛥𝑇𝑇4 ]

3!
=:𝐷𝐷−2. (15) 

Since we have experimentally obtained time series data, we are able to numerically 
calculate upper and lower bounds for the noise strength in terms of the interaction 
strength K. This holds in the case that sine is approximated well by the expansion 
used, which we posit to be the case since the spread of the phases around the average 
is small relative to the size of the entire cycle. 

In order to do this we need unbiased estimators of the second and fourth 
moments. Since the mean is zero, the fourth moment is equal to the fourth central 
moment for which an unbiased estimator is given by the fourth h-statistic 

ℎ4 =
3(3 − 2𝑛𝑛)𝑛𝑛2𝑚𝑚2

2 + 𝑛𝑛2(𝑛𝑛2 − 2𝑛𝑛 + 3𝑛𝑛)𝑚𝑚4

(𝑛𝑛 − 3)(𝑛𝑛 − 2)(𝑛𝑛 − 1)𝑛𝑛
, (16) 

where n is the sample size and mp is the pth sample central moment given by 

𝑚𝑚𝑝𝑝: = 1
𝑛𝑛
� (𝑥𝑥𝑖𝑖 − 𝑚𝑚)𝑝𝑝𝑛𝑛

𝑖𝑖=1 , (17) 

with m the sample mean. An unbiased estimator for the variance is 

ℎ2 =
𝑛𝑛𝑚𝑚2

(𝑛𝑛 − 1)
. (18) 

Now, if we want to calculate the interaction strength parameter K for a single 
community, we must solve the equation 

𝑉𝑉(𝐶𝐶𝑟𝑟) = 𝑟𝑟 (19) 
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for C, where 

𝑉𝑉(𝑥𝑥) = Bessel𝛪𝛪[1,𝑥𝑥]
Bessel𝛪𝛪[0,𝑥𝑥]

, (20) 

and Bessel𝛪𝛪[0, 𝑥𝑥] and Bessel𝛪𝛪[1, 𝑥𝑥] are modified Bessel functions of the first kind. 
Note that the function ( )V ⋅  has the following properties: 1) (0) 0,V =  2) 

lim
𝑥𝑥→∞

𝑉𝑉(𝑥𝑥) = 1and 3) ( )V ⋅ is monotonically increasing, so that there is a unique non-

zero solution to equation 19 for any 0 1.r≤ <  Equation 19 is derived in the general 
case with natural frequencies in equation (1.21) of Garlaschelli et al. (2019). In the 
case with all 0,ω = it simplifies to equation 19, as shown in equation (3.51) of 

Garlaschelli et al. (2019). From the bioluminescence time series data we have 
calculated r so that we can use numerical methods (like FindRoot in MATHEMATICA) 
to solve for C. In the one-community model 𝐶𝐶 = 2𝐾𝐾

𝐷𝐷
 so that we can find upper and 

lower bounds for K  

𝐶𝐶𝐷𝐷−
2
≤ 𝐾𝐾 ≤ 𝐶𝐶𝐷𝐷+

2
, (21) 

Now both D- and D+ depend on K so that we find 

𝐾𝐾− ≤ 𝐾𝐾 ≤ 𝐾𝐾+, (22) 

with 

𝐾𝐾−: = 1
24
�𝐶𝐶2(6ℎ2 − ℎ4)𝑟𝑟 + �𝐶𝐶4(ℎ4 − 6ℎ2)2𝑟𝑟2 + 144𝐶𝐶2ℎ2

𝑇𝑇
�, (23) 

and  

𝐾𝐾+: =
1
4
�𝐶𝐶2ℎ2𝑟𝑟 + �4𝐶𝐶2ℎ2 + 𝐶𝐶4ℎ22𝑟𝑟2𝑇𝑇

𝑇𝑇
�. (24) 

To recapitulate, we calculated the order parameter from the bioluminescence data. 
Next, we used the order parameter to solve the non-linear equation 20 for C, and then 
we inferred the range for the coupling strength using the order parameter, C, and the 
second and fourth moment.  

