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Chapter 2

Preliminaries

This chapter provides a brief introduction to optimization and evolutionary algorithms.

Furthermore, methods for analyzing the landscape of an optimization problem are

presented, as well as a description of performance measurements and the benchmark

problems used. Finally, techniques for quantifying and handling uncertainty in noisy

optimization problems are discussed based on the overview given by [32].

2.1 Optimization

Optimization is employed in a wide field of scientific and technical disciplines, rang-

ing from economics and finance to computer science and engineering. The quest for

optimizing a system is based on the understanding that this system exhibits a specific

performance that can be improved. To this end, a measurable objective function must

be defined to compare the quality of different solutions. The main target, then, is to

determine the most favorable state for a particular system. An optimization problem

with only one objective is called a single-objective optimization problem.

Mathematically, solving a single-objective optimization problem is defined as the

task of identifying a solution x∗ within a set X of feasible solutions that minimizes

the objective function f(x) : X 7→ R [76]:

x∗ = arg min
x∈X

f(x). (2.1)
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Hence, the objective function value of the global minimum satisfies:

f∗ = f(x∗) ≤ f(x) ∀ x ∈ X . (2.2)

Without loss of generality, any maximization problem can be transformed into an

equivalent minimization problem by multiplying the objective function by minus one:

arg max
x∈X

f(x) = arg min
x∈X

−f(x). (2.3)

The analytical form of an objective function of a real-world optimization problem

is often unknown or difficult to access. In such cases, the objective function only

provides an output without additional information when receiving an input. Such

objective functions are referred to as black-box [8].

Furthermore, optimization problems are commonly classified as either continuous

or discrete. For continuous problems, the feasible set is a subset of the real number

domain X ⊆ Rd. For discrete problems, the feasible set is a subset of the integer

domain X ⊆ Zd [8]. Problems involving a combination of both discrete and continuous

variables fall under the category of mixed-integer optimization [37].

Black-box optimization problems are characterized by the lack of derivative infor-

mation. Gradient-based methods are inapplicable. Therefore, solving black-box opti-

mization problems requires using sampling-based heuristic algorithms. These heuris-

tics are iterative approximation algorithms that explore the search space to locate

near-optimal solutions without relying on the gradient of the objective function. A

prominent variant among these heuristics are Evolutionary Algorithms (EAs).

2.2 Evolutionary Algorithms

EAs are a class of optimization algorithms inspired by biological evolution, where a

population of individuals competes for limited resources, and only the fittest individ-

uals survive. In general, the idea behind all EAs is to start with a set of candidate

solutions that are randomly generated and evaluated using a fitness measure. The can-

didates with the highest fitness are selected to produce the next generation through

recombination by combining parts of two or more parents to produce offspring and

mutation by altering a single candidate to produce a new candidate. This fitness eval-

uation, selection and variation cycle continues until a satisfactory solution is found or

a computational limit is reached. [31]
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EAs are driven by two main forces: variation operators (recombination and muta-

tion), which introduce diversity and novelty, and selection, which enhances the average

solution quality. Through the iterative procedure (Algorithm 1), the average fitness of

the population is maximized or minimized. Thereby, the fitness of a candidate solution

is defined by a fitness function, which is essentially the objective function. Bäck et

al. [13] provide an overview of the most important developments in the field of EAs in

recent decades.

Algorithm 1 General scheme of EAs [31].

INITIALIZE population with random candidate solutions
EVALUATE fitness of each candidate
while termination condition not met do

SELECT parents from the population
RECOMBINE parents
MUTATE resulting offspring
EVALUATE fitness of the new candidates
SELECT individuals for the next generation

end while
return best solution found

2.3 Evolution Strategies

Evolutionary Strategys (ESs) represent a subclass of EAs. Originating from the work

of Ingo Rechenberg [106] and Hans-Paul Schwefel [115], ESs were initially designed

to solve real-valued parameter optimization problems. Unlike other EAs that encode

solutions as binary strings or other discrete structures, ESs operate directly on real-

valued vectors.

The main components of ESs are similar to those of other EAs, with an empha-

sis in ESs on mutation and selection as the primary mechanisms for exploration and

exploitation. Two key features of ESs are the use of a multivariate normal distribu-

tion for the mutation operator [12] and self-adaptive mechanisms for the mutation

rate, which allows to dynamically adjust the mutation step size of the algorithm in

response to the landscape of the fitness function [17]. A significant improvement in

ESs is achieved with the introduction of the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [56, 57].



10 Chapter 2 Preliminaries

2.4 Covariance Matrix Adaption Evolution Strategy

CMA-ES represents a breakthrough in the field of evolutionary computation and has

emerged as a leading method for tackling continuous single-objective optimization

problems [47]. The following description provides an overview of the basic principles

of CMA-ES based on the tutorial by Hansen [50]. Figure 2.1 illustrates a CMA-ES

run on the two-dimensional sphere function.
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 individuals mean vector m global optimum

Figure 2.1: Visualization of a CMA-ES run with a population of 10 offspring on the two-
dimensional sphere function for the first three generations.

In each generation g of CMA-ES, a new population of λ offspring is generated. The

offspring x
(g)
i:λ are sampled from a multivariate normal distribution with a mean vector

m(g) ∈ Rd, a covariance matrix C(g) ∈ Rd×d and a standard deviation σ(g) ∈ R>0:

x
(g+1)
k ∼m(g) + σ(g)N (0,C(g)) ∀ k = 1, ..., λ. (2.4)

The motivation for such a mutation mechanism is to tailor the distribution of

emerging populations to the local topography of the fitness landscape. Therefore,

CMA-ES dynamically adjusts the mean vector m(g), the covariance matrix C(g) and

the standard deviation σ(g). Initially, the top µ parents with the highest fitness within

the population are selected (µ < λ). Utilizing the specified weights wi, the updated

mean vector m(g+1) is calculated as the weighted mean of these µ selected parents,

and the learning rate cm is usually set to 1:

m(g+1) = m(g) + cm

µ∑
i=1

wi(x
(g+1)
i:λ −m(g)),

µ∑
i=1

wi = 1. (2.5)
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The covariance matrix C is initially set to the identity matrix I and evolves in each

generation through two key updates: the rank-µ update and the rank-one update.

