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Chapter 1

Introduction

1.1 Background

The automotive industry is confronted with increasing competition, requiring the man-

ufacturers to develop technologically advanced vehicles while meeting tighter sched-

ules. As a solution approach to succeed in this highly competitive environment, the

companies combine state-of-the-art simulation technologies with the growing availabil-

ity of computing resources to improve product quality, accelerate time to market and

optimize costs.

An important task in the automotive industry is designing the parameters of vehicle

dynamics control systems. Traditionally, this process is carried out on test tracks with

the physical vehicle and relies heavily on the expertise of the engineer. However,

virtual simulation environments are being developed to pre-design the parameters of

a control system virtually and create a preliminary parameter configuration that can

serve as the basis for the final tuning on the test track. This is accomplished by

modeling the complete vehicle and its control systems. By employing optimization

algorithms, the virtual pre-design can be transformed into an automated, data-driven

decision-making process. The aim thereby is to provide a scalable, efficient and robust

method for the industry to cope with the increasing competition.

To fully utilize these advanced methodologies, numerous open questions and chal-

lenges need to be addressed in order to tailor the process for industrial application.

This thesis concentrates on the following research questions (Section 1.2). An overview

of the contributions and the structure of this thesis is presented in Section 1.3.
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1.2 Research Questions

This thesis is centered around a primary research question (RQ):

How can an optimization algorithm be effectively and efficiently designed to solve

computationally expensive real-world problems, such as the design of vehicle dynamics

control system parameters?

To address this overarching question, the thesis will delve into seven sub-questions,

which are presented as the main research questions below.

The basic prerequisite in applying an optimization algorithm is the availability of

a formal definition of the objective function to be optimized. Thus, the first research

question arises:

RQ 1: How can the desired behavior of the control system and the vehicle be objectified

to define the real-world problem mathematically by an objective function?

Once the optimization problem is formulated, identifying a suitable class of opti-

mization algorithms becomes possible based on the properties of the problem. Besides

these properties, the performance of an optimization algorithm is influenced by its

parameters, leading to the second and third research questions:

RQ 2: How can an optimal parameter configuration of an optimization algorithm for

a specific real-world problem be determined?

RQ 3: Does a single parameter configuration suffice for a class of related real-world

problems, such as the design of vehicle dynamics control system parameters, or

is each problem unique, necessitating a tailored parameter configuration?

Considering that tuning the parameters of an optimization algorithm is an opti-

mization task in itself, the fourth research question is posed:

RQ 4: What methods can efficiently determine the optimal parameters of an optimiza-

tion algorithm for solving a specific optimization problem?

Many real-world problems, including vehicle dynamics design, involve discrete pa-

rameters. This leads to the fifth research question:

RQ 5: How can the discretization of parameter values be handled within an optimiza-

tion algorithm, and how does this affect the performance of an optimization

algorithm?
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Finally, the variability of the objective function due to measurement errors, exter-

nal disturbances or the stochastic nature of a system must be addressed, leading to

the sixth and seventh research questions:

RQ 6: How can the uncertainty inherent in the variability of an objective function be

quantified?

RQ 7: Can this uncertainty quantification be incorporated into an optimization algo-

rithm to reduce computational resources?

1.3 Contribution and Structure of the Thesis

This thesis systematically addresses the seven research questions posed in Section 1.2.

Chapter 2 lays the groundwork with a comprehensive overview of the theoretical un-

derpinnings of optimization, the intricacies of algorithm tuning and the principles of

uncertainty quantification.

Chapter 3 focuses on the design of vehicle dynamics control systems. The desired

behavior of two vehicle dynamics control systems is objectified to define the engineer-

ing problems mathematically by objective functions. In addition, a comprehensive

dataset is created to represent real-world optimization problems for five different vehi-

cle settings (Section 3.4). This dataset removes the need to run extensive simulations

and, thus, reduces the computational cost of evaluations from several minutes to mil-

liseconds, enabling benchmarking and algorithm design directly on the five real-world

problems.

In Chapter 4, the properties of the five different real-world problems derived from

the created dataset (Chapter 3) and the performance impacts of different parameter

configurations on the optimization algorithms are analyzed. A method for tuning the

parameters of the optimization algorithm to computationally expensive problems is

presented, in which surrogate problems are used that approximate the properties of the

original optimization problem. The effectiveness of this method for tuning optimiza-

tion algorithms for real-world applications is validated through extensive experiments.

In addition, Section 4.6 provides a comparison of different optimization algorithms in

the context of parameter tuning.

In Chapter 5, the effects of discretized parameter values on the performance of

optimization algorithms are analyzed. A method for handling discretization is con-

sidered. In addition, recommendations are given for adjusting the parameters of the

algorithm to handle discrete variables more efficiently.
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Chapter 6 presents a novel methodology that combines uncertainty quantification

with optimization algorithms. This method quantifies the uncertainty in order to

reduce the number of evaluations required. The effectiveness of the methodology

and its potential for saving evaluations are examined using a test function and the

aforementioned dataset.

In Chapter 7, the thesis is concluded with a discussion of the results and implica-

tions. Moreover, directions for future research are given.

1.4 Publications

Portions of this thesis incorporate material previously published in manuscripts by the

author and collaborators, as detailed in the list of contributions below. These publica-

tions focus on aspects of the development of the method for tuning the parameters of

optimization algorithms (Chapter 4) for computationally expensive real-world prob-

lems (Chapter 3). The first publication quantifies and analyzes the landscape of the

optimization problem using features. The second publication examines the effect of

tuning the optimization algorithm parameters on solution quality or wall-clock time.

The third publication analyzes the impact of parameter discretization (Chapter 5) on

the performance of various optimization algorithms. The fourth publication deals with

identifying similar problems for tuning optimization algorithms. The final publication

compares different optimization algorithms for optimizing the optimization algorithm.

1) André Thomaser, Anna V. Kononova, Marc-Eric Vogt, and Thomas Bäck. One-

Shot Optimization for Vehicle Dynamics Control Systems: Towards Benchmarking

and Exploratory Landscape Analysis. In Proceedings of the Genetic and Evolu-

tionary Computation Conference Companion, GECCO ’22, pages 2036–2045, New

York, NY, USA, 2022. Association for Computing Machinery

2) André Thomaser, Marc-Eric Vogt, Anna V. Kononova, and Thomas Bäck. Transfer

of Multi-objectively Tuned CMA-ES Parameters to a Vehicle Dynamics Problem.

In Michael Emmerich, André Deutz, Hao Wang, Anna V. Kononova, Boris Naujoks,

Ke Li, Kaisa Miettinen, and Iryna Yevseyeva, editors, Evolutionary Multi-Criterion

Optimization, pages 546–560, Cham, 2023. Springer Nature Switzerland
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3) André Thomaser, Jacob de Nobel, Diederick Vermetten, Furong Ye, Thomas Bäck,

and Anna V. Kononova. When to Be Discrete: Analyzing Algorithm Performance

on Discretized Continuous Problems. In Proceedings of the Genetic and Evolution-

ary Computation Conference, GECCO ’23, pages 856–863, New York, NY, USA,

2023. Association for Computing Machinery

4) André Thomaser, Marc-Eric Vogt, Thomas Bäck, and Anna V. Kononova. Real-

World Optimization Benchmark from Vehicle Dynamics: Specification of Problems

in 2D and Methodology for Transferring (Meta-)Optimized Algorithm Parameters.

In Proceedings of the 15th International Joint Conference on Computational Intel-

ligence, pages 31–40. SCITEPRESS - Science and Technology Publications, 2023

(best paper award)

5) André Thomaser, Marc-Eric Vogt, Thomas Bäck, and Anna V. Kononova. Op-

timizing CMA-ES with CMA-ES. In Proceedings of the 15th International Joint

Conference on Computational Intelligence, pages 214–221. SCITEPRESS - Science

and Technology Publications, 2023
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Chapter 2

Preliminaries

This chapter provides a brief introduction to optimization and evolutionary algorithms.

Furthermore, methods for analyzing the landscape of an optimization problem are

presented, as well as a description of performance measurements and the benchmark

problems used. Finally, techniques for quantifying and handling uncertainty in noisy

optimization problems are discussed based on the overview given by [32].

