
Pumping new life into preclinical pharmacokinetics: exploring
the pharmacokinetic application of ex vivo organ perfusion
Stevens, L.J.

Citation
Stevens, L. J. (2024, October 29). Pumping new life into preclinical
pharmacokinetics: exploring the pharmacokinetic application of ex vivo organ
perfusion. Retrieved from https://hdl.handle.net/1887/4106882
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4106882
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4106882










General introduction, scope and outline of the investigation 

11 

General introduction 

Drug development process  

The drug development process is a comprehensive and multi-stage procedure 
that involves discovery, compound identification, preclinical testing and clinical 
trials. This is a costly and long process as it takes on average 10-15 years and 
$1-2 billion for each new drug to be approved for clinical use1. It is observed 
that 90% of drug candidates to not make it do the market1-3. A majority of drugs 
in development tend to fail in phase II of phase III due to the inability to predict 
toxicity and efficacy in vivo4,5. The disparate findings during the preclinical phase 
using animal models and human clinical trials typically manifest during late-
stage clinical assessment or during post-market stages3. To illustrate, recently 
the drug fenebrutinib for the treatment of multiple sclerosis resulted in 
elevated levels of hepatic transaminases and elevated bilirubin levels in some 
patients in a phase III clinical trial, suggesting a potential risk for drug-induced 
liver injury6. Besides drug induced toxicity, drug-drug interactions (DDI) are also 
major concerns during the drug development process7,8. DDI can occur when 
patients use multiple drugs which can affect the systemic concentration of the 
drug. This can potentially result in reduced efficacy, severe adverse reactions or 
can even result in toxicity leading to withdrawal from the market7. It is observed 
that compounds which are inhibitors or substrates of hepatic transporters are 
more prone to cause DDI and/or drug induced liver injury, therefore 
assessment of the hepatic first pass effect and biliary excretion of drugs in 
development is of major importance. An example is a phase I study where Mita 
et al.9 demonstrated that a compound showed non-linear kinetics at the 
highest dose levels. This could possibly be the effect of saturation in biliary 
excretion pathway of the compound, as a biphasic plasma profile was observed 
in the lower dose levels, demonstrating enterohepatic circulation of the 
compound, however this was not observed in preclinical models and animal 
studies. Current models that predict biliary excretion often fail due to species 
differences (rodent/dog) or due to differences in transporter expression in in 
vitro assays (e.g. sandwich cultured hepatocytes)10-12. Thus characterization of 
these complex pharmacokinetic (PK) processes request comprehensive, 
complete and dynamic preclinical models which can recapitulate the complexity 
of the human body13,14, which is crucial to enhance the likelihood of successfully 
concluding a clinical trial and obtaining approval for a new drug15. Developing 
physiologically relevant models is not only limited to study the DDI potential of 
newly developed drugs but also to study the outcomes of polypharmacy. 
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Patients and elderly patients in particular, often receive more than one drug at 
the same time as they can suffer from multiple conditions. As a result, the 
uptake or excretion can be mediated by the same transporters and thereby 
interfering which each other’s clearance16-18.  