While the rank-µ update leverages information from the current population, the rank-

one update is derived from the evolution path pc ∈ Rd. The evolution path, starting

at pc = 0, captures the trajectory of successful adaptations in the search space across

several generations.

C(g+1) = (1− c1 − cµ)C(g) + c1 p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+cµ

µ∑
i=1

wi y
(g+1)
i:λ

(
y
(g+1)
i:λ

)T
︸ ︷︷ ︸

rank-µ update

, (2.6)

p(g+1)
c = (1− cc)p

(g)
c +

√
cc(2− cc)µeff

m(g+1) −m(g)

cm σ(g)
, (2.7)

µeff =

(
µ∑

i=1

w2
i

)−1

, (2.8)

y
(g+1)
i:λ =

x
(g+1)
i:λ −m(g)

σ(g)
. (2.9)

The standard deviation σ regulates the mutation step size. To independently

control the step size from the covariance matrix update, the cumulative step length

adaptation (CSA) is employed. CSA adjusts the standard deviation σ by utilizing the

conjugate evolution path pσ ∈ Rd. This evolution path pσ captures the cumulative

magnitude and direction of mutations over time. A short evolution path indicates

that recent steps effectively cancel each other out, leading to a lack of directional

progress. The step size should then be decreased. In contrast, a long evolution path

indicates consistent steps in a particular direction, suggesting that increasing the step

size could accelerate convergence. As a reference for the evolution path length, the

expected length of a vector sampled from a standard multivariate normal distribu-

tion E ∥N (0, I)∥ is used. The CSA mechanism applies an exponential update to the

standard deviation σ, moderated by a damping factor dσ:

σ(g+1) = σ(g) exp

 cσ
dσ


∥∥∥p(g+1)

σ

∥∥∥
E ∥N (0, I)∥

− 1

 , (2.10)

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeff C(g)−

1
2 m

(g+1) −m(g)

cm σ(g)
. (2.11)
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The learning rates c1, cc, cµ and cσ govern the covariance matrix and the step

size adaptation, thereby directly influencing the behavior of CMA-ES. The following

mathematical expressions define the recommended default parameters:

cc =
4 + µeff

d

d + 4 + 2·µeff

d

, (2.12)

c1 =
2

(d + 1.3)2 + µeff
, (2.13)

cµ = min

(
1− c1, 2 ·

µeff − 2 + 1
µeff

(d + 2)2 + µeff

)
, (2.14)

cσ =
µeff + 2

d + µeff + 5
. (2.15)

The default number of offspring λ in a population varies with the dimensionality

of the optimization problem d. Typically, the selection ratio µr, which represents the

proportion of parents selected from the population, is set to 0.5:

λ = 4 + ⌊3 · ln(d)⌋, (2.16)

µ = ⌊µr · λ⌋. (2.17)

2.4.1 Variants

Several variants of CMA-ES have been introduced to enhance various aspects of the

algorithm [12]. Below is a curated selection of the most impactful variants.

• Active Update [65]: Extends the original adjustment of the covariance matrix

by including both the most and least successful candidate solutions. Negative

weights are assigned to the latter to actively discourage the search from subop-

timal regions of the search space. This promotes a more efficient exploration of

the solution space.

• Elitism [131]: Modifies the selection mechanism of the standard (µ, λ)-CMA-

ES, where the top µ offspring with the highest fitness within the population of

λ offspring are selected as parents to produce the next generation. In contrast,

in the (µ+λ)-CMA-ES, both the µ parents and the λ offspring together compete

for survival, and the top µ individuals are carried forward to the next generation.

This ensures that the highest quality solution so far is always preserved.
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• Mirrored Sampling [21]: Only half of the λ offspring of a new population are

sampled from a multivariate normal distribution. The other half consists of the

mirror images of the first set, obtained by negating the sampled vectors. This

mirrored sampling technique is employed to improve the uniformity in the dis-

tribution of search points across the search space and potentially the exploration

capabilities of CMA-ES.

• Orthogonal Sampling [134]: The vectors representing the offspring are or-

thonormalized by applying the Gram-Schmidt process [41, 113]. The goal is

to prevent the overlap of search directions. Particularly in high-dimensional

optimization problems, orthogonal sampling can lead to a more structured ex-

ploration of the search space by CMA-ES.

• Weighted Recombination [57]: Recombination in CMA-ES is accomplished

by adjusting the mean vector m as the weighted sum of the top µ offspring. The

weights wi are determined by the following formula wi = log(µ+ 1
2 )− log(i)∑

j wi
, where

i is the rank of the offspring within the population. The logarithmic scaling of

the offspring systematically favors the best offspring and also takes into account

the contributions of the other offspring. This represents a compromise between

exploitation and exploration. As an alternative to the logarithmic weights, equal

weights wi = 1
µ can be assigned to all top µ offspring. Through this equal

weighting, the diversity in the recombination step is increased.

• Restart [10]: If CMA-ES encounters stagnation or becomes stuck in a local

optimum, a restart is performed. This strategy rejuvenates the search process by

reinitializing the algorithm with a new population. Moreover, at each restart, the

population size can be increased by a factor to enhance global search capabilities,

an approach known as increasing population (IPOP) [9], or alternated between

a smaller and a larger population to balance fine-tuned local search with broader

exploration, known as bi-population (BIPOP) [48].

Employing a tailored configuration of these different variants that is carefully cho-

sen to align with the unique characteristics and demands of the particular optimization

task has the potential to significantly enhance the overall performance and robustness

of CMA-ES [131, 132].
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2.4.2 Box Constraint Handling

For numerous real-world optimization problems, the region of feasible solutions is

restricted due to physical constraints or process dependencies. The most rudimen-

tary form of such restrictions are box constraints, which restrict the feasible solution

space X = [l, u]d by a lower bound l and an upper bound u for each dimension, en-

suring that l ≤ xi ≤ u for all xi. Under these constraints, the feasible region X
constitutes a hypercube, which is the origin of the term box constraint. In the general

case of different lower and upper bound values per dimension, l ∈ Rd and u ∈ Rd,

X is a hyperrectangle. This hyperrectangle can be transformed into a hypercube by

min-max normalization [98].