2.1 Optimization

Optimization is employed in a wide field of scientific and technical disciplines, rang-

ing from economics and finance to computer science and engineering. The quest for

optimizing a system is based on the understanding that this system exhibits a specific

performance that can be improved. To this end, a measurable objective function must

be defined to compare the quality of different solutions. The main target, then, is to

determine the most favorable state for a particular system. An optimization problem

with only one objective is called a single-objective optimization problem.

Mathematically, solving a single-objective optimization problem is defined as the

task of identifying a solution x∗ within a set X of feasible solutions that minimizes

the objective function f(x) : X 7→ R [76]:

x∗ = arg min
x∈X

f(x). (2.1)
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Hence, the objective function value of the global minimum satisfies:

f∗ = f(x∗) ≤ f(x) ∀ x ∈ X . (2.2)

Without loss of generality, any maximization problem can be transformed into an

equivalent minimization problem by multiplying the objective function by minus one:

arg max
x∈X

f(x) = arg min
x∈X

−f(x). (2.3)

The analytical form of an objective function of a real-world optimization problem

is often unknown or difficult to access. In such cases, the objective function only

provides an output without additional information when receiving an input. Such

objective functions are referred to as black-box [8].

Furthermore, optimization problems are commonly classified as either continuous

or discrete. For continuous problems, the feasible set is a subset of the real number

domain X ⊆ Rd. For discrete problems, the feasible set is a subset of the integer

domain X ⊆ Zd [8]. Problems involving a combination of both discrete and continuous

variables fall under the category of mixed-integer optimization [37].

Black-box optimization problems are characterized by the lack of derivative infor-

mation. Gradient-based methods are inapplicable. Therefore, solving black-box opti-

mization problems requires using sampling-based heuristic algorithms. These heuris-

tics are iterative approximation algorithms that explore the search space to locate

near-optimal solutions without relying on the gradient of the objective function. A

prominent variant among these heuristics are Evolutionary Algorithms (EAs).

2.2 Evolutionary Algorithms

EAs are a class of optimization algorithms inspired by biological evolution, where a

population of individuals competes for limited resources, and only the fittest individ-

uals survive. In general, the idea behind all EAs is to start with a set of candidate

solutions that are randomly generated and evaluated using a fitness measure. The can-

didates with the highest fitness are selected to produce the next generation through

recombination by combining parts of two or more parents to produce offspring and

mutation by altering a single candidate to produce a new candidate. This fitness eval-

uation, selection and variation cycle continues until a satisfactory solution is found or

a computational limit is reached. [31]
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EAs are driven by two main forces: variation operators (recombination and muta-

tion), which introduce diversity and novelty, and selection, which enhances the average

solution quality. Through the iterative procedure (Algorithm 1), the average fitness of

the population is maximized or minimized. Thereby, the fitness of a candidate solution

is defined by a fitness function, which is essentially the objective function. Bäck et

al. [13] provide an overview of the most important developments in the field of EAs in

recent decades.

Algorithm 1 General scheme of EAs [31].

INITIALIZE population with random candidate solutions
EVALUATE fitness of each candidate
while termination condition not met do

SELECT parents from the population
RECOMBINE parents
MUTATE resulting offspring
EVALUATE fitness of the new candidates
SELECT individuals for the next generation

end while
return best solution found

2.3 Evolution Strategies

Evolutionary Strategys (ESs) represent a subclass of EAs. Originating from the work

of Ingo Rechenberg [106] and Hans-Paul Schwefel [115], ESs were initially designed

to solve real-valued parameter optimization problems. Unlike other EAs that encode

solutions as binary strings or other discrete structures, ESs operate directly on real-

valued vectors.

The main components of ESs are similar to those of other EAs, with an empha-

sis in ESs on mutation and selection as the primary mechanisms for exploration and

exploitation. Two key features of ESs are the use of a multivariate normal distribu-

tion for the mutation operator [12] and self-adaptive mechanisms for the mutation

rate, which allows to dynamically adjust the mutation step size of the algorithm in

response to the landscape of the fitness function [17]. A significant improvement in

ESs is achieved with the introduction of the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [56, 57].
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2.4 Covariance Matrix Adaption Evolution Strategy

CMA-ES represents a breakthrough in the field of evolutionary computation and has

emerged as a leading method for tackling continuous single-objective optimization

problems [47]. The following description provides an overview of the basic principles

of CMA-ES based on the tutorial by Hansen [50]. Figure 2.1 illustrates a CMA-ES

run on the two-dimensional sphere function.

x1

x 2

Generation 0

x1

x 2

Generation 1

x1

x 2

Generation 2

 individuals mean vector m global optimum

Figure 2.1: Visualization of a CMA-ES run with a population of 10 offspring on the two-
dimensional sphere function for the first three generations.

In each generation g of CMA-ES, a new population of λ offspring is generated. The

offspring x
(g)
i:λ are sampled from a multivariate normal distribution with a mean vector

m(g) ∈ Rd, a covariance matrix C(g) ∈ Rd×d and a standard deviation σ(g) ∈ R>0:

x
(g+1)
k ∼m(g) + σ(g)N (0,C(g)) ∀ k = 1, ..., λ. (2.4)

The motivation for such a mutation mechanism is to tailor the distribution of

emerging populations to the local topography of the fitness landscape. Therefore,

CMA-ES dynamically adjusts the mean vector m(g), the covariance matrix C(g) and

the standard deviation σ(g). Initially, the top µ parents with the highest fitness within

the population are selected (µ < λ). Utilizing the specified weights wi, the updated

mean vector m(g+1) is calculated as the weighted mean of these µ selected parents,

and the learning rate cm is usually set to 1:

m(g+1) = m(g) + cm

µ∑
i=1

wi(x
(g+1)
i:λ −m(g)),

µ∑
i=1

wi = 1. (2.5)
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The covariance matrix C is initially set to the identity matrix I and evolves in each

generation through two key updates: the rank-µ update and the rank-one update.

While the rank-µ update leverages information from the current population, the rank-

one update is derived from the evolution path pc ∈ Rd. The evolution path, starting

at pc = 0, captures the trajectory of successful adaptations in the search space across

several generations.

C(g+1) = (1− c1 − cµ)C(g) + c1 p(g+1)
c p(g+1)T

c︸ ︷︷ ︸
rank-one update

+cµ

µ∑
i=1

wi y
(g+1)
i:λ

(
y
(g+1)
i:λ

)T
︸ ︷︷ ︸

rank-µ update

, (2.6)

p(g+1)
c = (1− cc)p

(g)
c +

√
cc(2− cc)µeff

m(g+1) −m(g)

cm σ(g)
, (2.7)

µeff =

(
µ∑

i=1

w2
i

)−1

, (2.8)

y
(g+1)
i:λ =

x
(g+1)
i:λ −m(g)

σ(g)
. (2.9)

The standard deviation σ regulates the mutation step size. To independently

control the step size from the covariance matrix update, the cumulative step length

adaptation (CSA) is employed. CSA adjusts the standard deviation σ by utilizing the

conjugate evolution path pσ ∈ Rd. This evolution path pσ captures the cumulative

magnitude and direction of mutations over time. A short evolution path indicates

that recent steps effectively cancel each other out, leading to a lack of directional

progress. The step size should then be decreased. In contrast, a long evolution path

indicates consistent steps in a particular direction, suggesting that increasing the step

size could accelerate convergence. As a reference for the evolution path length, the

expected length of a vector sampled from a standard multivariate normal distribu-

tion E ∥N (0, I)∥ is used. The CSA mechanism applies an exponential update to the

standard deviation σ, moderated by a damping factor dσ:

σ(g+1) = σ(g) exp

 cσ
dσ


∥∥∥p(g+1)

σ

∥∥∥
E ∥N (0, I)∥

− 1

 , (2.10)

p(g+1)
σ = (1− cσ)p(g)

σ +
√
cσ(2− cσ)µeff C(g)−

1
2 m

(g+1) −m(g)

cm σ(g)
. (2.11)



12 Chapter 2 Preliminaries

The learning rates c1, cc, cµ and cσ govern the covariance matrix and the step

size adaptation, thereby directly influencing the behavior of CMA-ES. The following

mathematical expressions define the recommended default parameters:

cc =
4 + µeff

d

d + 4 + 2·µeff

d

, (2.12)

c1 =
2

(d + 1.3)2 + µeff
, (2.13)

cµ = min

(
1− c1, 2 ·

µeff − 2 + 1
µeff

(d + 2)2 + µeff

)
, (2.14)

cσ =
µeff + 2

d + µeff + 5
. (2.15)

The default number of offspring λ in a population varies with the dimensionality

of the optimization problem d. Typically, the selection ratio µr, which represents the

proportion of parents selected from the population, is set to 0.5:

λ = 4 + ⌊3 · ln(d)⌋, (2.16)

µ = ⌊µr · λ⌋. (2.17)

2.4.1 Variants

Several variants of CMA-ES have been introduced to enhance various aspects of the

algorithm [12]. Below is a curated selection of the most impactful variants.