Drug ADME processes and models involved 

Intestine 

Oral delivery of a drug is the most preferred route of administration in terms of 
costs and medication adherence13. After oral absorption, the gastrointestinal 
tract serves as the first barrier for the entry of drugs into the bloodstream. 
After passive or active (transporter-mediated) absorption, drugs can be 
metabolized by cytochrome P450 (CYP450) enzymes located within the gut-
wall19. These drug transporters and CYP450 enzymes are broadly and 
heterogeneously expressed along the gastrointestinal tract and they can have a 
major impact on the drug absorption into the portal vein20. The intestinal tract 
expresses a broad range of efflux transporters which belong to the ATP-binding 
cassette (ABC) family, using ATP as energy source to efflux drugs and 
endogenous compounds out of cells21,22. Main transporters in the intestine are 
multidrug resistance protein 1 (MDR1), also known as P-glycoprotein (Pgp), 
breast cancer resistance protein (BCRP) and multidrug resistance protein 2 
(MRP2) and they belong to the ABC transporter family and efflux compounds 
from the apical membrane back into the lumen, thereby limiting the absorption 
of substrates for these transporters such as rosuvastatin and digoxin23. 
Additionally, CYP450 drug metabolism by the gut wall, which is known as the 
intestinal extraction (EG), contributes to the first-pass effect and thereby limits 
the oral bioavailability24,25. Midazolam for instance, a CYP3A4 substrate, 
undergoes partial metabolism in the gut wall before reaching the liver24,26,27. 
Multiple intestinal preclinical models have been established to measure the 
absorption from the lumen (apical side) to the portal venous blood (basolateral 
side). The Caco-2 transwell model is often used to study intestinal 
permeability28. However a major drawback of this cell-based model is the 
limited expression of CYP450 enzymes and altered transporter protein 
expression levels compared to human intestinal tissue29. The use of ex vivo 
intestinal tissue models is therefore preferred since the morphological 
structure is intact as well as the presence of uptake and efflux transporters and 
CYP450 enzymes thereby properly reflecting in vivo conditions30. In preclinical 
intestinal models, the intestinal transport is reflected as the apparent 
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permeability (Papp) which represents the apical to basolateral permeability per 
centimeter per second30,31. Subsequently, the Papp can be incorporated in 
physiologically based pharmacokinetic modelling (PBPK) modeling to predict 
the intestinal absorption and clearance32. Current intestinal models are 
predominantly static, while in vivo, the intestinal luminal flow as well as the 
superior mesenteric artery flow affect the absorption and metabolism of 
drugs33,34. This shows the importance of incorporation of flow in preclinical 
intestinal models to properly predict absorption and metabolism. The 
developments in the field or organ on-a-chip have therefore the capacity of 
better reflecting the in vivo intestinal transport35-37.  

Liver 

After intestinal absorption, the drug reaches the liver via the portal vein. Similar 
to the intestine, transporter proteins and CYP450 enzymes play an important 
role in the uptake, efflux and metabolism of drugs and endogenous 
compounds. The organic anion transporting peptides (OATPs) belong to the 
superfamily of the solute carrier class of organic anion transporters and are key 
uptake transporters expressed on the basolateral membrane of hepatocytes38. 
This is exemplified by guidelines from the FDA for drugs in development, 
emphasizing the significance of testing whether a drug is a substrate for 
OATP1B1/1B3 when biliary secretion of hepatic metabolism constitutes ≥25% 
of the total drug clearance39. Moreover, OATP1B1/1B3 play also an important 
role in the uptake of endogenous compounds and toxins. (Un)conjugated 
bilirubin, coproporphyrin I (CPI) and III and (un)conjugated bile acids are for 
instance transported by OATP1B1/1B3 into the hepatocyte. Clinical studies42,43 
showed that direct bilirubin, CPI and also the bile acids like 
glycochenodeoxycholic acid-sulphate (gCDCA-S) are elevated upon dosing the 
OATP1B1/1B3 inhibitor rifampicin. Utilization of endogenous biomarkers is 
particularly valuable in in vivo studies to enhance drug safety, serving as an 
early indicator for potential transporter-mediated drug-drug interactions. 
Besides the expression of OATPs, other important proteins expressed on the 
basolateral membrane are the organic cation transporters (OCTs) and the 
natrium taurocholate transporting peptide (NTCP) which are uptake 
transporters and MRP3 and MRP4 which are efflux transporters44,45. Next to 
basolateral transporters, CYP450 enzymes are abundantly present in the liver, 
to a higher extent than in the intestine26. This higher abundance in the liver 
plays a crucial role in the hepatic extraction (EH), which represents the fraction 
of a drug that is extracted by the liver (converted to metabolites of excreted 
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into the bile) during one passage through the liver46. The clearance of a drug by 
the liver is affected by transporter mediated uptake, CYP450 metabolism and 
hepatic blood flow46. The hepatic clearance refers to the amount of drug 
removed from the blood flow per unit of time and a greater (portal) blood flow 
will therefore lead to faster absorption into the hepatocytes. Liver diseases as 
non-alcoholic-fatty liver disease (NAFLD), currently known as metabolic 
associated fatty liver disease (MAFLD), alcoholic liver disease (ALD) and primary 
sclerosing cholangitis (PSC) can affect the hepatocellular function and lead to 
fibrosis which can progress to liver cirrhosis47. Subsequently, cirrhosis can 
affect the hepatic blood flow and lead to an increased resistance in the hepatic 
vascular bed resulting in a decreased portal hepatic flow48,49. Rane et al.50 
reported that the clearance of hepatically cleared drugs with a high extraction 
ratio are related to blood flow and thus a major decrease in portal flow as in 
cirrhosis can dramatically affect the first passage across the liver50,51. Therefore, 
it is of major importance and of interest to include (portal)flow into hepatic 
preclinical models to better predict clinical outcome.  
 
