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Chapter 4

Tuning CMA-ES Parameters

In various scientific and technical domains, ranging from economics and finance to com-

puter science and engineering, optimization algorithms are applied to solve complex

optimization problems. The performance thereby depends on the specific employed

parameter configuration of the optimization algorithm. The identification of the most

suitable parameter configuration of an optimization algorithm for a specific optimiza-

tion problem or a class of optimization problems requires comparing the performance

of different parameter configurations. One approach to this challenge is to frame

automatic parameter tuning as a secondary optimization problem (Section 2.6.3).

However, an accurate assessment of the performance of an optimization algorithm

requires solving the original optimization problem repeatedly. This is contrary to the

primary goal in practical applications: solving the actual optimization problem. More-

over, many real-world optimization problems are computationally expensive, making

it impractical to tune the parameters of the optimization algorithm directly on the

original optimization problem.

Nevertheless, parameter tuning can significantly increase the performance of an

optimization algorithm. The challenge is to select the optimal parameters for the

optimization algorithm to solve a given computationally expensive black-box opti-

mization problem without any prior experience in solving the original optimization

problem. Consequently, in order to tune the parameters of the optimization algorithm,

surrogate optimization problems that mimic the key characteristics of the original op-

timization problem and are less expensive to evaluate are needed. The knowledge

gained from these surrogate optimization problems can then be transferred to the

original optimization problem.
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This Chapter is based on the results from [126, 127]. Section 4.1 introduces the pro-

posed parameter tuning method for computationally expensive black-box optimization

problems.

A set of five two-dimensional optimization problems from the field of vehicle dy-

namics (Section 3.4) serves as the real-world optimization problems for evaluating this

method. The landscape properties of these five real-world optimization problems are

analyzed to identify functions with similar properties as surrogate optimization prob-

lems (Section 4.2). Subsequently, the most effective CMA-ES configurations for these

similar functions are determined and applied to the five real-world problems. The

performance of the proposed method is then assessed by the performance of the trans-

ferred CMA-ES configurations on the original real-world optimization problems. Two

distinct optimization approaches for parameter tuning are considered: a brute-force

search within a limited CMA-ES parameter space (Section 4.3) and a comprehensive

parameter tuning using a meta-optimization algorithm (Section 4.4).

The feasibility of creating a comprehensive dataset is more practical in lower dimen-

sions, as the number of possible parameter combinations increases exponentially with

higher dimensions. Thus, the real-world problems considered are two-dimensional and,

therefore, relatively easy to solve. However, the focus of this chapter is not on solving

these optimization problems per se but on tuning the parameters of the optimiza-

tion algorithm and evaluating the effectiveness of transferring configurations tuned

on surrogate optimization problems. Consequently, the fidelity with which surrogate

optimization problems replicate the landscape properties of the original problems is

prioritized over problem dimensionality. This requires actual real-world optimization

problems since benchmark problems, such as the 24 BBOB functions (Section 2.6.1),

cannot fully capture the intricacies and complexities present in real-world scenarios.

The five real-world problems differ in the vehicle setting. The objective function, and

thus the optimization problem from an engineering perspective, is the same. In this

way, it can be investigated how different the optimization landscapes are for a class

of real-world optimization problems, such as different vehicle settings, and further,

whether the proposed method can find different optimal parameter configurations for

each of the five real-world optimization problems.

However, to demonstrate the applicability of the proposed method in higher di-

mensions, Section 4.5 examines five instances of the ten-dimensional Büche-Rastrigin

function from the BBOB benchmark suite as an original optimization problem. Fur-

thermore, in Section 4.6, a comparative analysis of several meta-optimization algo-

rithms is conducted. Finally, the results of this chapter are concluded in Section 4.7.
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4.1 Methodology

Selecting the optimal algorithm parameters for an optimization problem without solv-

ing the original problem requires predicting the performance of the algorithm without

prior problem-solving attempts. One approach is to assess the performance of an algo-

rithm on optimization problems that share properties similar to those of the original

problem.

However, to assess the performance of parameter configurations of an optimiza-

tion algorithm in the first place, multiple full optimization runs must be executed. To

ensure computational efficiency, it is advisable to perform assessments on computation-

ally inexpensive problems that share key characteristics with the original optimization

problem. Benchmark problems can serve as surrogate optimization problems for tun-

ing the parameters of an optimization algorithm. In the following, these surrogate

problems are referred to as tuning references. After identifying the most effective pa-

rameter configuration using the tuning references, this configuration can be applied to

the original optimization problem.

This thesis presents a structured process for efficiently solving black-box optimiza-

tion problems by tuning the parameters of an optimization algorithm with the use of

tuning references. The process consists of four distinct steps (Figure 4.1):

1) identification of similar optimization problems (tuning references),

2) tuning the optimization algorithm’s parameters on tuning references,

3) transfer of the best parameter configuration on tuning references, and

4) application of the tuned optimization algorithm to solve the original problem.

Original Optimization Problem

Optimization Algorithm

parameter
tuning

problem
solving

Tuning Reference

Optimization Algorithm

Meta-Optimization Algorithm

similarity

parameter
transfer

1

23

problem
solving

4 2

Figure 4.1: Schematic representation of the methodology for parameter tuning by employ-
ing computationally inexpensive tuning references similar to the computationally expensive
original optimization problem.
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The following sections address some unanswered details within this process, such

as how to quantify the similarity between optimization problems (Section 4.1.1) and

how to acquire a large set of surrogate problems from which the tuning references can

be selected (Section 4.1.2).

4.1.1 Similarity Quantification

The assessment of similarity between two optimization problems is determined by the

characteristics of their respective tasks. These characteristics include the properties of

the objective function landscape. To systematically capture and quantify the high-level

characteristics of the objective function landscape, Exploratory Landscape Analysis

(ELA) is employed (Section 2.5). ELA provides a set of features for each problem based

on a limited sample of points. These features characterize the low-level properties of

the objective function landscape.

However, the raw feature set generated by ELA can contain overlapping or redun-

dant information. Principal Component Analysis (PCA) [69] is employed to reduce

the dimensionality of the feature set while retaining the most salient information.

The refined feature set obtained from PCA allows for a quantification of the degree

of similarity between two distinct optimization problems p1 and p2. This quantification

is achieved through the computation of the city block distance between their respective

feature vectors, fp1
and fp2

:

dsim(p1, p2) :=
∑
i

|fp1,i − fp2,i|. (4.1)

The city block distance, also known as the Manhattan distance, is particularly suited

for this task since it is sensitive to variations in feature space. The distance between

two vectors is measured as the sum of the absolute differences between coordinates.

A smaller distance dsim is indicative of a greater degree of similarity between the

problems in terms of their ELA features. Conversely, a larger distance points to a

more pronounced dissimilarity. In a nutshell, this metric can quantify the similarity

for comparing and contrasting optimization problems based on their feature vectors.

