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Abstract
Studies considering competing risks will often aim to estimate the cumulative incidence functions conditional 
on an individual’s baseline characteristics. While the Fine–Gray subdistribution hazard model is tailor-made for 
analysing only one of the competing events, it may still be used in settings where multiple competing events 
are of scientific interest, where it is specified for each cause in turn. In this work, we provide an overview of 
data-generating mechanisms where proportional subdistribution hazards hold for at least one cause. We use 
these to motivate why the use of multiple Fine–Gray models should be avoided in favour of better alternatives 
such as cause-specific hazard models.
Keywords: cause-specific hazards, competing risks, cumulative incidence functions, Fine–Gray model, subdistribution 
hazard
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1 Introduction
Competing risks are ubiquitous across medical studies, where patients can experience one of sev
eral distinct events, such as death due to different causes. One of the typical aims for a study con
sidering competing risks is to estimate the model-based cumulative probabilities of experiencing 
one or more of the competing events by a certain time for specific patients (the predicted cumula
tive incidence functions). Presently, given a set of baseline covariates and outcome data, cumula
tive incidence functions are generally estimated using either the Fine–Gray subdistribution hazard 
model (Fine & Gray, 1999), or by fitting and thereafter combining cause-specific Cox proportion
al hazards models for each event (Putter et al., 2007). The former is often the tool of choice when 
developing prognostic models for a single event of interest, as it does not require explicitly speci
fying models for the competing events. It is also arguably simpler to externally validate, requiring 
only cumulative subdistribution baseline hazard estimates at relevant timepoints together with the 
estimated regression coefficients (instead of the full cause-specific cumulative hazards for all 
events).

Even when only one of the endpoints is of primary interest, multiple authors have argued in fa
vour of a more holistic approach to competing risks analyses, suggesting that all events should be 
studied together (Andersen et al., 2012; Gerds et al., 2012; Latouche et al., 2013). For example, as 
emphasized by Latouche et al. (2007), the effect of a given covariate on the cumulative incidence of 
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one event should not be considered in isolation from its effect on the cumulative incidence of com
peting events. Consider patients with a malignant haematological disease, that are at risk of (com
peting) disease relapse and nonrelapse mortality after undergoing an allogeneic stem cell 
transplantation (alloSCT). A less intensive pretransplantation conditioning regimen may not be 
able to sufficiently control the disease compared with a more intensive regimen (i.e. increased risk 
of relapse), but it will be less toxic for the patient (i.e. reduced risk of nonrelapse mortality)— 
see Shimoni et al. (2016) for an example of opposing effects of conditioning regimen on the 
cumulative incidence functions of relapse and nonrelapse mortality.

In a context where more than one of the competing events are of (possibly equal) interest, one 
may opt to fit a Fine–Gray model for each competing event in turn. Since these models are fitted 
independently, it is possible that the sum of the estimated cumulative incidence functions (the total 
failure probability, TFP) for given covariate values at certain timepoints exceeds 1. This was re
cently illustrated by Austin et al. (2021) with data considering cardiovascular and noncardiovas
cular death, where the TFP exceeded 1 for 5% of patients at 5 years after hospital admission. This 
known issue of the TFP exceeding 1 occurs partly as a result of at least one of the specified 
Fine–Gray models being incorrect (Beyersmann et al., 2012). That is, the assumption of 
proportional subdistribution hazards fails to hold for at least one of the models.

A useful starting point for further understanding these issues when using multiple Fine–Gray 
models is to consider a simplified context with two competing risks, and suppose that the 
Fine–Gray model has been correctly specified for one event (cause 1). The objective of this article 
is to outline the implications (i.e. the implied assumptions) of specifying a Fine–Gray model for 
cause 1 on the cumulative incidence function for cause 2. To do so, we provide an overview of 
data-generating mechanisms (DGMs) where the Fine–Gray model is correctly specified for at least 
cause 1. For these DGMs, we (a) give example specifications (e.g. choice of distributions), (b) refer 
to instances where they have been used across the methodological competing risks literature (e.g. 
as part of simulation studies), if at all, and (c) touch upon potential difficulties from a simulator’s 
perspective. While these DGMs are particularly relevant for methodological researchers aiming to 
simulate competing risks data under different assumptions, they provide additional insights for 
applied researchers seeking to motivate their choice of analysis method(s) in a more principled 
way. In the discussion, we therefore reflect on what the characteristics of the outlined DGMs imply 
for the use of multiple Fine–Gray models in practice, and argue in favour of cause-specific hazard 
models for cumulative incidence prediction.