After CYP450 metabolism (phase I metabolism), drugs and endogenous 
compounds can undergo phase II metabolism (conjugation) which involves 
glucuronidation or sulfation by uridine diphosphate-glucuronosy-ltransferases 
(UGTs) or sulfotransferase (SULT) enzymes respectively52,53. Thereafter, carrier 
mediated processes are required to transport phase II conjugated across the 
canalicular or basolateral membrane or transport the parent compound in 
unchanged form53,54. Drugs and endogenous compounds can also be excreted 
into the bile which is a carrier-mediated and energy-dependent process. BCRP, 
MRP2, P-gp, multidrug and toxin extrusion proteins 1 (MATE-1) and bile salt 
export pump (BSEP) are located on the canalicular membrane of the 
hepatocyte and are involved in the excretion of drugs, metabolites and 
endogenous compound as unconjugated and conjugated bile acids55. BSEP, 
and MRP2 to a lesser extent, are considered important transporters involved in 
the efflux of conjugated bilirubin and bile acids into the bile making them 
noteworthy endogenous biomarkers56. After a meal, the gallbladder contracts 
and the bile is excreted into the duodenum enhancing digestion of lipids and 
aid in the absorption of fat-soluble nutrients57. In the intestine the biliary 
excreted drug metabolite can undergo hydrolysis back to parent compound by 
the microbiome, whereafter the parent compound can be re-absorbed by the 
intestine ending up in the portal venous blood again. This is known as the 
enterohepatic circulation (EHC). These dynamic liver processes which include 
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portal and arterial flow, interplay between drug transporters and phase I, phase 
II metabolism and biliary excretion is challenging to mimick in preclinical 
models12. In in vitro studies, microsomal fractions and hepatocyte cultures are 
often applied to determine the hepatic clearance of drugs. By measuring the 
rate of unbound drug elimination followed by scaling the incubation cell 
content to average liver cell content, an estimate of the hepatic clearance is 
generated58,59. More advanced models which are used are precision cut liver 
slices, the isolated perfused liver, sandwich cultured hepatocytes or the liver-
duct-on a chip which have the ability to study phase I and II metabolism and/or 
biliary excretion12,60,61. Although the isolated perfused liver model closely mimics 
the in vivo conditions by incorporating flow and allowing the measurement of 
biliary excretion, its primary application in studying drug pharmacokinetics is 
currently restricted to rodents62.  