• Active Update [65]: Extends the original adjustment of the covariance matrix

by including both the most and least successful candidate solutions. Negative

weights are assigned to the latter to actively discourage the search from subop-

timal regions of the search space. This promotes a more efficient exploration of

the solution space.

• Elitism [131]: Modifies the selection mechanism of the standard (µ, λ)-CMA-

ES, where the top µ offspring with the highest fitness within the population of

λ offspring are selected as parents to produce the next generation. In contrast,

in the (µ+λ)-CMA-ES, both the µ parents and the λ offspring together compete

for survival, and the top µ individuals are carried forward to the next generation.

This ensures that the highest quality solution so far is always preserved.



2.4 Covariance Matrix Adaption Evolution Strategy 13

• Mirrored Sampling [21]: Only half of the λ offspring of a new population are

sampled from a multivariate normal distribution. The other half consists of the

mirror images of the first set, obtained by negating the sampled vectors. This

mirrored sampling technique is employed to improve the uniformity in the dis-

tribution of search points across the search space and potentially the exploration

capabilities of CMA-ES.

• Orthogonal Sampling [134]: The vectors representing the offspring are or-

thonormalized by applying the Gram-Schmidt process [41, 113]. The goal is

to prevent the overlap of search directions. Particularly in high-dimensional

optimization problems, orthogonal sampling can lead to a more structured ex-

ploration of the search space by CMA-ES.

• Weighted Recombination [57]: Recombination in CMA-ES is accomplished

by adjusting the mean vector m as the weighted sum of the top µ offspring. The

weights wi are determined by the following formula wi = log(µ+ 1
2 )− log(i)∑

j wi
, where

i is the rank of the offspring within the population. The logarithmic scaling of

the offspring systematically favors the best offspring and also takes into account

the contributions of the other offspring. This represents a compromise between

exploitation and exploration. As an alternative to the logarithmic weights, equal

weights wi = 1
µ can be assigned to all top µ offspring. Through this equal

weighting, the diversity in the recombination step is increased.

• Restart [10]: If CMA-ES encounters stagnation or becomes stuck in a local

optimum, a restart is performed. This strategy rejuvenates the search process by

reinitializing the algorithm with a new population. Moreover, at each restart, the

population size can be increased by a factor to enhance global search capabilities,

an approach known as increasing population (IPOP) [9], or alternated between

a smaller and a larger population to balance fine-tuned local search with broader

exploration, known as bi-population (BIPOP) [48].

Employing a tailored configuration of these different variants that is carefully cho-

sen to align with the unique characteristics and demands of the particular optimization

task has the potential to significantly enhance the overall performance and robustness

of CMA-ES [131, 132].
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2.4.2 Box Constraint Handling

For numerous real-world optimization problems, the region of feasible solutions is

restricted due to physical constraints or process dependencies. The most rudimen-

tary form of such restrictions are box constraints, which restrict the feasible solution

space X = [l, u]d by a lower bound l and an upper bound u for each dimension, en-

suring that l ≤ xi ≤ u for all xi. Under these constraints, the feasible region X
constitutes a hypercube, which is the origin of the term box constraint. In the general

case of different lower and upper bound values per dimension, l ∈ Rd and u ∈ Rd,

X is a hyperrectangle. This hyperrectangle can be transformed into a hypercube by

min-max normalization [98].

There are numerous methods available to prevent an optimization algorithm from

generating infeasible solutions. The specific method for box constraint handling signif-

icantly influences the performance of CMA-ES [18]. In the following, the four repair

methods, projection, reflection, wrapping and reinitialization, are described. Addi-

tionally, an explanation of the feasibility preserving method resampling is given. The

terminology adopted in this thesis follows the convention established in the existing

literature [5, 18, 137].

In general, repair methods are based on transforming an infeasible individual to

a feasible one by a mapping process, denoted as M : Rd −→ X , which is frequently

applied in a coordinate-wise manner. This ensures that the solutions adhere to the

predefined constraints of the problem space.

Projection enforces the constraints by clipping all out-of-bounds values to the closest

bound of the feasible region:

Ti(xi) =


xi l ≤ xi ≤ u,

u xi > u,

l xi < l.

(2.18)

Reflection corrects infeasible values by mirroring them back into the feasible region

based on the extent of the constraint violation:

Ti(xi) =


xi l ≤ xi ≤ u,

Ti(u + (u− xi)) xi > u,

Ti(l + (l − xi)) xi < l.

(2.19)



2.4 Covariance Matrix Adaption Evolution Strategy 15

Wrapping treats the search space as a torus. Infeasible values are shifted by (u− l):

Ti(xi) =


xi l ≤ xi ≤ u,

Ti(xi − (u− l)) xi > u,

Ti(xi − (u− l)) xi < l.

(2.20)

Reinitialization replaces the infeasible value by a value ξ sampled from a uniform

distribution within the lower bound l and upper bound u of the feasible region:

Ti(xi) =

{
xi l ≤ xi ≤ u,

ξ xi < l or xi > u.
(2.21)

Resampling preserves the feasibility of individuals by repeating the mutation operator

until a feasible individual is generated. To avoid the possibility of an infinite loop, a

repair method should be employed after a predefined number of unsuccessful attempts.

In contrast to resampling, with a repair method, the optimization algorithm ef-

fectively perceives an altered landscape outside the feasible region since infeasible

solutions are repaired before being evaluated (Figure 2.2).
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Figure 2.2: Landscape modification outside the feasible region X ∈ [−5, 5]2 for the two-
dimensional sphere function and the sharp ridge function after the application of the four
repair methods: projection, reflection, wrapping and reinitialization.
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In a comprehensive comparison of different box constraint handling methods for

CMA-ES, Biedrzycki [18] demonstrated that reflection and resampling consistently

outperform other techniques across a wide range of problems and dimensionalities.

However, resampling requires additional iterations within the algorithm in order to

generate practicable solutions. This can lead to additional computational effort and,

thus, to a reduction in overall efficiency. Furthermore, projection leads to a bias

towards the boundaries. This is particularly beneficial if the optimum is actually

located on the boundaries.

2.4.3 Integer Handling

CMA-ES is a highly effective method for continuous optimization problems [47]. Yet,

many practical applications involve mixed-integer problems with both continuous and

discrete variables. In such cases, discrete variables are constrained to specific values.

A widely used method for applying CMA-ES in these scenarios is to discretize the

search space for discrete variables by rounding the continuous values to the nearest

feasible discrete value. This process creates a landscape where each discrete value

is surrounded by a plateau of an identical fitness value. The objective function is

discretized.

However, this discretization strategy through rounding introduces a potential pit-

fall for CMA-ES: stagnation of the optimization process. This is the case if the variance

of the mutation distribution within the CMA-ES becomes smaller than the granularity

of the discretization due to self-adaptation. In other words, the mutation steps gener-

ated by CMA-ES become too small to traverse the flat fitness landscape regions [49].

This can cause the optimization algorithm to become stuck on one of the plateaus

introduced by the discretization, preventing the optimization algorithm to progress

toward potentially better solutions.

To address the stagnation issue of CMA-ES in discretized optimization landscapes.

Hamano et al. [46] propose an extension to CMA-ES, called the CMA-ES with Mar-

gin (CMA-ESwM). CMA-ESwM ensures that the marginal probabilities of generating

individuals beyond the discretization step size are sufficiently high.

This is achieved by adding a diagonal matrix A to the mutation distribution. The

mutation distribution is then represented as N (m, σ2ACAT ). Both the matrix A

and the mean vector m are then adaptively adjusted in each generation of CMA-ES

to ensure that the probability of generating mutations beyond the discretization step

size is at least greater than a margin α. As a default value for the margin, Hamano
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et al. [46] recommend α = 1
λ d . The margin extension is an affine transformation of

the mutation distribution. It is important to note that, when the margin α is set to

zero, CMA-ESwM reverts to the original CMA-ES, since no correction is applied. Ex-

periments conducted on the BBOB-mixint testbed [130] show that CMA-ESwM out-

performs several other methods, especially in scenarios involving higher-dimensional

problems [45].

