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Chapter 3

Engineering Problems

Vehicle dynamics control systems (VDCSs) have become a cornerstone in the auto-

motive industry. These systems use advanced control algorithms that, in conjunction

with a range of sensors and actuators, dynamically modulate the vehicle’s response,

taking into account different driving conditions [104]. Therefore, VDCSs significantly

improve both the safety and driving dynamics of modern vehicles providing enhanced

driving pleasure.

The basis for modern VDCSs was laid by the development of the Antilock Braking

System (ABS) [75] and the Electronic Stability Control (ESC) [78]. The introduction

of these two systems in road vehicles has been shown to significantly improve braking

performance and reduce the number of traffic accidents and fatalities by mitigating

skidding and loss of control [25, 33, 34, 81].

The behavior of VDCSs depends on the precise calibration of system parameters

designed to achieve optimal performance. Recent advances in simulation technology,

coupled with the exponential growth in computational resources, have paved the way

for the virtual pre-design of these parameters. To facilitate this virtual pre-design pro-

cess, objective characteristic values (CVs) are required for assessing the performance of

system parameters. These CVs are integral to the formulation of an objective function

for determining the optimal parameters using an optimization algorithm.

In Sections 3.1 and 3.2, two such objective functions are defined mathematically

for two different VDCSs. Furthermore, a brief overview of vehicle dynamics simulation

and modeling is given (Section 3.3). Finally, a dataset created for benchmarking and

algorithm design throughout this thesis is described (Section 3.4).
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3.1 Antilock Braking System

The ABS is designed to prevent wheels from locking and to maximize the brake forces

exerted by the tires during braking by adjusting brake pressure to keep brake slip

within an optimal range. This reduces the braking distance. Moreover, the driver

maintains control and can steer the vehicle even in an emergency braking situation.

The brake slip s is the amount by which the wheel’s circumferential speed vwheel is

behind the vehicle’s linear speed (road speed) vvehicle [75]:

s =
vvehicle − vwheel

vvehicle
· 100%. (3.1)

The longitudinal brake force that can be transmitted is proportional to the coef-

ficient of friction µx. Figure 3.1 illustrates the relationship between the coefficient of

friction and brake slip during straight-line braking with ABS for various road con-

ditions. The ranges in which the ABS keeps the brake slip are shaded blue. The

curves for dry, wet and ice demonstrate that ABS can significantly reduce braking

distances compared to scenarios where the wheels lock up (s = 100%). Snow leads

to a unique situation where a wedge of snow accumulates in front of locked wheels,

aiding in deceleration. In this case, the benefit of ABS lies in preserving steerability.
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Figure 3.1: Relationship between the coefficient of friction µx and brake slip s during
straight-line braking for various road conditions (1: dry, 2: wet, 3: snow, 4: ice). ABS keeps
the brake slip in the shaded blue ranges. Figure is adapted from [75].
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A standard maneuver for assessing a vehicle’s braking performance is the emer-

gency straight-line full-stop braking maneuver with ABS fully engaged [63]. A braking

maneuver is defined, consisting of the following three phases (Figure 3.2):

(1) Acceleration of the vehicle to a maximum velocity of 103.5 km/h,

(2) Coasting the vehicle in neutral without accelerating or braking to 103 km/h,

(3) Braking of the vehicle with maximum deceleration until the vehicle stops.
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Figure 3.2: Illustration of the lateral velocity vx of a vehicle over the three defined phases
(1: acceleration, 2: coasting, 3: braking) of an emergency straight-line full-stop braking
maneuver for calculating the braking distance from the start velocity vs = 100 km/h at start
time ts to the end velocity ve = 0 km/h at end time te.