Kidney 

After gut-wall and hepatic metabolism, known as the first-pass effect, the drug 
reaches the systemic circulation. Systemic bioavailability after oral absorption is 
defined as (F) = fraction absorbed (Fa) * fraction escaping gut metabolism, (FG) * 
fraction escaping hepatic metabolism (FH)63, showing the influence of the 
intestine (Fa and FG) and the liver (FH). After reaching the systemic circulation, 
the drug reaches various organs including the kidneys. The kidneys are 
responsible for the elimination of mainly hydrophilic drugs. The renal clearance 
is the result of glomerular filtration, tubular secretion and reabsorption64. The 
basolateral and apical membrane of the proximal tubule cell contain many 
different transporters which play a pivotal role in the elimination of drugs and 
metabolites which function in a secretive or a reabsorptive manner64. Organic 
anion transporter 1 (OAT1) and OAT3, and OCT2 and OCT 3 are important 
uptake transporters on the basolateral membrane. On the apical membrane, 
MATE1 and MATE2 and BCRP have a significant role in the elimination. The FDA 
and the international transporter consortium recommended evaluation of 
OAT1, OAT3, OCT2 and MATE transporter involvement when the active 
secretion of the drugs is ≥25% of the systemic clearance39,65. This is primarily 
since their significant role in drug clearance and inhibition of these transporters 
can result in potential DDI and renal toxicity65. Endogenous markers have also 
been established for several kidney transporters as early indicators in plasma 
and urine to investigate potential transporter mediated DDI. Taurine, the bile 
acid gCDCA-S and creatinine are known to be transporter into the renal 
proximal cells by OAT1, OAT3 and OCT2, respectively. Subsequently, creatinine 
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and thiamine are known to be excreted by MATE into the urine66. In general it is 
considered that the kidney has less metabolizing capacity compared to liver 
and intestine given the net weight of the organ and the microsomal content67. 
Preclinical renal clearance is often assessed using primary human cells or 
immortalized cells to study transporter affinity and transporter involvement in 
the renal uptake and efflux of compounds68,69. Nowadays, renal clearance is 
assessed in more complex preclinical models like the isolated kidney perfusion 
model, proximal tubule on a chip, or animal studies70-74.  
 
Currently, PBPK modeling is broadly applied in drug discovery to estimate the 
PK profile of a compound based on the preclinical absorption, distribution, 
metabolism and elimination (ADME) data75. Prediction could aid in the 
determination of the first dose for a clinical trial in the absence of in vivo data, 
assess dose regimen or to study potential population variability76. The more 
accurate the input data into these models, the more reliable the outcome 
which could facilitate early identification of drug with a high potential for DDI in 
the drug discovery process77. To exemplify, the use of isolated intestine, liver 
and kidney perfusion in the past have demonstrated to be value models gaining 
mechanistic insights into the physiology and the role of transporters and 
enzymes including their interplay in the organs78. Using ex vivo organ perfusion 
with rat organs, Pang et al., demonstrated important DMPK concepts as hepatic 
zonation, hepatic and renal metabolism and blood flow dependent hepatic 
elimination79-83. For the isolated organ perfusion experiments mainly rodent 
organs are used, however translation of these findings to clinical practice 
remains challenging due to, among others, species differences in transporter 
expression11,84. Currently, advancements in the development and application of 
ex vivo organ perfusion are occurring in the field of organ transplantation. The 
use of pressure driven machine perfusion facilitates organ preservation under 
hypothermic conditions and also provides the opportunity to assess organ 
viability and functionality under normothermic conditions85-88. The use of these 
novel pressure driven perfusion machines opens new opportunities for the 
field of pharmacology since it allows to study the function of human or porcine 
whole organ(s) under conditions that are as close as possible to 
the in vivo situation89. The inclusion flow, intact cellular morphology and 
preservation of excretion pathways make the model attractive to study 
pharmacological processes such as the hepatic first pass effect, renal clearance, 
biliary and urinary elimination or DDI. Compared to the isolated perfused-organ 
systems using rat organs, the human/porcine machine perfusion models have 
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relatively high circulating perfusion volume and urinary and biliary output which 
allows easy sample collection to assess drug PK89. Furthermore, and of utmost 
significance, the use of human organs enables direct translation of the findings 
to the human in vivo condition. 

The objective of this thesis 

The aim of this thesis was to explore the applicability of pressure driven 
normothermic organ perfusion to study pharmacological processes in the liver, 
intestine and kidney. 

