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Chapter 6

Uncertainty Quantification

Optimization algorithms, such as CMA-ES, are designed to minimize an objective

function by selecting the top-µ individuals from a population (Section 2.4). However,

due to measurement errors, external disturbances or the inherent stochastic nature of

the system under consideration, real-world optimization problems often exhibit noise

or non-deterministic characteristics. This means that evaluating the objective with

identical inputs can yield different results. Consequently, selecting the top-µ individu-

als based solely on a single evaluation of the objective function per individual can lead

to inaccuracies. Section 2.7 provides a comprehensive overview of uncertainty quan-

tification and allocation strategies to increase the certainty of this selection process.

This chapter introduces a novel Dynamic Allocation (DA) methodology that inte-

grates uncertainty quantification with CMA-ES [50, 51] to mitigate the uncertainty in

selecting the top-µ individuals in each generation (Section 6.2). The uncertainty quan-

tification method utilized is based on the recently introduced concepts of Confidence

Interval Sequences (CISs) (Section 2.7.3) and Rank Intervals (RIs) (Section 2.7.4).

First, an artificial objective function characterized by inherent noise is developed to

facilitate the design and testing of the proposed methodology (Section 6.1). The

analysis evaluates the performance of this methodology and compares it to Static Al-

location (SA) schemes within the CMA-ES algorithm. Finally, the methodology is

applied to a real-world problem that exhibits noise, demonstrating its practical utility

(Section 6.3).
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6.1 Noisy Test Function

The investigation and analysis of various DA methods with minimal computational

resources require test functions that are inexpensive to evaluate. To this end, a normal-

ized ellipsoid function is defined, characterized by the dimensionality d and a distinct

weight wj for each dimension:

f(x) =

∑
d
j wj x

2
j∑

d
j wj

, with wj ∈ {1, 2, . . . , d}. (6.1)

To introduce asymmetry into the landscape, each xj is transformed according to the

following equation:

xj =

xj , if xj ≤ 0

(1 + pskew)xj , if xj > 0
, (6.2)

where pskew governs the degree of skewness in the objective landscape. The landscape

reverts to that of the original ellipsoid function for pskew = 0.

The black-box nature of many real-world optimization problems necessitates mini-

mizing assumptions about the distribution of objective function values across repeated

evaluations. Therefore, this thesis adopts a frequentist perspective. Each function

evaluation corresponds to a specific scenario zi, which is randomly sampled without

replacement from the set of all possible scenarios ΩZ . After evaluating all possible

scenarios, the sample mean is identical to the true mean of the objective function

(Equation 2.23).

For a given input xk, a set of |ΩZ | values is sampled from a normal distribution

with standard deviation σZ representing the scenarios zi. After being sampled, this

set of |ΩZ | values remains fixed and is unique to each input xk. Furthermore, the

mean across all |ΩZ | values is subtracted from each individual value:

n(xk, zi) := zi −
1

|ΩZ |

|ΩZ |∑
i=1

zi, where ΩZ :=
{
z1, . . . , z|ΩZ |

∣∣ zi s∼ σZ N (0, I)
}
, (6.3)

This ensures that the sample mean over all possible scenarios ΩZ is equal to the true

mean, which is always zero for each input xk:

EZ [n(xk, Z)] = ÊZ [n(xk, Z)] =
1

|ΩZ |

|ΩZ |∑
i=1

n(xk, Z) = 0. (6.4)
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Equation 6.3 defines the values used to model both additive and proportional noise

within the test function. The parameter rnoise governs the balance between these

two noise types. Consequently, for a given input xk and scenario zi, the noisy test

function f(xk, zi) can be expressed as follows:

f(xk, zi) :=f(xk) · (1 + rnoise · n(zi) + (1− rnoise) · n(zi). (6.5)

The test function is with no noise original unimodal. The multimodality results

only from the noise introduced. Therefore, if an optimization algorithm fails to locate

the global optimum, the failure cannot be attributed to local optima inherent to the

original function. When all possible scenarios are sampled, the noisy test function

converges to the original function.

The noisy test function employed in this chapter is defined with pskew = 0.5,

rnoise = 0.7 and |ΩZ | = 50. Figure 6.1 illustrates the one-dimensional noisy test

function with σZ = 0.5 and different numbers of evaluated scenarios.
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Figure 6.1: Mean values across 1, 10 and 50 evaluated scenarios on the noisy test function
(Equation 6.5). Due to Equation 6.4, the noisy test function is equivalent to the original
function as defined by Equation 6.1, when all 50 possible scenarios are evaluated. The degree
of skewness pskew is set to 0.5 (Equation 6.2). The standard deviation σZ of the normally
distributed noise is set to 0.5 (Equation 6.3) and split to proportional and additional noise
with the ratio rnoise = 0.7.
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6.2 Methodology

The goal of the proposed methodology is to reliably identify the top-µ individuals

within a population of λ individuals while minimizing the number of evaluations re-

quired. To achieve this, a DA methodology is proposed.

