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Summary 

The ability to predict the PK profile of drugs in development remains a 
challenging process with a very poor success rate1. Preclinical studies are an 
important part of the drug discovery process, which aim to provide information 
regarding the efficacy and safety of the drug2. To this end, a comprehensive 
understanding of the ADME and PK profile is essential. To study ADME 
processes, ex vivo preclinical models can be regarded as the bridge between in 
vitro and in vivo models which is discussed in Part I of this thesis. In chapter 2 
we provided an overview of the experimental predictive ex vivo models available 
to study drug ADME processes as well as DDI, in health and disease. The use of 
normothermic machine perfusion facilitates to study organ function under 
dynamic and as close as possible to the in vivo setting. The intact morphological 
structure, application of physiological blood flow rates and presence of intact 
elimination pathways are important characteristics in the field of pharmacology. 
These aspects, which cannot be adequately simulated in simplified in vitro 
models, provide valuable insights into substrate affinity for transporters, DDI 
and elimination routes. The objective of this thesis was to explore the 
applicability of pressure driven normothermic organ perfusion to study 
pharmacological processes in liver, intestine and kidney. In the different 
chapters we have shown the use of liver perfusion and the multi-organ model 
to characterize pharmacokinetic processes like DDI, endogenous substrate 
handling, pre-systemic intestinal and hepatic metabolism and excretion 
profiles.  
 
In part II, we studied the applicability of normothermic machine perfusion of 
the liver to study drug pharmacokinetics and endogenous substrate handling. 
As a first step, in chapter 3, we used the porcine NMP model to investigate 
whether the perfusion model is a suitable platform to mimic clinical observed 
OATP mediated DDI3,4. We have demonstrated that NMP of porcine livers is a 
potential novel and reliable model to study OATP-mediated DDI and we showed 
its effect on hepatic clearance, biliary excretion and perfusate (metabolite) 
profile of statins. Overall, the rank order of DDI magnitude indicated in our 
experiments was in good agreement with clinical data. The lowest DDI for 
pitavastatin (AUC ratio 2.6) and the highest for atorvastatin (AUC ratio 7.2), 
indicating the potential importance of this new ex vivo model in early drug 
discovery.  
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Translation of preclinical findings using animal derived tissue like the porcine 
liver model to clinical practice remains challenging due to, among others, 
species differences in transporter expression5,6. On top of this, liver disease in 
humans leading to cirrhosis can affect liver morphology and transporter 
expression thereby affecting drug PK profiles. However, with the currently 
available preclinical and clinical models, it continues to be difficult to study the 
effect of these pathological changes on drug PK. In chapter 4 we showed for 
the first time the use of explanted human diseased livers as a model to assess 
the effect of liver cirrhosis on drug PK by measuring hepatic extraction, biliary 
clearance, DDI transporter function using 4 model drugs. We successfully 
perfused 7 cirrhotic livers and 4 non-cirrhotic livers for a period of 360 min, 
maintaining liver viability and functionality. Hepatic clearance of rosuvastatin 
and digoxin showed to be the most affected by cirrhosis with an increase in 
Cmax of 11.5 and 2.9 times, respectively, compared to non-cirrhotic livers. No 
major differences were observed for metformin and furosemide. Interaction of 
rosuvastatin or digoxin with perpetrator drugs were more pronounced in non-
cirrhotic livers (AUC ratio of 5.6 and 8.1 respectively) compared to cirrhotic 
livers (AUC ratio of 1.4 and 2.2 respectively). Studying drug pharmacokinetics 
using explanted human livers can serve as a basis to explore the differences in 
hepatic handling of drugs for patients with different types of hepatic 
impairment.  
 
An advantage of the perfusion model is to determine specific functions of the 
whole organ such as the hepatic first pass effect and biliary excretion in an 
isolated environment in the absence of other systemic effects. However, the 
liver is a central organ in the human body and is in close connection to the 
intestines linked by the portal blood flow receiving nutrients, bile acids and 
hormones which activate or inhibit certain pathways7-9. Bile acids regulate their 
own homeostasis by providing negative feedback on bile acid biosynthesis. Bile 
acids inhibit CYP27A1, CYP7A1 and CYP8B1 by activating FXR, which upon 
activation also prevents toxic intracellular accumulation of bile acids by 
inhibiting bile acid uptake and stimulating bile acid export10,11. The currently 
used NMP protocols, which are widely applied in clinical as well as research 
settings, fall short of mimicking the natural functioning of the liver. This 
limitation arises from the absence of a recirculating bile acid pool as they rely 
solely on the infusion of taurocholic acid. This places a substantial burden on 
the liver during NMP as it is forced to engage in the de novo synthesis without 
the support of endogenous bile acids. In chapter 5, we addressed this gap and 



Summary, future perspectives and conclusions 

185 

aimed to characterize the de novo bile acid synthesis by profiling the biliary bile 
acid excretion, cholesterol homeostasis and transporter expression during ex 
vivo liver NMP. We showed that in porcine and human perfused livers, bile acid 
synthesis rates were above average reported values in vivo and decreased 
cholesterol perfusate levels were observed. Additionally, a decreased 
expression of bile acid synthesis related genes, increased gene expression of 
cholesterol metabolism related genes and a decreased expression in bile acid-
dependent uptake and efflux transporters was observed after 360 min of 
human and porcine liver perfusion. Replacing taurocholate infusion with a more 
representative bile acid pool for the enterohepatic circulation has yielded 
promising results. The infusion of a bile acid mixture containing (un)conjugated 
bile acids showed a decreased release of hepatic injury markers and the 
maintenance of stable cholesterol levels in the perfusate. This approach has 
also shown that the infusion of (un)conjugated bile acids enhanced liver 
function pointing towards potential advancements in liver preservation and 
transplantation techniques.  
 