2 Competing risks and the Fine–Gray model
In a competing risks setting, we assume that individuals can experience only one of K distinct events 
or, phrased differently, that only the first event of interest is observed. We denote the failure time as T, 
and the competing event indicator as D ∈ {1, . . . , K}. In practice, individuals are subject to a right- 
censoring time C (generally assumed independent of T and D), and we thus only observe realizations 
of T̃ = min (T, D) and D̃ = I(T ≤ C)D. The cause-specific hazard for the kth event is defined as

hk(t) = lim
Δt↓0

P(t ≤ T < t + Δt, D = k |T ≥ t)
Δt

.

These hazards fully define the event-free survival function,

P(T > t) = exp −
􏽘K

k=1

∫t0 hk(u) du

􏼠 􏼡

= exp −
􏽘K

k=1

Hk(t)

􏼠 􏼡

, 

assuming the distribution of T is continuous, and Hk(t) is the cause-specific cumulative hazard func
tion for the kth event. The cause-specific cumulative incidence function is then defined as

Fk(t) = P(T ≤ t, D = k)= ∫t0 hk(u)S(u − ) du, 

where S(u − ) is the event-free survival probability just prior to u.
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A relevant question is whether we can model Fk(t) directly, without needing to model all 
cause-specific hazards. In order to do so, the idea is to specify a hazard for the kth event, λk(t), 
that satisfies

P(T ≤ t, D = k) = 1 − exp − ∫t0 λk(u) du
􏼐 􏼑

, 

analogously to the standard single-event survival setting. Rearranging the above yields

λk(t) =
−d log {1 − Fk(t)}

dt
,

=
dFk(t)

dt
× {1 − Fk(t)}−1, 

which is the commonly known expression for the subdistribution hazard. It can also be written as 
λk(t) = fk(t)/{1 − Fk(t)}, where fk(t) = dFk(t)/dt is referred to as the subdensity function (Gray, 
1988). Fk(t) is not a true distribution function since Fk(∞) = P(D = k) < 1, and is hence known 
as a ‘subdistribution’ function. The cause-specific hazard can also be written in terms of the sub
density function, as hk(t) = fk(t)/S(t). Thus, the cause-specific hazard conditions on being event- 
free by t, while the subdistribution hazard conditions on not having failed by event k by t.

The Fine–Gray model is a semiparametric model that assumes proportionality on the subdistri
bution hazard scale. Using covariate vector Z, the Fine–Gray model for cause k can be written as

λk(t |Z) = λk0(t) exp (βT
k Z), 

with λk0(t) being the subdistribution baseline hazard function and βk representing the effects of co
variates Z on the subdistribution hazard. The cumulative incidence function for the kth event can 
then be written as

Fk(t |Z) = 1 − exp { −exp (βT
k Z) ∫t0 λk0(u) du}, 

which corresponds to modelling the cumulative incidence function with a complementary log-log 

transformation. Furthermore, let Fk0(t) = 1 − exp (− ∫t0 λk0(u)du) be the baseline cumulative inci
dence function, i.e. the cumulative incidence when Z = 0. We can then also write the Fine–Gray 
model as

1 − Fk(t |Z) = {1 − Fk0(t)}exp (βT
k Z), 

which is a similar relation to that of the survival functions in a Cox model.

3 Data-generating mechanisms
For the sake of simplicity, we restrict ourselves to K = 2 competing events, a single time-constant 
covariate X, and assume that cause 1 is of primary interest. Results can be generalized to more 
complex settings. We let hk(t |X), λk(t |X) and Fk(t |X) = P(T ≤ t, D = k |X), respectively, denote 
the cause-specific hazard, subdistribution hazard and cumulative incidence function for cause k, 
conditional on X. Furthermore, we let βk and γk represent the effect of X on the subdistribution 
hazard and cause-specific hazard of cause k, respectively. In what follows, we present DGMs 
for which a Fine–Gray model correctly holds for cause 1. When illustrating the different 
DGMs, X is assumed to be binary.