The computed distance can guide the selection of suitable optimization problems for

use as surrogate problems.
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4.1.2 Artificial Functions

Standard benchmark problems can be utilized to tune the parameters of an optimiza-

tion algorithm. For instance, the Black-Box Optimization Benchmarking (BBOB)

suite provides a set of 24 diverse functions. These functions range from separable

functions with a clear global structure to complex multi-modal functions with no

global structure (Section 2.6.1). However, in order to expand the range of potential

tuning references and encompass a greater variety of landscapes, the generation of

artificial functions is considered.

An artificial function (AF) is constructed for a specific purpose and is often defined

by a mathematical expression. These functions can be used in various contexts. An

example of an application is algorithm tuning. Here an artificial function may be

designed, e.g., to have multiple local minima to challenge optimization algorithms.

Tian et al. [129] proposed a method for generating a large number of artificial

functions. This method employs a randomly constructed tree structure to generate

an artificial function. Operands are placed in the leaf nodes. Operators are placed

in the non-leaf nodes. The operands and operators are selected with an associated

probability from a set of seven operands and 20 operators. Operands are either real

numbers or representations of the decision variables, such as the decision vector x or

the first decision variable x1. The operators are classified into four binary operators,

such as addition or subtraction, eleven unary operators, such as the sine function or

the square root, and five vector-oriented operators, such as the sum or the mean of a

vector.

The hierarchical tree representation of an artificial function is then translated into

a mathematical expression. Once created, this expression represents the artificial

function and returns a function value when evaluated at a point x ∈ X . Both the gen-

eration and the evaluation processes of these artificial functions are computationally

inexpensive. Furthermore, the desired dimensionality of the artificial function can be

specified beforehand.

The instance-generating mechanism of the BBOB suite [48] is replicated by shifting

and rotating the artificial functions after generation. This allows to generate several

instances of the same artificial function. The optimization landscape is fundamentally

influenced by the objective of maximization or minimization. Therefore, the negation

of an artificial function is created by multiplying the original artificial function by

minus one. Figure 4.2 presents five instances of a two-dimensional randomly generated

artificial function along with their negative counterparts.
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Figure 4.2: Five instances of a two-dimensional randomly generated artificial function (top
row) and their negative counterparts (bottom row).

4.2 Analysis of Landscape Similarities

To obtain tuning references for the five two-dimensional, real-world problems from

vehicle dynamics design (Section 3.4), a large set of artificial functions is generated,

and the ELA features of these problems are computed for the similarity quantifica-

tion (Section 4.2.1). The similarity between the real-world problems, the generated

artificial functions and benchmark functions from the BBOB suite is analyzed, and

the functions with the highest similarity (Equation 4.1) to the real-world problems are

identified (Section 4.2.2).

4.2.1 Experimental Setup

In addition to the 24 BBOB functions (Section 2.6.1), a set of 100 000 two-dimensional

artificial functions is generated. Five instances of each artificial function are consid-

ered, as well as their negative counterparts. This results in a total of 120 BBOB

functions and 1 000 000 unique artificial functions. Each BBOB function is denoted

as BBOBid,i, where id corresponds to the specific identifier within the BBOB suite

(Table 2.1), and i denotes the instance number. The 100 000 artificial functions are

systematically numbered and referred to as AFnumber,i. For the negated versions of

these functions, the notation is extended to AFnumber,i,n. The input domain for all

functions, including the artificial and BBOB functions, is aligned with the input space

of the five real-world problems yi, x1 ∈ [−5, 6] and x2 ∈ [−5, 4].
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To quantify similarity using ELA, the focus is on features that can be computed effi-

ciently without additional resampling. This approach results in 55 individual features,

categorized into five groups: classical ELA (distribution, level and meta-features),

information content, dispersion, nearest better clustering and principal component

analysis (Section 2.5.2). Five features (ela level.lda qda {10, 25, 50}, ic.eps {s, ratio})
were found to be infeasible to compute across all functions and were subsequently

omitted from the analysis. In the context of ELA, a sample size of 50 times the

dimensionality of the problem space is suggested as a balanced trade-off between ac-

curacy and computational effort when classifying the BBOB functions using ELA

features [71]. To improve the precision of feature estimation, a Sobol’ sequence de-

sign [96, 121] with 1 000 samples is employed. To ensure equal contribution of each

feature to the similarity quantification, the feature values are min-max scaled to [0, 1].

The feature computation was successfully completed for 99.5% of the randomly gener-

ated artificial functions. The remaining 0.5% of cases where feature calculation failed

are primarily caused by the emergence of “not a number” values within the function

values or the presence of a flat fitness landscape. To remove redundant features and

reduce the dimensionality of the feature space, PCA is used. A cumulative variance

greater than 0.999 results in a dimensionality of the feature space of 31.

The artificial functions are generated using the Python implementation provided

by [83], which itself is based on the methodology outlined in [129]. This implemen-

tation is extended with the described instance generation mechanism. The pflacco

package [102] is utilized for the calculation of ELA features. pflacco offers a native

Python implementation of the extensive collection of ELA features available in the

flacco R package [73].

4.2.2 Results

The landscape properties of each function are described by a feature vector, which

is then reduced using PCA. Figure 4.3 shows the location of the functions based on

the two primary principal components derived from the PCA. The BBOB functions

occupy only a subset of the possible space. The gaps within this space are filled by the

randomly generated artificial functions, suggesting a broader exploration of landscape

characteristics. The real-world problems (Table 3.1) are scattered over a relatively

large area in the principal component space, suggesting notable dissimilarities within

their respective landscapes. In particular, only problems y1 and y2 are close to each

other, indicating a high degree of similarity.
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Figure 4.3: Positions defined by the two main PCA components of the 50 ELA features
for each artificial function (AF), the BBOB functions and the ABS real-world problems yi.

Employing Equation 4.1, the exact distances quantifying the similarity between

the five real-world problems yi and the other functions can be calculated. Figure 4.4

presents the range of these distances. The smallest distance value is observed between

problems y1 and y2, with a value of 0.84. In stark contrast, the distance between

problems y2 and y3 is the greatest with 6.4. The relatively small distance of 0.84

between y1 and y2 implies that these two problems share similar landscapes, whereas

the other real-world problems demonstrate distinct dissimilarities from both y1 and

y2, as well as among themselves.

y1 y2 y3 y4 y5

y1

y2

y3

y4

y5

0 0.84 6.3 4.3 4.2
0.84 0 6.4 4.2 4.3
6.3 6.4 0 6 6
4.3 4.2 6 0 2.6
4.2 4.3 6 2.6 0

Figure 4.4: Similarity distances of the five real-world problems yi to each other (as defined
in Equation 4.1).
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Figure 4.5 illustrates the distances between the real-world problems and their ten

closest artificial counterparts, as well as the ten BBOB functions most similar to each

real-world problem. On average, the artificial functions exhibit a distance of 1.2 from

the real-world problems, while the BBOB functions show an average distance of 2.8.