There are numerous methods available to prevent an optimization algorithm from

generating infeasible solutions. The specific method for box constraint handling signif-

icantly influences the performance of CMA-ES [18]. In the following, the four repair

methods, projection, reflection, wrapping and reinitialization, are described. Addi-

tionally, an explanation of the feasibility preserving method resampling is given. The

terminology adopted in this thesis follows the convention established in the existing

literature [5, 18, 137].

In general, repair methods are based on transforming an infeasible individual to

a feasible one by a mapping process, denoted as M : Rd −→ X , which is frequently

applied in a coordinate-wise manner. This ensures that the solutions adhere to the

predefined constraints of the problem space.

Projection enforces the constraints by clipping all out-of-bounds values to the closest

bound of the feasible region:

Ti(xi) =


xi l ≤ xi ≤ u,

u xi > u,

l xi < l.

(2.18)

Reflection corrects infeasible values by mirroring them back into the feasible region

based on the extent of the constraint violation:

Ti(xi) =


xi l ≤ xi ≤ u,

Ti(u + (u− xi)) xi > u,

Ti(l + (l − xi)) xi < l.

(2.19)
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Wrapping treats the search space as a torus. Infeasible values are shifted by (u− l):

Ti(xi) =


xi l ≤ xi ≤ u,

Ti(xi − (u− l)) xi > u,

Ti(xi − (u− l)) xi < l.

(2.20)

Reinitialization replaces the infeasible value by a value ξ sampled from a uniform

distribution within the lower bound l and upper bound u of the feasible region:

Ti(xi) =

{
xi l ≤ xi ≤ u,

ξ xi < l or xi > u.
(2.21)

Resampling preserves the feasibility of individuals by repeating the mutation operator

until a feasible individual is generated. To avoid the possibility of an infinite loop, a

repair method should be employed after a predefined number of unsuccessful attempts.

In contrast to resampling, with a repair method, the optimization algorithm ef-

fectively perceives an altered landscape outside the feasible region since infeasible

solutions are repaired before being evaluated (Figure 2.2).
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Figure 2.2: Landscape modification outside the feasible region X ∈ [−5, 5]2 for the two-
dimensional sphere function and the sharp ridge function after the application of the four
repair methods: projection, reflection, wrapping and reinitialization.
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In a comprehensive comparison of different box constraint handling methods for

CMA-ES, Biedrzycki [18] demonstrated that reflection and resampling consistently

outperform other techniques across a wide range of problems and dimensionalities.

However, resampling requires additional iterations within the algorithm in order to

generate practicable solutions. This can lead to additional computational effort and,

thus, to a reduction in overall efficiency. Furthermore, projection leads to a bias

towards the boundaries. This is particularly beneficial if the optimum is actually

located on the boundaries.

2.4.3 Integer Handling

CMA-ES is a highly effective method for continuous optimization problems [47]. Yet,

many practical applications involve mixed-integer problems with both continuous and

discrete variables. In such cases, discrete variables are constrained to specific values.

A widely used method for applying CMA-ES in these scenarios is to discretize the

search space for discrete variables by rounding the continuous values to the nearest

feasible discrete value. This process creates a landscape where each discrete value

is surrounded by a plateau of an identical fitness value. The objective function is

discretized.

However, this discretization strategy through rounding introduces a potential pit-

fall for CMA-ES: stagnation of the optimization process. This is the case if the variance

of the mutation distribution within the CMA-ES becomes smaller than the granularity

of the discretization due to self-adaptation. In other words, the mutation steps gener-

ated by CMA-ES become too small to traverse the flat fitness landscape regions [49].

This can cause the optimization algorithm to become stuck on one of the plateaus

introduced by the discretization, preventing the optimization algorithm to progress

toward potentially better solutions.

To address the stagnation issue of CMA-ES in discretized optimization landscapes.

Hamano et al. [46] propose an extension to CMA-ES, called the CMA-ES with Mar-

gin (CMA-ESwM). CMA-ESwM ensures that the marginal probabilities of generating

individuals beyond the discretization step size are sufficiently high.

This is achieved by adding a diagonal matrix A to the mutation distribution. The

mutation distribution is then represented as N (m, σ2ACAT ). Both the matrix A

and the mean vector m are then adaptively adjusted in each generation of CMA-ES

to ensure that the probability of generating mutations beyond the discretization step

size is at least greater than a margin α. As a default value for the margin, Hamano
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et al. [46] recommend α = 1
λ d . The margin extension is an affine transformation of

the mutation distribution. It is important to note that, when the margin α is set to

zero, CMA-ESwM reverts to the original CMA-ES, since no correction is applied. Ex-

periments conducted on the BBOB-mixint testbed [130] show that CMA-ESwM out-

performs several other methods, especially in scenarios involving higher-dimensional

problems [45].

2.5 Objective Function Landscape

In the field of optimization, the concept of a landscape provides a powerful analogy

for visualizing the domain of possible solutions. Each location in this landscape cor-

responds to a candidate solution and the height at a specific location represents the

value of the objective function for that solution. Within this landscape, depending

on whether the goal is to maximize or minimize the objective function, optimization

algorithms seek the highest peak or the deepest valley. Higher-dimensional landscapes

require an abstraction of the idea of peaks and valleys into a multidimensional space

in which each additional dimension represents a new variable.

An objective function landscape generally consists of three elements [122]: A set of

potential solutions X ⊂ X to the problem, a notion of distance between solutions and

an objective function f(x) : X 7→ R. Such a representation provides a framework for

discussing the characteristics of an objective function in terms of its local and global

structures within the search space. Understanding the topology of the landscape is

critical because it profoundly affects the performance and effectiveness of optimization

algorithms.

An objective function landscape can be described by high-level properties (Sec-

tion 2.5.1) and quantified with specific low-level features (Section 2.5.2). Some prop-

erties are derived theoretically others via sampling. Further information about the

analysis of objective function landscapes can be found in the literature [86, 87, 101].