In Part III, we studied PK processes through the perfusion of en-bloc porcine ex 
vivo abdominal organs. Real time characterization of the first-pass effect of 
orally administered drugs consisting of local intestinal absorption and 
metabolism, portal vein transport and hepatobiliary processes remains 
challenging12. In chapter 6, we showed the development of a porcine ex vivo 
perfusion model consisting of multiple abdominal organs and demonstrated its 
capabilities and potential use in studying ADME processes. Using this model, we 
were able to characterize pre-systemic extraction of midazolam by measuring 
the intestinal (EG of 0.22) as well as hepatic extraction (EH 0.65). As a result, oral 
bioavailability showed to be 0.27±0.05 which is in line with pig in vivo data. By 
employing this approach, valuable insights can be generated into the 
absorption and metabolism of new drugs, thereby facilitating the development 
and optimization of drug candidates for human use. 

Future perspectives 

NMP holds major potential for the field of pharmacology and drug 
development. Besides offering the opportunity to enhance the mechanistic 
understanding of ADME and PK processes of known and marketed drugs, it 
may also serve a platform to study the PK and efficacy of novel types of drugs. 
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The close to physiology representation and ability to control experimental 
settings is a hugh asset over conventional preclinical models. However, can ex 
vivo models, particularly normothermic machine perfusion, provide a better 
understanding of DDI? In this thesis, we showed the development and 
application of novel perfusion models like the human explanted liver model and 
the multi-organ perfusion model. How can multi-organ perfusion models 
enhance our understanding of drug pharmacokinetics? And the future potential of 
explanted human diseased organs for ex vivo perfusion research will be 
discussed. Finally, the key question remains; How do ex vivo models translate to 
in vivo PK profiles?  

Better understanding of DDI through ex vivo perfusion models? 

In chapter 3 and 4 of this thesis, the applicability to study DDI in perfused 
porcine and human livers was studied. The FDA guidance for industry, for in 
vitro and in vivo drug interaction studies, states that it is important to determine 
if a new drug is a substrate for Pgp, BCRP, OATP1B1/1B3, MATE and/or OCT2 
since these transporters interact with drugs in clinical use13,14. In chapter 3, we 
showed that it was possible to mimic DDI at the transporter level and showed 
that the rank-order of DDI between statins was in good agreement with clinical 
data4,15. The porcine liver model showed to be a suitable platform to study 
transporter mediated hepatic uptake and/or transporter mediated biliary 
excretion. This is particularly valuable for drugs in development that are 
suspected to have the potential to induce or inhibit transporters or face other 
potential transporter mediated challenges. To illustrate, compound X, a drug in 
development, showed non-linear kinetics upon increasing dose levels in a 
phase I study. The underlying mechanism was suspected to be Pgp mediated 
saturation of biliary excretion. This was evaluated in our normothermic 
perfusion model using pig livers (Figure 7.1). Upon a step wise 3-fold increasing 
dose levels (0.56 mg, 1.67 mg, 5.0 mg, and 15.0 mg), we demonstrated that the 
AUC increased 3.3, 3.9, and 7.1 times, respectively (Figure 7.1A). This non-
linearity effect was observed at dose levels >1.67 mg of compound X. 
Additionally, an increase in Tmax from 6 to 15 min was observed in this study, 
also pointing towards decreased excretion rate at higher dose levels. The 
excretion of compound X into the bile decreased upon increasing the dose 
level from 0.56 mg (26% of dose excreted into bile) to 15.0 mg (15% of dose 
excreted into bile) (Figure 7.1B). Additionally, compound X showed to 
accumulate in the liver upon higher dose levels (Figure 7.1C). These results 
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indicated saturation of biliary excretion of compound X at dose levels >1.67 mg, 
which might be caused by transporter mediated saturation of biliary excretion.  
 
 
 
 
 
 
 
 
 
Figure 7.1 - Studying increasing dose levels to determine non-linear kinetics in the ex vivo porcine 
liver perfusion model. Increasing dose levels of 0.56 mg, 1.67 mg, 5.00 mg and 15.00 mg in (A) 
perfusate, (B) Biliary excretion of compound X upon increasing dose levels and (C) intrahepatic 
accumulation of compound X in biopsies taken at the end of each dosing.  
 
 
To confirm Pgp mediated biliary efflux of compound X, a DDI experiment was 
designed like in chapter 3 was performed of this thesis. The Pgp inhibitor 
quinidine was applied as perpetrator drug and upon co-infusion with 
compound X a potential DDI was simulated (Figure 7.2A-C). Upon co-
administration of Pgp inhibitor quinidine (22.4 mg), the plasma AUC increased 
1.37-fold (Figure 7.2A) compared to the PK profile of compound X alone. The 
increased plasma AUC can be explained by diminished biliary excretion of 
compound X in the presence of Pgp inhibitor quinidine, resulting in 44% 
decrease in biliary excretion (AUC ratio 0.56) (Figure 7.2B). These results 
suggest that Pgp is actively involved as a biliary efflux transporter for clearance 
of compound X upon hepatic uptake. The results were also in line with digoxin, 
which was used as a positive control and known Pgp substrate (data not 
shown). After assessing Pgp involvement, in a follow up study also the 
OATP1B1/1B3 involvement was studied as OATP1B1/1B3 was suspected to be 
the main hepatic uptake transporter. In a separate study, this was studied by 
applying cyclosporin as inhibitor for OATP1B/1B3 (Figure 7.2D). Upon co-
administration of cyclosporin A, the plasma AUC increased 1.27 times, 
demonstrating a slight inhibition of OATP-mediated hepatic uptake of 
compound X. To give more insight into OATP1B/1B3  involvement, bilirubin, the 
endogenous biomarker for OATP1B1/1B3 function was measured in perfusate 
(Figure 7.2G-H). The results illustrate that following each administration of 
compound X, there was a noticeable increase in bilirubin levels, indicating 
competition for hepatic uptake of bilirubin through the OATP transporter. 
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Figure 7.2 - Determination of Pgp and OATP involvement with the use of inhibitor dosing using the 
ex vivo porcine liver perfusion model. (A) perfusate (B) biliary excretion and (C) intrahepatic 
accumulation of compound X (dosed 1.67 mg) in the absence and presence of P-gp inhibitor 
quinidine dosed at 22.4 mg. Studying OATP involvement in (D) perfusate of compound X (dosed 
1.67 mg) in the absence and presence of OATP inhibitor Cyclosporin A (22.4 mg). Bilirubin in 
perfusate was assessed as endogenous biomarker for OATP in (E) studies with infusion of 0.56 – 
15.00 mg and (F) 10.3-41.2 mg. 
 