Based on the ELA features, the artificial functions resemble the real-world problems

closer compared to the BBOB functions. Nonetheless, apart from y1 and y2, the real-

world problems tend to be more dissimilar to each other than even the most similar

artificial function identified for each respective problem.
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Figure 4.5: Similarity distance between the five real-world problems yi and their ten most
similar artificial functions (AF) and BBOB functions (as defined in Equation 4.1).

Figure 4.6 illustrates the landscape of the five real-world problems yi, alongside the

landscapes of the five artificial functions that exhibit the highest degree of similarity

to each of them. All real-world problems yi are characterized by an inherent noise

component, contributing to a highly multi-modal landscape. This is similarly reflected

in the landscapes of the corresponding artificial functions.

Moreover, apart from y3 (under performance tires), the real-world problems ex-

hibit a global structure. Notably, the global structure of y1 and y2 is similar, which

aligns with the small distance calculated (Figure 4.4). The artificial functions that

are identified as similar to these real-world problems successfully replicate this global

structure. In fact, certain artificial functions are similar to both y1 and y2, such as

AF17523,4 and AF27980,4.
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Figure 4.6: The landscapes of the five two-dimensional real-world problems yi and the
five most similar artificial functions (AF) to each problem yi. The objective is minimization.
Thus, dark blue-purple indicates better solutions and yellow worse.
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Figure 4.7: The landscapes of the five two-dimensional real-world problems yi and the five
most similar BBOB functions to each problem yi. The objective is minimization. Thus, dark
blue-purple indicates better solutions and yellow worse.
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Figure 4.7 illustrates the landscapes of the five real-world problems yi, along with

the landscapes of the five BBOB functions from the considered set of 120 that exhibit

the highest degree of similarity to each of them. The BBOB functions capture essential

landscape properties. This is especially noticeable for y3, where the four most similar

BBOB functions are all instances of the Weierstrass function BBOB16. Similar to

the landscape of y3, the Weierstrass function is characterized by high multimodality

and a weak global structure. For y1 and y2, nine out of the ten most similar BBOB

functions are instances of either the Rastrigin function BBOB3 or the Büche-Rastrigin

function BBOB4. Furthermore, the Rastrigin function is identified as the most similar

BBOB function for both y4 and y5. Notably, the Rastrigin function BBOB15 exhibits

similarities to both y4 and y5. Overall, some BBOB functions, in particular the Rast-

rigin function, are similar to all four real-world problems: y1, y2, y4 and y5, indicating

shared high-level landscape properties with these four real-world problems and also

among the four real-world problems.

However, essential landscape properties of the real-world problems are not resam-

pled by the most similar BBOB functions. For example, the Rastrigin function and

the Büche-Rastrigin function are separable. Thus, each variable can be optimized

independently of the others, which does not reflect the more complex interactions be-

tween the real-world problem parameters, x1 and x2. Overall, the BBOB functions do

not resemble the global structure of the real-world problems as much as the artificial

functions.

The global structure and appearance of functions have a strong influence on the

similarity between these functions. Figure 4.8 shows the first five instances of the

sphere function. Due to shifting and rotation, the global minimum for each instance

is located in a different position. This, combined with the bounded decision space,

results in vastly different landscapes.
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x 2

BBOB1, 3

x1

x 2

BBOB1, 4

Figure 4.8: The landscapes of the first five instances of the sphere function. The objective
is minimization. Thus, dark blue-purple indicates better solutions and yellow worse.
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The dissimilarity between the five considered instances of the sphere function (Fig-

ure 4.8) is quantified by calculating the distances according to Equation 4.1. For

example, the calculated distance to instance 1 exceeds 5 for instances 2 and 3. In

contrast, the instances with the smallest distance are 1 and 4, with a distance of 1.6.

This pattern of high dissimilarity across the instances of the same BBOB function

can also be observed for other BBOB functions [84]. The reason for this is that the

ELA features are specifically designed to distinguish between instances of the same

BBOB function.

4.2.3 Conclusion

The randomly generated artificial functions successfully augment the BBOB function

set by covering a wide range of landscapes with different properties. With the proposed

distance metric (Equation 4.1) to quantify the similarity between landscapes of opti-

mization problems, similar function landscapes to the five two-dimensional real-world

problems can be identified.

Furthermore, the process of randomly generating an enormous number of artificial

functions yields landscapes that are more similar to real-world problems than the few

considered instances of the 24 BBOB functions. This similarity is supported by both

quantitative comparisons and visual inspection of the plotted landscapes, confirming

that the considered ELA features effectively capture the essential high-level properties

and global structure of the landscapes.

Although instances of the same BBOB functions share many high-level landscape

properties, such as modality or separability, instances of the same BBOB function can

exhibit considerable variation in their ELA feature values. This variation is also evi-

dent in their visual representations. Moreover, functions that appear visually similar

do not necessarily share the same high-level properties, such as separability.

In the following sections, the ten most similar artificial functions and the ten most

similar BBOB functions to each of the five real-world problems are selected as tuning

references for further analysis. Due to duplicates within the 100 similar functions

initially identified, only a total of 34 distinct BBOB functions and 44 distinct artificial

functions are ultimately selected.
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4.3 Brute Force Search

The aim of the following study is to investigate the transferability of the performance

of CMA-ES parameter configurations from the selected tuning references to the five

two-dimensional real-world problems (Section 3.4). A limited set of CMA-ES param-

eters and options is considered. Using a brute force search approach, all possible

combinations of these parameter options are generated and evaluated on the five real-

world problems, as well as on the 34 selected BBOB functions and the 44 selected

artificial functions (Section 4.3.1). This method provides a table containing a per-

formance value for each parameter configuration across all functions considered. The

collected data is subsequently used to analyze the correlation between the performance

on the tuning references and the real-world problems (Section 4.3.2). Furthermore,

the specific parameter options that lead to either strong or weak performance on the

functions are examined in order to identify similarities between the tuning references

and the original optimization problems in terms of the impact of specific parameter

options on these functions.

4.3.1 Experimental Setup

CMA-ES is considered a state-of-the-art method for solving single-objective continu-

ous black-box optimization problems. The performance of CMA-ES thereby depends

on the chosen parameters and variants (Section 2.4). Table 4.1 summarizes the pa-

rameters and variants considered for the brute force search, along with their respective

options. Combining these options results in a total of 864 different parameter combi-

nations.

Table 4.1: Parameters of the IPOP-CMA-ES with value options considered in the brute
force search. The option 0 for each parameter is the default configuration.