Algorithm 2 outlines the process of the proposed DA methodology. First, each

individual xk is evaluated on the objective function f(xk, zi) for n0 scenarios zi, which

are sampled WoR from the set of all possible scenarios ΩZ . Scenarios are continuously

allocated WoR to individuals until either the uncertainty in the selection of the top-µ

individuals, quantified by the UQiSµ value (Equation 2.41), falls below a predefined

threshold uthr or the maximum number of evaluations N is reached. In each iteration,

the CISs CISk and RIs RIk of each individual xk are computed based on the until

then determined Kk objective function values f(xk, zi) of each individual xk. In order

to apply the CISs introduced in Section 2.7.3, the objective function values are min-

max scaled to [0, 1] with the provided lower bounds lb and upper bounds ub. The

UQiSµ value is computed from the RIs. If the UQiSµ value is not below the threshold

uthr, a DA policy πtop-µ allocates nallocate more scenarios to the individuals. Each

individual xk is then evaluated with the scenarios zi allocated to that individual,

and Kk is adjusted accordingly. Finally, the sample mean across the Kk evaluated

scenarios ÊZ [f(xk, Z)] is returned for each individual.

Algorithm 2 Proposed DA methodology to minimize UQiS.

Require: λ, {xk}λk=1, µ, |ΩZ |, nallocate, uthr, α, lb, ub
n0 ← 1
UQiSµ ← inf
Evaluate all individuals {xk}λk=1 for n0 scenarios zk ▷ sampled WoR from ΩZ

n← λ · n0

N ← λ · |ΩZ |
while n ≤ N − nallocate and UQiSµ > uthr do

Compute CISk ▷ according to Equation 2.29 and 2.33
Compute RIk and UQiSµ ▷ according to Equation 2.39 and 2.41
if UQiSµ > uthr then

Allocate nallocate scenarios ▷ according to DA policy πtop-µ (Sections 6.2.1)
Evaluate individuals with allocated scenarios
Adjust Kk ▷ according to the number of allocated scenarios to xk

n←
∑λ

k=1 Kk ▷ total number of allocated scenarios
end if

end while
return ÊZ [f(xk, Z)] = 1

Kk

∑Kk

i=1 f(xk, zi)
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6.2.1 Dynamic Allocation Policy

A DA policy proposed by Ellmaier [32] for the top-µ selection task is utilized. This DA

policy, denoted as πtop-µ, allocates additional scenarios to specific individuals based

on the computed RIs RIk of each individual xk. For the top-µ selection task, only

those individuals need to be considered that, according to their RI, are neither clearly

among the top-µ nor the bottom-(λ-µ) subset.

Λµ :=
{
k ∈ {1, . . . , λ}

∣∣∣RIk{1, . . . , µ} and RIk{µ + 1, . . . , λ}
}
, (6.6)

consist of the indices of these individuals. The excess of the RI RIk of individual xk,

denoted as ξk, is defined as follows:

ξk :=

max(RIk)− µ, if ˆrankfrq(xk) ≤ µ

µ + 1−min(RIk), else
. (6.7)

Figure 6.2 exemplarily shows the excesses of the RI ξk for the selection of the top-3

individuals from a population of six individuals. According to their RIs all individuals

can be among the top-3 individuals. Thus, the UQiS3 equals three, and selecting the

top-3 individuals is ambiguous. If all the excesses of the RIs ξk are zero, the UQiSµ

value is zero, and the selection of the top-µ individuals is unambiguous.

1 2 3 4 5 6
x1

x2

x3

x4

x5

x6

UQiS3 = 3

RIk k rank(xk)

Figure 6.2: Given the RIs RIk for each individual in {x1, . . . ,x6} the excess of the RIs ξk
computed according to Equation 6.7 is illustrated for the selection of the top-3 individuals.
According to the RIs all individuals can be among the top-3 individuals, and therefore the
UQiS3 equals three.
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Algorithm 3 outlines the process of the proposed DA policy πtop-µ. In each itera-

tion, the policy can allocate nallocate additional scenarios among the |Λµ| individuals

that play a pivotal role in differentiating the top-µ individuals from the rest of the

population according to Equation 6.6. The policy prioritizes individuals based on the

excesses of their RIs ξk. This assumes that the magnitude of this excess is indica-

tive of the uncertainty in the selection process. Then, the policy allocates additional

objective values to these individuals to thereby narrow the width of their CIs and,

consequently, their RIs.