In essence, the task is to specify a joint density f (T, D |X) where the Fine–Gray model is correct
ly specified for cause 1. With S(T |X) = exp { −H1(T |X) − H2(T |X)}, we have

f (T, D |X) = {h1(T |X)S(T |X)}I(D=1){h2(T |X)S(T |X)}I(D=2)S(T |X)1−I(D=1)−I(D=2),

= f1(T |X)I(D=1)f2(T |X)I(D=2){1 − F1(T |X) − F2(T |X)}1−I(D=1)−I(D=2), 

582                                                                                                                                          Bonneville et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/article/187/3/580/7700140 by U
niversiteit Leiden - LU

M
C

 user on 01 N
ovem

ber 2024



as written by Andersen and Ravn (2023). Since the Fine–Gray model provides an expression for 
F1(t |X), we need only think about what assumptions to make regarding cause 2. Additionally, the 
hazard functions comprising the above density should fulfil various restrictions, which are out
lined in the work of Haller and Ulm (2014). Namely, 

1. All hazard functions must be nonnegative for all time points t > 0.
2. The cause-specific and subdistribution hazards (for the event of interest) should be identical 

before the occurrence of the first competing event. Therefore, h1(t |X) = λ1(t |X) at t = 0.
3. F1(t |X) must converge to P(D = 1 |X) as t→∞. If P(D = 1 |X) < 1, this in turn implies that 

limt→∞λ1(t |X) = 0 and even that the cumulative subdistribution hazard Λ1(t |X) should not 
go to infinity for t→∞.

3.1 Using the reduction factor
A first approach to specifying f (T, D |X) is to make assumptions about all cause-specific hazard 
functions. That is, we would like to select a set of cause-specific hazard functions for which pro
portionality holds on the subdistribution hazard of event 1. To do so, we can make use of the link 
between h1(t |X) and λ1(t |X), which is given by

λ1(t |X) = h1(t |X)
S(t |X)

1 − F1(t |X)
, (1) 

with the latter expression referred to as the reduction factor by Putter et al. (2020). In the book by 
Beyersmann et al. (2012) (equation 5.3.9), this has also been written as

h1(t |X) = λ1(t |X) 1 +
F2(t |X)
S(t |X)

􏼚 􏼛

, 

which holds since S(t |X) = 1 −
􏽐2

k=1 Fk(t |X). The above expressions allow to simulate data by 
specifying λ1(t |X) and one of h1(t |X), h2(t |X), or h1(t |X) + h2(t |X), and thereafter deriving 
the implied cause-specific hazard(s). With both cause-specific hazards being defined, one should 
be able simulate using standard methods, i.e. with latent times or using the all-cause hazard func
tion (Beyersmann et al., 2009).

3.1.1 Specifying λ1(t |X) and h2(t |X)
Since we assume that the Fine–Gray model is correctly specified for λ1(t |X), we can express our 
assumptions regarding cause 2 for instance by specifying a model for h2(t |X), which can be 
any hazard-based regression model (e.g. cause-specific Cox, additive hazards or other), and derive 
the implied h1(t |X). By re-arranging (1) and thereafter integrating with respect to t, we can write

h1(t |X) exp { −H1(t |X) − H2(T |X)}
􏽺������������������������􏽽􏽼������������������������􏽻

f1(t |X)

= λ1(t |X) exp { −Λ1(t |X)},

exp { −H1(t |X)} = 1− ∫t0 λ1(u |X) exp { −Λ1(u |X) + H2(u |X)} du.

It then follows that, given choices of λ1(t |X) and h2(t |X), the implied cause-specific hazard for 
event 1 is given by

h1(t |X) =
λ1(t |X) exp { −Λ1(t |X) + H2(t |X)}

1− ∫t0 λ1(u |X) exp { −Λ1(u |X) + H2(u |X)} du
. (2) 

The above expression has the advantage of naturally ensuring that λ1(t |X) = h1(t |X) at t = 0. 
However, depending on the choices of λ1(t |X) and h2(t |X), the implied h1(t |X) may become 
negative at certain timepoints. Specifically, this occurs when the integral in the denominator (cor
responding to 1 − exp { −H1(t |X)}, the ‘net risk’ for cause 1) in equation (2) exceeds 1. Another 
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way of looking at these potentially negative hazard values is to express the event-free survival 
S(t |X) in terms of λ1(t |X) and h2(t |X), as

S(t |X) = 1− ∫t0 λ1(u |X) exp { −Λ1(u |X) + H2(u |X)} du
􏽨 􏽩

× exp { −H2(t |X)}. (3) 

Therefore, when the implied net risk of cause 1 exceeds one (generally as a result of excessively 
large cause-specific hazard for cause 2), the event-free survival itself become negative, meaning 
that 1 − S(t |X) (the TFP) exceeds 1.

