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Breast cancer is the most prevalent cancer among women globally1 and the 
therapeu?c interven?ons remain limited due to the metasta?c nature of the 
disease. Targe?ng metastasis is challenging due to the adap?ve behavior of 
tumor cells.2 Therefore, iden?fying the key regulators like epithelial-mesen-
chymal transi?on (EMT) is crucial.3 Although EMT is not considered as the 
only prerequisite for the metastasis,4,5 mul?ple studies have demonstrated 
its significant role in promo?ng metastasis and tumor progression.6,7 EMT is 
controlled by a regulatory network of transcrip?on factors; EMT transcrip?on 
factors (EMT-TFs).8,9 In this thesis, I focused on a master epithelial regulator 
of EMT, Grainyhead-like 2 transcrip?on factor (GRHL2) and iden?fied its di-
verse roles across breast cancer subtypes, providing novel mechanis?c in-
sights. Our ini?al literature study explored the interac?ons between molecu-
lar and physical cues that reshape tumor microenvironment and provide cel-
lular plas?city, required for metastasis in chapter 2. We then examined dis-
?nct signaling networks and molecular processes regulated by GRHL2 in the 
luminal and basal A subtypes of breast cancer in chapter 3-4. Following these 
findings, we analyzed the func?on of GRHL2 in controlling kinase signaling, 
how central its role is in the EMT/mesenchymal-epithelial transi?on (MET) 
balance, and whether it regulates therapy response using a luminal and a 
basal-b model (chapter 5). Lastly, a novel immune modulatory role was dis-
covered for GRHL2 in breast cancer (chapter 6). Here, we explain the key 
findings of the thesis and their significance for cancer research. We also pro-
vide recent advancements for the future research. 
 
Diverse mechanisms controlling cellular plas]city in cancer metastasis 
Intratumor heterogeneity, characterized by tumor cells harboring dis?nct 
phenotypical and molecular features within the same tumor bulk, facilitates 
significant adaptability, o_en acquired through cellular plas?city.10 This plas-
?city is further sustained by altera?ons in the genomic and phenotypic land-
scapes through EMT. EMT is influenced by various s?muli such as hypoxia and 
pH levels in the tumor microenvironment, as well as downstream signaling 
pathways including transforming growth factor-β (TGFβ), Wnt, and EGF.9 In 
Chapter 1, we present a comprehensive inves?ga?on into the essen?al roles 
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played by the GRHL family, including GRHL1-3, both in embryogenesis and 
cancer. 
 
It has been previously reported that mechanical s?muli also have an impact 
on maintaining the plas?city.11 The tumor cells manipulate the interplay be-
tween several signaling pathways and mechanical cues, suppor?ng their 
growth and survival to adapt to altera?ons within the tumor microenviron-
ment. We discuss two dis?nct mechanisms; EMT and jamming/unjamming 
that remodel the tumor microenvironment to establish an op?mal niche for 
the metasta?c outgrowth (chapter 2). Addi?onally, we have outlined a 
roadmap for therapeu?c interven?ons targe?ng these mechanisms. 
 
Subtype-specific ac]ons of GRHL2 across breast cancer subtypes 
In Chapter 3, we analyzed GRHL2 binding sites and mo?fs in three luminal 
estrogen receptor (ER) (+) breast cancer cell lines using ChIP-seq.12,13 Mul?ple 
studies have demonstrated a regulatory role for GRHL2 in ER-mediated tran-
scrip?onal ac?vity.14–16 Hence, we examined the presence of GRHL2 binding 
regions in the binding sites for ER alpha and its regulators; FOXA1 and GATA3. 
However, only a surprisingly small subset of intersec?ng binding sites was 
found, consistent with the findings reported by Jozwik et al.17 
 
While genome-wide distribu?on of GRHL2 mo?fs iden?fied puta?ve candi-
date target genes of GRHL2, we further inves?gated their transcrip?onal reg-
ula?on by GRHL2 in luminal breast cancer. A condi?onal knock-out model in 
a luminal breast cancer cell model; MCF-7 was employed to measure dy-
namic changes in nascent mRNA using Bru-seq. Differen?al transcrip?onal 
changes were observed in response to GRHL2 dele?on. We evaluated direct 
and indirect regula?on of such genes by integra?ng ChIP-seq and Bru-seq re-
sults. A significant reduc?on was observed in the transcrip?onal ac?vity of a 
set of genes associated with cell-cycle and DNA replica?on; EHF, E2F2 and 
CDCA7L.18–20 Our study elucidated a direct transcrip?onal regula?on of some 
of these genes facilitated by GRHL2 binding to their respec?ve promoter re-
gions. The loss of GRHL2 in MCF-7 cells also resulted in downregula?on of 
cell growth, and our aiempts to rescue this phenotype through EHF 
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upregula?on were unsuccessful, sugges?ng the involvement of addi?onal 
cell-cycle regulatory genes or factors. 
 