2.5 Objective Function Landscape

In the field of optimization, the concept of a landscape provides a powerful analogy

for visualizing the domain of possible solutions. Each location in this landscape cor-

responds to a candidate solution and the height at a specific location represents the

value of the objective function for that solution. Within this landscape, depending

on whether the goal is to maximize or minimize the objective function, optimization

algorithms seek the highest peak or the deepest valley. Higher-dimensional landscapes

require an abstraction of the idea of peaks and valleys into a multidimensional space

in which each additional dimension represents a new variable.

An objective function landscape generally consists of three elements [122]: A set of

potential solutions X ⊂ X to the problem, a notion of distance between solutions and

an objective function f(x) : X 7→ R. Such a representation provides a framework for

discussing the characteristics of an objective function in terms of its local and global

structures within the search space. Understanding the topology of the landscape is

critical because it profoundly affects the performance and effectiveness of optimization

algorithms.

An objective function landscape can be described by high-level properties (Sec-

tion 2.5.1) and quantified with specific low-level features (Section 2.5.2). Some prop-

erties are derived theoretically others via sampling. Further information about the

analysis of objective function landscapes can be found in the literature [86, 87, 101].

2.5.1 Objective Function Properties

In the context of continuous single-objective optimization, the objective function land-

scape can be described by high-level properties [52, 89]. The following list provides a

concise overview of important properties, though it is not exhaustive:
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• Separability: Indicates whether the objective function can be decomposed into

lower-dimensional, independent subproblems, each containing only a subset of

the variables.

• Multimodality: A multimodal landscape is characterized by several local op-

tima. The presence of multiple peaks and valleys complicates the search for the

global optimum, as algorithms risk becoming ensnared in suboptimal solutions.

• Global Structure: The overarching “architecture” of the landscape, including

the distribution and arrangement of optima, shapes the global search strategy.

• Variable Scaling: Captures the anisotropic nature of the solution space, re-

flecting the magnitude of changes in the objective function value to alterations

in distinct dimensions.

• Conditioning: The condition of a function refers to how the output value re-

sponds to small changes in input variables. Poorly conditioned functions, where

output values vary wildly with small input variations, may have narrow and

steep valleys.

• Plateaus: Regions with little to no change in the objective function value.

• Noisiness: Stochastic fluctuations in the landscape (Section 2.7).

2.5.2 Exploratory Landscape Analysis

Exploratory Landscape Analysis (ELA) [88] describes the high-level features of an

objective function landscape with quantifiable metrics using mathematical and statis-

tical techniques. Based on a sample of points evaluated with the objective function,

ELA computes a set of low-level features that capture the nuanced properties of the

landscape. The stochastic nature of creating the sample results in a variability in the

feature values. Hence, the accuracy of these features depends on the sampling strategy

and sample size. Renau et al. [107] recommend using Sobol’ sequences and Kerschke

et al. [71] recommend a sample size of at least 50 times the problem dimensionality.

A variety of ELA features have been developed and are accessible across various

platforms, with the flacco package serving as a comprehensive repository for these

features within a single framework [73]. Some of the key features considered are

briefly described in the following:
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• Levelset [88]: These features are computed using the mean cross-validated mis-

classification error of different classifiers.

• y-Distribution [88]: This group of features is based on the distribution skew-

ness and kurtosis of the objective function values. Kurtosis assesses the peak

value of the distribution and indicates whether it is relatively flat or sharp com-

pared to a normal distribution. In addition, the number of peaks in the distri-

bution provides information about the multimodality of the landscape.

• Meta-Model [88]: Linear and quadratic regression models, with or without

interaction terms, are trained on the sample data. The features are derived from

the resulting quality and the coefficients of these models.

• Dispersion [85]: This feature set compares the dispersion among the initial

sample points with subsets that are defined by function value thresholds.

• Nearest Better Clustering [70, 103]: Analyzes the topology of the landscape

by examining the distance ratios and correlations between the nearest neighbors

of a point and those with better fitness, as well as the number of points to which

the point is the nearest better neighbor.

• Principal Component Analysis: Insight is gained from a principal compo-

nent analysis performed on the sampled points.

• Information Content [91]: Measures the smoothness, ruggedness and neutral-

ity of the landscape through a random walk.

While this collection of features provides a comprehensive toolkit for landscape

analysis, it is important to acknowledge the existence of additional features that are

not within the scope of this study. Some are designed explicitly for low-dimensional

spaces or require further objective function evaluations, which limits their applicability

in specific scenarios. However, the large number of available features can also lead to

redundant features [120].

Examples of applications of ELA are the analysis of similarities of problems across

benchmark sets [120], the selection of an optimization algorithm [72] or the parameter

tuning of an optimization algorithm [15]. Muñoz et al. [92] give an overview of the

research field combining feature-based landscape analysis and algorithm selection for

continuous black-box optimization problems.
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2.6 Benchmarking and Tuning

The benchmarking of optimization algorithms involve the systematical assessment and

comparison of the performance of optimization algorithms in solving standardized test

functions or real-world optimization problems. Benchmarking reveals the strengths

and weaknesses of different algorithms. The insights about the behavior of an op-

timization algorithm gained from benchmarking facilitate the selection of a specific

optimization algorithm for a given optimization problem.

However, the benchmarking process must be carefully designed to provide mean-

ingful results. Bartz-Beielstein et al. [14] emphasize the importance of clear objectives,

precise problem definitions, appropriate algorithm selection, relevant performance met-

rics and thorough analysis.

2.6.1 Benchmark Problems

An integral part of benchmarking optimization algorithms is the selection of appro-

priate benchmark problems. A widely accepted benchmark suite for single objec-

tive continuous optimization problems is the Black-Box Optimization Benchmarking

(BBOB) [54]. The BBOB suite consists of a collection of 24 noiseless test functions,

each designed to evaluate different aspects of optimization algorithms.

Table 2.1 provides an overview of the 24 noiseless BBOB functions. These functions

are typically categorized into five subsets based on categories ranging from simple

separable landscapes to complex multi-modal terrains with weak global structures.

This categorization enables a targeted assessment of the capabilities and limitations

of an algorithm in different optimization scenarios.

A problem instance is a concrete example with defined parameters belonging to

a broader problem class. Within the BBOB framework, problem instances are cre-

ated by transforming the base functions. Examples of transformations are rotating

and moving the input area. These transformations are defined by randomly generated

parameters that remain consistent for each instance. In other words, the conditions re-

main unchanged for any algorithm that is re-evaluated on the same instance. However,

a critical aspect of this process is the change in the location of the global optimum

across different instances. As a result, the BBOB framework prevents algorithms that

are biased [77] in the direction of the optimum, e.g. due to favorable starting positions,

from gaining an unfair advantage.
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Table 2.1: Overview of the 24 noiseless BBOB functions [54].

ID Function Name Description
1 Sphere Function
2 Ellipsoidal Function, original Separable unimodal
3 Rastrigin Function functions with
4 Büche-Rastrigin Function global structure
5 Linear Slope Function
6 Attractive Sector Function
7 Step Ellipsoidal Function Functions with low
8 Rosenbrock Function, original or moderate conditioning
9 Rosenbrock Function, rotated

10 Ellipsoidal Function, rotated
11 Discus Function Functions with
12 Bent Cigar Function high conditioning
13 Sharp Ridge Function and unimodal
14 Different Powers Function
15 Rastrigin Function
16 Weierstrass Function Multi-modal
17 Schaffers F7 Function functions with
18 Schaffers F7 Function, moderately ill-conditioned adequate global structure
19 Composite Griewank-Rosenbrock F8F2
20 Schwefel Function
21 Gallagher’s Gaussian 101-me Peaks Function Multi-modal functions
22 Gallagher’s Gaussian 21-hi Peaks Function with weak
23 Katsuura Function global structure
24 Lunacek bi-Rastrigin Function

2.6.2 Performance Metric

Benchmarking the performance of black-box optimization algorithms is generally based

on the evaluation of two primary indicators: the quality of the solutions obtained

and the costs expended. Thus, the performance of an optimization algorithm can be

assessed from two perspectives: fixed-target or fixed-budget [14].