 
Together these data clearly show that the porcine liver perfusion model holds 
great potential to study transporter involvement in a DDI design, which helps 
towards a better understanding of the uptake and excretion of drugs. 
Moreover, the ability to study DDI is crucial because it helps to ensure safe and 
effective medication use, minimizing potential risk and optimizing patient 
outcomes.  
 
During the liver perfusion studies we infused the perpetrator drug, 5 minutes 
prior to the victim drug thereby simulating DDI. This setup has been employed 
in various other isolated liver perfusion studies as well16. However, in vivo, 
following oral administration of a drug, the rate and extent of intestinal 
absorption determines the portal vein concentration which differs between 
drugs. Bioavailability of a drug is therefore also affected by factors as 
dissolution, intestinal transit time and permeability, biotransformation by the 
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intestinal flora and gut wall metabolism17. Consequently, measuring DDI in a 
multi-organ perfusion model approach by dosing both drugs via the duodenum 
would result in an even more physiological representation of the biology. As 
demonstrated in chapter 3, varying perfusate rifampicin levels were observed in 
the condition with atorvastatin, leading to variation in the degree of DDI. The 
intestine thus plays a crucial role in the regulating the portal vein concentration 
and thus regulating the magnitude of hepatic DDI18. 
 
Besides DDI at the transporter level, the interaction can also occur at the 
(metabolizing) enzyme level as drugs can be an inhibitor or an inducer of these 
enzymes13. Rifampicin, for instance, showed to interact with the PK of several 
statins via interaction with drug transporters, while long term rifampicin 
administration (>7 days) results in the induction of the metabolizing CYP3A4 
enzyme, thereby also showing that studying long-term effects can be crucial19. 
Interestingly, the first few reports in literature demonstrated the ability to 
extent normothermic perfusion times which offer a promising avenue to 
investigate drug induced CYP450 modulation over time20-22. Bridging the field of 
transplantation and pharmacology highlights the importance of long-term liver 
perfusion as a valuable approach to study CYP450 modulation. To take it one 
step further, several publications now report the possibility to perfuse split 
livers21,23-25 which is an interesting and safe approach for studying drug induced 
CYP450 enzyme expression. Splitting the liver into two parts enables exposure 
of one half to the drug while the other half serves as a control. The use of for 
instance the ‘Basel cocktail’ containing specific substrates for: CYP1A2 (caffeine), 
CYP2B6 (Efavirenz), CYP2C9 (Flurbiprofen), CYP2C19 (omeprazole), CYP2D6 
(metoprolol) and CYP3A4 (midazolam) can be applied to determine effects on 
the PK of these certain compounds26.  
 
Next to the potential that drugs can modulate drug metabolizing enzymes, 
some drugs have the potential to modulate cytokine release and induce an 
inflammatory environment which subsequently can suppress of elevate CYP450 
enzymes which is known as a drug-biologic interaction. These type of drugs are 
commonly used for the treatment of cancer as well as inflammatory and 
immunologic diseases indicating a broad therapeutic range and use27. Drug-
biological interactions are currently being studied in primary hepatocyte 
cultures, which are treated with different concentrations of cytokines to study 
the effect on CYP450 activity and mRNA/protein expression28-30. To illustrate, 
multiple in vitro studies show effects of IL-6, IL-1β, TNF-α and IFN-y on the 
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expression of different CYP450 enzymes in primary hepatocytes28,31-34. Klein et 
al.35 showed a significant reduction in the formation of the CYP3A4-derived 
atorvastatin metabolite after 48h and 72h incubation upon dosing 10 ng/mL of 
IL-6 in HepaRG cells. Additionally, a significant reduction was shown in the 
CYP3A4 gene expression. The liver perfusion model described in this thesis 
would be an interesting platform to study whether certain biologics modulate 
cytokine levels and subsequently alter CYP450 status and function. However, 
crucial in these studies is the understanding that the cytokine releasing effect of 
the biologic drug comes specifically from the drug itself and is not elicited by 
the perfusion process. Conducting a literature search on cytokine release 
during ex vivo organ perfusion highlighted the complexities inherent in this 
process, revealing that this subject is more challenging than initially anticipated. 
In a study by Gravante et al.36, the researchers studied the potential cytokine 
response to ischemia reperfusion injury in an ex vivo porcine liver perfusion 
model. Significant elevation of IL-6 and IL-8 was observed after 6 hours of 
perfusion. Additionally, Chung et al.37, Weissenbacher et al.38 and Hosgood et 
al.39 also showed release of a subset of cytokines (e.g. IL-6, IL-8, IFN-y) during 
liver and/or kidney perfusion40. In healthy individuals, baseline IL-6, IL-8 and IFN-
y concentrations are around 5, 12 and 50 pg/mL respectively41. IL-6 levels 
reported in perfusion studies are in the range of ng/mL showing a thousand-
fold difference between in vivo conditions and ex vivo perfusion studies36,38,39. To 
put this in perspective, IL-6 levels in the ng/mL range have been reported for 
critically ill patients with severe infections like sepsis42. This indicates ongoing 
cytokine release and inflammatory environment which could also influence the 
CYP450 expression. The use of a hemoadsorption filter has been 
recommended for eliminating cytokines in the treatment of severe 
inflammatory driven medical conditions. Hosgood et al.43 showed that the use 
of a hemoadsorption filter during kidney perfusion resulted in lower and stable 
cytokine levels during 6 hours of perfusion. The addition of the cytosorb filter 
reduced the IL-6 and IL-8 concentration by 87% and 59% respectively43. From a 
pharmacological perspective and for future PK perfusion studies, it would be 
recommended to include an adsorbent membrane to diminish the 
inflammatory environment and thereby not affecting the CYP450 enzyme 
abundance and activity. 
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How can multi-organ perfusion models enhance our understanding of 
drug pharmacokinetics?  