The interac?ons between GRHL2 and a set of EMT-TFs were also evaluated 
a_er GRHL2 dele?on. Epithelial EMT-TFs; OVOL2 and CDLN4 were iden?fied 
as direct targets of GRHL2 while only CLDN4 mRNA was altered in response 
to GRHL2 loss. A cri?cal target of the EMT-TF; CDH1 which encodes the E-
cadherin cell-cell adhesion receptor, is a known direct target of GRHL2. How-
ever, unlike other studies,21 it remained unaffected by the loss of GRHL2 ex-
pression in our study. In addi?on, no GRHL2 binding in the promoter region 
of ZEB1 was found in contrast to the earlier reports showing direct nega?ve 
regulatory feedback loop between GRHL2 and ZEB1.13,22,23  These findings 
highlight the cell-type specific ac?ons of GRHL2 and suggest the involvement 
of other mechanisms like post-transcrip?onal regula?ons.  
 
Nest, a similar integra?ve approach was taken in three luminal and three ba-
sal-a breast cancer lines to unveil the different biological func?ons of GRHL2 
in dis?nct breast cancer subtypes (chapter 4). Analysis of ChIP-seq data 
showed common changes in cell migra?on, epithelial prolifera?on and cell-
cell junc?ons in both subtypes. Dual roles have been aiributed to GRHL2 as 
a tumor suppressor and promoter in many cancers.24–27  In agreement with 
our conclusion in chapter 3, cell-cycle arrest was the dominant response to 
GRL2 loss in luminal cell line, MCF-7. This effect was less pronounced in a 
basal A cell line, HCC1806. Indeed, this points to dis?nct roles for GRHL2 in 
different breast cancer subtypes. The differen?al response in growth might 
be explained by the enhanced ac?vi?es of hormone receptors in luminal 
breast cancer. Elevated ER signaling in tumors is correlated with poor prog-
nosis28,29 and is linked to increased cell prolifera?on. ERα signaling supports 
the cell prolifera?on in MCF-7 cells by increasing the transcrip?onal ac?vi?es 
of PCNA/E2F1 and inhibi?ng the induc?on of cell-cycle arrest via p53/p21 
axis.30 
 
In contrast to the findings in MCF-7, the dele?on of GRHL2 resulted in in-
creased cell migra?on in HCC1806 cells, accompanied by upregula?on of N-
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cadherin and Vimen?n; mesenchymal genes.31,32 Previous studies have linked 
the enhanced ac?va?on of mesenchymal markers to increased cell migra-
?on.33,34 Although the downregula?on of E-cadherin occurred as a common 
finding in both cell types, it didn’t further induce a full EMT in luminal breast 
cancer, sugges?ng the necessity of other changes co-exis?ng also in the mes-
enchymal spectrum of EMT.35,36 Our findings indicate that such changes are 
already present in basal A breast cancer cells and here deple?on of GRHL2 
does ac?vate an EMT. Altogether, these results point to a subtype-specific 
role for GRHL2 in breast cancer. 
 
In vivo experiments supported the oncogenic role of GRHL2, given its loca?on 
in the frequently amplified region (8q22) in many cancers.36–38 The aspects of 
EMT induced by GRHL2 dele?on in HCC1806 suggested that GRHL2 may have 
tumor- or metastasis suppressive roles in this model, as opposed to luminal 
cells where our findings pointed to a largely tumor promo?ng role.  We in-
ves?gated this in a basal A orthotopic transplanta?on model. However, these 
experiments indicated that despite the more obvious EMT upon GRHL2 de-
ple?on, also in basal-A cells tumor growth as well as metastasis are sup-
ported rather than suppressed by GRHL2. 
 
Mul]faceted roles of GRHL2 in cancer cell signaling and targeted therapies 
Our findings in chapter 3 and 4 delineated the landscape of gene networks 
regulated by GRHL2 in luminal and basal A breast cancer subtypes. By using 
the data obtained in chapter 3, we evaluated the changes in a set of EMT-
related genes a_er the induc?on of GRHL2 loss in MCF-7 cells (chapter 5). 
Our data revealed no changes in the expression paierns of epithelial markers 
and mesenchymal cell markers other than CLDN4. This indicated the absence 
of EMT-induc?on by GRHL2 dele?on in luminal cancer, corrobora?ng the re-
sults presented in chapter 4. 
 