To distribute more than one scenario per iteration in proportion to the magnitude

of the excesses of the RIs, the policy employs the Imperiali method. The Imperiali

method [39] originally designed to allocate parliamentary seats to political parties

based on their proportion of votes, is repurposed here to allocate scenarios. With the

Imperiali method, an integer number of scenarios Kallocated,i is allocated to each of

the |Λµ| individuals not clearly assigned to either the top-µ or bottom-(λ-µ) subset.

Thereby, the sum of the allocated scenarios Kallocated,i to the individuals is equal to

the total number of allocated scenarios:

nallocate =

λ∑
k

Kallocated,k. (6.8)

The allocation is based on the proportional excess of the RI RIk of individual xk in

percent of the total excess of the RIs of the |Λµ| individuals, denoted as ξpercent,k:

ξpercent,k :=
100 · ξk∑
j∈Λµ

ξj
. (6.9)

Algorithm 3 DA policy πtop-µ to allocate nallocate additional scenarios [32].

Require: λ, {RIk}λk=1, µ, nallocate

Determine Λµ ▷ according to Equation 6.6
Compute ξk ▷ according to Equation 6.7
Compute ξpercent,k ▷ according to Equation 6.9
{Kallocated,k}λk=1 ← Imperiali(totalseats = nallocate,percentages = ξpercent,k)
return {Kallocated,k}λk=1

If the excess of the RIs of two individuals is equal, the width of their CIs is consid-

ered as a secondary attribute for the allocation. Apart from the proportional excess

of the RIs, other metrics based on, for example, the excess of the CIs can be used as

an alternative.
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6.2.2 Top-µ Selection and Ranking

The mechanism of the DA methodology in selecting the top-µ individuals from a

population, as outlined in Algorithm 2, is exemplarily demonstrated by utilizing the

noisy test function defined in Section 6.1 with a dimensionality of two and a standard

deviation σZ of 0.5. A population is generated by randomly sampling six individuals

{x1, . . . ,x6} from a uniform distribution within the input space [−1, 1]2. In each

iteration, six additional scenarios can be allocated to the individuals, with a total

limit of 50 scenarios per individual. The allocation is stopped when the UQiS of the

top-µ individuals UQiSµ is zero. The significance level α for the computation of the

CISs is set to 0.3. Furthermore, for the uncertainty quantification, the lower bound lb

and upper bound ub are set to the true minimum and maximum possible objective

function values, respectively, by evaluating all possible scenarios for each individual in

advance. The provision of broader lower and upper bounds does not affect the core

principles of the qualitative findings that emerge from the results presented with the

true lower and upper bounds. Table 6.1 summarizes the chosen hyperparameters of

Algorithm 2 for the top-µ selection task and the utilized noisy test function.

Table 6.1: Chosen hyperparameters of the utilized noisy test function (Section 6.1) and of
the DA (Algorithm 2) for the top-µ selection task.

Component Parameter Description Parameter Value
Dimensionality 2

Noisy Standard deviation σZ 0.5
Test Degree of skewness pskew 0.5

Function Ratio proportional noise rnoise 0.7
Possible scenarios ΩZ {z1, . . . , z50}
Population X {x1, . . . ,x6}
Significance level α 0.3
UQiS of top-µ individuals µ

DA UQiS threshold uthr 0
Allocations per iteration nallocate 6
Lower bound lb minxk∈X,zi∈ΩZ

(f(xk, zi))
Upper bound ub maxxk∈X,zi∈ΩZ

(f(xk, zi))

First, the task of selecting the top-1 individual out of the population of the six

individuals {x1, . . . ,x6} is examined. Figure 6.3 illustrates the state after the final

iteration of the DA by Algorithm 2, showcasing the determined objective function

values f(xk, zi), along with the computed CIs CIk, RIs RIk and the resultant UQiS

of the top-1 individual UQiS1.
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A total of 114 scenarios are allocated across all individuals. The top-1 individual x1

is evaluated on all 50 scenarios, which narrows the CI for this individual to a width

of zero. The number of scenarios allocated to an individual Kk decreases along with

the rank of the individual. This allocation pattern arises because the employed DA

policy πtop-µ (Algorithm 3) stops allocating additional scenarios to an individual once

this individual can be definitively assigned to the top-1 or bottom-5 subset based on

the RIs RIk. This trend is especially noticeable for the individuals in the lower ranks,

which can be assigned to the bottom-5 subset with only a few scenarios, resulting in

comparatively large CIs. However, in the final iteration, the CIs of the individuals in

the bottom-5 subset are tight enough to avoid overlapping with the CI of the top-1

individual. Thus, the UQiS of the top-1 individual UQiS1 is zero, and the selection

of the top-1 individual is clear.