2.5.1 Objective Function Properties

In the context of continuous single-objective optimization, the objective function land-

scape can be described by high-level properties [52, 89]. The following list provides a

concise overview of important properties, though it is not exhaustive:
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• Separability: Indicates whether the objective function can be decomposed into

lower-dimensional, independent subproblems, each containing only a subset of

the variables.

• Multimodality: A multimodal landscape is characterized by several local op-

tima. The presence of multiple peaks and valleys complicates the search for the

global optimum, as algorithms risk becoming ensnared in suboptimal solutions.

• Global Structure: The overarching “architecture” of the landscape, including

the distribution and arrangement of optima, shapes the global search strategy.

• Variable Scaling: Captures the anisotropic nature of the solution space, re-

flecting the magnitude of changes in the objective function value to alterations

in distinct dimensions.

• Conditioning: The condition of a function refers to how the output value re-

sponds to small changes in input variables. Poorly conditioned functions, where

output values vary wildly with small input variations, may have narrow and

steep valleys.

• Plateaus: Regions with little to no change in the objective function value.

• Noisiness: Stochastic fluctuations in the landscape (Section 2.7).

2.5.2 Exploratory Landscape Analysis

Exploratory Landscape Analysis (ELA) [88] describes the high-level features of an

objective function landscape with quantifiable metrics using mathematical and statis-

tical techniques. Based on a sample of points evaluated with the objective function,

ELA computes a set of low-level features that capture the nuanced properties of the

landscape. The stochastic nature of creating the sample results in a variability in the

feature values. Hence, the accuracy of these features depends on the sampling strategy

and sample size. Renau et al. [107] recommend using Sobol’ sequences and Kerschke

et al. [71] recommend a sample size of at least 50 times the problem dimensionality.

A variety of ELA features have been developed and are accessible across various

platforms, with the flacco package serving as a comprehensive repository for these

features within a single framework [73]. Some of the key features considered are

briefly described in the following:
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• Levelset [88]: These features are computed using the mean cross-validated mis-

classification error of different classifiers.

• y-Distribution [88]: This group of features is based on the distribution skew-

ness and kurtosis of the objective function values. Kurtosis assesses the peak

value of the distribution and indicates whether it is relatively flat or sharp com-

pared to a normal distribution. In addition, the number of peaks in the distri-

bution provides information about the multimodality of the landscape.

• Meta-Model [88]: Linear and quadratic regression models, with or without

interaction terms, are trained on the sample data. The features are derived from

the resulting quality and the coefficients of these models.

• Dispersion [85]: This feature set compares the dispersion among the initial

sample points with subsets that are defined by function value thresholds.

• Nearest Better Clustering [70, 103]: Analyzes the topology of the landscape

by examining the distance ratios and correlations between the nearest neighbors

of a point and those with better fitness, as well as the number of points to which

the point is the nearest better neighbor.

• Principal Component Analysis: Insight is gained from a principal compo-

nent analysis performed on the sampled points.

• Information Content [91]: Measures the smoothness, ruggedness and neutral-

ity of the landscape through a random walk.

While this collection of features provides a comprehensive toolkit for landscape

analysis, it is important to acknowledge the existence of additional features that are

not within the scope of this study. Some are designed explicitly for low-dimensional

spaces or require further objective function evaluations, which limits their applicability

in specific scenarios. However, the large number of available features can also lead to

redundant features [120].

Examples of applications of ELA are the analysis of similarities of problems across

benchmark sets [120], the selection of an optimization algorithm [72] or the parameter

tuning of an optimization algorithm [15]. Muñoz et al. [92] give an overview of the

research field combining feature-based landscape analysis and algorithm selection for

continuous black-box optimization problems.



20 Chapter 2 Preliminaries

2.6 Benchmarking and Tuning

The benchmarking of optimization algorithms involve the systematical assessment and

comparison of the performance of optimization algorithms in solving standardized test

functions or real-world optimization problems. Benchmarking reveals the strengths

and weaknesses of different algorithms. The insights about the behavior of an op-

timization algorithm gained from benchmarking facilitate the selection of a specific

optimization algorithm for a given optimization problem.

However, the benchmarking process must be carefully designed to provide mean-

ingful results. Bartz-Beielstein et al. [14] emphasize the importance of clear objectives,

precise problem definitions, appropriate algorithm selection, relevant performance met-

rics and thorough analysis.

2.6.1 Benchmark Problems

An integral part of benchmarking optimization algorithms is the selection of appro-

priate benchmark problems. A widely accepted benchmark suite for single objec-

tive continuous optimization problems is the Black-Box Optimization Benchmarking

(BBOB) [54]. The BBOB suite consists of a collection of 24 noiseless test functions,

each designed to evaluate different aspects of optimization algorithms.

Table 2.1 provides an overview of the 24 noiseless BBOB functions. These functions

are typically categorized into five subsets based on categories ranging from simple

separable landscapes to complex multi-modal terrains with weak global structures.

This categorization enables a targeted assessment of the capabilities and limitations

of an algorithm in different optimization scenarios.

A problem instance is a concrete example with defined parameters belonging to

a broader problem class. Within the BBOB framework, problem instances are cre-

ated by transforming the base functions. Examples of transformations are rotating

and moving the input area. These transformations are defined by randomly generated

parameters that remain consistent for each instance. In other words, the conditions re-

main unchanged for any algorithm that is re-evaluated on the same instance. However,

a critical aspect of this process is the change in the location of the global optimum

across different instances. As a result, the BBOB framework prevents algorithms that

are biased [77] in the direction of the optimum, e.g. due to favorable starting positions,

from gaining an unfair advantage.



2.6 Benchmarking and Tuning 21

Table 2.1: Overview of the 24 noiseless BBOB functions [54].