In chapter 6, we showed the possibility to perfuse multiple organs and 
subsequently study the ADME profile of midazolam. The ability to study the gut-
liver axis offers a unique opportunity to unravel the dynamic interplay between 
gut-wall metabolism and hepatic uptake and metabolism. We showed the ability 
to measure pre-systemic intestinal and hepatic metabolism for midazolam, a 
widely applied CYP3A4 substrate model compound. Up to now, no preclinical 
models have been developed which directly give insight into the gut wall 
absorption and metabolism. This is mainly because the intestine is a 
heterogenous organ and therefore difficult to capture all its function into one in 
vitro model44,45. Therefore, PBPK modeling is often needed to generate insight 
into the extent of the fraction escaping first pass gut wall metabolism, the FG. 
Gertz et al.46 did build a PBPK model to predict the FG, using microsomal 
fractions as input data. The authors showed that drugs with a low intestinal 
extraction could in general be well predicted, however the prediction of high 
intestinal extraction drugs was less accurate46. Current assessment of the FG is 
based on plasma concentration time profiles of IV versus oral dosing or 
concentration time profiles after dosing an inhibitor18,46,47. Although the 
abundance of CYP3A4 in the intestine is around 1% of the abundance in liver, 
CYP3A4 substrate drugs as midazolam show extensive intestinal wall 
metabolism48. The lower blood flow in the intestinal mucosa compared to the 
liver blood flow, results in an extended duration of a compounds presence in 
the intestinal tissue and thereby increasing the likelihood of CYP450 mediated 
metabolism in the intestine compared to the liver which underscores the 
difficulty to predict CYP450 mediated metabolism in in vitro models18. The 
utilization of the multi-organ perfusion model can provide helpful insights into 
determination of the FG since it allows the opportunity to collect samples from, 
among others, the portal vein. The ability to take portal vein samples has only 
been described by Paine et al.,47 who studied the intestinal midazolam 
metabolism in patients undergoing liver transplant surgery in the anhepatic 
phase. Interestingly, the researchers demonstrated that after IV dosing, there is 
a higher concentration of the midazolam metabolite 1-OH midazolam in the 
portal vein compared to the systemic circulation. This indicates that there is 
basolateral uptake of midazolam with subsequent midazolam oxidation to 1-
OH midazolam which is transported back to the portal vein. Studies comparing 
IV versus oral dosing, like those exemplified here, represent a future application 
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of the multi-organ model. Such investigations offer valuable insights into the 
precise metabolism of (new) drugs and serve as input for PBPK modeling. 
 
Besides phase I metabolism, the liver and intestine are also involved in phase II 
metabolism e.g. glucuronidation and sulfation49. After CYP450 mediated 
metabolism, compounds can undergo further biotransformation, for instance 
by glucuronidation, whereafter the glucuronidated product can be excreted via 
the biliary system. Interestingly, it is observed in ex vivo fermentation platforms 
that the gut microbiota also can also contribute to metabolism50. An example is 
the metabolism of irinotecan. Irinotecan is a pro-drug and is metabolized by the 
liver to SN-38 and subsequently glucuronidated to SN38-glucuronide and 
eliminated via biliary excretion51. After biliary excretion, the intestinal microbiota 
can deconjugate the SN38-G to SN-38. This is followed by intestinal absorption 
of SN38 to the portal venous blood, whereafter again glucuronidation can 
occur, thereby resulting in a prominent secondary plasma peak. This process 
involving phase I, phase II metabolism, biliary excretion and intestinal 
absorption is extremely difficult to capture in in vitro models as well as via PBPK 
modelling. Nevertheless, its significance is exemplified by Gupta et al.,51 who 
showed that patients with lower rates of hepatic glucuronidation would have 
higher concentrations of biliary SN38, leading to gastrointestinal toxicity. The 
multi-organ perfusion model presented in this thesis holds potential to study 
these dynamic processes to understand the specific role of each organ 
contributing to the metabolism of the drug. To gain even a better 
understanding of organ specific drug metabolism during multi-organ perfusion, 
microdialysis emerges as a powerful tool as it allows for real-time monitoring 
and in-depth insights into the metabolic pathways. Microdialysis sampling is a 
technique often used in the field of neurosciences to study biochemical 
conversions in the extracellular fluid52. The techniques consists of a probe with 
a hollow fiber dialysis membrane which can easily be implanted in a (perfused) 
organ. This allows for real time monitoring of the extracellular fluid and thus 
real-time monitoring of PK processes like phase I and II metabolism53, study 
drug unbound concentrations54 or (blood flow dependent) tissue penetration. 
Until now, the use of microdialysis in organ perfusion has only be described in 
the field of ex vivo lung perfusion. Mazzeo et al.55 described the use of 
microdialysis during ex vivo lung perfusion and reported that microdialysis was 
more effective and specific in studying lung metabolism compared to perfusate 
levels. Continuous sampling from the microdialysis flow in the intestine and 
liver would be beneficial and informative to study the distribution and 
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metabolism profile of drugs with complex ADME processes (e.g. phase I, phase 
II, EHC). Thereby in depth characterization of the metabolic pathway will enable 
better PBPK predictions.  