Outline of this thesis 

Preclinical models are a crucial part of the drug development process, however 
to study complex ADME processes more advanced preclinical models are 
needed. The first part of this thesis, chapter 2, provides an overview of the 
currently used ex vivo models in drug development research. The review 
describes the novel developments using ex vivo tissues to improve the 
predictions of human ADME profiles and DDIs in health and disease.  
 
In part II of this thesis, the focus is on ex vivo liver perfusion to study drug 
pharmacokinetic processes and endogenous substrate handling. Porcine 
organs are often used for method validation and device development and it has 
been shown that normothermic machine perfusion (NMP) of the porcine liver is 
an excellent platform to study hepatic processes90,91. Additionally, the pig liver 
model is considered a proper translational model because of anatomical, 
physiological and biochemical similarity to humans and nowadays this model is 
increasingly used in biomedical research92,93. In chapter 3, we evaluate the use 
of normothermic machine perfusion of porcine livers as a novel model to 
predict pharmacokinetic processes. Using three statins as OATP1B1/1B3 
substrate model drugs (rosuvastatin, atorvastatin and pitavastatin) we studied 
the transporter mediated hepatic extraction and biliary excretion. Furthermore, 
we examined the effect of rifampicin on the disposition of these three statins. 
In clinical data, a rank-order relationship has been observed in the DDI with 
rifampicin and we aimed to study if the ex vivo liver perfusion model could 
mimick the rank-order relationship.  
 
Established in vitro and animal models are often used to study the pathology 
and pharmacological characteristics of drugs of varying diseases. However, 
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translation of these findings to clinical practice remains challenging due to, 
among others, species differences in transporter expression and the difficulty 
to mimic dynamic liver processes61,84. In chapter 4, we developed a novel 
hepatic model using diseased explanted human livers. Four model drugs 
(rosuvastatin, digoxin, furosemide and metformin) with and without perpetrator 
drugs were used to study hepatic extraction, clearance, biliary excretion and 
DDI. These model drugs are known substrates for different important hepatic 
uptake and efflux transporters and enabled comparison of the model to in vivo 
reported data.  
 
In the field of ex vivo liver perfusion, limited research is performed regarding 
characterization of bile acid composition, cholesterol homeostasis and 
transporter gene expression during ex vivo liver perfusion. Moreover, in the ex 
vivo perfused liver model the enterohepatic circulation is absent. Nevertheless, 
the bile acid recirculation plays a crucial role, particularly in supporting the 
function of specific drug transporters and homeostasis of cholesterol levels94-96. 
In chapter 5, we aimed to characterize the de novo bile acid production, 
cholesterol levels and transporter gene expression during ex vivo liver perfusion 
in pig and human livers. Additionally, we aimed to decreased the metabolic 
burden of the de novo bile acid synthesis by incorporating a pool of 
(un)conjugated bile acids during ex vivo liver perfusion and study subsequently 
its effects.  
 
Part III is aimed to unravel drug pharmacokinetics through multi-organ 
perfusion. While the majority of organ perfusion studies focus on perfusion 
with a single organ, a few studies have investigated the possibility of a multi-
organ perfusion model to study physiological processes97-100. The possibly to 
perfuse multiple organs allows in-depth analysis of ADME processes like gut 
wall metabolism, portal vein concentrations, hepatic uptake and biliary 
excretion and thus generating novel pharmacological insights. In chapter 6, we 
aimed to explore the applicability of a porcine ex vivo perfusion model to study 
gut-hepatobiliary metabolism by characterization of oral absorption, gut wall 
metabolism, pre-systemic hepatic metabolism and biliary excretion using 
midazolam as a CYP3A4 model compound. 
 
In part IV – chapter 7, the results and conclusions of this thesis are 
summarized, discussed and future perspectives are presented. As the 
application of ex vivo organ perfusion for pharmacokinetic research is quite 
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novel, major potential lies ahead for future pharmacokinetic questions 
regarding DDI, studying the first-pass effect and the enterohepatic circulation in 
the multi-organ model and the use of explanted human diseased livers. 
Furthermore, the first steps towards translation of ex vivo data to in vivo PK 
profiles will be shown and discussed.  
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