In the fixed-budget scenario, a limited budget of resources is given and the perfor-

mance of the optimization algorithm is determined by the quality of the found solution.

Thus, using a fixed budget approach reflects the cost constraints of real-world prob-

lems. In the fixed-target scenario, a specific target is defined. The performance is

measured by the costs expended to reach the target. This provides easily understand-

able results, such as the relative speed of different algorithms in achieving a specific

solution quality. A drawback of the fixed-target scenario is that a concept for handling

runs that do not reach the predefined goal is required.
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Algorithms can also be evaluated based on anytime performance, which considers

the performance trajectory of the algorithm over time, as depicted in time quality

diagrams. This metric summarizes the performance of an optimization algorithm

along the complete optimization run in one value [66, 139].

The costs expended are typically quantified by the number of objective function

evaluations or the total computation time. The choice between these two metrics

depends on the relative computational overhead of the operations of the algorithm

compared to the required time to evaluate candidate solutions. In scenarios where

the evaluation time significantly surpasses the overhead of the algorithm, as often in

real-world applications where, e.g., expensive simulations are involved, the number of

objective function evaluations is the preferred measure.

Any performance measure must take into account not only the search cost but also

the solution quality achieved. However, when dealing with stochastic optimization

algorithms such as CMA-ES, multiple runs are essential to obtain an average quality

score that ensures a robust evaluation of the algorithm’s performance. The following

describes three sophisticated performance metrics that are commonly used.

• Success Rate (SR): Measures the proportion of independent runs of an algo-

rithm that achieve a predefined solution quality within a given budget (such as

function evaluations or time). The SR is particularly useful for assessing the

robustness of an algorithm. A higher SR indicates that the predefined solution

quality is reached more often across a defined number of repeated optimization

runs.

• Expected Running Time (ERT) [10]: Returns for a given target the average

number of function evaluations, also called average hitting time, needed to reach

that target. If the success rate is less than 100%, a penalty is assigned based on

the number of unsuccessful runs.

• Area Under the Curve (AUC) [53, 139]: The AUC of the Empirical Cumu-

lative Distribution Function (ECDF) serves as an anytime performance metric

that encapsulates the success of the algorithm over time. The ECDF tracks the

proportion of targets within a predefined set T that have been achieved by the

algorithm for each allocated budget b. Specifically, the ECDF value at budget b

reflects the proportion of targets in T for which the best solution so far found

by the algorithm is at least as good as the target. A higher AUC value means

better performance. The algorithm is more likely to meet or exceed the targets

across a range of budgets.
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2.6.3 Parameter Tuning

The parameters of an optimization algorithm have a decisive influence on the behavior

and, accordingly, the performance of the algorithm. For example, the learning rates

and variants of CMA-ES (Section 2.4) can be tuned for specific functions or classes

of functions [4, 131, 142]. However, manually tuning parameters can be a tedious

and time-consuming process. In automatic parameter tuning, first proposed by [11,

42], this challenge is addressed by defining the parameter tuning task as a meta-

optimization problem. Meta-optimization differs from the primary goal of solving the

original optimization problem but complements it (Figure 2.3).

Original Optimization Problem

Optimization Algorithm

Meta-Optimization Algorithm

solution qualityoptimize

optimize algorithm quality
parameter tuning

problem solving

Figure 2.3: Schematic representation of the two optimization problems: (1) problem-
solving, where an optimization algorithm seeks an optimal solution to the original optimiza-
tion problem, and (2) parameter tuning, where a meta-optimization algorithm optimizes the
parameters of the primary optimization algorithm to improve its performance [11, 30, 42].

Two optimization problems can be distinguished: solving the original problem and

tuning the parameters of the optimization algorithm [30]. The former involves the

optimization algorithm seeking an optimal solution to the given original optimization

problem. The latter entails the use of a meta-optimization algorithm that optimizes

the parameters of the optimization algorithm for solving the original problem. Tuning

the parameters of an optimization algorithm is similar in concept to hyperparameter

tuning in machine learning [138].
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2.7 Uncertainty Quantification

Many real-world optimization problems exhibit noise or non-deterministic character-

istics. This means that if exactly the same input parameter values are reevaluated,

the objective function value varies. Reasons for this variability are often measurement

errors, external disturbances or the inherent stochastic nature of the system under

consideration. The following overview is based on [32].

Each evaluation of the objective function with the same input parameters x can

be considered as a unique scenario zi drawn from the set of all possible scenarios ΩZ .

In this context, an evaluation is not fixed to a particular scenario but depends on a

random variable Z ∈ ΩZ . Thus, the objective function is then described as a random

variable f(x, Z) as well. Therefore, the optimization task defined in Equation 2.1

requires reformulation. The revised objective is to find the solution x∗ that minimizes

the expected value E of the objective function across the randomness entailed by

scenario Z:

x∗ = arg min
x∈X

EZ∈ΩZ
[f(x, Z)] .1 (2.22)

Determining the true mean EZ [f(x, Z)] in closed form requires that the distri-

bution of f(x, Z) be known and tractable. This is seldom possible for black-box

optimization problems. Recent studies [1, 3, 68, 79, 105] have surveyed a spectrum of

potential strategies to address this issue, highlighting the three principal approaches,

which are described in the following:

• Explicit Averaging: The true mean EZ [f(x, Z)] is substituted with its sample

estimate ÊZ [f(x, Z)]. This is achieved by resampling and computing the average

objective function value across a number of K scenarios:

EZ [f(x, Z)] ≈ ÊZ [f(x, Z)] :=
1

K

K∑
i=1

f(x, zi), (2.23)

where zi is sampled from the random variable distribution, i.e., zi
s∼ Z. The

sample estimates are denoted by the hat-□̂-symbol. If K is equal to the number

of all possible scenarios |ΩZ | and z1 ̸= . . . ̸= zi is ensured by sampling With-

out Replacement (WoR) from ΩZ , the sample mean is equal to the true mean.

Consequently, ÊZ [f(x, Z)] can be used as a substitute without any associated

uncertainty.

1To enhance readability, subsequent expressions will not include the set restrictions ∈ X and ∈ ΩZ .
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• Implicit Averaging: Population-based methods, such as EAs, can leverage

the collective data of all individuals in the population to estimate the true mean

implicitly. Each individual is evaluated only once and the aggregated results of

these evaluations guide the evolutionary process toward more favorable solutions.

By using such an approach, the need for explicit averaging is avoided [6, 7, 36].

• Surrogate Assistance: A surrogate model is utilized to approximate the

true EZ [f(x, Z)]. This surrogate is subsequently employed for optimization

purposes.

2.7.1 Static and Dynamic Allocation

The calculation of the sample estimate ÊZ [f(xk, Z)] for each individual xk within the

population requires the specification of the number of scenarios Kk to be evaluated

(Equation 2.23). Choosing Kk less than the number of all possible scenarios |ΩZ |
decreases the number of evaluations but increases the uncertainty in the estimation

of the true mean. Two principal schemes can be distinguished, the Static Allocation

(SA) and the Dynamic Allocation (DA) of evaluations to each individual in the pop-

ulation [105]. The initial research on explicit averaging employed SA schemes that

equally distribute the available evaluation budget N among the λ individuals:

λ∑
k=1

Kk = N , K1 = · · · = Kλ. (2.24)

The variance of the sample mean estimate can serve as a measure of uncertainty

and according to estimation theory, the following applies [58, 109]:

VarZ

[
ÊZ [f(xk, Z)]

]
∼ VarZ [f(xk, Z)]

Kk
. (2.25)

From this, two conclusions can be drawn. First, the uncertainty in the sample mean

estimate decreases as the number of scenarios Kk increases. Second, the uncertainty

in the sample mean estimate is directly proportional to the true variance of the under-

lying distribution of f(xk, Z). Therefore, selecting Kk proportional to VarZ [f(xk, Z)]

is more efficient for achieving equally uncertain sample mean estimates across indi-

viduals. DA schemes iteratively and adaptively determine the value of Kk for each

individual xk separately.
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2.7.2 Dynamic Allocation for Ranking and Selection

During the selection phase of EAs, the individuals of a population are typically ranked

on the basis of their objective function values. Therefore, a consensus of researchers

suggests that the evaluation budget should be dynamically allocated among individ-

uals [22, 23, 43, 55, 58]. The aim of this DA is to reduce uncertainty in the ranking

process, especially in identifying the top-µ performing individuals, known as top-µ se-

lection. Reducing the uncertainty in the ranking or in identifying the top-µ individuals

does not necessarily mean that the uncertainty in the mean performance estimate of

each individual is also reduced.