 
2.5 Two-community Kuramoto model 
The one-community Kuramoto model was expanded to a two-community model 
(Meylahn, 2020; Achterhof and Meylahn, 2021a, 2021b) for which each community 
consists of N oscillators. The oscillators in the same community interact with 
strength K and oscillators in different communities interact with strength L. The 
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phase angles of the oscillators in the first community are denoted by θ1,i, i=1, … , N 
and in the second community by θ2,j, j=1, … , N. The equations governing their 
evolution are: 

𝑑𝑑𝜃𝜃1,𝑖𝑖(𝑡𝑡) =
𝐾𝐾1
2𝑁𝑁

� sin(𝜃𝜃1,𝑘𝑘 − 𝜃𝜃1,𝑖𝑖(𝑡𝑡))𝑑𝑑𝑡𝑡

𝑁𝑁

𝐾𝐾=1

+
𝐿𝐿1
2𝑁𝑁

� sin(𝜃𝜃2,𝑙𝑙 − 𝜃𝜃1,𝑖𝑖(𝑡𝑡))𝑑𝑑𝑡𝑡 + √𝐷𝐷𝑑𝑑𝑊𝑊1,𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑙𝑙=1

 

(25) 

.and 

𝑑𝑑𝜃𝜃2,𝑗𝑗(𝑡𝑡) =
𝐾𝐾2
2𝑁𝑁

� sin(𝜃𝜃2,𝑙𝑙 − 𝜃𝜃2,𝑗𝑗(𝑡𝑡))𝑑𝑑𝑡𝑡

𝑁𝑁

𝑙𝑙=1

+
𝐿𝐿2
2𝑁𝑁

� sin(𝜃𝜃1,𝑘𝑘 − 𝜃𝜃2,𝑗𝑗(𝑡𝑡))𝑑𝑑𝑡𝑡 + √𝐷𝐷𝑑𝑑𝑊𝑊2,𝑗𝑗(𝑡𝑡).
𝑁𝑁

𝑘𝑘=1

 

(26) 

In the one-community Kuramoto model we found that D does not depend on the 
phase coherence and that D is close to 1 for all experimental conditions. Therefore 
we take D=1 in the two-community Kuramoto model. As we are only interested in 
the qualitative relationship between the synchronization and interaction strengths, 
we could set it to any positive constant. Furthermore, we made the assumption that 
the average phase is the same in both communities (i.e. ψ1 = ψ2 = 0). Now we can 
calculate the relationship between K1 and L1 and between K2 and L2 in the infinite 
oscillator limit by solving the equations 

𝑉𝑉 �
𝐾𝐾1𝑟𝑟1 + 𝐿𝐿1𝑟𝑟2

𝐷𝐷
� = 𝑟𝑟1, (27) 

and 

𝑉𝑉 �
𝐾𝐾2𝑟𝑟2 + 𝐿𝐿2𝑟𝑟1

𝐷𝐷
� = 𝑟𝑟2, (28) 

which are stated in Proposition II.6 and Remark II.8 of Achterhof and Meylahn 
(2021a) and have been derived in Appendix A1 of the same article. In the above 
equations K1 and K2 represent the coupling strengths within respectively 
subpopulations 1 and 2. L1 and L2 represent the interaction strength between 
subpopulations, where L1 is the strength from subpopulation 2 to subpopulation 1 
and L2 is the strength from subpopulation 1 to subpopulation 2. r1 and r2 are the order 
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parameters in respectively subpopulation 1 and 2. The function V(·) is the same 
function as in equation 20, so there is a unique non-zero solution to the equation 

𝑟𝑟1 = 𝑉𝑉(𝐶𝐶1) (29) 

for C1 (Meylahn, 2020). With 𝐶𝐶1 = 𝐾𝐾1𝑟𝑟1 + 𝐿𝐿1𝑟𝑟2. We therefore must have: 

𝐾𝐾1 =
𝐶𝐶1
𝑟𝑟1
−
𝑟𝑟2
𝑟𝑟1
𝐿𝐿1. (30) 

We can do the same for equation 28.  
 

2.6 Coupling strength analysis 
With the two-community model we found a linear relationship between the coupling 
strength within a subpopulation and the interaction strength between 
subpopulations. We created a search-space with range [0 : 10] for K1 and K2 and 
range [-5 : 10] for L1 and L2. Here, a negative coupling strength indicates repulsive 
coupling. We investigated the search-space of the lines with two different 
approaches to determine whether there are differences in the range over which 
young and old mice can adapt their coupling strengths between photoperiods and 
whether the differences in coupling strengths between young and old mice are larger 
in LP or SP.  