ID Function Name Description
1 Sphere Function
2 Ellipsoidal Function, original Separable unimodal
3 Rastrigin Function functions with
4 Büche-Rastrigin Function global structure
5 Linear Slope Function
6 Attractive Sector Function
7 Step Ellipsoidal Function Functions with low
8 Rosenbrock Function, original or moderate conditioning
9 Rosenbrock Function, rotated

10 Ellipsoidal Function, rotated
11 Discus Function Functions with
12 Bent Cigar Function high conditioning
13 Sharp Ridge Function and unimodal
14 Different Powers Function
15 Rastrigin Function
16 Weierstrass Function Multi-modal
17 Schaffers F7 Function functions with
18 Schaffers F7 Function, moderately ill-conditioned adequate global structure
19 Composite Griewank-Rosenbrock F8F2
20 Schwefel Function
21 Gallagher’s Gaussian 101-me Peaks Function Multi-modal functions
22 Gallagher’s Gaussian 21-hi Peaks Function with weak
23 Katsuura Function global structure
24 Lunacek bi-Rastrigin Function

2.6.2 Performance Metric

Benchmarking the performance of black-box optimization algorithms is generally based

on the evaluation of two primary indicators: the quality of the solutions obtained

and the costs expended. Thus, the performance of an optimization algorithm can be

assessed from two perspectives: fixed-target or fixed-budget [14].

In the fixed-budget scenario, a limited budget of resources is given and the perfor-

mance of the optimization algorithm is determined by the quality of the found solution.

Thus, using a fixed budget approach reflects the cost constraints of real-world prob-

lems. In the fixed-target scenario, a specific target is defined. The performance is

measured by the costs expended to reach the target. This provides easily understand-

able results, such as the relative speed of different algorithms in achieving a specific

solution quality. A drawback of the fixed-target scenario is that a concept for handling

runs that do not reach the predefined goal is required.
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Algorithms can also be evaluated based on anytime performance, which considers

the performance trajectory of the algorithm over time, as depicted in time quality

diagrams. This metric summarizes the performance of an optimization algorithm

along the complete optimization run in one value [66, 139].

The costs expended are typically quantified by the number of objective function

evaluations or the total computation time. The choice between these two metrics

depends on the relative computational overhead of the operations of the algorithm

compared to the required time to evaluate candidate solutions. In scenarios where

the evaluation time significantly surpasses the overhead of the algorithm, as often in

real-world applications where, e.g., expensive simulations are involved, the number of

objective function evaluations is the preferred measure.

Any performance measure must take into account not only the search cost but also

the solution quality achieved. However, when dealing with stochastic optimization

algorithms such as CMA-ES, multiple runs are essential to obtain an average quality

score that ensures a robust evaluation of the algorithm’s performance. The following

describes three sophisticated performance metrics that are commonly used.

• Success Rate (SR): Measures the proportion of independent runs of an algo-

rithm that achieve a predefined solution quality within a given budget (such as

function evaluations or time). The SR is particularly useful for assessing the

robustness of an algorithm. A higher SR indicates that the predefined solution

quality is reached more often across a defined number of repeated optimization

runs.

• Expected Running Time (ERT) [10]: Returns for a given target the average

number of function evaluations, also called average hitting time, needed to reach

that target. If the success rate is less than 100%, a penalty is assigned based on

the number of unsuccessful runs.

• Area Under the Curve (AUC) [53, 139]: The AUC of the Empirical Cumu-

lative Distribution Function (ECDF) serves as an anytime performance metric

that encapsulates the success of the algorithm over time. The ECDF tracks the

proportion of targets within a predefined set T that have been achieved by the

algorithm for each allocated budget b. Specifically, the ECDF value at budget b

reflects the proportion of targets in T for which the best solution so far found

by the algorithm is at least as good as the target. A higher AUC value means

better performance. The algorithm is more likely to meet or exceed the targets

across a range of budgets.
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2.6.3 Parameter Tuning

The parameters of an optimization algorithm have a decisive influence on the behavior

and, accordingly, the performance of the algorithm. For example, the learning rates

and variants of CMA-ES (Section 2.4) can be tuned for specific functions or classes

of functions [4, 131, 142]. However, manually tuning parameters can be a tedious

and time-consuming process. In automatic parameter tuning, first proposed by [11,

42], this challenge is addressed by defining the parameter tuning task as a meta-

optimization problem. Meta-optimization differs from the primary goal of solving the

original optimization problem but complements it (Figure 2.3).

Original Optimization Problem

Optimization Algorithm

Meta-Optimization Algorithm

solution qualityoptimize

optimize algorithm quality
parameter tuning

problem solving

Figure 2.3: Schematic representation of the two optimization problems: (1) problem-
solving, where an optimization algorithm seeks an optimal solution to the original optimiza-
tion problem, and (2) parameter tuning, where a meta-optimization algorithm optimizes the
parameters of the primary optimization algorithm to improve its performance [11, 30, 42].

Two optimization problems can be distinguished: solving the original problem and

tuning the parameters of the optimization algorithm [30]. The former involves the

optimization algorithm seeking an optimal solution to the given original optimization

problem. The latter entails the use of a meta-optimization algorithm that optimizes

the parameters of the optimization algorithm for solving the original problem. Tuning

the parameters of an optimization algorithm is similar in concept to hyperparameter

tuning in machine learning [138].
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2.7 Uncertainty Quantification

Many real-world optimization problems exhibit noise or non-deterministic character-

istics. This means that if exactly the same input parameter values are reevaluated,

the objective function value varies. Reasons for this variability are often measurement

errors, external disturbances or the inherent stochastic nature of the system under

consideration. The following overview is based on [32].

Each evaluation of the objective function with the same input parameters x can

be considered as a unique scenario zi drawn from the set of all possible scenarios ΩZ .

In this context, an evaluation is not fixed to a particular scenario but depends on a

random variable Z ∈ ΩZ . Thus, the objective function is then described as a random

variable f(x, Z) as well. Therefore, the optimization task defined in Equation 2.1

requires reformulation. The revised objective is to find the solution x∗ that minimizes

the expected value E of the objective function across the randomness entailed by

scenario Z:

x∗ = arg min
x∈X

EZ∈ΩZ
[f(x, Z)] .1 (2.22)

Determining the true mean EZ [f(x, Z)] in closed form requires that the distri-

bution of f(x, Z) be known and tractable. This is seldom possible for black-box

optimization problems. Recent studies [1, 3, 68, 79, 105] have surveyed a spectrum of

potential strategies to address this issue, highlighting the three principal approaches,

which are described in the following:

• Explicit Averaging: The true mean EZ [f(x, Z)] is substituted with its sample

estimate ÊZ [f(x, Z)]. This is achieved by resampling and computing the average

objective function value across a number of K scenarios:

EZ [f(x, Z)] ≈ ÊZ [f(x, Z)] :=
1

K

K∑
i=1

f(x, zi), (2.23)

where zi is sampled from the random variable distribution, i.e., zi
s∼ Z. The

sample estimates are denoted by the hat-□̂-symbol. If K is equal to the number

of all possible scenarios |ΩZ | and z1 ̸= . . . ̸= zi is ensured by sampling With-

out Replacement (WoR) from ΩZ , the sample mean is equal to the true mean.