x1

x2

x3

x4

x5

x6

f(xk, zi) EZ[f(xk, Z)] lb ub 0 10 20 30 40 50
Kk

50
21

15

8
12

8 Kk = 114

0.5 0.0 0.5 1.0
x1

x2

x3

x4

x5

x6

CI EZ[f(xk, Z)]

1 2 3 4 5 6

UQiS1 = 0

RIk rank(xk)

Figure 6.3: State after the final iteration of the DA by Algorithm 2 with hyperparameters
of Table 6.1 for the selection of the top-1 individual from the population X = {x1, . . . ,x6}.
Top Left : Determined objective function values f(xk, zi), sample means and given bounds.
Top Right : Number of allocated scenarios Kk sampled WoR from the 50 possible scenarios.
Bottom Left : Computed CIs from the determined objective function values and sample means.
Bottom Right : Resulting RIs, sample ranks and UQiS of the top-1 individual UQiS1.
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Subsequently, the task of selecting the top-3 individuals from the population of

the six individuals {x1, . . . ,x6} is considered. Figure 6.4 illustrates the final state.

A total of 180 scenarios are allocated across the population, requiring 66 additional

evaluations compared to selecting only the top-1 individual. Moreover, a significant

shift in the allocation pattern is observed. The number of scenarios allocated to

individuals in the middle ranks is increased. This is necessary to narrow the CIs

for an unambiguous assignment of these individuals to either the top-3 or bottom-3

subsets. In comparison, the individuals at the extreme ranks need fewer allocations for

an unambiguous assignment. In the final iteration, the RIs of individuals in the top-3

subset do not overlap with those in the bottom-3 subset. Therefore, the selection of

the top-3 individuals is unambiguous, and the UQiS of the top-3 individuals UQiS3

is zero.

x1

x2

x3

x4

x5

x6

f(xk, zi) EZ[f(xk, Z)] lb ub 0 10 20 30 40 50
Kk

21
28

40

22

45
24

Kk = 180

0.5 0.0 0.5 1.0
x1
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x4
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x6

CI EZ[f(xk, Z)]

1 2 3 4 5 6

UQiS3 = 0

RIk rank(xk)

Figure 6.4: State after the final iteration of the DA by Algorithm 2 with hyperparameters
of Table 6.1 for the selection of the top-3 individual from the population X = {x1, . . . ,x6}.
Top Left : Determined objective function values f(xk, zi), sample means and given bounds.
Top Right : Number of allocated scenarios Kk sampled WoR from the 50 possible scenarios.
Bottom Left : Computed CIs from the determined objective function values and sample means.
Bottom Right : Resulting RIs, sample ranks and UQiS of the top-3 individual UQiS3.
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In each generation of CMA-ES, the top-µ individuals from a population are

selected. Additionally, in the subsequent recombination step, the individuals are

weighted based on their rank (Equation 2.5). Therefore, besides selecting the top-

µ individuals, the ranking within these top-µ individuals is required. To achieve this,

the DA by Algorithm 2 is conducted several times, sequentially increasing the selection

of the top-µ individuals from 1 to 3. If UQiS1 is zero, then UQiS2 is used to allocate

additional scenarios until it is zero. Once UQiS3 is also zero, a total of 204 scenarios

are allocated (Figure 6.5). As the top three individuals have similar objective function

values, all three are evaluated on all 50 possible scenarios. The remaining individuals

are assigned to the bottom three sets with fewer allocated scenarios.

x1

x2

x3

x4

x5

x6

f(xk, zi) EZ[f(xk, Z)] lb ub 0 10 20 30 40 50
Kk

50
50
50

16
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0.5 0.0 0.5 1.0
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x3
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CI EZ[f(xk, Z)]

1 2 3 4 5 6

UQiS3 = 0

RIk rank(xk)

Figure 6.5: State after the final iteration of the DA by Algorithm 2 with hyperparameters
of Table 6.1 for the ranking of the top-3 individual from the population X = {x1, . . . ,x6}.
Top Left : Determined objective function values f(xk, zi), sample means and given bounds.
Top Right : Number of allocated scenarios Kk sampled WoR from the 50 possible scenarios.
Bottom Left : Computed CIs from the determined objective function values and sample means.
Bottom Right : Resulting RIs, sample ranks and UQiS of the top-3 individual UQiS3.
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6.2.3 CMA-ES and Bound Adaption for UQiS

The DA methodology (Algorithm 2) can be combined with CMA-ES to identify the

top-µ individuals within each generation g of CMA-ES. However, since CMA-ES min-

imizes the objective function, the values of the objective function are likely to decrease

as the generations progress. Moreover, the amount of noise may change during the

optimization process. Therefore, using static lower and upper bounds for the UQiS

throughout the entire optimization procedure is suboptimal.