To illustrate this DGM, we specify

λ1(t |X) = ν1eκ1t exp (β1X), 

where κ1 and ν1, respectively, are the shape and rate parameters of a Gompertz baseline hazard. 
Fixing β1 = 0.5, and choosing a negative shape κ1 = −2, and rate ν1 = 0.5, we have that 
P(D = 1 |X) = 1 − [1 − {1 − exp (ν1/κ1)}]exp (β1X). This asymptote of the Gompertz cumulative dis
tribution function (CDF), which is less than 1 when the shape parameter is negative, has made it an 
attractive choice of distribution in work investigating direct parametric modelling of cumulative 
incidence functions (Jeong & Fine, 2006). For cause 2, we assume cause-specific proportional haz
ards as

h2(t |X) = a2b2ta2−1 exp (γ2X), 

where a2 and b2 are, respectively, the shape and rate parameters of a Weibull baseline hazard. We 
fix {a2, b2, γ2} = {0.5, 1.25, 0.25}, and derive h1(t |X) using equation (2). Figure 1 depicts the true 
(obtained with numerical integration) stacked cumulative incidence functions and cause-specific 
hazards (conditional on X = 1) for both causes, as well as the implied subdistribution hazard ra
tios. We see that this mechanism (when X = 1) is only properly defined prior to t ≈ 3.20, after 
which h1(t |X = 1) is negative. The corresponding cumulative incidence functions demonstrate 
that beyond this timepoint, there is no probability space left to fill, as the TFP has already reached 
one. Additionally, Figure 1c emphasizes that proportional subdistribution hazards do not hold for 
cause 2.

Making appropriate use of this approach for simulation purposes means paying attention to the 
fact that the choice h2(t |X) will have to respect the remaining probability space left over by the 
proportional subdistribution hazards structure assumed by cause 1. Practically speaking, this 
means specifying a h2(t |X) such that the implied event-free survival in (3) does not become nega
tive. One may also choose to set a maximum follow-up time, before which all hazards behave ap
propriately for all X and the TFP is smaller than 1. In Figure 1, this could be achieved by setting a 
maximum follow-up time smaller or equal to 3.20 (or adjusting the parameters of the hazards 
function in order to allow a larger maximum follow-up time). An example use of this DGM is 
found in the work of Lambert et al. (2017), as part of a simulation study assessing the performance 
of a proposed flexible parametric approach for modelling the subdistribution hazard of one event. 
Both λ1(t |X) and h2(t |X) assumed proportional hazards with mixture Weibull baseline hazards, 
and the maximum (simulated) follow-up time was set to 5 years.

3.1.2 Specifying λ1(t |X) and h1(t |X)
If we instead choose to specify both the subdistribution and cause-specific hazards for event 1, the 
cause-specific hazard for cause 2 can be derived by re-arranging equation (1) as

h2(t |X) = λ1(t |X) − h1(t |X) −
d
dt

log
λ1(t |X)
h1(t |X)

􏼚 􏼛

. (4) 

While a Gompertz baseline hazard could again be specified for λ1(t |X), it is important to specify 
h1(t |X) such that h1(t |X) = λ1(t |X) at t = 0. From a simulator’s point of view, it means paying 
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(a)

(b)

(c)

Figure 1. True stacked cumulative incidence functions (panel a) and cause-specific hazards (panel b) conditional on 
X = 1, and the subdistribution hazard ratios (panel c) for both causes, under DGM described in Section 3.1.1. This 
DGM assumes a Fine–Gray model for cause 1 with Gompertz baseline subdistribution hazard, and cause-specific 
Cox model for cause 2 with a Weibull baseline hazard.
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attention to the fact that due to the form of the reduction factor (a time-dependent weight), pro
portionality generally cannot hold for both λ1(t |X) and h1(t |X) simultaneously. If the Fine–Gray 
model holds for λ1(t |X), the cause-specific hazard ratio h1(t |X = 1)/h1(t |X = 0) should usually 
be time-dependent.

An exception to the above is found in the work of Saadati et al. (2018). There, a DGM is pre
sented where h2(t |X) is chosen such that proportionality holds on both the subdistribution and 
cause-specific hazard scale for cause 1. The chosen h2(t |X) is based on setting the reduction factor 
to 1 for all covariate patterns and timepoints, which also implies that the covariate effects on the 
subdistribution and cause-specific hazard for event 1 need to be equal to each other.

Similarly to equation (2), the implied h2(t |X) when specifying λ1(t |X) and h1(t |X) may also 
become negative. To understand an instance of where this can occur, note that we can write the 
all-cause cumulative hazard as a function of λ1(t |X) and h1(t |X) using equation (1), as

− log {S(t |X)} =
λ1(t |X) exp { −Λ1(t |X)}

h1(t |X)
.