Parameter Description Option 0 Option 1 Option 2
λ Number of offspring 6 12 18
µr Selection ratio µr = µ

λ
1
2

1
6

5
6

σ0 Initial standard deviation 2 4 6
bc Box constraint handling Projection Reflection
Active Covariance matrix update off on
Elitism Selection strategy (µ, λ) (µ + λ)
om Orthogonal mirrored sampling off on
Weights Option for recombination logarithmic equal
Restart Restart strategy IPOP
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Because a restart can utilize the remaining evaluation budget and thus has the

potential to improve performance, the IPOP restart strategy is selected and always

enabled by default. The CMA-ES default parameter configuration, as referenced in the

following section, is the configuration with parameter option 0 set for each parameter.

To assess the performance of CMA-ES parameter configurations in solving opti-

mization problems, the Area Under the Curve (AUC) of the ECDF is utilized. This

metric gauges the effectiveness of an optimization algorithm in terms of anytime per-

formance (Section 2.6.2). The ECDF curves are computed using 81 target values

logarithmically distributed from 108 to 10−8. Furthermore, the AUC values are nor-

malized by the evaluation budget. To use the same target values for all functions,

the objective functions are shifted by the function value at the global optimum. The

adjusted objective functions now return the distance to the global optimum.

The performance of a solution candidate for the real-world problems is given by

the mean braking distance over ten braking maneuvers (Equation 3.4). The objec-

tive function of the real-world problem returns the distance to the global best brak-

ing distance. As the input parameters for the five real-world problems are discrete,

the returned objective function values are also discrete. For instance, for the real-

world problem y1, the second-best solution is already 0.0005 m less optimal, and the

third-best is 0.00146 m less optimal. Therefore, achieving a smooth approach and

convergence to the optimal solution by the optimization algorithm is not possible for

the real-world problems. Moreover, due to noise and simulation accuracy, a differ-

ence in braking distance measured in millimeters cannot be regarded as significant.

In the real world, such a small difference is within the measurement tolerance and,

therefore, practically indistinguishable. Therefore, target values as precise as 10−8 are

not suitable. Instead, the performance of a parameter configuration on the real-world

problems is evaluated using target values of 0.2 m, 0.1 m, 0.05 m and 0.01 m. A

solution that is within 1 cm of the optimal braking distance is deemed adequate for

solving the real-world problems.

To evaluate the performance of a parameter configuration on the two-dimensional

problems, the mean AUC value is calculated over 200 independent runs, each with

an evaluation budget of 2 000 evaluations. For the artificial functions, an exhaustive

search is conducted using CMA-ES with the default parameter configuration, and the

evaluation budget is increased to 200 000 evaluations. This ensures that at least one

high-quality solution is discovered.

The study employs a modular implementation of CMA-ES [26, 131], which supports

various CMA-ES variants that can be combined in an arbitrary manner.
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4.3.2 Results

Each of the 864 parameter configurations is evaluated across all five real-world prob-

lems and the tuning references. For each real-world problem, the configuration that

achieves the highest average AUC value across the ten most similar tuning references

is chosen. This reduces the risk of overfitting to a single function. Two sets are consid-

ered as tuning references: the artificial functions and the BBOB functions. In addition

to the configurations derived from tuning references, the six parameter configurations

that exhibit the highest AUC values on each real-world problem and across all five

real-world problems are selected for comparison.

Figure 4.9 presents the AUC values obtained on the five real-world problems along-

side the average AUC across all. These values are expressed as the relative improve-

ment in the AUC value in percent compared to the default configuration.
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Figure 4.9: Relative improvement in percent of AUC to the default configuration when
transferred to the five real-world problems and across all ȳ1:5. The best configuration on each
and across all real-world problems, across the ten most similar artificial functions AFsim yi

and across the ten most similar BBOB function BBOBsim yi to each real-world problem ȳ1:5
are listed. The values on the diagonals are each highlighted in bold.
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The optimal parameter configuration for each real-world problem consistently out-

performs the default configuration. The degree of improvement varies across the prob-

lems. The improvement for y1 is 0.54%, and for y4 1.1%. In contrast, y2 and y5 see

more notable gains of 3.7% and 4.3%, respectively. The most substantial enhance-

ment is observed for y3, with an impressive improvement exceeding 21%. The best

configuration across all real-world problems achieves only marginal performance im-

provements for y1, y2 and y5, and a slight decrease for y4. However, this configuration

remains the best on average due to the significant 20% enhancement on y3. The weak

global structure in the landscape of y3 impedes finding the solution. This is reflected

in the AUC value of the default configuration, which is only 0.49. In contrast, the

AUC values for the other problems are 0.98 for y1, 0.89 for y2, 0.91 for y4 and 0.76

for y5. Therefore, y3 presents the greatest opportunity for performance gains due to

its initially lower AUC value.

When the best parameter configurations are exchanged between the similar prob-

lems y1 and y2, an improvement in performance is observed, reflecting their similarity.

However, applying these parameter configurations to the more distinct problems y3,

y4 and y5 yields variable results: performance deteriorates for y4 but improves for

y5 and y3. Interchanging configurations among the real-world problems tend not to

result in significant performance improvements and can actually reduce performance.

For example, employing the best configuration for y5 on y3 and y4 results in perfor-

mance degradation of roughly 10% and 12%, respectively. Also, transferring any of

the best parameter configurations from y1, y2, y3 or y5 to y4 results in performance

degradation.

The transfer of the best parameter configuration from the ten most similar artificial

functions to each of the five real-world problems leads to increased performance on

y1, y2 and y5 compared to the default configuration. However, for y3 and y4, the

resulting performance is significantly worse. Moreover, these two best configurations

on AFsim y3
and AFsim y4

also perform very poorly when applied to the other three

real-world problems. The best configurations on AFsim y1
and AFsim y2

are identical.

The reason for this is that y1 and y2 are very similar to each other and six of the ten

most similar artificial functions are the same for both y1 and y2. The performance

improvement gained through the transfer from similar artificial functions is noteworthy

when compared to the actual best configurations for these problems.

The transfer of the best parameter configuration from the ten most similar BBOB

functions to each of the five real-world problems leads to increased performance only

on y1 and y3 compared to the default configuration.
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The observed performance degradation for certain parameter configurations, when

transferred to the real-world problems, may be attributed to specific parameter options

that yield favorable results on the tuning references but underperform on the original

problems. To identify these problematic options, an examination of the parameter

options that are successful on the real-world problems is conducted. Accordingly, the

20 most effective parameter configurations for each of the five real-world problems are

analyzed. Figure 4.10 illustrates the frequency of occurrence of each option for every

parameter within these configurations.
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Figure 4.10: Frequency of occurrence of each parameter option given in Table 4.1 for
every parameter within the best 20 configurations for each real-world problem yi. Options
corresponding to the best-performing configuration are highlighted with yellow hatching.