To address this issue, a bounds adaptation mechanism is introduced. This mech-

anism adjusts the bounds for the UQiS dynamically after each generation based on

the minimum and maximum objective function values from the last ngen generations,

denoted as ymin,ngen
and ymax,ngen

. To account for potential future increases or de-

creases in the bounds, the range between the determined minimum and maximum

values, scaled by a factor bfactor, is added to the current minimum and maximum

values, respectively:

ub(g+1) = ymax,ngen + bfactor · (ymax,ngen − ymin,ngen),

lb(g+1) = ymin,ngen
+ bfactor · (ymax,ngen

− ymin,ngen
),

(6.10)

Figure 6.6 illustrates the bound adaption with bfactor = 0.25 and ngen = 3 during

a CMA-ES run on the noisy test function with σZ = 0.5 and rnoise = 0.9.

0 5 10 15
CMA-ES generation g

0

1

2

f(
x)

mean EZ[f(xk, Z)]
true ymin ymax

lb ub (adapted)

Figure 6.6: Adaption of the lower bound lb and the upper bound ub according to Equa-
tion 6.10 with bfactor = 0.25 and ngen = 3 in each generation g of a CMA-ES run on the
noisy test function (Section 6.1) with σZ = 0.5 and rnoise = 0.9. In addition, for the DA
methodology, unknown true minimum ymin and maximum ymax objective function values are
provided along with the true mean objective function value across the CMA-ES population
X = {x1, . . . ,x6}.
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The significance level α is set to 0.99, and the UQiS threshold uthr is set to 1.

This configuration results in fewer scenarios being allocated for selecting the top-µ

individuals, which resembles a more complex case for bound adaptation due to the

less information available from past generations. Starting with an initial lower bound

of −0.5 and an upper bound of 2.5, the first adaptation is conducted after three

generations. During the 20 generations of CMA-ES, the mean objective function

value and thus also the proportional noise component decreases, which results in a

continuous adjustment of the bounds.

For each generation g, the bounds are considered correctly adapted if the lower

bound lb(g) is less than the true minimum objective function value y
(g)
min and the up-

per bound ub(g) is greater than the true maximum objective function value y
(g)
min.

Over the course of 20 generations, the bounds are correct in 95% of the cases (Fig-

ure 6.6). Only in generation 10 is the upper bound slightly too low compared to the

true maximum objective function value. This violates the assumptions for the UQiS,

which requires that all objective function values fall within the given lower and upper

bounds. Increasing the factor bfactor leads to looser bounds and a higher percentage of

correct bounds. However, looser bounds also result in larger CIs, necessitating more

function evaluations to unambiguously select the top-µ individuals. To investigate

this trade-off, an experiment is conducted with varying the values of the factor bfactor.

Table 6.2 summarizes the chosen hyperparameters, resulting in 30 configurations. For

each configuration, 100 CMA-ES runs are conducted for 20 generations on the noisy

test function, defined in Section 6.1.

Table 6.2: Chosen hyperparameters of the utilized noisy test function (Section 6.1) and of
the DA (Algorithm 2) for the analysis of the bound adaption mechanism.

Component Parameter Description Parameter Values
Dimensionality 2

Noisy Standard deviation σZ {0.1, 0.25, 0.5}
Test Degree of skewness pskew 0.5

Function Ratio proportional noise rnoise 0.9
Possible scenarios ΩZ {z1, . . . , z50}
Population X {x1, . . . ,x6}
Significance level α 0.99
UQiS of top-µ individuals {1, 3}

DA UQiS threshold uthr 1
Allocations per iteration nallocate 6
Initial lower bound lb -0.5
Initial upper bound ub 2.5
Bound adaption factor bfactor {0.0, 0.1, 0.25, 0.5, 1.0}
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Figure 6.7 illustrates the relationship between the ratio of correct bounds and the

ratio of evaluated scenarios, averaged across 200 CMA-ES runs, for various combina-

tions of standard deviation σZ and factor bfactor values. As expected, a higher factor,

which corresponds to looser bounds, results in a higher percentage of correct bounds.

With a factor of zero, slightly more than half of the bounds are correct. Increasing

the factor to 0.1 leads to approximately 90% of the bounds being correct. However, as

the factor increases, the increase in accuracy decreases while the number of scenarios

evaluated continues to increase. Therefore, for the subsequent experiments, the factor

bfactor is set to 0.1 as a compromise between accuracy and computational efficiency.

0.0 0.1 0.25 0.5 1.0
bfactor

0.
1

0.
25

0.
5

Z

52.1 92.0 97.4 98.8 99.8

52.1 91.6 97.2 99.0 99.8

58.2 88.8 95.1 96.9 97.8

Bounds correct in %

0.0 0.1 0.25 0.5 1.0
bfactor

48.6 52.1 57.3 62.4 68.6

52.6 56.8 62.4 68.1 73.8

58.3 63.1 67.6 73.3 78.8

Evaluated scenarios in %

Figure 6.7: The ratio of correct bounds in percent (left) and the ratio of evaluated scenarios
in percent (right) on average across 200 CMA-ES runs for different combinations of the
standard deviations σZ and factors bfactor for the bound adaption according to Equation 6.10.