As an example, we can use the same Gompertz parameterization for λ1(t |X) as in the previous sub
section, namely {κ1, ν1, β1} = { − 2, 0.5, 0.5}. Suppose now we also decide to use a Gompertz base
line hazard for h1(t |X), using the same parameterization (i.e. base rate also equal to ν1 and β1 = γ1, 
ensuring λ1(t |X) = h1(t |X) at t = 0), but instead setting the shape parameter to 2 (exponentially 
increasing). By solving − log {S(t |X)} − H1(t |X) = 0, one can find the timepoint at which H1(t |X) 
starts to exceed the all-cause cumulative hazard. Prior to this timepoint, H2(t |X) will be forced to 
decrease in order to maintain − log {S(t |X)} = H1(t |X) + H2(t |X), implying negative h2(t |X). 
Note also that this is not the fault of the Gompertz distribution: it is perfectly possible to simulate 
competing risks data with baseline cause-specific Gompertz hazards.

From a simulator’s point of view, a DGM based on directly specified λ1(t |X) and h1(t |X) is ra
ther tedious to implement given (a) the restriction that λ1(t |X) = h1(t |X) at t = 0 for all X, (b) the 
(generally) time-dependent nature of the cause-specific hazard ratio for event 1. Even when β1 = γ1 
(same covariate effects on cause-specific and subdistribution hazard of cause 1), which is unlikely 
to be the case in practice unless there are relatively few cause 2 failures, specifying an adequate 
h1(t |X) is not very flexible. As part of work on simulating proportional subdistribution hazard 
data with time-varying effects, Haller and Ulm (2014) provide an example of simulating from a 
DGM based on specifying both h1(t |X) and λ1(t |X). There, h1(t |X) is chosen to be time constant, 
with rate equal to λ1(t |X) at t = 0.

3.1.3 Specifying λ1(t |X) and a model for the all-cause hazard
The reduction factor could also form the basis for a DGM if a model is specified for the all-cause 
hazard 

􏽐K
k=1 Hk(t |X) = − log {S(t |X)}, together with the Fine–Gray model for λ1(t |X). One can 

derive the implied h1(t |X) from equation (1), and subtract it from the all-cause hazard to obtain 
h2(t |X). Proportional hazards on the all-cause scale however typically implies that the 
cause-specific hazards will be nonproportional. Note that this DGM requires that − log {S(t |X)} > 
Λ1(t |X) at all timepoints and for all X. That is, that the all-cause cumulative hazard is always 
greater than the cumulative subdistribution hazard of event 1, otherwise, the implied 
cause-specific hazard for cause 2 is forced to be negative. When simulating from this DGM, this 
could for example occur if the specified covariate effects differ substantially between the subdis
tribution hazard model for cause 1 and the all-cause model (e.g. pushing Λ1(t |X) above 
− log {S(t |X)} for X = 1). Nevertheless, as long as precautions are taken when specifying 
− log {S(t |X)}, this DGM again represents a valid way to specify f (T, D |X) such that proportional 
subdistribution hazards hold for cause 1. To the best of our knowledge, this mechanism has not 
been used in articles simulating proportional subdistribution hazards data.

3.2 Squeezing
Instead of specifying the various hazard functions, we can also work with the cumulative incidence 
functions directly. Recall that the Fine–Gray model for cause 1 can be expressed as

1 − F1(t |X) = {1 − F10(t)}exp (β1X).
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The idea is now to specify F10(t) directly. Since Fk(∞) = P(D = k) < 1, we have to first pick some 
proper cumulative distribution F̃10(t) (e.g. exponential or Weibull CDF) with limt→∞F̃10(t) = 1 
and scale it down by a factor 0 < p < 1 (since p = 0 or p = 1 would imply no competing risks). 
This leaves

1 − F1(t |X) = [1 − p{F̃10(t)}]exp (β1X).

Note that limt→∞F10(t) = p, and p1(x) = P(D = 1 |X) = 1 − (1 − p)exp (β1X). The probability of ex
periencing cause 2, therefore, needs to be ‘squeezed’ into the remaining probability space 
p2(x) = P(D = 2 |X) = 1 − P(D = 1 |X) = (1 − p)exp (β1X). Since p2(x) is determined by p1(x), it is 
guaranteed that p1(x) + p2(x) = 1. The second cumulative incidence function takes the form

P(T ≤ t, D = 2 |X) = P(T ≤ t |D = 2, X)P(D = 2 |X), 

where P(T ≤ t |D = 2, X) can be chosen to be any standard CDF, which is then scaled down by 
P(D = 2 |X). When simulating using this DGM, it is convenient to first generate the competing 
event indicator, and thereafter draw event times conditional on this indicator e.g. for event 1, 
drawing from P(T ≤ t |D = 1, X). For more details, see section 5.3.6 of Beyersmann et al. 
(2012). This DGM is arguably the most commonly used approach to simulate proportional sub
distribution hazard data, as it ensures the TFP remains below or equal to 1. Multiple simulation 
studies, along with the original article proposing the Fine–Gray model, have simulated data in this 
way (Austin et al., 2021; Bellach et al., 2019; Fine & Gray, 1999; Saadati et al., 2018).