Different parameter configurations perform best on each real-world problem. How-

ever, there are discernible patterns and similarities in the frequency of occurrence for

some parameter options within the best 20 parameter configurations. Notably, for all

five real-world problems, the elitist option 0 is consistently chosen, which corresponds

to the standard (µ, λ) selection strategy in CMA-ES. Similarly, the box constraint

handling method of the best configuration is consistently option 1 reflection which is

also more frequently observed than its counterpart, option 0 projection. The default

weights option appears more often in the top 20 configurations for four out of the

five problems. In contrast, the use of the active update is roughly as frequent as not

using it across the problems, with the exception of y3 where option 0 is more frequent.

However, the best configuration for y3 includes the active update, suggesting that its
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importance for high-performing configurations may not be as significant. Orthogonal

mirrored sampling option 1 is part of the best configuration and is frequently within

the top 20 for y1, y2 and y5, while option 0 is favored for y3 and y4.

Regarding the population size, option 0, which represents the smallest number of

6 offspring, and for the initial standard deviation, options 1 and 2, which represent

larger values of 4 and 6 compared to the default value of 2, seem to offer some per-

formance improvement across all problems. For the selection ratio, no clear pattern

emerges across the five real-world problems, and the preference for each problem is

also ambiguous. The only exceptions are on y5, where the default option is more fre-

quent, and on y4, where option 2 is more frequent within the top 20 configurations.

Interestingly, for y2, option 2 never occurs.

Therefore, overall, for the five real-world problems, the (µ, λ) selection strategy,

reflection, and the default weights option lead to good performance and should be used.

Using active leads to no significant improvement. Also, a small number of offspring and

an increased initial standard deviation should be used. Mirror orthogonal sampling

should only be used for y1, y2 and y5.

Figure 4.11 illustrates the frequency of occurrence of each option for every pa-

rameter within the best 20 parameter configurations on the ten most similar artificial

functions to each of the five real-world problems.
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Figure 4.11: Frequency of occurrence of each parameter option given in Table 4.1 for every
parameter within the best 20 configurations on the ten most similar artificial functions to
each real-world problem yi. Options corresponding to the best-performing configuration are
highlighted with yellow hatching.
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Patterns also emerge on the artificial functions, some of which are very similar

to those observed on the real-world problems. The default weights option and the

orthogonal mirrored sampling option exhibit patterns that almost perfectly resemble

those seen on the real-world problems. For the active update, the step size, the number

of offspring and the selection ratio, the patterns are similar for the majority of cases.

However, there is a clear difference in how often the box constraint handling method

and the elitist option occur. On artificial functions similar to y3, y4 and y5, the projec-

tion method is more effective, and the (µ+ λ) selection strategy always occurs within

the top 20 configurations on artificial functions similar to y3 and y4. In fact, the

(µ + λ) selection strategy can be identified as the reason for the poor performance on

the real-world problems. When configurations are limited to those with a (µ, λ) se-

lection strategy coupled with reflection, the best parameter configuration significantly

enhances performance on the real-world problems. For y3, the improvement is the

most pronounced, with a leap from -35% to 21%. For y4, the increase is from -6.6% to

-0.4%, and for y5, a slight improvement from 1.6% to 1.8% is observed (Figure 4.12).

Thus, the artificial functions similar to y3 and y4 exhibit properties where the (µ+ λ)

selection strategy can be beneficial.
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Figure 4.12: Relative improvement of the AUC to the default configuration when trans-
ferred to the five real-world problems and across all yi. The performance of the best configu-
ration, limited to those with a (µ, λ) selection strategy coupled with reflection, across the ten
most similar artificial functions AFsim yi to each of the five real-world problems yi are listed.

Similarly, on the BBOB functions that are similar to each of the five real-world

problems, the (µ + λ) selection strategy is often within the top 20 parameter con-

figurations (Figure 4.13). Furthermore, the parameter options that perform well on

the real-world problems differ from the pattern within the similar BBOB functions,

except for the weights option and the box constraint handling. The difference in per-

formance is also evident in the decrease observed when applying the best parameter

configurations from the similar BBOB functions to the real-world problems.
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Figure 4.13: Frequency of occurrence of each parameter option given in Table 4.1 for
every parameter within the best 20 configurations on the ten most similar BBOB functions
to each real-world problem yi. Options corresponding to the best-performing configuration
are highlighted with yellow hatching.

4.3.3 Summary

Significant opportunities for performance improvement are revealed by the conducted

study. For each of the five real-world problems, a different parameter configuration

achieves the best performance. However, clear patterns have emerged across all five

real-world problems. The (µ, λ) selection strategy, reflection and the default weights

option lead overall to an enhanced performance. The active update option appears to

have a negligible impact on the results and can be retained in its default setting. More-

over, employing a smaller number of offspring and a larger initial standard deviation

is recommended. The use of mirrored orthogonal sampling is particularly beneficial

for the real-world problems y1, y2 and y5.

However, these patterns do not always translate to similar artificial functions. The

(µ + λ) selection strategy, while advantageous for artificial functions similar to y3

and y4, results in a significant drop in performance when applied to their real-world

counterparts. Similarly, transferring the box constraint handling method from the

artificial functions similar to y3, y4 and y5 results in a performance drop. Yet, when

these two parameter options are set beforehand, the similar functions always provide

a configuration that is better than the default configuration in four out of five cases.

Only for y4 is the performance 0.4% worse.



64 Chapter 4 Tuning CMA-ES Parameters

The application of parameter configurations derived from BBOB functions that are

similar to the real-world problems is advantageous for y1 and y5, albeit marginally.

However, for the other problems, such an approach is detrimental because the pat-

terns of parameter options that frequently occur are very dissimilar. Consequently,

transferring parameters from BBOB functions to real-world problems is generally not

recommended. An exception is observed for y3, where similar BBOB functions, often

instances of the Weierstrass function, provide a valuable reference for tuning.

The objective function landscapes of the real-world problems exhibit multimodality

because of noise. This characteristic is reflected in the similar functions by an inter-

nal sine function. Especially the (µ + λ) selection strategy is not recommended for

noisy functions. Given this knowledge, a (µ+ λ) selection strategy that is effective on

artificial functions should be approached with caution when applied to the real-world

problems. The discrepancy in how these artificial functions mimic noise-induced mul-

timodality suggests that the (µ + λ) selection strategy should be disregarded entirely

for the real-world applications.

4.4 Meta-Optimization

Following the previous Section 4.3, this section aims to expand the number of CMA-

ES parameters considered for tuning to unlock additional potential for performance

improvement. Especially the learning rates of CMA-ES have a significant impact on

the performance of CMA-ES. With the expansion of CMA-ES parameters, the use of

a meta-optimization algorithm becomes necessary.

Since each real-world problem has a unique optimal parameter configuration, it

is necessary to perform similarity quantification and tuning for each specific case.