6.2.4 CMA-ES Convergence

The DA methodology (Algorithm 3) can be employed to determine the ranking of

the top-µ individuals within a CMA-ES population (Section 6.2.2). The magnitude

of uncertainty in the ranking can be primarily controlled by the user through two

parameters: the significance level α and the threshold for the UQiS uthr. With higher

levels of uncertainty, the probability of an incorrect ranking increases.

In this section, the effect of increased uncertainty in the ranking on the convergence

of CMA-ES is investigated for µ = 1 and µ = 3. The significance level α is varied

first, followed by the threshold uthr. Finally, the DA methodology is compared to SA.

Table 6.3 summarizes the chosen hyperparameters. For each configuration, 100 CMA-

ES runs are conducted over 50 generations on the noisy test function, defined in

Section 6.1.
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Table 6.3: Chosen hyperparameters of the utilized noisy test function (Section 6.1) and of
the DA (Algorithm 2) for the analysis of the convergence of CMA-ES.

Component Parameter Description Parameter Values
Dimensionality 2

Noisy Standard deviation σZ {0.1, 0.25, 0.5}
Test Degree of skewness pskew 0.5

Function Ratio proportional noise rnoise 0.7
Possible scenarios ΩZ {z1, . . . , z50}
Population X {x1, . . . ,x6}

DA Allocations per iteration nallocate 6
Initial lower and upper bound -0.5, 2.5

Three values for the significance level α ∈ {0.3, 0.6, 0.9} are considered (Figure 6.8).

Higher values of α correspond to increased uncertainty, which leads to larger dis-

tances to the optimal objective function value ∆f∗ and, therefore, slower convergence

of CMA-ES. This trend is observed across all three standard deviations. The DA

methodology adapts to the different noise levels for a given α by adjusting the number

of evaluations. For higher values of α, fewer evaluations are required to achieve an

unambiguous ranking due to the resulting tighter CIs. Determining an unambiguous

ranking for µ = 3 requires more evaluation than for µ = 1.
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Figure 6.8: Distance to the optimal objective function value ∆f∗ after 50 generations of
CMA-ES and the ratio of evaluated scenarios on average across 100 runs for µ = 1 (first row)
and µ = 3 (second row). Different configurations of the significance level α ∈ {0.3, 0.6, 0.9}
(Equation 2.26) and the standard deviation σZ of the noisy test function are considered.
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To examine the convergence of CMA-ES across generations, the configuration with

µ = 1 and σZ = 0.5 is analyzed in detail. Figure 6.9 presents the distance to the

optimal objective function value ∆f∗, the ratio of evaluated scenarios and the ratio of

correct ranking (RCR) of the top-µ individuals, denoted as RCRµ, across 100 CMA-

ES runs for each generation g. For α = 0.9, the decrease in the distance to the

optimal objective function value slows down after 10 generations compared to α = 0.3

and α = 0.6. Simultaneously, the RCR falls below 0.9. With α = 0.6, the RCR

remains above 0.9, and the convergence of CMA-ES is not noticeably impacted, even

though fewer scenarios are evaluated compared to the case with α = 0.3. CMA-ES

can internally compensate for the incorrect rankings to some extent.
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Figure 6.9: Mean distance to the optimal objective function value ∆f∗, the ratio of
evaluated scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g
across 100 runs. Different values of the significance level α ∈ {0.3, 0.6, 0.9} (Equation 2.26)
for the DA (Algorithm 2) are considered. The standard deviation of the noisy test function
is set to 0.5.
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However, there is no significant difference in convergence among the different con-

sidered significance levels α until the first five to ten generations. The RCR is also 1.0

for all three significance levels. Therefore, a significance level of 0.3 is too conservative

in the beginning and leads to unnecessary evaluations. Conversely, a significance level

of 0.9 is too high after the beginning, as not enough scenarios are allocated, and the

RCR falls to 0.7.