To illustrate this mechanism, we use Weibull-type distribution functions and set

F̃10(t) = 1 − exp ( −b1ta1 ),

P(T ≤ t |D = 2, X) = 1 − exp { −b2ta2 exp (β∗2X)}, 

with {a1, b1, β1, p} = {1.25, 1, 0.5, 0.2} and {a2, b2, β∗2} = {1.5, 1, 0.5}. β∗2 is denoted as such since 
it is not a subdistribution log hazard ratio, but instead denotes the effect of X on 
P(T ≤ t |D = 2, X). Figure 2 shows the baseline hazards and hazard ratios (X = 1 relative to 
X = 0) over time for the cause-specific and subdistribution hazards of both events. For this 
DGM, these functions are arguably more interesting to show, since they are only implicitly speci
fied e.g. h1(t |X) is obtained by dividing dF1(t |X)/dt by 1 − F1(t |X) − F2(t |X). Note that in pan
els b and d (and also in Figure 1c), no logarithmic transformation was applied to the y-axis (as 
would normally be the case for hazard ratio plots) due to the cause-specific and subdistribution 
hazard ratios for cause 2 going to zero as t→∞.

This DGM provides a clear picture on why one may choose to avoid Fine–Gray models for more 
than one cause. As other authors have similarly noted (Beyersmann et al., 2012), a Fine–Gray 
model being specified for cause 1 effectively constrains the remaining probability space available 
to cause 2 to a maximum of 1 − P(D = 1 |X). Equivalently, this is a constraint on 
Λ2(t |X) = − log {1 − F2(t |X)}, the cumulative subdistribution hazard for cause 2 conditional on 
X. In the case of a binary X, this translates to the coefficient of a Fine–Gray model for the compet
ing cause needing to be determined by the Fine–Gray model for cause 1. Explictly, we can express 
the cumulative subdistribution hazard ratio for cause 2 as t→∞ for this DGM as

lim
t→∞

Λ2(t |X = 1)
Λ2(t |X = 0)

=
− log {1 − P(D = 2 |X = 1)}
− log {1 − P(D = 2 |X = 0)}

,

=
log {P(D = 1 |X = 1)}
log {P(D = 1 |X = 0)}

,

=
log {1 − (1 − p)exp (β1)}

log (p)
, 

by using P(D = 2 |X) = 1 − exp { −limt→∞Λ2(t |X)} and P(D = 2 |X) = 1 − P(D = 1 |X). 
Therefore, the cumulative subdistribution hazard ratio for cause 2 as t→∞ should be completely 
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determined by β1 and p. Since running a Fine–Gray model for the second cause does not account 
for this restriction, it is typically misspecified, leading to issues such as the TFP exceeding 1. As 
shown in Figure 2, the extent of this misspecification can be alarming: the true subdistribution haz
ard ratio for the competing cause is severely time-dependent, for which the time-averaged subdis
tribution hazard ratio (see Grambauer et al., 2010) obtained from a Fine–Gray model is perhaps a 
suboptimal summary.

3.3 Two Fine–Gray models
The previous subsection may suggest that it is impossible for proportional subdistribution hazards 
to hold for more than one competing event. In fact, if we choose to also directly specify the cumu
lative incidence for cause 2 in the same style as in the ‘squeezing’ mechanism (instead of having it 
determined by cause 1), we can achieve proportional subdistribution hazards for both events. 
Suppose we have

F1(t |X) = 1 − [1 − p10{F̃10(t)}]exp (β1X),

F2(t |X) = 1 − [1 − p20{F̃20(t)}]exp (β2X).

(a) (b)

(c) (d)

Figure 2. Baseline hazards (panels a and c) and hazard ratios X = 1 relative to X = 0 (panels b and d) over time for the 
cause-specific and subdistribution hazards of both events, based on ‘squeezing’ DGM.
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If we let P(D = k |X) = 1 − (1 − pk0)exp (βkX) = pk(x), then we can write that as t→∞, 
TFP(x) = p1(x) + p2(x). To determine the event indicator when simulating, we would draw 
u ∼ U(0, 1), and set

D = 1, if u ≤ p1(x),
2, if p1(x) < u ≤ p2(x).