To understand the mechanisms underlying differen?al regula?on of cellular 
processes controlled by GRHL2, we next profiled the kinase ac?vi?es associ-
ated with the breast cancer signaling in luminal breast cancer. Several signal-
ing pathways; estrogen receptor (ER), PI3K, Hedgehog (HH), TGFβ and 
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androgen receptor (AR) were analyzed with a qPCR-based pla�orm, designed 
for its use in the clinic to determine personalized therapies for breast cancer 
pa?ents.39 GRHL2 exerts its diverse func?ons by rewiring signaling pathways 
in many cancer types.15,40 The elevated GRHL2 expression was shown to in-
duce MAPK ac?vity, resul?ng in suppression of TGFβ mediated epithelial 
plas?city and carcinogenesis in oral cancer.41 However, we have not observed 
any changes in MAPK ac?vity in GRHL2 deleted cells. This paiern was also 
observed across other pathways except for PI3K and TGFβ, being upregulated 
upon GRHL2 loss. The importance of TGFβ signaling and its func?on in induc-
ing EMT to sustain tumorigenesis have been implicated by several stud-
ies.42,43 The tumor suppressing func?on of GRHL2 is o_en linked to the down-
regula?on of TGFβ signaling,44,45 suppor?ng our analysis in luminal breast 
cancer. The poten?al ra?onale for the pathways remaining unaffected by 
GRHL2 dele?on could be aiributed to the u?liza?on of a condi?onal CRISPR-
Cas9 knockout system. The analyzed samples for the pathway analysis were 
originated from a knockout study conducted for 8 days in MCF-7 cells. It is 
possible that a longer dura?on for GRHL2 knock-out is necessary for the mod-
ifica?ons of the post transcrip?onal machinery and signaling pathways. 
 
EMT is defined by the balance between epithelial and mesenchymal states, 
and its progression is characterized by the gain of mesenchymal characteris-
?cs which is associated with therapy resistance.5,46 As elucidated in chapter 
3 and 4, GRHL2 plays a pivotal role in determining the balance between EMT 
and MET in breast cancer but, its dele?on in luminal cells is not sufficient to 
drive an EMT. The basal B subtype of breast cancer is characterized by its 
enhanced mesenchymal features, limi?ng the response to the therapies.47 
Consequently, our inves?ga?on centered on understanding whether expres-
sion of GRHL2 would be sufficient to suppress the mesenchymal phenotype 
and affect the  therapy response in basal B breast cancer.  
 
Overexpression of GRHL2 in the basal B subtype breast cancer cell line, MDA-
MB-231 did not induce altera?ons in the expression paierns of any epithelial 
markers (Occludin, CLDN4, E-cadherin, ZO-1) or mesenchymal markers (Vi-
men?n and Zeb1). Differing from our findings, overexpression of GRHL2 has 
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been shown to induce MET-like changes, both phenotypically and genotypi-
cally, including increased E-cadherin expression.22 However, both studies 
showed that cell growth remained unaffected, unlike the changes observed 
in Chapter 4 in the luminal and basal A subtypes of breast cancer. This indi-
cates that GRHL2 manipula?on on its own, does not suffice to drive an EMT 
in a basal B model sugges?ng that other, cri?cal regulators of the epithe-
lial/mesenchymal balance must be altered. 
 
We next assessed the drug responses facilitated by GRHL2 in absence of con-
founding influences of changes in the EMT/MET balance. MDA-MB-231 cells, 
with and without GRHL2 overexpression, were treated with a small kinase 
inhibitor library, and drug responses were evaluated based on changes in cell 
growth. Similar to a previous study showing the co-opera?on of GRHL2 with 
PI3K/Akt pathway in colorectal cancer,48 we also found two candidate kinases 
targe?ng PI3K pathway, exhibi?ng GRHL2 mediated sensi?vity. However, this 
vulnerability wasn’t further validated. Altogether, the findings in chapter 5 
indicate that GRHL2 loss in basal B cells is not sufficient to drive an EMT and 
in absence of such an effect, the impact on therapy response is limited or 
absent. 
 
Studying tumor-immune cell interac]ons in the context of GRHL2-mediated 
immune evasion 
The interac?on between GRHL2 and immune regulatory mechanisms has 
been only minimally addressed by studies thus far. By integra?ng the data 
from breast cancer cell lines and breast adenocarcinoma pa?ent tumors, we 
detected a significant nega?ve correla?on of GRHL2 with expression of the 
ecto-enzyme, NT5E/CD73 (chapter 6). Based on our findings in chapter 3 and 
4, we iden?fied the CD73 encoding gene, NT5E as one of the direct targets of 
GRHL2 in luminal breast cancer.  
 