The braking distance y is a CV for the ABS performance and is defined as the

integral of the vehicle’s longitudinal velocity vx over time from the start velocity vs =

100 km/h at time ts to the end velocity ve = 0 km/h at time te:

y =

∫ te

ts

vx(t) dt. (3.2)

The objective is to find an optimal parameter configuration x∗ for the d ABS

parameters within the feasible input space x ∈ Dd ⊂ Rd that minimize the braking

distance y(x), as defined in Equation (3.2):

x∗ = arg min
x∈Dd

y(x). (3.3)
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3.2 Active Rollover Protection

At the limit of driving dynamics, the imminent risk of a vehicle rollover is characterized

by one or more wheels lifting off the ground. High lateral force build-up can cause

vehicles to rollover. In general, rollovers can be either tripped or untripped [104].

Tripped rollovers occur due to the influence of an external lateral force applied to

the vehicle. For example, when the vehicle hits a curb. Untripped rollovers, on the

other hand, occur as a result of sharp steering, such as when cornering at high speed

or making a quick lane change. The resulting lateral forces on the tires cause the

vehicle to roll over. In these scenarios, the Active Rollover Protection (ARP) as part

of the ESC can intervene to prevent a vehicle rollover by stabilizing the vehicle through

selective wheel braking and a reduction of engine torque.

Standardized maneuvers are employed to assess the driving behavior and the ef-

fectiveness of controller interventions, such as from the ARP. The Sine with dwell

(SWD) [64] is one such maneuver. During the SWD maneuver, the vehicle initially

drives at a constant speed of 80± 2 km/h in a straight line. A steering machine then

imposes a sinusoidal steering input at a frequency of 0.7 Hz, incorporating a dwell

period of 500 ms at the peak of the second half-wave. The amplitude of the steer-

ing wheel angle is set to a predetermined multiple of the characteristic steering wheel

angle δ0.3g, which is ascertained from previous slowly increasing steer tests. These pre-

liminary tests are designed to establish the vehicle’s characteristic steering response

at a lateral acceleration of 0.3g, providing a baseline for the SWD maneuver.

The induced steering angle causes a pronounced oversteer response in the vehicle,

which can be critical to rollover, especially in vehicles with a high center of gravity.

To ensure stability, several criteria must be satisfied. At no point should two wheels

simultaneously lift more than 5 cm off the ground [19]. Additionally, the yaw rate

should decrease to a specified fraction of its peak value within a certain time frame

after the steering angle reverses direction [64]. Besides these stability criteria, an agility

criterion is specified: the lateral displacement of the vehicle’s center of gravity from

its original path during straight-ahead driving must surpass a defined threshold [64].

Dourson [27] demonstrated through simulations that the parameters of ARP, which

maximize the velocity of the vehicle one second after the SWD maneuver, also meet

the specified stability and agility criteria. However, it should be noted that the used

simulation model had limitations that prevented the modeling of a road edge contact

and tire separation.
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3.3 Vehicle Dynamics Modeling and Simulation

Various vehicle models with different complexity levels have been developed to sim-

ulate vehicle dynamics accurately. These vehicle models range from single-track to

twin-track and extend to sophisticated multibody system models, each with their re-

spective stages of expansion [90, 114]. With a higher model complexity, the required

computing resources increase. Consequently, the choice of a vehicle model is guided by

the principle that it should be sufficiently but not excessively detailed for the respective

application.

A twin-track model implemented in MATLAB/Simulink [123] is employed for the

simulation of a full vehicle with VDCSs, such as ABS or ARP. A twin-track model

provides a balance between computational efficiency and the necessary level of com-

plexity. The mechanical vehicle is modeled as a five-body system (one car body plus

four wheels) with 16 degrees of freedom. The key components of the model are equa-

tions of motion, tires, drivetrain, aerodynamics, suspension, steering and braking.

The control system is represented by sensors, logic and actuators. The simulation of

the interaction between these modeled components enables the simulation of a closed

control loop.