DA schemes for the identification of the top-µ performing individuals are part of the

broader domain of Ranking and Selection (RaS). This area has seen the development of

many RaS methods, which have been comprehensively reviewed by various authors [20,

28, 29, 38, 40, 59, 61, 93, 94, 99, 140, 141]. The methods for RaS can essentially be

formulated as Bayesian or frequentist inference. Bayesian methods rely on a parametric

and functional characterization of the probability distribution of f(x, Z) across both

different individuals and scenarios. In other words, Bayesian approaches treat the

parameter to be estimated as a random variable with a prior distribution, whereas

frequentist approaches treat the parameter to be estimated as a fixed and deterministic

quantity [112]. Some methods for RaS are described in the following.

Jiang et al. [67] select the top-µ individuals with a minimal number of evaluations

by assuming sub-Gaussian distributions of f(x, Z). With a user-defined confidence,

the lower and upper confidence bounds for each individual are derived to allocate

evaluations to the individuals further. However, the method may fail if the actual dis-

tributions differ from a sub-Gaussian distribution. Chen et al. [24] propose a selection

method that works with bounded objective values without assuming a distribution of

f(x, Z). However, both methods lack an intermediate uncertainty quantification for

stopping the allocation procedure before the user-defined confidence is met.

Hansen et al. [55] propose a method for assessing uncertainty in the current top-µ

selection by observing the number of rank changes among the individuals of the current

population after additional evaluations. If the uncertainty exceeds a certain threshold,

more evaluations are assigned. However, this method is not based on statistical rank

estimation theory. Groves et al. [43] present a Bayesian counterpart to the approach

by Hansen et al., using Bayesian probabilities of rank changes to quantify uncertainty.
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2.7.3 Confidence Interval Sequences

If the functional parametric form of the distribution of the random variable f(x, Z)

is unknown or cannot be assumed, statistical estimation theory often resorts to non-

parametric or distribution-free estimators and Confidence Intervals (CIs). However,

traditional CIs are designed for static, one-time uncertainty quantification with a fixed

number of evaluations, as is the case in SA. When the number of evaluations is not

predetermined and additional evaluations are allocated adaptively, the repeated use

of CIs for uncertainty quantification can inflate error rates [44, 111, 117, 118, 135].

Therefore, Confidence Interval Sequences (CISs) provide a more appropriate alterna-

tive to traditional CIs. Unlike static CIs, CISs provide a quantification of uncertainty

over a series of intervals. This is particularly valuable in DA schemes as CISs allow

repeated uncertainty quantification without the risk of statistical error inflation. Com-

pared to traditional CIs, the use of CISs is preferable in situations where adaptability

is required and the number of evaluations is not predetermined.

Several nonparametric, distribution-free CISs have been developed recently [60, 80,

95, 111, 116, 136]. Howard and Ramdas [60] proposed a method for the construction

of CISs for quantiles and not for the mean of bounded random variables by apply-

ing sequential hypothesis tests. Kuchibhotla and Zheng [80] employ more powerful

concentration inequalities to obtain CISs for the mean. In contrast, based on similar

assumptions [95, 111] adopt a game-theoretic perspective on stochastic processes to

construct comparably tight CISs. The CISs developed by Waudby-Smith and Ram-

das [136] is considered state-of-the-art and provides the tightest CISs when sampling

Without Replacement (WoR) is possible.

A CIS is defined as a sequence
{
CIK

}|ΩZ |

K=1
of CIs for which

P
[
EZ [f(x, zi)] ∈ CIK ∀K = 1, . . . , |ΩZ |

]
≥ 1− α, (2.26)

and where α ∈ [0, 1] denotes the user-defined CIS significance level. Smaller signif-

icance levels correspond to a higher probability that the CIS covers the true mean,

which tends to lead to wider CIs. Figure 2.4 shows the CISs for two different signif-

icance levels. As more and more samples are observed (i.e., the larger K becomes),

the CIs become tighter and tighter around the sample mean. Once all |ΩZ | scenarios

have been observed, the sample mean converged to the true mean.
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Figure 2.4: Left: The |ΩZ | = 20 uniformly distributed values {f(x, z1), . . . , f(x, z|ΩZ |)}.
Right: Illustration of two CISs, each consisting of a CI after K = 1, . . . , 20 evaluations for
the significance levels α ∈ {0.1, 0.9}. Each CIK is constructed with the K sampled values
available after K evaluations. In addition, the true mean EZ [f(x, Z)] and the estimated
(sample) mean ÊZ [f(x, Z)] are displayed along with the number of sampled values K.

Probabilistic Confidence Interval Sequence

Waudby-Smith and Ramdas [136] introduced a novel method to obtain a CIS for

the true mean of a random variable. The approach is rooted in a game-theoretic

framework and assumes that the sampled values from the random variable all lie

within the interval [0, 1]. The underlying concept of this method is based on the

concept of betting.

A multi-round betting game is set up for each η ∈ [0, 1] being the mean. The games

are played in parallel. In each round of a game, a bet on the upcoming observation

can be placed. No wealth is gained or lost if the true mean equals η. But if there is a

discrepancy between η and the true mean, smart betting can result in a financial gain.

The betting strategy can be adaptive and may vary across the different games. The

construction of the (1− α) confidence set after K bets is determined by the ensemble

obtained from the η values for which the wealth has not exceeded the threshold of 1/α.

The true mean of the random variable is then in this set with high probability [136].
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The method introduced by Waudby-Smith and Ramdas [136] represents a signifi-

cant advancement in the construction of confidence intervals. This method generalizes

the traditional approach in two key dimensions.

First, the method introduced employs nonparametric (composite) tests that do not

rely on assumptions about the underlying distribution of the data. Thus, the approach

is applicable to a larger variety of data distributions.

Second, to address the DA of samples and to overcome the limitation of CIs to a

predetermined sample size, test (super)martingales are used. In the game-theoretic

viewpoint, these are referred to as hedged capital process CP (i.e., the accumulated

wealth from sequential betting) for each η ∈ [0, 1]. Different betting schemes from

game theory can be employed.

When the objective values f(x, zi) are sampled WoR from the finite and non-

random set
{
f(x, z1), . . . , f

(
x, z|ΩZ |

)}
through sampling scenarios zi WoR from ΩZ ,

only the order of observed objectives is uncertain. The WoR hedged capital process CP

after K evaluation is defined as (Sections 5.2 and 5.3 of [136]):

CPWoR
K (η) := max

{
θ

K∏
i=1

(
1 + λ+

i (η) ·
(
f(x, zi)− ηWoR

i

))
,

(1− θ)

K∏
i=1

(
1− λ−

i (η) ·
(
f(x, zi)− ηWoR

i

))}
,

with CPWoR
0 (η) := 1

and ηWoR
K :=

|ΩZ | · η −
∑K−1

i=1 f(x, zi)

|ΩZ | − (K − 1)
,

(2.27)

where the parameter θ is dividing one’s capital into two proportions: θ and 1− θ.

In the following, the construction of the CIS for EZ [f(x, Z)] when the scenarios

zi are sampled WoR from ΩZ is described (Theorem 4 in [136]). When the real-

valued predictable sequences
(
λ̇+
K

)∞
K=1

and
(
λ̇−
K

)∞
K=1

are not depending on η and

with c ∈ [0, 1[ for each K ≥ 1 applies:

λ+
K (η) := min

(∣∣∣λ̇+
K

∣∣∣, c

ηWoR
K

)
, λ−

K (η) := min

(∣∣∣λ̇−
K

∣∣∣, c

1− ηWoR
K

)
, (2.28)

then

pCIWoR
K :=

{
η ∈ [0, 1] : CPWoR

K (η) < 1/α
}

(2.29)

forms a (1−α)-CIS for EZ [f(x, Z)]. pCIWoR
K is a CI of the true mean for each K ≥ 1.
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Waudby-Smith et al. [136] recommend to set the truncation level c := 1/2 and

λ̇+
K = λ̇−

K = λK with

λ: =

√
2 log (2/α)

σ̂2
K−1K log(K + 1)

, (2.30)

where σ̂2
K and µ̂K can be interpreted as variance and mean estimators of f(x, zi),

respectively:

σ̂2
K :=

1/4 +
∑K

i=1 (f(x, zi))− µ̂i)
2

K + 1
, (2.31)

µ̂K :=
1/2 +

∑K
i=1 f(x, zi)

K + 1
. (2.32)

A closed-form computation of the CIS from Equation (2.29) is not feasible, given

the infinite set of potential values η ∈ [0, 1]. Therefore, in practice, pCIWoR
K is de-

termined through a grid search on η ∈
{

0, 1
ηbreaks

, 2
ηbreaks

, . . . , 1
}

with, for example,

ηbreaks = 100.