Practically, however, it is not feasible to perform a new analysis for each variation just

to determine the best parameter setting for a particular vehicle setting (Table 3.1).

Therefore, the objective is to identify a robust parameter configuration that enhances

the performance across all five real-world problems.

The experimental setup details are provided in Section 4.4.1. The best configura-

tions identified for the real-world problems are compared with the optimal configura-

tions derived from the most similar artificial functions and the most similar BBOB

functions (Section 4.4.2).
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4.4.1 Experimental Setup

The brute force search revealed that the (µ+λ) selection strategy does not yield benefi-

cial results when applied to the five two-dimensional real-world problems (Section 4.3).

However, this strategy did show some utility when employed on artificial functions

similar to the real-world problems. Therefore, in the upcoming meta-optimization

process, the (µ + λ) selection strategy is excluded from the set of parameters to be

tuned. Table 4.2 lists the CMA-ES parameters selected for consideration and their

corresponding value ranges.

Table 4.2: CMA-ES parameters with value space considered in the meta-optimization.

Parameter Description Space
c1 Learning rate rank-one update ]0, 1]
cc Learning rate adaption of C ]0, 1]
cµ Learning rate rank-µ update ]0, 1]
cσ Learning rate step size control ]0, 1[
λ Number of offspring {6, 9, ..., 18}
µr Selection ratio µr = µ

λ { 16 ,
2
6 , ...,

5
6}

σ0 Initial standard deviation {2, 3, . . . , 6}
bc Box constraint handling {projection, reflection,

wrapping, reinitialization}
Active Covariance matrix update {on, off}
Orthogonal Orthogonal sampling {on, off}
Mirrored Mirrored sampling {on, off}
Weights Option for recombination {logarithmic, equal}
Restart Restart strategy {IPOP, BIPOP}

The tuning process is performed separately on three distinct sets: the five real-

world problems, the 24 distinct BBOB functions and the 44 distinct artificial functions

that resemble the real-world problems. The performance metric used is consistent with

the one employed in the brute force search (Section 4.3.1). However, performance

is assessed across all functions within each set. Therefore, the number of runs to

assess the performance of a single parameter configuration during meta-optimization

is reduced from 200 runs to 100 for the real-world problems and to 20 for both the

artificial and BBOB functions.

CMA-ESwM is selected as the meta-optimization algorithm (Section 2.4.3). The

meta-optimization evaluation budget is set to 2 500 for a single meta-optimization run.

To ensure statistically significant results, the meta-optimization is repeated five times

for each set. This study utilizes Optuna’s implementation of CMA-ESwM [2].
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4.4.2 Results

The brute force search assessed 864 parameter configurations, and the optimal con-

figuration identified improves the performance across all five real-world problems by

2.9% compared to the default parameter configuration (Figure 4.9). Further improve-

ments are observed when in addition, the learning rates of CMA-ES parameters are

considered. The performance gains of the meta-optimization directly on the real-world

problems range from at least 3% to 4.4% across the five conducted runs. The average

improvement is 3.6% across all runs.

However, in practical scenarios, tuning would not be performed directly on real-

world problems. Therefore, the results obtained serve as a benchmark for the best-case

scenario. Tuning references are used as surrogate problems for this purpose. When

the artificial functions most similar to the real-world problems are used as tuning

references, the average improvement gain of the five optimal configurations on the

real-world problems is 1.1%, with the best configuration achieving a 1.7% increase

and the least effective configuration showing a 0.7% improvement. Using the most

similar BBOB functions as tuning references results in an average improvement of

1.9% across the five configurations, with results ranging from 1.7% to 2.5%. All three

sets show significant variation in improvement.

In contrast to the previous study, using artificial functions as tuning references leads

to inferior outcomes compared to using BBOB functions. The optimal configuration

derived from the artificial functions performs similarly to the least effective out of the

five meta-optimization runs using the BBOB functions as a tuning reference.

Figure 4.14 shows the values of the learning rates of the optimal configurations

from the meta-optimization runs and the recommended default values within CMA-

ES. Across all five meta-optimization runs on the real-world problems, a slight increase

in cµ and a decrease in c1 are found to be optimal. The learning rate for the rank-

one update of the covariance matrix c1 utilizes information on correlations between

generations by exploiting the evolution path. The rank-µ update efficiently incorpo-

rates information from the entire population. Reducing c1 and increasing cµ suggests

that the covariance matrix updates should be more influenced by information from

the current population rather than from past generations via the evolution path to

improve the performance of CMA-ES on the real-world problems. The similar func-

tions capture this phenomenon but do not reflect the exact magnitude. The increase

from the default value is excessive for cµ, while the decrease from the default value is

inadequate for c1 compared to the optimal values.
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Figure 4.14: Values of the learning rates of the CMA-ES default configuration and the
best configurations from five meta-optimization run on the five real-world problems yi, the
most similar artificial functions (AF) and the most similar BBOB functions.

In contrast, the optimal values for cσ and cc for the five real-world problems are

widely dispersed throughout the feasible range of values. The values obtained from the

artificial functions and the BBOB functions also exhibit significant variation. However,

each configuration yields superior results compared to the default configuration. Since

there is no discernible underlying trend for cc and cσ, the default values appear to be

appropriate.

The optimal choices for the remaining parameters on real-world problems align with

those identified by the brute force search (Section 4.3). A smaller number of offspring,

a selection ratio of 0.5 and an increased initial standard deviation are deemed optimal.

Furthermore, equal weights, no orthogonal sampling and reflection are among the best

options. These clear trends are similarly captured by the artificial functions similar to

the real-world problems and by the BBOB functions, with the exception of the box

constraint handling method. The meta-optimization algorithm consistently selects

projection for the artificial functions, while for the BBOB functions, reinitialization is

chosen two out of five times instead of reflection.
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4.5 Tuning for Higher Dimensional Problems

This section builds upon the method outlined in Section 4.4 and extends the analysis to

higher-dimensional spaces by replacing the five two-dimensional real-world problems

with five instances of the ten-dimensional Büche-Rastrigin function from the BBOB

benchmark suite.

The experimental setup remains consistent with that of the previous section, with

specifics provided in Section 4.5.1. The performance of the identified best configu-

rations for the BBOB instances is then evaluated against the optimal configurations

derived from the most similar artificial functions (Section 4.5.2).

4.5.1 Experimental Setup

To obtain tuning references for the five instances of the ten-dimensional Büche-

Rastrigin function from the BBOB benchmark suite, a large set of artificial functions

is generated, and the ELA features of these problems are computed for similarity

quantification, similar to Section 4.2. The differences are explained below.