For the first approach we investigated all possible solutions in the search-space, 
where each pair of values for (K1, L1) and (K2, L2) located on the linear line is a possible 
solution. We used an interval of 0.1 for K and numerically calculated the 
corresponding value for L. To compare the coupling strengths between the 
experimental conditions we defined the total adaptive capacity as: 
 𝛥𝛥𝐾𝐾1 + 𝛥𝛥|𝐿𝐿1| + 𝛥𝛥𝐾𝐾2 + 𝛥𝛥|𝐿𝐿2|. 

For the second approach we added 3 constraints to the search-space and 
investigated the remaining solutions. Combinations of value pairs for (K1, L1) and ( K2, 
L2) were only included 1) when K and L are higher in young animals than in old 
animals (i.e. K1young>K1old, K2young>K2old, |L1|young>|L1|old and |L2|young>|L2|old), 2) when K 
and L are higher in SP than LP (i.e. K1SP>K1LP, K2SP>K2LP, |L1|SP>|L1|LP and |L2|SP>|L2|LP ) 
and 3) when the relationship between K1 and K2 and between L1 and L2 is in the same 
direction for the different experimental conditions (e.g. when K1YSP>K2YSP then 
K1YLP>K2YLP, K1OSP>K2OSP and K1OLP>K2OLP). The constraints are illustrated in figure 1.  
 
3. Results 
3.1 Synchronization of PER2::LUC rhythms in the SCN 
We calculated the order parameter (r), using equations 1-3, and peak time dispersion 
from the smoothed bioluminescence traces (Fig 2A) for all SCN slices in the different 
experimental conditions. To test whether the order parameter is an appropriate 
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measure for phase coherence, we calculated the Pearson correlation coefficient 
between r and peak time dispersion, which was taken as a measure for phase 
coherence in previous studies (Buijink et al., 2016, 2020). The correlation coefficient 
showed a strong negative correlation between r and peak time dispersion (R=-0.91; 
Fig 2B), which is as we expected, as high dispersion should lead to lower phase 
coherence (r). Then, we compared the values of r between the different experimental 
conditions. Independent t-tests showed that the r value was always significantly 
higher in SP than in LP in both young and old mice (young anterior, LP: 0.49±0.23, 
n=4, young anterior, SP: 0.87±0.04, n=5, p<0.05; young posterior, LP: 0.77±0.12, n=4, 
young posterior, SP: 0.91±0.03, n=5, p<0.05; old anterior, LP: 0.53±0.23, n=7, old 
anterior, SP: 0.80±0.08, n=10, p<0.01; old posterior, LP: 0.77±0.06, n=9, old 
posterior, SP: 0.83±0.04, n=10, p<0.05; Fig 2C). We refer to the studies of Buijink et 
al. (2016, 2020) for a more comprehensive analysis on the rhythm characteristics of 
the data.  

 
Fig 1. Illustration of constraints. Example of the (A) first and (B) second constraint. The black marked 
areas on the lines indicate the possible range of values for OSP and YLP based on the reference point for 
YSP for the first and second constraint respectively. The colored background indicates the regions where 
either K is larger (yellow), L is larger (pink) or both K and L are larger (blue). (C) Example of the third 
constraint. The black marked area indicates the possible range of values for OSP based on the reference 
points for YSP and OSP. The colored background indicates where either K1<K2 (yellow), L1>L2 (pink), or 
both K1<K2 and L1>L2 (blue). 
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Fig 2. Synchronization of the SCN. (A) Example of smoothed intensity traces of PER2::LUC expression 
from single-cells in the anterior SCN of a young mouse in short photoperiod. (B) Pearson correlation 
between r and peak time dispersion for all recordings (n=54, R=-0.91). (C) The order parameter r is 
calculated for all slices and is shown for anterior and posterior slices in long (LPA and LPP respectively, 
green) and short photoperiod (SPA and SPP respectively, blue) in young (circles) and old (triangles) mice. 
The black crosses indicate the mean; *p<0.05, **p<0.01. 