Consequently, ÊZ [f(x, Z)] can be used as a substitute without any associated

uncertainty.

1To enhance readability, subsequent expressions will not include the set restrictions ∈ X and ∈ ΩZ .
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• Implicit Averaging: Population-based methods, such as EAs, can leverage

the collective data of all individuals in the population to estimate the true mean

implicitly. Each individual is evaluated only once and the aggregated results of

these evaluations guide the evolutionary process toward more favorable solutions.

By using such an approach, the need for explicit averaging is avoided [6, 7, 36].

• Surrogate Assistance: A surrogate model is utilized to approximate the

true EZ [f(x, Z)]. This surrogate is subsequently employed for optimization

purposes.

2.7.1 Static and Dynamic Allocation

The calculation of the sample estimate ÊZ [f(xk, Z)] for each individual xk within the

population requires the specification of the number of scenarios Kk to be evaluated

(Equation 2.23). Choosing Kk less than the number of all possible scenarios |ΩZ |
decreases the number of evaluations but increases the uncertainty in the estimation

of the true mean. Two principal schemes can be distinguished, the Static Allocation

(SA) and the Dynamic Allocation (DA) of evaluations to each individual in the pop-

ulation [105]. The initial research on explicit averaging employed SA schemes that

equally distribute the available evaluation budget N among the λ individuals:

λ∑
k=1

Kk = N , K1 = · · · = Kλ. (2.24)

The variance of the sample mean estimate can serve as a measure of uncertainty

and according to estimation theory, the following applies [58, 109]:

VarZ

[
ÊZ [f(xk, Z)]

]
∼ VarZ [f(xk, Z)]

Kk
. (2.25)

From this, two conclusions can be drawn. First, the uncertainty in the sample mean

estimate decreases as the number of scenarios Kk increases. Second, the uncertainty

in the sample mean estimate is directly proportional to the true variance of the under-

lying distribution of f(xk, Z). Therefore, selecting Kk proportional to VarZ [f(xk, Z)]

is more efficient for achieving equally uncertain sample mean estimates across indi-

viduals. DA schemes iteratively and adaptively determine the value of Kk for each

individual xk separately.



26 Chapter 2 Preliminaries

2.7.2 Dynamic Allocation for Ranking and Selection

During the selection phase of EAs, the individuals of a population are typically ranked

on the basis of their objective function values. Therefore, a consensus of researchers

suggests that the evaluation budget should be dynamically allocated among individ-

uals [22, 23, 43, 55, 58]. The aim of this DA is to reduce uncertainty in the ranking

process, especially in identifying the top-µ performing individuals, known as top-µ se-

lection. Reducing the uncertainty in the ranking or in identifying the top-µ individuals

does not necessarily mean that the uncertainty in the mean performance estimate of

each individual is also reduced.

DA schemes for the identification of the top-µ performing individuals are part of the

broader domain of Ranking and Selection (RaS). This area has seen the development of

many RaS methods, which have been comprehensively reviewed by various authors [20,

28, 29, 38, 40, 59, 61, 93, 94, 99, 140, 141]. The methods for RaS can essentially be

formulated as Bayesian or frequentist inference. Bayesian methods rely on a parametric

and functional characterization of the probability distribution of f(x, Z) across both

different individuals and scenarios. In other words, Bayesian approaches treat the

parameter to be estimated as a random variable with a prior distribution, whereas

frequentist approaches treat the parameter to be estimated as a fixed and deterministic

quantity [112]. Some methods for RaS are described in the following.

Jiang et al. [67] select the top-µ individuals with a minimal number of evaluations

by assuming sub-Gaussian distributions of f(x, Z). With a user-defined confidence,

the lower and upper confidence bounds for each individual are derived to allocate

evaluations to the individuals further. However, the method may fail if the actual dis-

tributions differ from a sub-Gaussian distribution. Chen et al. [24] propose a selection

method that works with bounded objective values without assuming a distribution of

f(x, Z). However, both methods lack an intermediate uncertainty quantification for

stopping the allocation procedure before the user-defined confidence is met.

Hansen et al. [55] propose a method for assessing uncertainty in the current top-µ

selection by observing the number of rank changes among the individuals of the current

population after additional evaluations. If the uncertainty exceeds a certain threshold,

more evaluations are assigned. However, this method is not based on statistical rank

estimation theory. Groves et al. [43] present a Bayesian counterpart to the approach

by Hansen et al., using Bayesian probabilities of rank changes to quantify uncertainty.
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2.7.3 Confidence Interval Sequences

If the functional parametric form of the distribution of the random variable f(x, Z)

is unknown or cannot be assumed, statistical estimation theory often resorts to non-

parametric or distribution-free estimators and Confidence Intervals (CIs). However,

traditional CIs are designed for static, one-time uncertainty quantification with a fixed

number of evaluations, as is the case in SA. When the number of evaluations is not

predetermined and additional evaluations are allocated adaptively, the repeated use

of CIs for uncertainty quantification can inflate error rates [44, 111, 117, 118, 135].

Therefore, Confidence Interval Sequences (CISs) provide a more appropriate alterna-

tive to traditional CIs. Unlike static CIs, CISs provide a quantification of uncertainty

over a series of intervals. This is particularly valuable in DA schemes as CISs allow

repeated uncertainty quantification without the risk of statistical error inflation. Com-

pared to traditional CIs, the use of CISs is preferable in situations where adaptability

is required and the number of evaluations is not predetermined.