Several studies have emphasized the role of elevated adenosine levels, facil-
itated by CD73 in tumor cells, in immune evasion.49,50 Our inves?ga?on re-
vealed that the loss of GRHL2 in luminal breast cancer increases CD73-medi-
ated extracellular adenosine produc?on. However, tumor cells are not the 
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sole contributors to the adenosine produc?on. Studies have demonstrated 
that immune cells with pro and an?-tumor capabili?es including NK cells,51 
macrophages,52 and cytotoxic (CD8+) T cells,53 also significantly contribute to 
elevated adenosine levels within the tumor microenvironment. 
 
To delineate the impact of GRHL2-controlled adenosine produc?on on lu-
minal breast cancer, we employed a trans-well migra?on model to study tu-
mor-immune cell interac?ons in response to GRHL2 loss. Surprisingly, we 
found that the absence of GRHL2 increased the CD8+ T cell migra?on, which 
could be reverted by a CD73 inhibitor. The finding that CD73-mediated aden-
osine produc?on in tumors may actually increase, rather than decrease im-
mune infiltra?on was supported in clinical samples showing a posi?ve rela-
?on between CD73 and Cd8+ T cell presence although the correla?on was 
weak. This unveiled a novel role for GRHL2 in shaping the immune response 
within luminal breast cancer. Other studies have focused on the impact of 
extracellular adenosine on the cytotoxic ac?vity of CD8+ T cells.54,55 As previ-
ously displayed in chapter 4, GRHL2 dele?on induces cell-cycle arrest in lu-
minal breast cancer. Therefore, we were unable to inves?gate the cytotoxic 
effects mediated by adenosine using our condi?onal knockout model.  
 
Studying the immune evasion related mechanisms in 2D might underes?-
mate the complexity of the tumor microenvironment. During tumor progres-
sion, remodula?on of the tumor microenvironment, including the forma?on 
of a collagen-rich, s?ff extracellular matrix (ECM) occurs.56 It has been re-
ported that the highly dense ECM had an impact on the cytotoxic ac?vity of 
immune cells56,57 and the profile of T cells,58 represen?ng a mechanism of 
tumor immune evasion. Hence, it will be interes?ng to further explore the 
impact of GRHL2 loss on interac?ons with the immune system in 3D co-cul-
ture systems and using in vivo models. 
 
Conclusion and future perspec]ves 
In conclusion, this thesis examines mul?faceted roles of GRHL2 across breast 
cancer subtypes. We explore the underlying mechanisms that support cellu-
lar plas?city and their implica?on for the cancer therapy. We outline the 
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signaling networks orchestrated by GRHL2 in luminal breast cancer and dis-
cern differen?al roles of GRHL2 in cell growth and cell migra?on between 
luminal vs. basal A subtypes of breast cancer. Our research highlights that 
altering GRHL2 expression is, by itself, not sufficient to drive EMT in luminal, 
or MET in basal B subtype breast cancers. This may also explain that in our 
studies, no significant correla?on is iden?fied between GRHL2 expression 
and therapy responses tested. Moreover, a novel immunomodulatory func-
?on via the NT5E/CD73-extracellualr adenosine axis is iden?fied in luminal 
breast cancer.  
 
It will be important to unravel the interac?on between co-factors and GRHL2 
in different breast cancer subtypes using co-immunoprecipita?on and other 
approaches, to understand to mechanisms underlying context-dependent 
GRHL2 controlled cell func?ons. The use of pa?ent derived xenogra_s or or-
ganoid models will provide more insights for the tumor heterogeneity in dif-
ferent breast cancer subtypes. This will allow the iden?fica?on of more clin-
ically relevant GRHL2-regulated mechanisms underlying its role in tumor 
growth, metastasis, and therapy response. 2D tumor models lack the com-
plexity of the tumor microenvironment and lack the abundance of metabo-
lites and cytokines, secreted by numerous cell types in the tumor microenvi-
ronment. With respect to the novel GRHL2-regulated interac?on with CD8+ 
T cells we discover, further explora?on of this mechanism in complex 3D or 
in vivo models are warranted to place in context of the diverse tumor micro-
environment components that also contribute to extracellular adenosine 
produc?on. Overall, this thesis illuminates novel insights into the context and 
subtype-specific roles of GRHL2 in breast cancer subtypes and offers oppor-
tuni?es for targeted vulnerabili?es in breast cancer therapy. 
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