 
3.2 Coupling strength and noise estimation 
We used the order parameter (r), as calculated from the bioluminescence traces, to 
estimate the coupling strength (K) between the neurons in the SCN and to estimate 
the amount of noise (D) in the different experimental conditions. The noise 
represents the thermal environment of the SCN (see methods). For both the coupling 
strength and the noise we calculated for each slice an upper and lower bound (Fig 
S1). A one-sample Kolmogorov-Smirnov test showed that K and D were not normally 
distributed (p>0.05). To compare the bounds of K and D between the experimental 
conditions we used non-parametric independent-samples median tests. The lower 
and upper bound of K is always significantly higher in SP than LP (p<0.05), except 
for the upper bound of the posterior SCN in old mice (Fig S1A; p>0.05). There were 
no significant differences in the lower and upper bound of D between the 
experimental conditions (Fig S1B; p>0.05). Next, the ranges between the medians of 
the upper and lower bounds for K and D in the different experimental conditions 
were calculated (Fig 3). The ranges for K and D only differ significantly between 
conditions when the mean values of the ranges that are compared, are not situated 
within each other’s range. Therefore, the coupling strength is definitely higher in SP 
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than LP in young mice (p<0.05). This is in agreement with Buijink et al. (2016). For 
old mice the differences in coupling strength between SP and LP are not significant 
(p>0.05), as the mean value of the range in SP is within the range of LP. The range 
between the upper and lower bound for D is larger for LP than SP in both young and 
old mice, however the range does not differ significantly between the experimental 
conditions (p>0.05). The mean value between the upper bound and lower bound of 
D is close to one for all experimental conditions. This shows that the noise will not  
impact the results of the two-community Kuramoto model, as D has a constant value 
that is independent of the phase coherence.  
 

 
Fig 3. Range of K and D in different experimental conditions. (A) Range for the coupling strength 
between neurons in anterior and posterior slices in long (LPA and LPP respectively, green) and short (SPA 
and SPP respectively, blue) photoperiod in young and old mice. The range is based on the distance 
between the median of the upper and lower bound of K in each condition. The black cross indicates the 
mean of the range. (B) Range for the noise term in anterior and posterior slices in long (LPA and LPP 
respectively, green) and short (SPA and SPP respectively, blue) photoperiod in young and old mice. The 
range is based on the distance between the median of the upper and lower bound of D in each condition. 
The black cross indicates the mean of the range. 

        
3.3 Synchronization of the neuronal subpopulations  
Next, we identified neuronal subpopulations within the SCN using an unbiased 
community detection algorithm (Almog et al., 2019). The community detection 
algorithm resulted consistently in two main groups of cells with a robust spatial 
distribution, without prespecifying the number of groups. The spatial distribution of 
the neuronal subpopulations corresponded only partially with the division of the 
SCN in dorsomedial (shell) and ventrolateral (core) SCN based on neuropeptide 
content (Yan et al., 2007) and differed slightly between the anterior and posterior 
slices (Fig 4A). From now on, we will refer to the ventromedial cluster from anterior 
slices and the medial cluster from posterior slices as the medially oriented cluster. We 
will refer to the dorsolateral cluster from anterior slices and the lateral cluster from 
posterior slices as the laterally oriented cluster for simplicity. Note that we used the 
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same clustering of the data as reported in Buijink et al. (2016, 2020). Hence, we refer 
to these studies for detailed analysis on the community structure. 

We calculated the order parameter for the bioluminescence traces for each 
subpopulation. Paired-sampled t-tests showed that r was always significantly higher 
in each of the neuronal subpopulations compared to the SCN as a whole (p<0.05, Fig 
2C and Fig 4B). For the medially oriented cluster there was only a significant 
difference in r between LP and SP in the anterior SCN of young mice (young anterior, 
LP: 0.66±0.12, n=4, young anterior, SP: 0.92±0.02, n=5, p<0.05; Fig 4B). For the 
laterally oriented cluster r was significantly higher in SP than in LP in nearly all 
conditions, except for the posterior SCN of young mice (young anterior, LP: 
0.78±0.08, n=4, young anterior, SP: 0.95±0.01, n=5, p<0.01; young posterior, LP: 
0.85±0.09, n=4, young posterior, SP: 0.92±0.02, n=5, p=0.286; old anterior, LP: 
0.74±0.08, n=7, old anterior, SP: 0.92±0.03, n=10, p<0.01; old posterior, LP: 
0.80±0.08, n=9, old posterior, SP: 0.89±0.04, n=10, p<0.01; Fig 4C). 