Several nonparametric, distribution-free CISs have been developed recently [60, 80,

95, 111, 116, 136]. Howard and Ramdas [60] proposed a method for the construction

of CISs for quantiles and not for the mean of bounded random variables by apply-

ing sequential hypothesis tests. Kuchibhotla and Zheng [80] employ more powerful

concentration inequalities to obtain CISs for the mean. In contrast, based on similar

assumptions [95, 111] adopt a game-theoretic perspective on stochastic processes to

construct comparably tight CISs. The CISs developed by Waudby-Smith and Ram-

das [136] is considered state-of-the-art and provides the tightest CISs when sampling

Without Replacement (WoR) is possible.

A CIS is defined as a sequence
{
CIK

}|ΩZ |

K=1
of CIs for which

P
[
EZ [f(x, zi)] ∈ CIK ∀K = 1, . . . , |ΩZ |

]
≥ 1− α, (2.26)

and where α ∈ [0, 1] denotes the user-defined CIS significance level. Smaller signif-

icance levels correspond to a higher probability that the CIS covers the true mean,

which tends to lead to wider CIs. Figure 2.4 shows the CISs for two different signif-

icance levels. As more and more samples are observed (i.e., the larger K becomes),

the CIs become tighter and tighter around the sample mean. Once all |ΩZ | scenarios

have been observed, the sample mean converged to the true mean.
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Figure 2.4: Left: The |ΩZ | = 20 uniformly distributed values {f(x, z1), . . . , f(x, z|ΩZ |)}.
Right: Illustration of two CISs, each consisting of a CI after K = 1, . . . , 20 evaluations for
the significance levels α ∈ {0.1, 0.9}. Each CIK is constructed with the K sampled values
available after K evaluations. In addition, the true mean EZ [f(x, Z)] and the estimated
(sample) mean ÊZ [f(x, Z)] are displayed along with the number of sampled values K.

Probabilistic Confidence Interval Sequence

Waudby-Smith and Ramdas [136] introduced a novel method to obtain a CIS for

the true mean of a random variable. The approach is rooted in a game-theoretic

framework and assumes that the sampled values from the random variable all lie

within the interval [0, 1]. The underlying concept of this method is based on the

concept of betting.

A multi-round betting game is set up for each η ∈ [0, 1] being the mean. The games

are played in parallel. In each round of a game, a bet on the upcoming observation

can be placed. No wealth is gained or lost if the true mean equals η. But if there is a

discrepancy between η and the true mean, smart betting can result in a financial gain.

The betting strategy can be adaptive and may vary across the different games. The

construction of the (1− α) confidence set after K bets is determined by the ensemble

obtained from the η values for which the wealth has not exceeded the threshold of 1/α.

The true mean of the random variable is then in this set with high probability [136].
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The method introduced by Waudby-Smith and Ramdas [136] represents a signifi-

cant advancement in the construction of confidence intervals. This method generalizes

the traditional approach in two key dimensions.

First, the method introduced employs nonparametric (composite) tests that do not

rely on assumptions about the underlying distribution of the data. Thus, the approach

is applicable to a larger variety of data distributions.

Second, to address the DA of samples and to overcome the limitation of CIs to a

predetermined sample size, test (super)martingales are used. In the game-theoretic

viewpoint, these are referred to as hedged capital process CP (i.e., the accumulated

wealth from sequential betting) for each η ∈ [0, 1]. Different betting schemes from

game theory can be employed.

When the objective values f(x, zi) are sampled WoR from the finite and non-

random set
{
f(x, z1), . . . , f

(
x, z|ΩZ |

)}
through sampling scenarios zi WoR from ΩZ ,

only the order of observed objectives is uncertain. The WoR hedged capital process CP

after K evaluation is defined as (Sections 5.2 and 5.3 of [136]):

CPWoR
K (η) := max

{
θ

K∏
i=1

(
1 + λ+

i (η) ·
(
f(x, zi)− ηWoR

i

))
,

(1− θ)

K∏
i=1

(
1− λ−

i (η) ·
(
f(x, zi)− ηWoR

i

))}
,

with CPWoR
0 (η) := 1

and ηWoR
K :=

|ΩZ | · η −
∑K−1

i=1 f(x, zi)

|ΩZ | − (K − 1)
,

(2.27)

where the parameter θ is dividing one’s capital into two proportions: θ and 1− θ.

In the following, the construction of the CIS for EZ [f(x, Z)] when the scenarios

zi are sampled WoR from ΩZ is described (Theorem 4 in [136]). When the real-

valued predictable sequences
(
λ̇+
K

)∞
K=1

and
(
λ̇−
K

)∞
K=1

are not depending on η and

with c ∈ [0, 1[ for each K ≥ 1 applies:

λ+
K (η) := min

(∣∣∣λ̇+
K

∣∣∣, c

ηWoR
K

)
, λ−

K (η) := min

(∣∣∣λ̇−
K

∣∣∣, c

1− ηWoR
K

)
, (2.28)

then

pCIWoR
K :=

{
η ∈ [0, 1] : CPWoR

K (η) < 1/α
}

(2.29)

forms a (1−α)-CIS for EZ [f(x, Z)]. pCIWoR
K is a CI of the true mean for each K ≥ 1.
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Waudby-Smith et al. [136] recommend to set the truncation level c := 1/2 and

λ̇+
K = λ̇−

K = λK with

λ: =

√
2 log (2/α)

σ̂2
K−1K log(K + 1)

, (2.30)

where σ̂2
K and µ̂K can be interpreted as variance and mean estimators of f(x, zi),

respectively:

σ̂2
K :=

1/4 +
∑K

i=1 (f(x, zi))− µ̂i)
2

K + 1
, (2.31)

µ̂K :=
1/2 +

∑K
i=1 f(x, zi)

K + 1
. (2.32)

A closed-form computation of the CIS from Equation (2.29) is not feasible, given

the infinite set of potential values η ∈ [0, 1]. Therefore, in practice, pCIWoR
K is de-

termined through a grid search on η ∈
{

0, 1
ηbreaks

, 2
ηbreaks

, . . . , 1
}

with, for example,

ηbreaks = 100.