Use of explanted human diseased organs for ex vivo perfusion research 

The use of human tissues for pharmacological studies is superior over other 
species. In chapter 4, we showed the use of explanted human diseased livers 
for PK research. So far, the utilization of human diseased explanted livers is 
mentioned in a limited number of publications56-58. However, the applicability of 
human diseased livers for ex vivo perfusion research has major potential for 
instance to gain in depth information on disease-specific processes and the 
role in PK and even pharmacodynamic processes. For example, MAFLD is one 
of the most important causes of liver disease worldwide59. Non-alcoholic liver 
disease (NASH) is an advanced form of MAFLD and can potentially progress to 
cirrhosis and hepatocellular carcinoma. NASH is one of the most common 
indications for liver transplant, alongside alcoholic cirrhosis, hepatocellular 
carcinoma, hepatitis C related cirrhosis and cholestatic disease59,60. There are 
currently no therapies available for the treatment of MAFLD, NASH or ALD. 
Nevertheless, notable progress is being made in drug development regarding 
oligonucleotide-based treatments61. Oligonucleotide- based therapeutics are 
currently an emerging class of drugs which include short interfering RNA 
(siRNA) that degrade target mRNA61. So far, only a limited number of 
oligonucleotides have progressed to clinical stages62. The predominant 
challenge thus far has been securing the safe and effective intracellular delivery 
of these compounds in human tissues. A disadvantage of lipid nanoparticle 
delivery is for instance the high concentration needed and inducing a pro-
inflammatory effect63,64. Given the abundance of disease targets in the liver 
which are susceptible to modulation, the liver is an interesting target for 
oligonucleotides therapies61,65. Therefore, ex vivo organ perfusion and especially 
ex vivo perfusion using diseased human livers would be a first step bridging the 
gap between preclinical in vitro and clinical in vivo studies. Utilizing explanted 
diseased human livers with NASH or ALD, uptake and gene modification can be 
assessed by leveraging the disease characteristics. Several oligonucleotides 
have been described which target NASH63,66,67. Linden et al.67 for instance, 
demonstrated in a mice model the use of a conjugated antisense 
oligonucleotide which mediated silencing of the gene Pnpla3 and subsequently 
reduced liver steatosis score and fibrosis67. Exploring the application of these 
type of therapeutics in a liver perfusion model with explanted NASH or MAFLD 
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livers would provide a valuable opportunity to study tissue uptake, potential 
local toxicity effects or immune effects. First reports already describe the use of 
siRNA during ex vivo liver perfusion68-70. Bonaccorsi et al.69 aimed to inhibit an 
apoptosis-associated gene using an siRNA approach in a rat transplant model 
to reduce ischemia reperfusion injury. The siRNA was administered during 
hypothermic machine perfusion (HMP) followed by liver transplantation. While 
the results on apoptosis inhibition by the siRNA remained inconclusive, the 
researchers were able to show hepatic uptake of the siRNA71. Recent studies 
have adapted machine perfusion to demonstrate the possibility to prolong 
organ perfusion duration72-74, with perfusion of human and porcine livers for up 
to 7 days75. Prolonged perfusion would allow to study hepatic uptake of an 
oligonucleotide-based therapeutic and at the same time study changes in RNA 
and protein levels in time. Besides liver perfusion, first studies have also been 
reported with kidney perfusion. Thompson et al.76 demonstrated the delivery of 
antisense oligonucleotide in a human kidney during perfusion and showed to 
block microRNAs function implicated in ischemia reperfusion injury.  
 
Explantation of diseased organs followed by ex vivo organ perfusion for PK 
research is a concept which can be extrapolated to other research fields. The 
application of ex vivo organ perfusion may also find relevance in pediatrics as 
livers and kidneys are explanted due to conditions such as cancer77-79. In 
pediatric research, key research questions involve understanding the ontogeny 
of drugs transporters and drug metabolizing enzymes as well as studying age-
related variations in the pharmacokinetics of specific drug classes in 
children80,81. Ex vivo organ perfusion complemented with PBPK modelling can 
subsequently contribute to the development of age-appropriate dosing 
guidelines. This concept can also be applied for other special population groups 
such as morbidly obese individuals for investigating specific pathophysiological 
changes related to obesity that impact drug metabolism82,83. An illustrative 
example is the study conducted by de Hoogd et al.84 demonstrating reduced 
elimination of morphine glucuronide metabolites (morphine-3-glucuronide and 
morphine-6-glucuornide) in morbidly obese patients in comparison to healthy 
volunteers. Although the primary route of the glucuronide metabolites 
elimination is via renal excretion (80%), there was no difference in kidney 
function between the morbidly obese and healthy subject group. Therefore the 
researchers hypothesized, based on reports on Dubin-Johnson syndrome 
where dysfunctional mutations in the MRP2 gene caused impairment in biliary 
excretion of bilirubin glucuronides, that hepatic transporters in the biliary 
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elimination of morphine glucuronide metabolites plays a significant role in the 
morbidly obese subject group85. To test this hypothesis, ex vivo liver perfusion 
could be conducted if there are morbidly obese patients with an underlying 
liver disease awaiting transplantation86. With this approach, the metabolism and 
excretion as well as transporter abundance can be studied to investigate and 
characterize the underlying mechanism. Besides changes in CYP450 enzymes 
and uridine diphosphate glucuronosyltransferase (UGT) enzyme activity in 
morbidly obese patients affecting drug metabolism82,87, hepatic blood flow can 
also be altered87,88. Hepatic clearance is a result of an interplay between 
CYP450 abundance and activity and hepatic flow. To understand the observed 
differences in midazolam clearance in morbidly obese adults or obese 
adolescents compared to healthy subjects89,90, it would be of great value to 
study the impact of obesity on hepatic flow. Ex vivo perfusion using pressure 
driven perfusion machines is a solution to study the effect of obesity on hepatic 
flow as well as CYP3A4 activity.  