 

 
 
Fig 4. Synchronization in the SCN neuronal subpopulations. (A) Examples of  the projection of cell 
location on bright field image of an anterior (A, left) and posterior (P, right) SCN of a young animal. The 
blue cells represent the medial oriented cluster and the orange cells the lateral oriented cluster. (B) The 
order parameter is calculated for the medial oriented (left) and lateral oriented (right) neuronal 
subpopulations in all slices and is shown for anterior and posterior slices in long (LPA and LPP 
respectively, green) and short photoperiod (SPA and SPP respectively, blue) in young (circles) and old 
mice (triangles). The black crosses indicate the mean of the experimental condition; *p<0.05, **p<0.01. 
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3.4 Estimating coupling strength within and between communities   
Next, we calculated the averaged order parameters for the neuronal subpopulations 
in the different experimental conditions. Here we took the anterior and posterior 
slices within the same experimental condition together, because the two-community 
Kuramoto model only allows for two communities (i.e. the medial and lateral 
oriented cluster). The resulting order parameters for the medial oriented cluster 
were r=0.77 for young mice in LP, r=0.94 for young mice in SP, r=0.84 for old mice in 
LP and r=0.91 for old mice in SP. And for the lateral oriented cluster the resulting 
order parameters were r=0.81 for young mice is LP, r=0.94 for young mice in SP, 
r=0.77 for old mice in LP and r=0.90 for old mice in SP. We used the averaged order 
parameters, as computed from the bioluminescence traces, to estimate the coupling 
strength within and between the neuronal subpopulations in the SCN. Fig 5 shows a 
simplified representation of the model. We made the assumption that D=1 for all 
experimental conditions, since the changes in D were minor in the results of the one-
community Kuramoto model. To find the relationship between K1 and L1 and 
between K2 and L2 equations 27 and 28 (methods section), which are derived from 
the extended Kuramoto model (Achterhof & Meylahn 2021a, 2021b), were 
numerically solved. K1 represents the coupling strength within the medially oriented 
cluster and K2 the coupling strength within the lateral oriented cluster. L1 represents 
the interaction strength from the lateral oriented cluster to the medial oriented 
cluster and L2 the interaction strength from the medial oriented cluster to the lateral 
oriented cluster and r1 is the order parameter for the medial oriented cluster and r2 
is the order parameter for the lateral oriented cluster.  
In Fig 6 the relationship between K and L is shown for the different experimental 
conditions. For both subpopulations we found a negative linear relation between K 
and L. The coupling strength (K) within a neuronal subpopulation is always positive 
and the interaction strength (L) between the neuronal subpopulations can be both 
positive or negative, where a negative strength indicates repulsive coupling.  

Since the relation between K1 and L1 appeared to be linear, we can express each 
line as  

𝐾𝐾1 = 𝑎𝑎1𝐿𝐿1 + 𝑏𝑏1, (31) 

in which 𝑎𝑎1 = −𝑟𝑟2
𝑟𝑟1

 and b1 is positively dependent on r1. The relationship between K2 

and L2 can be described in the same way, by interchanging the role of r1 and r2. From 
the relations between the lines we can investigate how well young and old mice can 
adapt to different photoperiods.  
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Fig 5. Simplified representation of the two-community Kuramoto model. The blue area represent the 
medial oriented cluster in which the coupling strength is denoted by K1 and the orange area represents 
the lateral oriented cluster in which the coupling strength is denoted by K2. L1 shows the interaction 
strength from the lateral oriented cluster to the medial oriented cluster and L2 shows the interaction 
strength from the medial oriented cluster to the lateral oriented cluster.  

 

 
Fig 6. Coupling strength within and between neuronal subpopulations of the SCN. (A) The relation 
between the coupling strength (K1) within the medial oriented cluster and the interaction strength (L1) 
from the lateral oriented cluster to the medial oriented cluster are shown for the different experimental 
conditions. The green line are old mice in LP, the blue line old mice in SP, the orange line are young mice 
in LP and the purple line are young mice in SP. There is a range of values for K1 and L1 that result in the 
same synchronization as observed in the bioluminescence data. (B) The same as Fig A for the coupling 
strength (K2) within the lateral oriented cluster and the interaction strength (L2) from the medial oriented 
cluster to the lateral oriented cluster.  

 
From our available experimental data it is not possible to obtain precise values for 
K1, K2, L1 and L2. We know that the values for K1, K2, L1 and L2 are located somewhere 
on the lines (Fig 6), but we do not know the exact spot on the lines. However, we can 
investigate the search-space of the lines to determine (i) whether there are 
differences in the range over which young and old mice can adapt their coupling 
strengths between photoperiods and (ii) whether the differences in coupling 
strengths between young and old mice are larger in LP or SP. The adaptation capacity 
to photoperiods is deducted from the degree of variation in coupling within and 
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between clusters in different conditions. Analysis of the search-space revealed that 
only in ~32% of all possible solutions old mice have higher adaptive capacity than 
young mice and that in ~37% of the solutions the differences in coupling strength 
between young and old mice are larger in LP than SP.  