Logical Confidence Interval Sequence

In addition to the previously described CIS based on probabilistic reasoning, Shekhar

et al. [116] proposed a method for constructing CIS based purely on logical reasoning

when sampling WoR. After evaluating K samples, (|ΩZ | −K − 1) samples remain.

Under the assumption that all values fall within the interval [0, 1], the following CIS

lCIWoR
K :=

[
1

|ΩZ |

K∑
i=1

f(x, zi) ,
1

|ΩZ |

K∑
i=1

f(x, zi) +
1

|ΩZ |
· (|ΩZ | −K − 1)

]
(2.33)

for EZ [f(x, Z)] satisfies

P
[
EZ [f(x, zi)] ∈ lCIWoR

K ∀K = 1, . . . , |ΩZ |
]

= 1. (2.34)

The logical CIS from Equation (2.33) can be intersected with the probabilistic CIS

from Equation (2.29) to produce valid, yet even tighter CIS [116]. Figure 2.5 shows the

CIS with |ΩZ | = 20. Although the probabilistic CIS provides considerably narrower

confidence intervals for a significant portion of the sequential sampling process, the

logical CIS provides tighter intervals at the beginning for K = 1 and in the later

phases from K = 16 to K = 20.
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Figure 2.5: Left: The |ΩZ | = 20 uniformly distributed values {f(x, z1), . . . , f(x, z|ΩZ |)}.
Right: Illustration of the resulting probabilistic CIS (Equation 2.29) and logical CIS (Equa-
tion 2.33), as well as the intersection, which is also a valid CIS. Each CIK is constructed
with the K sampled values available after K evaluations. The significance level α for the
probabilistic CIS is set to 0.3. The true mean EZ [f(x, Z)] and the estimated (sample) mean
ÊZ [f(x, Z)] are displayed along with the number of sampled values K.

2.7.4 Uncertainty Quantification in Ranking and Selection

To effectively reduce the uncertainty in the ranking or in the selection of the top-µ

individuals within a population of λ individuals, establishing a dependable quantitative

measure of uncertainty is imperative. A prevalent approach for quantifying certainty

in both ranking and selection involves calculating the probability that a given ranking

or selection is accurate. This approach, therefore, gives rise to two central terms in

the field of RaS: the Probability of Correct Ranking (PCR) and the Probability of

Correct Selection (PCS) [20, 59, 99].

When given a finite set of individuals {x1, . . . ,xλ}, where each individual xk is

associated with an objective random variable f(xk, Z) and the true mean objective

value of each individual can be distinguished (EZ [f(x1, Z)] ̸= . . . ̸= EZ [f(xλ, Z)]),

then the true rank rank(xk) and the estimated rank ˆrank(xk) of an individual xk

within the population of λ individuals can be formally defined as:
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rank(xk) :=

∣∣∣∣{xj , j = 1, . . . , λ
∣∣∣ EZ [f(xj , Z)] ≤ EZ [f(xk, Z)]

}∣∣∣∣, (2.35)

ˆrankfrq(xk) :=

∣∣∣∣{xj , j = 1, . . . , λ
∣∣∣ ÊZ [f(xj , Z)] ≤ ÊZ [f(xk, Z)]

}∣∣∣∣. (2.36)

Using the definition of the true rank and the estimated rank, in the frequentist

setting the PCR and PCS can be defined as:

PCRfrq := P
[
rank(xk) = ˆrankfrq(xk) ∀i = 1, . . . , λ

]
, (2.37)

PCSfrq := P
[{

j = 1, . . . , λ
∣∣ rank(xj) ≤ µ

}
={

j = 1, . . . , λ
∣∣ ˆrankfrq(xj) ≤ µ

}]
.

(2.38)

In the frequentist setting, the true mean value is considered a fixed but unknown

quantity and can be estimated through the sample mean (Equation 2.23). Conse-

quently, within the frequentist setting, the probabilities PCRfrq and PCRfrq cannot

be computed as a direct measure of the certainty in ranking and top-µ selection for a

given dataset.

Klein et al. [74] propose a simple and effective method to construct Rank Intervals

(RIs). Based on the CIs of the individuals, the RI RIk of an individual k within a

population of λ individuals is defined as follows:

RIk := {|ΛLk|+ 1, |ΛLk|+ 2, . . . , |ΛLk|+ |ΛOk|+ 1},

with: Ik := {1, . . . , λ} \ {i},

ΛLk := {j ∈ Ik | max(CIj) ≤ min(CIk)},

ΛRk := {j ∈ Ik | max(CIk) ≤ min(CIj)},

ΛOk := Ik \ (ΛLk ∪ ΛRk) .

(2.39)

The set ΛLk contains the indices of all the individuals that are clearly left of

(i.e., smaller than) individual k, while the set ΛRk holds all the indices of individuals

(other than k) that are clearly right of (i.e., larger than) individual i. ΛLi, ΛRi and

ΛOi are mutually exclusive: ΛLk∪̇ΛRk∪̇ΛOk = Ik. Thus, ΛOk contains the indices of

individuals (except k) whose CI overlaps with the CI of individual k.
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Rising [108] proposes two uncertainty measures: The Uncertainty Quantification

in Ranking (UQiR) and the Uncertainty Quantification in Selection (UQiS) within a

population of λ individuals:

UQiRλ :=
1

λ

λ∑
µ=1

excµ, (2.40)

UQiSµ := excµ, (2.41)

where excµ denotes the number of individuals minus µ that are among the top-µ

individuals of the current population, based on the sampled objective values and the

subsequently constructed CIs:

excµ :=
∣∣∣{ k ∈ {1, . . . , λ}

∣∣ |ΛLk|+ 1 ≤ µ
}∣∣∣− µ. (2.42)

Figures 2.6 illustrates the RIs based on exemplarily given CIs of six individuals.

The calculated UQiS of the top three individuals UQiS3 equals two because according

to the RIs, five individuals could be among the top three individuals.
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Figure 2.6: Left : CI for the true mean and sample mean for each individual in {x1, . . . , x6}.
Right : Resulting RIs and sample ranks. The UQiS of the top-3 individuals UQiS3 equals 2.
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