How do ex vivo models translate to in vivo PK profiles? 

Compared to traditional in vitro models, ex vivo (whole organ) models are a 
promising platform and thereby paving the way to apply PBPK modeling in a 
more reliable and accurate way. It is hypothesized that accurate predictions of 
PK profiles would result in better translation of preclinical data to in vivo, which 
is accompanied by a lower attrition rate91-93. In this thesis, multiple ex vivo liver 
perfusions were performed, generating concentration-time profiles of the 
disappearance of the drug from the perfusate and appearance of the drug into 
the bile. The concentration-time profiles give an estimate regarding the hepatic 
elimination rate and percentage biliary clearance. However, interpretation to 
clinical in vivo profiles lack as ‘only’ the hepatic extraction of a drug and the 
biliary clearance can be determined. This is also true for the previously 
published InTESTine system; a platform with ex vivo tissue explants to study 
(regional) intestinal absorption and permeability94,95. As mentioned in the 
introduction of this thesis, the intestines, liver and kidneys are key organs 
involved in ADME processes and together define the PK profile of a drug.  
 
To study the potential of ex vivo platforms to predict the in vivo PK profile of a 
drug, we here combined preclinical ex vivo data from the InTESTine system, 
combined liver-kidney perfusion all integrated by PBPK modeling to predict in 
vivo PK profiles using the drug cocktail rosuvastatin, digoxin, metformin and 
furosemide. First, regional intestinal transport was assessed using the 
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InTESTine system. Figure 7.3 shows the regional transport  Papp values derived 
from the InTESTine system with porcine intestinal tissue.  
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Figure 7.3 - Assessment of the regional intestinal transport of rosuvastatin, digoxin, metformin and 
furosemide using the InTESTine system with porcine intestinal tissue. (A) Schematic representation 
of the InTESTine system where porcine intestinal tissue is mounted in the system creating an apical 
(lumen) and basolateral (portal blood side) compartment. Determination of the regional 
permeability of (B) Rosuvastatin in jejunum (n=1), ileum (n=3), colon (n=2) tissue (C) Digoxin jejunum 
(n=6), ileum (n=3) and colon (n=4) tissue, (E) Metformin jejunum tissue (n=2) and (E) Furosemide 
jejunum (n=1), ileum (n=1) and colon (n=1) tissue. 

 
 
The reported observed fraction absorbed of rosuvastatin, digoxin, metformin 
and furosemide in vivo is 0.50, 0.81, 0.55 and 0.53 respectively95-98. The 
reported range of the InTESTine system showed  Papp values of 0 to ~18 
(x10 6cm/s) translating to a Fa of 0 – 194. Intestinal permeability of rosuvastatin 
was limited in the InTESTine system (mainly due to the fact that it is a strong 
BCRP substrate), with average  Papp value of 0.21±0.09 for more proximal GI 
tract and 0.44±0.07 for distal GI tract, which does not correspond to the 
reported fraction absorbed of 0.5098. Comparable results were found for 
digoxin (average Papp 0.65±0.23, due to high affinity of digoxin for Pgp), and also 
showing higher  Papp values in the distal parts of GI tract (Papp: 2.44±1.69) (Figure 
7.3C). The absorption of metformin and furosemide across the intestinal wall 
showed to be faster with 3.98±0.16 for metformin jejunum and 8.74±6.01, 
4.06±2.41 and 16.67±7.49 in jejunum, ileum and colon respectively for 
furosemide (Figure 7.3D-E).  
 
To assess hepatic and renal clearance and subsequent biliary and renal 
excretion, the dual perfusion of liver+kidney was explored using the LiverAssist 
perfusion device (XVIVO, the Netherlands) (Figure 7.4). In this perfusion model 
the arterial blood supply is splitted to the 1) hepatic artery and 2) the renal 
artery. The liver receives also blood via the portal vein. The simultaneous 
perfusion of ex vivo kidney and liver is a novel and unique approach to 
determine the hepatic and renal clearance and excretion of drugs within one 
experiment99. The drug cocktail was dosed via the portal vein (1.4 mg 
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rosuvastatin, 0.056 mg digoxin, 74.2 mg metformin and 0.77 mg furosemide) 
and samples were taken from the perfusate, bile and urine.  
 
    A 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.4 - Schematic representation of the perfused liver+kidney model using porcine organs and 
the perfusate and excretion profiles of rosuvastatin, digoxin, metformin and furosemide using the 
combined liver+kidney perfusion model. (A) The liver+kidney perfusion model: applied portal 
pressure of 8-11 mmHg and arterial pressure of 75-85 mmHg, with a total circulating volume of 
2.5 L of perfusate. Drug cocktail was dosed to the portal vein of the liver mimicking oral dosing. 
Systemic perfusate profiles of (B) rosuvastatin dosed 1.4 mg, (C) Digoxin dosed 0.056 mg, 
(D) Metformin dosed 74.2 mg and (E) Furosemide dosed 0.77 mg. Urine and biliary elimination of 
(F) Rosuvastatin, (G) Digoxin, (H) Metformin (I) Furosemide. Data represents n=2 mean ± SD. 
 