Note that this information was derived from all possible solutions in the search-
space, including solutions that are unlikely to be present in real life. Therefore, we 
added three constraints and investigated the search-space of the lines again. Spots 
on the lines for K1, K2, L1 and L2 were only included 1) when K and L are higher in 
young animals than in old animals, 2) when K and L are higher in SP than LP and 3) 
when the relationship between K1 and K2 and between L1 and L2 is in the same 
direction for the different experimental conditions. Then, in less than 0.005% of the 
remaining solutions do old mice have a higher total adaptive capacity than young 
mice. This indicates that the range over which young mice can adapt their coupling 
strength is larger than the range over which old animals can adapt their coupling 
strength. Furthermore, in only 9.0% of the remaining solutions, the differences in 
coupling strength between young and old mice were larger in LP than SP .  

 
4. Discussion 
In this study we analyzed single-cell PER2::LUC gene expression rhythms of SCN 
neurons to determine the phase coherence between neurons in the SCN and in 
neuronal subpopulations of the SCN. By use of the one-community Kuramoto model 
we found that the coupling strength between SCN neurons is stronger in SP than LP. 
Next, we expanded to a two-community Kuramoto model, which revealed a negative 
linear relationship between the coupling strength within a subpopulation and the 
coupling strength the subpopulations experience from the other subpopulation. 
Furthermore, we found evidence that the SCN of old animals is less capable of 
adjusting to short photoperiod because of an inability to respond to short 
photoperiod with an increase in coupling strength. There is less of a difference in 
coupling strength between young and old animals in long photoperiod, when only a 
low degree of coupling is required.  

In two other recent studies a model similar to our model was used. Hannay et 
al. (2020) used the Ott-Antonsen ansatz to investigate the processing of light 
information in the SCN and Goltsev et al. (2022) used a reduced Kuramoto model to 
investigate the dynamical behavior of the core and shell SCN under different lighting 
conditions. Their results showed that the two-community Kuramoto model captures 
essential features of phase coherence in the SCN. This validates our method to use 
the phase coherence, as calculated from empirical data, to estimate the coupling 
strength between and within subpopulations of the SCN with a two-community 
Kuramoto model.  
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In our study the two-community Kuramoto model appeared to be highly suitable to 
determine network properties of the SCN, that are not directly measurable, but can 
be derived on the basis of available empirical data. For example, the model made 
clear that while the differences in phase coherence between young and old animals 
are approximately the same in SP and LP, the differences in coupling strength 
between young and old animals are larger in SP than in LP. PER2::LUC time-traces of 
single-cells seemed suitable to determine the coupling strengths between and within 
neuronal subpopulations of the SCN. Although we could not obtain the exact values 
for K1, K2, L1 and L2, we could narrow down the number of possible solutions by 
adding biologically based constraints. The two-community Kuramoto model is highly 
suitable for adding constraints because of its unique property that the coupling 
strengths between and within the two communities do not have to be the same.  

The constraints we added were based on neurotransmitter expression within 
the SCN together with our results from the one-community Kuramoto model. We 
assumed the coupling strengths would be stronger in young animals than in old 
animals based on reductions in the synaptic network and changes in membrane 
properties, leading to altered neurotransmission in the aged SCN (Palomba et al., 
2008; Farajnia et al., 2012; Leise et al., 2013). Secondly, we assumed the coupling 
strengths would be stronger in SP than LP, because the one-community model 
showed that the differences in synchronization between photoperiods were caused 
by differences in coupling strength and were not due to more or less noise in the 
system. And lastly, we assumed the relationship between the coupling strengths to 
be in the same direction between different experimental conditions. This constraint 
is based on the fact that VIP, which is an important neurotransmitter for 
synchronizing SCN neurons, is only expressed in the ventral (or core) SCN (Hegazi et 
al., 2019; Finger et al., 2020). Furthermore, it is known that the dorsal SCN receives 
strong input from the ventral SCN, whereas the ventral SCN receives sparse input 
from the dorsal SCN (Taylor et al., 2016). However, since our clusters only partially 
overlap with neuropeptide content in the SCN, we decided not to specify whether K1 
and L1 should be higher than K2 and L2, or the other way around. Identifying more 
constraints on the coupling strength between (and within) communities could help 
in narrowing down the search-space, so that we can better understand the 
mechanism of coupling in the SCN under different conditions. 