Subsequently, the UQiS threshold uthr is varied between zero and three, with the

significance level α set to 0.3. The DA methodology allocates scenarios until the UQiS

does not exceed the set threshold. Therefore, for thresholds greater than zero, the

DA methodology allocates fewer scenarios, and the resulting ranking includes µ+uthr

individuals within the top-µ set. Thus, higher thresholds result in a higher uncertainty

in the ranking of the top-µ individuals, leading to poorer convergence across all three

standard deviations (Figure 6.10). For µ = 1 and µ = 3, the distance to the optimal

objective function value after 50 generations of CMA-ES is similar for the different

considered thresholds. However, for µ = 3, more scenarios are required.
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Figure 6.10: Distance to the optimal objective function value ∆f∗ after 50 generations of
CMA-ES and the ratio of evaluated scenarios on average across 100 runs for µ = 1 (first row)
and µ = 3 (second row). Different configurations of the UQiS threshold uthr ∈ {0, 1, 2, 3} and
the standard deviation σZ ∈ {0.1, 0.25, 0.5} of the noisy test function are considered.
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For the configuration with µ = 1 and σZ = 0.5, Figure 6.11 presents the distance

to the optimal objective function value ∆f∗, the ratio of evaluated scenarios and the

ratio of correct ranking (RCR) of the top-µ individuals across 50 generations of CMA-

ES for the different considered thresholds uthr ∈ {0, 1, 2, 3}. With higher thresholds,

the convergence slows down with further generations. After a continuous increase in

the number of allocated scenarios in the first ten generations, the allocation stagnates.

With a threshold of one, almost all possible scenarios are allocated. However, the

RCR is only around 0.8 due to the two possible individuals within the top-1 individual

according to the UQiS. Thus, the threshold needs to be zero to receive a correct ranking

according to the UQiS.
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Figure 6.11: Mean distance to the optimal objective function value ∆f∗, the ratio of eval-
uated scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g across
100 runs. Different values of the UQiS threshold uthr ∈ {0, 1, 2, 3} for the DA (Algorithm 2)
are considered. The standard deviation of the noisy test function is set to 0.5.
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However, to reduce the number of evaluations, the threshold can be set greater than

zero in the beginning. This will not significantly impact the RCR and convergence.

The reason for this is that in the beginning, the objective function values of the

individuals overlap less, resulting in fewer rank changes as more scenarios are allocated.

Therefore, the initial ranking is often already correct. Furthermore, selecting the

second-best individual can also lead to significant improvement, and the CMA-ES

population evolves even with an incorrect ranking provided.

Finally, the DA is compared to SA with different numbers of allocated scenar-

ios Kk ∈ {45, 40, 30, 20, 5} per individual considered (Figure 6.12).
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Figure 6.12: Mean distance to the optimal objective function value ∆f∗, ratio of evaluated
scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g across 100
runs. Different numbers of allocated scenarios Kk ∈ {45, 40, 30, 20, 5} per individual for the
SA are considered. The standard deviation of the noisy test function is set to 0.5.
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Due to the SA, the number of allocated scenarios is constant across all genera-

tions. Thus, no adaptation to the current uncertainty in the ranking is conducted.

Concerning convergence of CMA-ES, in the beginning, only five allocated scenarios to

each individual are enough for progress, even with an RCR of below 0.75. However,

the RCR of the other SA with more scenarios also falls below 0.5 within the first ten

generations. Here, two clear drawbacks of the SA are present. To reach efficiently a

constant high RCR, in the beginning, fewer evaluations are needed, and with further

progress, more and more evaluations are needed for a correct ranking. Thus, a DA is

required. A further drawback of SA is the allocation of the same number of scenarios

to each individual, which wastes evaluations on the last ranked individuals with no

information gain for ranking the top-1 individual.

6.2.5 Conclusion

The DA methodology (Algorithm 2) introduced in this work, which is based on un-

certainty quantification, effectively addresses the drawbacks associated with SA. By

employing a policy (Algorithm 3), scenarios are dynamically allocated to individuals

within a population, thereby reducing the uncertainty in the ranking of these individ-

uals. This methodology enables the ranking or selection of the top-µ individuals with

a high degree of confidence. The DA methodology distributes function evaluations

more effectively to the individuals than SA. However, the uncertainty quantification

method requires the user to provide upper and lower bounds for the objective function

values, which are a priori unknown and must be estimated.

The combination of the DA methodology and CMA-ES is not without its imper-

fections. Initially, the DA tends to allocate too many scenarios to achieve a correct

ranking, which is unnecessary for the early stages of CMA-ES. The algorithm is capa-

ble of evolving effectively even with a ranking that is not perfectly accurate. Therefore,

allowing for higher uncertainty, for example, by setting a higher threshold in the be-

ginning, can reduce the number of allocated scenarios. Furthermore, no information

about the uncertainty from past generations is used, the uncertainty quantification

starts anew for each population. Only the bounds are adjusted based on information

from previous generations. Using more information from past generations could be a

valuable direction for future research.
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6.3 Application to Real-World Problems

The optimization of parameters in vehicle dynamics control systems, such as ABS and

ARP, is a challenging task due to the inherent noise. The objective function value

for a given parameter configuration is determined by the sample mean across several

repeated maneuvers, with each maneuver considered a distinct scenario.