 
The combined liver+kidney perfusion model showed stable arterial and portal 
flow during 360 min of perfusion with constant bile and urine production (data 
not shown). Figure 7.4 shows the systemic profiles and excretion patterns after 
a single administration of the drug cocktail. Rosuvastatin was rapidly cleared 
from the circulation (Figure 7.4B) and was mainly eliminated via bile (20.2±5.8 
%) and only a minor part was excreted into urine (2.1±1.5%). Digoxin was highly 
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biliary excreted (100%) and only a minor part was eliminated via urine (5.6%). 
Metformin clearance demonstrated slow uptake from the perfusate suggesting 
saturation of the OCT2 and MATE1/2 transporters, however was rapidly 
excreted into urine (120±29%) and to a minor extent via bile (6.5±0.3%). 
Furosemide was mainly excreted into urine (80.3±6.4%) and only a minor part 
in bile (7.7±1.8%). Data is in line with literature showing rosuvastatin and 
digoxin being mainly eliminated via bile and minorly into urine while metformin 
and furosemide are known to be mainly renally excreted100-103. To integrate ex 
vivo data into PBPK modeling, as a first step the concentration-time profiles of 
perfusate and cumulative amounts of bile and urine were fitted (Figure 7.5) to 
the developed liver+kidney PBPK model using R programming (R Studio, version 
4.3.2). This liver+kidney PBPK model presented in Figure 7.6, generating the 
model-specific PK parameters CLbile, CLurine, Kurine and Kbile (Figure 7.6B).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5 - Fitted concentration-time profiles of furosemide. (A) Furosemide mass balance per 
compartment (B) Concentration-time profile of furosemide perfusate perfusion experiment (C) 
cumulative amount of furosemide in bile and (D) Cumulative amount of furosemide in urine. 
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Rosuvastatin Digoxin Metformin Furosemide 
CLbile (mL/min) 654.7 98.5 2.6 24.4 

Kbile (min-1) 0.027 0.052 0.023 0.043 
CLurine (mL/min) 48.8 59.1 61.9 456.3 

Kurine (min-1) 0.13 0.0047 0.017 0.025 

 

Figure 7.6 - Representation of the ex vivo liver+kidney PBPK model and simulated values derived 
from the sub PBPK model. (A) Schematic representation of the ex-vivo liver+kidney PBPK model and 
(B) Simulated pharmacokinetic parameters derived from the fitted ex vivo perfusion data of 
perfusate bile and urine determined in the generated ex vivo liver+kidney PBPK model.  
 
 
Secondly, the PK parameters from the liver+kidney PBPK model (Figure 6A-B) 
together with the Papp data from the InTESTine system were integrated into a 
generic PBPK model using R programming. Figure 7.7 demonstrates the 
predicted concentration time profiles of the arterial blood following oral intake 
of the rosuvastatin, digoxin, metformin and furosemide. The predicted Cmax and 
Tmax of rosuvastatin showed to be within the range of the (lower) observed 
clinical values. Digoxin, displayed a systemic profile with a 7-fold lower Cmax and 
a delay in Tmax (Tmax of 5 hours vs. 1.2 hours in vivo). Predictions for furosemide 
reached a maximum concentration at 0.105 mg/L which is nicely within the 
range of the clinically observed profiles. The Tmax was predicted after 5 hours 
which was compared to clinical in vivo data showing a Tmax of 1.2 hours, slightly 
delayed. In the case of metformin, our predictions showed a Cmax level of 
1.5 mg/L which is a 2-fold overestimation of the average Cmax observed in clinical 
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profiles. Tmax was close to reported in vivo data (Tmax of 4 hours vs 3.35 hours 
in vivo). Both furosemide and metformin showed an underestimation of the 
elimination of the drugs from the circulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.7 - Simulated blood concentration profiles after single oral dose of the drug cocktail. 
Simulation profiles of oral dosing of (A) 10 mg rosuvastatin, (B) 0.5 mg digoxin (C) 500 mg Metformin 
and (D) 40 mg furosemide. The simulation duration was 48 hours. 

 
 
The prediction for Cmax of rosuvastatin showed to be within the range of 
clinically observed data, but on the lower side. The intestinal transport of 
rosuvastatin showed to be relatively low when using porcine intestinal tissue. 
Rosuvastatin is a substrate for the BCRP efflux transporter, limiting the influx 
into while facilitating the efflux out of the cells104. Sjoberg et al.105 reported a  
Papp value of 6.95±1.05 in human jejunum tissue while in porcine jejunum tissue 
a  Papp value of 0.24 was measured. Vaessen et al.44 demonstrated differences in 
abundance of BCRP expression between pig and human. A significant higher 