Logical Confidence Interval Sequence

In addition to the previously described CIS based on probabilistic reasoning, Shekhar

et al. [116] proposed a method for constructing CIS based purely on logical reasoning

when sampling WoR. After evaluating K samples, (|ΩZ | −K − 1) samples remain.

Under the assumption that all values fall within the interval [0, 1], the following CIS

lCIWoR
K :=

[
1

|ΩZ |

K∑
i=1

f(x, zi) ,
1

|ΩZ |

K∑
i=1

f(x, zi) +
1

|ΩZ |
· (|ΩZ | −K − 1)

]
(2.33)

for EZ [f(x, Z)] satisfies

P
[
EZ [f(x, zi)] ∈ lCIWoR

K ∀K = 1, . . . , |ΩZ |
]

= 1. (2.34)

The logical CIS from Equation (2.33) can be intersected with the probabilistic CIS

from Equation (2.29) to produce valid, yet even tighter CIS [116]. Figure 2.5 shows the

CIS with |ΩZ | = 20. Although the probabilistic CIS provides considerably narrower

confidence intervals for a significant portion of the sequential sampling process, the

logical CIS provides tighter intervals at the beginning for K = 1 and in the later

phases from K = 16 to K = 20.
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Figure 2.5: Left: The |ΩZ | = 20 uniformly distributed values {f(x, z1), . . . , f(x, z|ΩZ |)}.
Right: Illustration of the resulting probabilistic CIS (Equation 2.29) and logical CIS (Equa-
tion 2.33), as well as the intersection, which is also a valid CIS. Each CIK is constructed
with the K sampled values available after K evaluations. The significance level α for the
probabilistic CIS is set to 0.3. The true mean EZ [f(x, Z)] and the estimated (sample) mean
ÊZ [f(x, Z)] are displayed along with the number of sampled values K.

2.7.4 Uncertainty Quantification in Ranking and Selection

To effectively reduce the uncertainty in the ranking or in the selection of the top-µ

individuals within a population of λ individuals, establishing a dependable quantitative

measure of uncertainty is imperative. A prevalent approach for quantifying certainty

in both ranking and selection involves calculating the probability that a given ranking

or selection is accurate. This approach, therefore, gives rise to two central terms in

the field of RaS: the Probability of Correct Ranking (PCR) and the Probability of

Correct Selection (PCS) [20, 59, 99].

When given a finite set of individuals {x1, . . . ,xλ}, where each individual xk is

associated with an objective random variable f(xk, Z) and the true mean objective

value of each individual can be distinguished (EZ [f(x1, Z)] ̸= . . . ̸= EZ [f(xλ, Z)]),

then the true rank rank(xk) and the estimated rank ˆrank(xk) of an individual xk

within the population of λ individuals can be formally defined as:
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rank(xk) :=

∣∣∣∣{xj , j = 1, . . . , λ
∣∣∣ EZ [f(xj , Z)] ≤ EZ [f(xk, Z)]

}∣∣∣∣, (2.35)

ˆrankfrq(xk) :=

∣∣∣∣{xj , j = 1, . . . , λ
∣∣∣ ÊZ [f(xj , Z)] ≤ ÊZ [f(xk, Z)]

}∣∣∣∣. (2.36)

Using the definition of the true rank and the estimated rank, in the frequentist

setting the PCR and PCS can be defined as:

PCRfrq := P
[
rank(xk) = ˆrankfrq(xk) ∀i = 1, . . . , λ

]
, (2.37)

PCSfrq := P
[{

j = 1, . . . , λ
∣∣ rank(xj) ≤ µ

}
={

j = 1, . . . , λ
∣∣ ˆrankfrq(xj) ≤ µ

}]
.

(2.38)

In the frequentist setting, the true mean value is considered a fixed but unknown

quantity and can be estimated through the sample mean (Equation 2.23). Conse-

quently, within the frequentist setting, the probabilities PCRfrq and PCRfrq cannot

be computed as a direct measure of the certainty in ranking and top-µ selection for a

given dataset.

Klein et al. [74] propose a simple and effective method to construct Rank Intervals

(RIs). Based on the CIs of the individuals, the RI RIk of an individual k within a

population of λ individuals is defined as follows:

RIk := {|ΛLk|+ 1, |ΛLk|+ 2, . . . , |ΛLk|+ |ΛOk|+ 1},

with: Ik := {1, . . . , λ} \ {i},

ΛLk := {j ∈ Ik | max(CIj) ≤ min(CIk)},

ΛRk := {j ∈ Ik | max(CIk) ≤ min(CIj)},

ΛOk := Ik \ (ΛLk ∪ ΛRk) .

(2.39)

The set ΛLk contains the indices of all the individuals that are clearly left of

(i.e., smaller than) individual k, while the set ΛRk holds all the indices of individuals

(other than k) that are clearly right of (i.e., larger than) individual i. ΛLi, ΛRi and

ΛOi are mutually exclusive: ΛLk∪̇ΛRk∪̇ΛOk = Ik. Thus, ΛOk contains the indices of

individuals (except k) whose CI overlaps with the CI of individual k.
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Rising [108] proposes two uncertainty measures: The Uncertainty Quantification

in Ranking (UQiR) and the Uncertainty Quantification in Selection (UQiS) within a

population of λ individuals:

UQiRλ :=
1

λ

λ∑
µ=1

excµ, (2.40)

UQiSµ := excµ, (2.41)

where excµ denotes the number of individuals minus µ that are among the top-µ

individuals of the current population, based on the sampled objective values and the

subsequently constructed CIs:

excµ :=
∣∣∣{ k ∈ {1, . . . , λ}

∣∣ |ΛLk|+ 1 ≤ µ
}∣∣∣− µ. (2.42)

Figures 2.6 illustrates the RIs based on exemplarily given CIs of six individuals.

The calculated UQiS of the top three individuals UQiS3 equals two because according

to the RIs, five individuals could be among the top three individuals.
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UQiS3 = 2

RIk rank(xk)

Figure 2.6: Left : CI for the true mean and sample mean for each individual in {x1, . . . , x6}.
Right : Resulting RIs and sample ranks. The UQiS of the top-3 individuals UQiS3 equals 2.
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Chapter 3

Engineering Problems

Vehicle dynamics control systems (VDCSs) have become a cornerstone in the auto-

motive industry. These systems use advanced control algorithms that, in conjunction

with a range of sensors and actuators, dynamically modulate the vehicle’s response,

taking into account different driving conditions [104]. Therefore, VDCSs significantly

improve both the safety and driving dynamics of modern vehicles providing enhanced

driving pleasure.

The basis for modern VDCSs was laid by the development of the Antilock Braking

System (ABS) [75] and the Electronic Stability Control (ESC) [78]. The introduction

of these two systems in road vehicles has been shown to significantly improve braking

performance and reduce the number of traffic accidents and fatalities by mitigating

skidding and loss of control [25, 33, 34, 81].

The behavior of VDCSs depends on the precise calibration of system parameters

designed to achieve optimal performance. Recent advances in simulation technology,

coupled with the exponential growth in computational resources, have paved the way

for the virtual pre-design of these parameters. To facilitate this virtual pre-design pro-

cess, objective characteristic values (CVs) are required for assessing the performance of

system parameters. These CVs are integral to the formulation of an objective function

for determining the optimal parameters using an optimization algorithm.