􏼚

The event times can then be drawn as in the preceding subsection, by inverting P(T ≤ t |D = k, X). 
Those with u > p1(x) + p2(x) are technically considered ‘cured’, that is, never at risk of any of the 
competing events. To illustrate this DGM, we set

F̃10(t) = 1 − exp ( −b1ta1 ),

F̃20(t) = 1 − exp ( −b2ta2 ), 

with {a1, b1, β1, p10} = {0.75, 1, 0.5, 0.25} and {a2, b2, β2, p20} = {0.75, 1, 0.5, 0.5}. Figure 3
shows the baseline cumulative incidence functions, and those conditional on X = 1. The chosen 
baseline cumulative incidence functions and subdistribution hazard ratios result in the TFP ex
ceeding 1 from t ≈ 3 when X = 1. While this mechanism can be flexible when baseline hazard rates 
are small and covariate effects are modest, it by design cannot guarantee a TFP ≤ 1 for any time
point. Indeed, if X is not binary, and instead continuous and unbounded, the TFP is guaranteed to 
exceed 1 (though for small t, X will need to be very extreme for this to occur) (Austin et al., 2021).

Two other useful implementations of (variants of) this DGM are found in the simulations of 
Mao and Lin (2017) and Mozumder et al. (2018)—both investigating the performance of different 
approaches (semiparametric and flexible parametric, respectively) for direct modelling of the cu
mulative incidence functions. Mao and Lin directly specify Gompertz cumulative subdistribution 
hazards Λk(t |X) for both events, and thereafter invert P(T ≤ t |D = k, X) analogously using 
P(T ≤ t, D = k |X) = 1 − exp { −Λk(t |X)} and its limit as t→∞. Mozumbder et al. specify mix
ture Weibull baseline subdistribution hazards for both events, and then derive the implied 
cause-specific hazards using the reduction factor, and use these for simulating.

An important point is that both of the above approaches specify a maximum follow-up time in 
their simulations. Indeed, as pointed out by Latouche et al. (2013), ‘it is possible that such models 
may hold over restricted time ranges, which has practical implications for studies with limited lon
gitudinal follow-up’, with ‘such models’ referring to multiple proportional subdistribution hazard 
models. Note also that specifying a maximum follow-up time τ means that the 1 − F1(τ |X) − 
F2(τ |X) proportion of individuals that did not experience the event by τ are simply considered 
as censored at τ.

4 Discussion
In this work, we have outlined various ways of specifying a joint density f (T, D |X) in which a 
Fine–Gray model for cause 1 is correctly specified. The goal was to outline the possible assump
tions that can be made regarding the (cumulative incidence of) cause 2, given that a Fine–Gray 
model is correctly specified for cause 1. From a simulator’s perspective, all DGMs are fundamen
tally aiming to do the same thing, which is to fill up the probability space leftover from the assumed 
Fine–Gray model for cause 1, i.e. 1 − F1(t |X). The ‘squeezing’ DGM does this in the most explicit 
way, by making sure cause 2 fills up all of the remaining space, in turn ensuring that the TFP re
mains below or equal to 1 for all X and at all timepoints. This makes it the approach with the few
est restrictions when simulating data for which proportional subdistribution hazards holds for one 
cause only. Using the reduction factor in contrast can be quite inflexible, possibly producing nega
tive cause-specific hazard values without great care in choices of parameter values and distribu
tions. Note also that the described DGMs can be readily adapted in order to simulate under 
link functions other than the complementary log-log, discussed for example by Gerds et al. 
(2012). More generally, there is no DGM for which proportional subdistribution hazards holds 
simultaneously for both causes, unless one assumes finite follow-up and a bounded covariate 
space.
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Suppose that we have a dataset where proportional subdistribution hazards perfectly hold for 
both causes up to some maximum follow-up time, e.g. a simulated dataset, for which we know 
the DGM. Here, fitting a Fine–Gray model for each cause in turn (i.e. using the exact models 
the data were generated from) can still lead to the TFP exceeding 1. This can occur more generally 
in finite samples, since the Fine–Gray models for each cause are estimated separately. As a result, 
alternative approaches have been developed (based on the complete data likelihood) to facilitate 
simultaneous modelling of all cumulative incidence functions, while incorporating this TFP con
straint (Mao & Lin, 2017; Shi et al., 2013). The parametric approach suggested by Shi et al. (2013)
actually does so by explicitly incorporating the ‘squeezing’ of the second cause (i.e. that covariates 
effects on cause 2 depend on the asymptote of the cumulative incidence function for cause 1) into 
the likelihood. Note also that modelling the cause-specific hazards and combining these to obtain 
predicted cumulative incidence functions ensures that the TFP remains below 1 for any timepoint 
and covariate combination (Austin et al., 2021). The cause-specific approach also extends natur
ally (i.e. without TFP issues or tedious algebra) to settings with more than two competing events.