Adding the above mentioned constraints to the model revealed that young mice 
can adapt their coupling strengths over a larger range than old mice, which suggests 
that the SCN of young mice has larger adaptive capacity than the SCN of aged mice. It 
furthermore revealed that the differences in coupling strength between young and 
old mice are larger in SP than in LP in 91% of the possible solutions. This suggests 
that it is more difficult for old mice to adjust to SP than to LP. Although the effects of 
a reduced range of coupling strengths in old mice seem negligible at the molecular 
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level, these results are in agreement with previously reported effects of aging 
downstream of the SCN (Buijink et al., 2020).  Buijink et al. showed that old mice had 
a reduced rhythm amplitude in behavior and that old mice particularly had a strongly 
reduced ability to adapt to SP behaviorally. Hence, exposure to short photoperiod is 
not a useful intervention for boosting the rhythm of old animals. However, when 
interpreting the results, we need to keep in mind that the coupling strengths are 
inferred from the model. There are possibly other factors, such as reduction in the 
strength of photic input or increased variance in the intrinsic periods of the SCN 
oscillators, that could contribute to less phase coherence in older mice.  

Previous modeling work by Myung and Pauls (2017) also used a Kuramoto 
model to describe the interaction between functional oscillators in the SCN to encode 
for seasonal time. Their work pioneered in showing the existence of repulsive 
coupling from the ventral part of the SCN to the dorsal part of the SCN and attractive 
coupling from the dorsal part of the SCN to the ventral part of the SCN. They 
suggested that there is an increase in repulsive coupling from SP to LP, creating a 
wider peak time dispersion between neurons in LP. Their framework fits nicely 
within our model where we added additional parameters for the coupling strength 
within subpopulations of neurons in the SCN.  

Besides repulsive coupling, a broadened peak time dispersion between 
neurons in LP could be caused by a reduction in the coupling strength. From the 
relationship between the order parameter and the coupling strength we know that 
the coupling strength increases when the order parameter increases. This would 
suggest a reduction in coupling strength is the correct mechanism. However, we 
were not able to perform measurements within the neuronal subpopulations, 
without one subpopulation being influenced by the other. Therefore, we do not know 
whether the phase coherence of the subpopulations of the SCN differs from the phase 
coherence measured over the entire SCN, due to changes in coupling strength within 
the clusters or due to the interaction strength between the clusters. As a result, it is 
impossible to determine which mechanism is the correct one from our data and 
analysis, and we need to rely on constraints to interpret the results of our model.     

As measure for neuronal synchronization within the SCN we used the order 
parameter of the Kuramoto model. The order parameter was normalized to obtain a 
value between 0 and 1, in which 0 means that the phases of the single-cells are 
randomly distributed and 1 implies perfect synchrony (Gu & Yang, 2017; Meylahn, 
2020). A limitation of the extended Kuramoto model is that the coupling strength 
would become infinite when the neuronal synchronization of the SCN is 100%. This 
problem is theoretical rather than practical: due to the differences in intrinsic 
characteristics of the neurons and noise in the system, perfect synchronization will 
never be reached (Maywood, 2020).  
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To recapitulate, with the two-community Kuramoto model we could determine the 
relationship between the coupling strength within neuronal subpopulations of the 
SCN and the interaction strength between the neuronal subpopulations, after we 
determined the phase coherence of SCN neurons in different experimental 
conditions. We found evidence that coupling strength within and between 
subpopulations correlates with photoperiod induced changes in the phase 
relationship among neurons. In young mice, the SCN has a large adaptive capacity – 
as seen in the range of coupling strength – making them able to adapt to different 
photoperiods. With aging the adaptive capacity of the SCN seems to be reduced. Aged 
animals seem to be unable to reach sufficient coupling strengths, which are 
necessary for correct encoding of short daylength in the SCN signal, making it more 
difficult for old mice to also behaviorally adapt to SP.  
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Supporting Information 
 

 
Fig S1. Estimation of the upper and lower bound of K and D in different experimental conditions. 
Upper (blue dots) and lower (green dots) bound of K (top plot) and D (bottom plot) estimated with the 
Kuramoto model for anterior (A) and posterior (P) slices in short (SP) and long photoperiod (LP) in old 
and young mice. The black cross indicates the median; *p<0.05   
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