In this section, the uncertainty quantification and DA methodology is applied to

the two-dimensional real-world problem y1, which involves a partially loaded vehicle

with high-performance tires (Section 3.4). For each of the 10 101 possible param-

eter configurations, 30 braking maneuvers are simulated, and the resulting braking

distances are obtained.

The objective function for the real-world problem y1 returns the distance of the

braking distance in meters to the global optimal average braking distance across all

30 considered scenarios. Figure 6.13 illustrates these distances, which are averaged

over various numbers of randomly selected scenarios. The first input parameter x1 is

varied, while the second input parameter x2 is held at its optimal value.
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Figure 6.13: Distance of the braking distance in meters to the global optimal average brak-
ing distance across different numbers of randomly selected scenarios for the two-dimensional
real-world problem y1 (Table 3.1). The first input parameter x1 is varied, while the second
input parameter x2 is held at its optimal value.
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The dataset for the two-dimensional real-world problem y1 consists of 303 030

objective function values, which maps the objective function landscape completely.

Evaluating the objective function by using the dataset is inexpensive and eliminates

the need for further costly simulations. This allows to analyze the performance and

convergence of CMA-ES in combination with the DA methodology on the real-world

problem, similar to Section 6.2.4. For the analysis, CMA-ES is configured with a

population size of six individuals. The DA methodology allocates scenarios during

each generation of CMA-ES until the UQiS of the top-1 individual reaches zero. For

each significance level α ∈ {0.3, 0.6, 0.9}, 100 CMA-ES runs of 50 generations each are

performed. The initial lower and upper bounds of the objective function values are

set between -0.3 and 1.2 m. Figure 6.14 presents the results.
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Figure 6.14: Mean distance to the optimal objective function value ∆f∗, the ratio of
evaluated scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g
across 100 runs on the two-dimensional real-world problem y1 (Table 3.1). Different values
of the significance level α ∈ {0.3, 0.6, 0.9} (Equation 2.26) for the DA (Algorithm 2) are
considered.



112 Chapter 6 Uncertainty Quantification

Across the 50 generations of CMA-ES, the distance to the optimal objective func-

tion value decreases consistently for all three significance levels α ∈ {0.3, 0.6, 0.9}
considered, with no discernible differences in convergence. However, the ratio of eval-

uated scenarios is lower for higher significance levels across all 50 generations. Thus,

on the real-world problem, a higher significance level for the uncertainty quantifica-

tion is more efficient when applied in combination with CMA-ES. The lower RCR

results from higher significance levels and decreases further across generations. This

does not negatively impact the convergence of CMA-ES and is similar to the results

on the noisy test function in Section 6.2.4. The DA methodology demonstrates that

evaluations can be significantly reduced compared to evaluating all individuals across

all scenarios. Specifically, with significance levels of 0.3 and 0.9, reductions of 8% and

26%, respectively, are achieved.

Regardless of the selected significance level, not every CMA-ES run reaches the

optimal value of the objective function. On average, the deviation from the optimal

value is approximately 2 cm. The reason for this is the presence of noise, even if

all possible scenarios are evaluated. This noise contributes to a multimodal objective

function landscape and can cause CMA-ES to converge to a local optimum instead of

the global optimum. Two potential strategies can be employed to address this chal-

lenge: increasing the population size or the number of possible scenarios. First, a larger

population size enhances the exploratory capabilities of the optimization algorithm.

Thus, the optimization algorithm is more likely to escape a local optima. Second, a

larger number of scenarios reduces the impact of noise and smoothes the objective

function landscape. This simplifies the identification of the true global optimum for

the optimization algorithm.

The RCR is with a significance level of 0.3 above 0.9 across all 50 generations. Thus,

a significance level of 0.3 is effective for selecting the best parameter configuration

with high probability, regardless of the generation. In the last generations of CMA-

ES, almost all scenarios must be allocated to achieve correct ranking. Thus, even low

levels of noise can complicate the differentiation between individuals. This could serve

as a termination criterion or a sign to increase the number of scenarios.

Combining the DA methodology with CMA-ES can reduce the required evalua-

tions by up to 26% in a real-world setting. However, the precision of uncertainty

quantification for CMA-ES may be excessive, as the algorithm can progress even with

some incorrect rankings, suggesting potential for further efficiency gains. Nonetheless,

the DA methodology is adept at ranking individuals correctly and efficiently within a

population.
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The DA methodology and associated uncertainty quantification are not restricted

to simulated objective function values but can also be applied to real-world vehicle

measurements on a test track. Uncertainty quantification can provide information to

reduce the number of maneuvers required. Furthermore, this information can guide

engineers when choosing between parameter configurations of comparable quality.
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