Chapter 7 

202 

expression of the protein was measured in jejunum tissue of pigs (0.75 pmol 
protein/g tissue) compared to human (0.45 pmol protein/g tissue), 
hypothesizing more efflux of rosuvastatin by BCRP in porcine intestinal tissue 
resulting in a lower permeability. Underestimation of the intestinal absorption 
resulted in a slightly lower Cmax compared to clinical in vivo data106-109. However, 
important to note is the variation observed in clinical studies. Cooper et al.106 
demonstrated a Cmax of 53.5 ng/mL after an oral dose of 80 mg rosuvastatin, 
while Li et al.107 showed a Cmax of 45 ng/mL after an oral dose of 40 mg 
rosuvastatin. These differences highlight the importance of considering and 
understanding the variability in drugs response among individuals. Similar as 
rosuvastatin, the same effect was observed for digoxin regarding intestinal 
transport and regional variability110. Although a fraction absorbed of 80% is 
observed in human, ex vivo tissue models and the Caco-2 model report rather 
low values of intestinal permeability which are not in line with a fraction 
absorbed of 80%94,95,105. Using the ex vivo data, the prediction of Cmax showed to 
be 7 fold lower111-116. The protein expression of OATP2B1 (furosemide) and 
OCT1 (metformin) showed no major difference between intestinal regions44,110 
and the Papp values were in line with literature95,105,117. The predicted Cmax levels 
showed to be close to in vivo observed data for metformin118-122 as well as 
furosemide103,120,123-126. However, the predicted systemic profiles for metformin 
and furosemide showed delayed elimination compared to in vivo profiles with 
CLurine as a factor contributing to the elimination. In a clinical study by Stopfer et 
al.120 human subjects receiving the drug cocktail showed complete elimination 
of furosemide after 8 hours and metformin after 24 hours while in our model 
this process takes approximately 48 hours. This indicates an underestimated 
rate of renal elimination during ex vivo experiments compared to in vivo which 
could be the result of diminished ex vivo kidney function during normothermic 
perfusion. However, there are currently no established parameters for ex vivo 
kidney function. Parameters such as flow, urine output, creatine clearance and 
fractional sodium excretion are commonly investigated127-130. Multiple studies 
demonstrate the creatine clearance (GFR) during ex vivo kidney perfusion. In 
these studies, using slaughterhouse kidneys, GFR values around the 1.0 – 5.0 
mL/min are measured130-132. In contrast, Lødrup et al.133 measured the GFR 
from a single kidney in vivo and showed an average GFR of 33.9±8.9 mL/min 
thus indicating that ex vivo, kidney GFR is diminished compared to in vivo. Inulin 
is often used as a model compound to measure the GFR and Markgraf et al.130 
studied inulin clearance as function assessment test in perfused kidneys 
derived from laboratory pigs and slaughterhouse pigs with different time of 
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warm ischemia (WIT). The researchers demonstrated that none of the 
slaughterhouse derived kidneys were within the limits for consideration of 
‘functional kidneys’ which was determined by the inulin uptake and excretion 
behavior independent of the WIT130. Together, the combination of ex vivo data 
with PBPK modeling provides a first ‘real’ insight into ex vivo kidney function by 
studying the clearance of transporter mediated drugs and subsequent 
translation to in vivo situation. This could aid in the generation of function 
assessment tests or parameters to study kidney function in an ex vivo 
environment which is needed in the field of transplantation.  
 
The ex vivo models are complex models and may better represent physiological 
conditions than purely in vitro data and thereby enhancing the models’ 
predictive capabilities. This is particularly relevant when studying transporter 
mediated processes as transporter mediated processes are typically more 
complicated than that of drug metabolizing enzymes. However, translation of 
the ex vivo data towards in vivo profiles with PBPK modeling has some 
challenges. First, we used a perfusate with at total concentration of 1% albumin 
which is lower compared to the physiological concentrations ranging between 
3.5 - 5.0% albumin134. Many of our kidney perfusion experiments showed the 
inability to produce urine when using a perfusate consisting of red blood cells 
with plasma. Lowering the albumin concentration in the perfusate showed 
urine production by the ex vivo kidneys. Since urine production is essential to 
measure the renal elimination of a compound, we chose to use these sub-
physiological concentrations. Many drugs are however highly bound to plasma 
proteins and changes into plasma protein concentration will therefore affect 
the elimination rate from the perfusate into the organ135. Although ex vivo to in 
vivo extrapolation was performed to adjust for the percentage of albumin in the 
system, it introduces additional uncertainties to the data. Moreover, to better fit 
the experimental data, tissue concentrations are needed which can easily be 
obtained from the ex vivo perfused organ.  
 
Here we present for the first time the use of porcine ex vivo tissue models in 
combination with PBPK modeling, predicting PK profiles which are close to 
clinical observed human profiles. Currently, more abundant data is available 
regarding transporter abundance in intestine, liver and kidney between pig and 
humans44,136,137 which can be used to refine profiles with greater accuracy. The 
use of human tissues in ex vivo models have been described before by our 
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group for intestine94 and liver138, showing the potential for even further 
enhancement of PK prediction in human. 

Conclusion 

In conclusion, in this thesis we aimed to study to pharmacokinetic application of 
pressure driven normothermic organ perfusion. Using a novel pressure driven 
perfusion machine, we endeavored to bridge the fields of transplantation and 
pharmacology. Our studies demonstrated the utilization of NMP to examine 
various drug PK processes such as the hepatic first pass effect, hepatic 
clearance, biliary excretion, transporter function and DDI using porcine and 
human explanted diseased livers. The use of porcine livers was an appropriate 
substitute for human livers to mechanistically study transporter contribution in 
drug uptake, drug excretion and to study DDI. These studies enabled the 
investigation of OATP1B1/1B3 mediated DDI, with results aligning closely with 
clinical data. Moreover, explanted diseased human livers showed to be suitable 
for perfusion research and can serve as a basis to explore the differences in 
hepatic handling of drugs for patients with different types of hepatic 
impairment. Hepatic clearance of rosuvastatin and digoxin showed to be the 
most affected by cirrhosis while no major differences were observed for the 
renally cleared drugs metformin and furosemide. The 3-fold lower portal flow in 
cirrhotic livers showed to diminish the hepatic extraction of rosuvastatin 
showing the importance of portal flow in a preclinical model to determine 
hepatic clearance. Furthermore, optimalisation of the liver perfusion model was 
studied by infusion of a (un)conjugated bile acid pool to replicate physiological 
conditions for a more accurate assessment of hepatic PK processes. This 
approach demonstrated that the infusion of (un)conjugated bile acids alleviated 
the burden of the de novo bile acid synthesis and enhanced liver function 
pointing towards potential advancements in liver preservation and 
transplantation techniques. The possibilities of the pressure driven perfusion 
system are numerous, as we demonstrated the development and application of 
multi-organ perfusion to understand the interplay between the intestine and 
liver by characterization of the first-pass effect and pre-systemic CYP3A4 
metabolism. Use of perfusion showed to be an excellent tool to study drug 
concentrations in blood flows and tissues which are otherwise impossible to 
reach, thereby generating a novel and in depth insights into the ADME profile of 
drugs.  
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