A set of 100 000 ten-dimensional artificial functions is generated. Again five in-

stances of each artificial function are considered, as well as their negations, resulting

in a total of 1 000 000 unique artificial functions. The input domain for all functions

is x ∈ [−5, 5]10. A Sobol’ sequence design [96, 121] with 2 000 samples is employed

for the ELA feature calculation. The feature computation was successfully completed

for 76.5% of the randomly generated artificial functions. A PCA, with a cumulative

variance threshold above 0.999, reduces the feature space to 27 dimensions. For each

BBOB problem, the ten most similar artificial functions in terms of their distance in

feature space (Equation 4.1) are selected. This results in a set of 41 distinct functions.

The meta-optimization process adheres to the same parameter space as introduced

in Section 4.4. Only the number of offspring is adjusted to accommodate the higher

dimensionality. Table 4.2 lists the CMA-ES parameters and their corresponding value

ranges. The new considered numbers of offspring are {10, 16, 22, . . . , 40}. The tun-

ing process is executed separately for the five BBOB functions and the 41 artificial

functions. To evaluate the performance of each parameter configuration, 20 runs are

conducted for each function. CMA-ESwM (Section 2.4.3) is selected as the meta-

optimization algorithm with an evaluation budget exceeding 2 000 for each run. To

ensure statistically significant results, the meta-optimization is repeated five times for

each set.
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4.5.2 Results

Figure 4.15 visualizes the position of the functions based on the two primary principal

components derived from the PCA. The five BBOB functions are observed to be clus-

tered within a relatively confined region of this principal component space, showing

less dispersion compared to the five two-dimensional real-world problems illustrated in

Figure 4.3. The randomly generated ten-dimensional artificial functions span a broad

area, encompassing the space where the five instances of the Büche-Rastrigin func-

tion are situated. Thus, for ten-dimensional optimization problems similar artificial

functions can also be generated to serve as tuning references.

Figure 4.15: Positions defined by the two main PCA components of the 50 ELA features
for each of the ten-dimensional artificial function (AF) and the five instances of the ten-
dimensional Büche-Rastrigin function from the BBOB benchmark suite.

Transferring the best parameter configurations, tuned on the 41 most similar ar-

tificial functions, to the five BBOB problems yields performance improvements over

the default CMA-ES parameter configuration, with gains ranging from at least 1.6%

to 1.8% across the five meta-optimization runs. The average improvement is 1.7%

across all five runs. In contrast, direct tuning on the BBOB problems results in per-

formance gains between 1.7% and 2.4%, with an overall average of 2.1% across the five

runs. Therefore, the proposed method attains approximately 81% of the total possible

improvement for the five instances of the ten-dimensional Büche-Rastrigin function.
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Figure 4.16 presents the learning rates from the optimal configurations obtained in

the meta-optimization runs compared to the recommended default settings for CMA-

ES. The meta-optimization runs performed on the five BBOB problems consistently

identify a decrease in the learning rates for cc and c1 as optimal. Conversely, the

optimal values for cσ, and to a lesser extent cµ, show a wide dispersion over the allowed

range of values. This variation is also captured by the similar artificial functions,

although with a smaller range for cσ.
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Figure 4.16: Values of the learning rates of the CMA-ES default configuration and the best
configurations from five meta-optimization runs on the five instances of the ten-dimensional
Büche-Rastrigin function from the BBOB benchmark suite and the most similar artificial
functions (AF).

The optimal settings for the other parameters show congruence between the similar

artificial functions and the BBOB problems. For example, both show that a higher

number of offspring, about 22 to 26, is preferable to the default of 10, and an initial step

size between 3.0 and 6.0 is more effective than the default of 2.0. The selection ratio for

both sets varies between 0.33 and 0.66. Moreover, the active update of the covariance

matrix is consistently chosen by the meta-optimization algorithm, while orthogonal

sampling is not. For the remaining parameters, no definitive pattern emerges from the

analysis of either the BBOB problems or the similar artificial functions.
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4.6 Comparison of Meta-Optimization Algorithms

The tuning of CMA-ES parameters represents a meta-optimization task (Figure 2.3).

In Sections 4.4 and 4.5, a specific optimization algorithm is utilized for this purpose.

This section presents a comparative analysis of various meta-optimization algorithms

that can also be applied to this task.

The objective of meta-optimization is to identify the optimal set of parameter

values that enhance the performance of the optimization algorithm in solving the orig-

inal optimization problem. The optimization of CMA-ES parameters can be viewed

as a mixed-integer optimization problem. This means tuning both continuous CMA-

ES parameters and various combinations of discrete parameter values and CMA-ES

variants.

Several meta-algorithms have been developed. These algorithms efficiently navi-

gate through both continuous and discrete parameter spaces, balancing exploration

and exploitation to converge on a robust set of parameters that yield optimal perfor-

mance for the given optimization tasks.

The Sequential Model-based Algorithm Configuration (SMAC) [62] is a well-

known algorithm for parameter tuning. It uses a sequential model-based optimization

(SMBO) strategy that integrates Bayesian optimization with random forest regression

models to predict the performance of parameter configurations. SMAC is mainly ap-

plied in machine learning for algorithm configuration, feature selection and the search

for optimal deep neural network architectures [35, 82].

Another notable SMBO algorithm is the Tree-structured Parzen Estimator

(TPE) [16]. This algorithm uses a methodology based on tree-structured density

estimation to identify optimal parameter settings efficiently. Employing TPE to tune

CMA-ES parameters improved the performance on various benchmark optimization

problems [142].

Additionally, CMA-ES itself can be used as a meta-algorithm. To address the

challenge of mixed-integer optimization, the margin extension [46] for integer handling

within CMA-ES can be utilized (Section 2.4.3).

The focus of this study is to investigate the efficacy of CMA-ESwM as a meta-

algorithm in the context of CMA-ES parameter tuning. To this end, a series of exper-

iments on several benchmark optimization problems are conducted. The performance

of CMA-ESwM is then compared to that of SMAC, TPE and random search.
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4.6.1 Experimental Setup

The effectiveness of CMA-ES is evaluated using four benchmark functions from the

BBOB set (Section 2.6.1): BBOB1, BBOB4, BBOB20 and BBOB21. Functions BBOB1

and BBOB4 are separable with a global structure, while BBOB20 and BBOB21 lack

a global structure and are non-separable. BBOB1 is unimodal, whereas BBOB4,

BBOB20 and BBOB21 are multimodal. These functions are considered in two di-

mensions to reduce computational effort.

Each run of CMA-ES is allocated a maximum of 400 evaluations for BBOB1 and

2 000 for BBOB4, BBOB20 and BBOB21. The lower budget for BBOB1 is due to its

unimodal nature, which generally requires fewer evaluations for optimization. Four

instances of each BBOB function are tested, with 25 runs per instance, resulting in a

total of 100 runs for each function. The AUC is calculated from these runs to evaluate

the effectiveness of a CMA-ES configuration.