In applied settings, proportionality assumptions for either event on any of cause-specific and 
subdistribution hazard scales, such as those made in the outlined DGMs, will never hold exactly. 
Using alloSCT data, Gerds et al. (2012) compared the performance of cause-specific hazard and 
Fine–Gray models (as well as other transformation models) for predicting competing events re
lapse and nonrelapse mortality. Both predictive accuracy (based on cross-validated Brier score) 
and individual predictions were similar for both approaches. Wolbers et al. (2009) reported 
that the cause-specific and Fine–Gray approaches showed comparable calibration when predicting 
coronary heart disease, though they did not consider calibration of the competing event. 
Kantidakis et al. (2023) also reported similar predictive performance of the cause-specific and 
Fine–Gray approaches when applied on a dataset of patients with extremity soft-tissue sarcoma. 
This was as part of a broader comparison with machine learning techniques, with the goal of pre
dicting competing events disease progression and death.

One explanation for this comparable performance is that both models make use of their non
parametric baseline hazard to compensate, to some extent, for misspecified (i.e. nonproportional) 
covariate effects—allowing them to still predict the cumulative incidence functions fairly accurate
ly (noted in Shi et al. (2013) for Fine–Gray models). Differences in performance may also be 

(a) (b)

Figure 3. Stacked cumulative incidence functions conditional on X = 0 (baseline, panel a) and those conditional on 
X = 1 (panel b), for a DGM in which proportional subdistribution hazards can hold for both causes.
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modest in settings with a shorter follow-up period or when there is heavy censoring: the time- 
dependent weight relating the cause-specific and subdistribution hazards (the reduction factor) 
is less influential earlier in time. Nevertheless, there are situations in which one would expect (mul
tiple) Fine–Gray models to underperform with respect to cause-specific hazard approaches. First, 
when the estimated TFP exceeds 1 in a nonnegligible proportion of patients, as in the example by 
Austin et al. (2021), the predictions for one or more of the competing events must by definition be 
partly miscalibrated (due to risk overestimation). Second, when the true cumulative incidence 
curves for an event (e.g. relapse probabilities for two conditioning regimens) cross each other, 
the predicted curves by the Fine–Gray model will not be allowed to cross. Poythress et al. 
(2020) therefore suggest to compare predicted curves to their nonparametric counterparts as a 
possible diagnostic, and note that cause-specific hazards models are much more suited to capturing 
more complex cumulative incidence function shapes. For example, the cause-specific hazards 
could be modelled using flexible parametric approaches, which naturally accommodate time- 
varying effects (Hinchliffe & Lambert, 2013; Kipourou et al., 2019).

In conclusion, the described DGMs outline the variety of ways in which proportional subdistri
bution hazards could hold for at least one of two event types. In terms of cumulative incidence 
prediction for both causes, we argue that cause-specific hazard models should be preferred over 
multiple Fine–Gray models, as they (a) by design ensure that the TFP does not exceed 1, (b) are 
able to capture complex shapes for the cumulative incidence functions (although in the 
Fine–Gray context, one could technically include time by covariate interactions), and (c) addition
ally provide inference on the cause-specific hazards, which are the ‘natural building blocks for 
competing risks modelling’ (Saadati et al., 2018). The {riskRegression} R package in par
ticular provides useful functions for developing and validating prediction models based on 
cause-specific hazards (Ozenne et al., 2017). While using a Fine–Gray model for one cause only 
may still be defendable (e.g. for prediction purposes, when other causes are truly a nuisance), it 
does go against the holistic approach to competing risks analyses described in the introduction, 
where all causes should ideally be studied together. Cause-specific hazard models, which are often 
misunderstood to be less suitable for prediction compared with Fine–Gray models (see e.g. 
D’Amico et al., 2018), should perhaps also be the preferred approach also in settings where 
predicting a single cause is of interest. When the main goal is simultaneous inference on the cumu
lative incidence functions, the proposed semiparametric approach by Mao and Lin (2017) is a 
promising alternative to multiple Fine–Gray models, as it (a) provides more efficient inference, 
(b) allows the use of different link functions (e.g. accommodates nonproportional hazards, and 
allows odds ratio interpretation of parameters) for different events, (c) does not need to model 
the censoring distribution. For inference at specific timepoints, one may also consider to specify 
models using pseudovalues as the outcome variable (Klein & Andersen, 2005).

Conflict of interest: None declared.

Data availability
The R code to reproduce the figures for the described DGMs is available at https://github.com/ 
survival-lumc/FineGrayDGM.
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