The primary phenomena that affect vehicle dynamics occur between the tire and

the road surface. Thus, the tire model is an essential simulation component. The

employed MF-Tyre/MF-Swift tire model [119] has been developed based on Pacejka’s

Magic Formula [97]. This tire model can simulate the steady-state and transient

behaviors of a tire under various slip conditions. In addition, curved regular grid

(CRG) tracks [133] are utilized for the road surface representation. A CRG track

provides detailed three-dimensional road profiles with high precision along a predefined

reference line while optimizing memory usage.

The described vehicle dynamics simulation is integrated into an overarching work-

flow. This workflow is designed to connect seamlessly with user input or an optimiza-

tion algorithm. The vehicle dynamics control system parameters can be automatically

adjusted and the simulation can be started. Once a vehicle dynamics simulation is

completed, the results are post-processed to calculate the CVs. These CVs are then

used to determine the objective function value. Moreover, simulation runs are paral-

lelized and executed asynchronously. Consequently, several simulation instances can

run independently without waiting for each other.
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3.4 ABS Benchmark Dataset

The vehicle dynamics simulation described in Section 3.3 is computationally expensive.

Benchmarking and designing optimization algorithms typically require multiple opti-

mization runs for statistical analysis. Thus, the real-world problems are not practical

for extensive experimentation. To replace the computationally expensive simulation,

a dataset is created using the workflow described in Section 3.3.

For the creation of this dataset, two ABS parameters with significant influence

on the ABS control behavior, denoted as x1 and x2, are considered. The range of

each parameter is defined by a lower bound lb and upper bound ub: x1 ∈ [−5, 6] and

x2 ∈ [−5, 4]. For both x1 and x2, only a discrete set of values Di with a resolution

of 0.1 is permitted, resulting in 111 distinct possibilities for x1 and 91 for x2. The

two-dimensional input space D2 = ×2
i=1Di is defined by the Cartesian product. The

total number of possible combinations for x1 and x2 is 10 101.

Generally, an optimal parameter configuration is only optimal for one vehicle set-

ting. Five different vehicle settings are considered, with each setting consisting of a

vehicle load and a tire (Table 3.1).

Table 3.1: Explanation of the vehicle settings.

Name Tires Vehicle Load
y1 High performance Partially loaded
y2 Medium performance Partially loaded
y3 Under performance Partially loaded
y4 High performance Fully loaded
y5 High performance Little loaded

The braking distance (Equation 3.2) is sensitive to slight variations in environmen-

tal conditions, vehicle characteristics and the functionality of ABS. In order to reduce

the resulting variation in braking distance, the performance of a parameter configura-

tion is averaged across the braking distances obtained from ten individual simulation

runs.

Moreover, to accommodate algorithms designed for continuous input spaces, the

problem is treated as quasi-continuous: for any input x ∈ R2 within the specified

bounds, the ABS performance is approximated by rounding x1 and x2 to the nearest

valid points within the discrete input space D2 = ×2
i=1Di. In summary, the objective

is to find a parameter setting x that minimizes the mean braking distance yi(x) for a

vehicle setting i across 10 simulations:
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x∗ = arg min
x∈D2

1

10

10∑
k=1

yi(x). (3.4)

By exhaustively simulating every combination of the two ABS parameters (a brute-

force approach), the relationship between x1, x2 and the braking distance can be

mapped for each setting considered.

Figure 3.3 shows the resulting mean braking distances across 10 simulations yi

(Equation 3.4) for each of the 10 101 possible combinations of the two ABS parameters

x1 and x2 for the five vehicle settings (Table 3.1). All braking distances of a particular

vehicle setting i are specified as the distance in meters to the corresponding optimum.
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Figure 3.3: The resulting mean braking distances across 10 simulations yi (Equation 3.4)
for each of the 10 101 possible combinations of the two ABS parameters x1 and x2 for the five
vehicle settings i (Table 3.1). The braking distances are specified as the distance in meters
to the corresponding optimum yi,opt. The objective is minimization, thus dark blue-purple
indicates better solutions and yellow worse.
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