Table 4.3 provides an overview of the parameters and variants of CMA-ES chosen

for tuning in this study. The four learning rates c1, cc, cµ and cσ are continuous

variables, the number of offspring λ is an integer, and the remaining parameters are

categorical. Thus, tuning these CMA-ES parameters represents a mixed-integer opti-

mization problem.

Table 4.3: CMA-ES parameter space for the meta-optimization.

Parameter Description Variants and Parameters
c1 Learning rate rank-one update ]0, 1]
cc Learning rate adaption of C ]0, 1]
cµ Learning rate rank-µ update ]0, 1]
cσ Learning rate step size control ]0, 1[
λ Number of offspring {4,6,..,20}
µr Selection ratio µr = µ

λ {0.3, 0.5, 0.7}
σ0 Initial standard deviation {0.2, 0.4, 0.6, 0.8}
bc Box constraint handling {projection, reflection, wrapping,

uniform reinitialization, normal
reinitialization}

Active Covariance matrix update {on, off}
Elitism Selection strategy {(µ, λ), (µ + λ)}
Orthogonal Orthogonal sampling {on, off}
Mirrored Mirrored sampling {on, off}
Threshold Mutation vector threshold [100] {on, off}
Weights Option for recombination {logarithmic, equal, α-decay}
Restart Restart strategy {IPOP, BIPOP}
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This study utilizes for the meta-optimization algorithms the SMAC3 implementa-

tion [82], as well as Optuna’s CMA-ES sampler, TPE sampler and Random sampler [2],

each with their default parameters. The evaluation budget for the meta-algorithm is

3 000, and 50 full parameter tuning runs are performed on each BBOB function for

each meta-algorithm.

4.6.2 Results

Figure 4.17 shows the median performance of CMA-ES parameter configurations dur-

ing the parameter tuning across 50 runs for each meta-algorithm considered, on the

four BBOB functions BBOB1, BBOB4, BBOB20 and BBOB21, which serve as the

original optimization problems. The objective for the meta-optimization algorithm is

to maximize the AUC.
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Figure 4.17: Median AUC values over evaluations of 50 runs for the four meta-optimization
algorithms considered for tuning CMA-ES parameters on the four two-dimensional BBOB
functions BBOB1,BBOB4,BBOB20,BBOB21.
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For all four BBOB functions, the majority of performance improvements in CMA-

ES parameters occur within the first 1 000 evaluations. CMA-ESwM and TPE show

comparable performance over the course of evaluations, with TPE slightly performing

better in the early stages (up to 1 000 evaluations), while CMA-ESwM tends to perform

better thereafter. During the initial 1 000 evaluations, SMAC may appear to be slower

in discovering high-quality solutions when compared to other algorithms. However, the

performance improves over time. In the end, SMAC achieves comparable or slightly

better results compared to the meta-algorithms mentioned above. In contrast, the

progress of the random search significantly declines after 500 evaluations.

To verify the efficacy of the best configuration identified by a meta-algorithm,

the configurations are subjected to 50 additional runs on the BBOB functions for

validation purposes (Figure 4.18).
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Figure 4.18: Boxplot of the validated AUC values of the best CMA-ES configurations
found by the different meta-algorithms on each of the four BBOB functions considered. For
each meta-algorithm and BBOB function, 50 parameter tuning runs were performed. Each
configuration found in this process is, in turn, validated by 50 validation runs.
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CMA-ESwM can compete with state-of-the-art algorithms like SMAC and TPE as

a meta-optimization algorithm for tuning the parameters of CMA-ES. The overlap in

the AUC values of the solutions identified by each meta-algorithm is notably greater

than the disparities in their median values across all problems. Nevertheless, all three

algorithms outperform random search. Consequently, for the selection of the meta-

algorithm, additional factors, such as the wall-clock time, are required.

In terms of wall-clock time, CMA-ESwM proves to be the fastest of the trio on

average. This is due to its ability to parallelize the evaluation of the population

within a single generation. Consequently, evaluating a new configuration in random

search incurs minimal computational overhead but still requires approximately 50%

more time than CMA-ESwM to finalize a parameter tuning run when evaluations

are conducted sequentially. In contrast, both SMAC and TPE take roughly two to

three times longer than CMA-ESwM. The longer wall-clock time of these algorithms

is not only due to their sequential evaluation processes but also to the additional

internal computations and model training required. These computations remain time-

consuming despite potential increases in parallelization.

In a nutshell, CMA-ES outperforms SMAC and TPE in terms of wall clock time.

The reason for that is the inherent efficiency and parallelization capabilities of CMA-

ES. However, a simple random search as a meta-optimization algorithm can identify

very good parameter configurations. Especially when the meta-optimization can be

executed fully parallel, the use of random search can significantly reduce the wall-clock

time required.

4.7 Conclusion

This chapter presents a method for tuning CMA-ES parameters using a meta-

optimization approach (Section 4.1). The method relies on computationally inexpen-

sive functions similar to the original optimization problems. These similar functions

are employed as tuning references. The study generates a set of artificial functions

that augment the BBOB function set, thereby offering a broad array of optimization

landscapes. ELA features are employed to measure the similarity between different

landscapes and identify functions that closely resemble the landscapes of five two-

dimensional real-world problems. Based on quantitative measures and visual compar-

isons, these artificial functions reflect the real-world landscapes more accurately than

the BBOB functions (Section 4.2).
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Through a brute force approach (Section 4.3), the patterns between the best pa-

rameter configurations on the similar functions and their real-world counterparts can

be analyzed. This conducted study revealed that certain landscape properties of these

similar functions remain elusive. In particular, the choice of the selection strategy

within CMA-ES and the box constraint handling method for real-world applications

should not rely on the performance results obtained from these similar functions.

The results from the brute-force approach described in Section 4.3 highlight the

uniqueness of each real-world problem landscape. Each problem requires a tailored

parameter configuration for an optimal performance of the optimization algorithm.

However, due to the computational effort required to identify similar functions, tuning

the parameters for each real-world problem instance is not feasible. Therefore, a

single parameter configuration that outperforms the default across all five problems

is identified (Section 4.4). Moreover, the tuning method is also successfully applied

to the ten-dimensional Büche-Rastrigin function from the BBOB benchmark suite

(Section 4.5).

Furthermore, the use of CMA-ESwM as a meta-optimization algorithm is a cost-

effective strategy for parameter tuning. This approach delivers competitive results

compared to established algorithms for parameter tuning, such as SMAC and TPE

(Section 4.6).

Tuning the parameters of CMA-ES to specific low-level probabilities of real-world

problem instances can lead to significant improvements. However, this procedure is

computationally expensive. Moreover, the identified configuration is only optimal for

that particular instance. An alternative is to identify an optimal general-purpose

configuration that solves a wide range of problem instances of one problem class.

This means tuning the algorithm to more high-level probabilities prevalent across all

problem instances. Thus, a well-performing parameter configuration can be identified

computationally efficiently for many problems simultaneously.