In Sections 3.1 and 3.2, two such objective functions are defined mathematically

for two different VDCSs. Furthermore, a brief overview of vehicle dynamics simulation

and modeling is given (Section 3.3). Finally, a dataset created for benchmarking and

algorithm design throughout this thesis is described (Section 3.4).
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3.1 Antilock Braking System

The ABS is designed to prevent wheels from locking and to maximize the brake forces

exerted by the tires during braking by adjusting brake pressure to keep brake slip

within an optimal range. This reduces the braking distance. Moreover, the driver

maintains control and can steer the vehicle even in an emergency braking situation.

The brake slip s is the amount by which the wheel’s circumferential speed vwheel is

behind the vehicle’s linear speed (road speed) vvehicle [75]:

s =
vvehicle − vwheel

vvehicle
· 100%. (3.1)

The longitudinal brake force that can be transmitted is proportional to the coef-

ficient of friction µx. Figure 3.1 illustrates the relationship between the coefficient of

friction and brake slip during straight-line braking with ABS for various road con-

ditions. The ranges in which the ABS keeps the brake slip are shaded blue. The

curves for dry, wet and ice demonstrate that ABS can significantly reduce braking

distances compared to scenarios where the wheels lock up (s = 100%). Snow leads

to a unique situation where a wedge of snow accumulates in front of locked wheels,

aiding in deceleration. In this case, the benefit of ABS lies in preserving steerability.
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Figure 3.1: Relationship between the coefficient of friction µx and brake slip s during
straight-line braking for various road conditions (1: dry, 2: wet, 3: snow, 4: ice). ABS keeps
the brake slip in the shaded blue ranges. Figure is adapted from [75].
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A standard maneuver for assessing a vehicle’s braking performance is the emer-

gency straight-line full-stop braking maneuver with ABS fully engaged [63]. A braking

maneuver is defined, consisting of the following three phases (Figure 3.2):

(1) Acceleration of the vehicle to a maximum velocity of 103.5 km/h,

(2) Coasting the vehicle in neutral without accelerating or braking to 103 km/h,

(3) Braking of the vehicle with maximum deceleration until the vehicle stops.

vs

ve

ts teTime t in s

0

20

40

60

80

100

La
te

ra
l v

el
oc

ity
 v

x 
in

 km h

1 2 3

Figure 3.2: Illustration of the lateral velocity vx of a vehicle over the three defined phases
(1: acceleration, 2: coasting, 3: braking) of an emergency straight-line full-stop braking
maneuver for calculating the braking distance from the start velocity vs = 100 km/h at start
time ts to the end velocity ve = 0 km/h at end time te.

The braking distance y is a CV for the ABS performance and is defined as the

integral of the vehicle’s longitudinal velocity vx over time from the start velocity vs =

100 km/h at time ts to the end velocity ve = 0 km/h at time te:

y =

∫ te

ts

vx(t) dt. (3.2)

The objective is to find an optimal parameter configuration x∗ for the d ABS

parameters within the feasible input space x ∈ Dd ⊂ Rd that minimize the braking

distance y(x), as defined in Equation (3.2):

x∗ = arg min
x∈Dd

y(x). (3.3)
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3.2 Active Rollover Protection

At the limit of driving dynamics, the imminent risk of a vehicle rollover is characterized

by one or more wheels lifting off the ground. High lateral force build-up can cause

vehicles to rollover. In general, rollovers can be either tripped or untripped [104].

Tripped rollovers occur due to the influence of an external lateral force applied to

the vehicle. For example, when the vehicle hits a curb. Untripped rollovers, on the

other hand, occur as a result of sharp steering, such as when cornering at high speed

or making a quick lane change. The resulting lateral forces on the tires cause the

vehicle to roll over. In these scenarios, the Active Rollover Protection (ARP) as part

of the ESC can intervene to prevent a vehicle rollover by stabilizing the vehicle through

selective wheel braking and a reduction of engine torque.

Standardized maneuvers are employed to assess the driving behavior and the ef-

fectiveness of controller interventions, such as from the ARP. The Sine with dwell

(SWD) [64] is one such maneuver. During the SWD maneuver, the vehicle initially

drives at a constant speed of 80± 2 km/h in a straight line. A steering machine then

imposes a sinusoidal steering input at a frequency of 0.7 Hz, incorporating a dwell

period of 500 ms at the peak of the second half-wave. The amplitude of the steer-

ing wheel angle is set to a predetermined multiple of the characteristic steering wheel

angle δ0.3g, which is ascertained from previous slowly increasing steer tests. These pre-

liminary tests are designed to establish the vehicle’s characteristic steering response

at a lateral acceleration of 0.3g, providing a baseline for the SWD maneuver.

The induced steering angle causes a pronounced oversteer response in the vehicle,

which can be critical to rollover, especially in vehicles with a high center of gravity.

To ensure stability, several criteria must be satisfied. At no point should two wheels

simultaneously lift more than 5 cm off the ground [19]. Additionally, the yaw rate

should decrease to a specified fraction of its peak value within a certain time frame

after the steering angle reverses direction [64]. Besides these stability criteria, an agility

criterion is specified: the lateral displacement of the vehicle’s center of gravity from

its original path during straight-ahead driving must surpass a defined threshold [64].

Dourson [27] demonstrated through simulations that the parameters of ARP, which

maximize the velocity of the vehicle one second after the SWD maneuver, also meet

the specified stability and agility criteria. However, it should be noted that the used

simulation model had limitations that prevented the modeling of a road edge contact

and tire separation.



3.3 Vehicle Dynamics Modeling and Simulation 39

3.3 Vehicle Dynamics Modeling and Simulation

Various vehicle models with different complexity levels have been developed to sim-

ulate vehicle dynamics accurately. These vehicle models range from single-track to

twin-track and extend to sophisticated multibody system models, each with their re-

spective stages of expansion [90, 114]. With a higher model complexity, the required

computing resources increase. Consequently, the choice of a vehicle model is guided by

the principle that it should be sufficiently but not excessively detailed for the respective

application.

A twin-track model implemented in MATLAB/Simulink [123] is employed for the

simulation of a full vehicle with VDCSs, such as ABS or ARP. A twin-track model

provides a balance between computational efficiency and the necessary level of com-

plexity. The mechanical vehicle is modeled as a five-body system (one car body plus

four wheels) with 16 degrees of freedom. The key components of the model are equa-

tions of motion, tires, drivetrain, aerodynamics, suspension, steering and braking.

The control system is represented by sensors, logic and actuators. The simulation of

the interaction between these modeled components enables the simulation of a closed

control loop.

The primary phenomena that affect vehicle dynamics occur between the tire and

the road surface. Thus, the tire model is an essential simulation component. The

employed MF-Tyre/MF-Swift tire model [119] has been developed based on Pacejka’s

Magic Formula [97]. This tire model can simulate the steady-state and transient

behaviors of a tire under various slip conditions. In addition, curved regular grid

(CRG) tracks [133] are utilized for the road surface representation. A CRG track

provides detailed three-dimensional road profiles with high precision along a predefined

reference line while optimizing memory usage.

The described vehicle dynamics simulation is integrated into an overarching work-

flow. This workflow is designed to connect seamlessly with user input or an optimiza-

tion algorithm. The vehicle dynamics control system parameters can be automatically

adjusted and the simulation can be started. Once a vehicle dynamics simulation is

completed, the results are post-processed to calculate the CVs. These CVs are then

used to determine the objective function value. Moreover, simulation runs are paral-

lelized and executed asynchronously. Consequently, several simulation instances can

run independently without waiting for each other.
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3.4 ABS Benchmark Dataset

The vehicle dynamics simulation described in Section 3.3 is computationally expensive.

Benchmarking and designing optimization algorithms typically require multiple opti-

mization runs for statistical analysis. Thus, the real-world problems are not practical

for extensive experimentation. To replace the computationally expensive simulation,

a dataset is created using the workflow described in Section 3.3.

For the creation of this dataset, two ABS parameters with significant influence

on the ABS control behavior, denoted as x1 and x2, are considered. The range of

each parameter is defined by a lower bound lb and upper bound ub: x1 ∈ [−5, 6] and

x2 ∈ [−5, 4]. For both x1 and x2, only a discrete set of values Di with a resolution

of 0.1 is permitted, resulting in 111 distinct possibilities for x1 and 91 for x2. The

two-dimensional input space D2 = ×2
i=1Di is defined by the Cartesian product. The

total number of possible combinations for x1 and x2 is 10 101.

Generally, an optimal parameter configuration is only optimal for one vehicle set-

ting. Five different vehicle settings are considered, with each setting consisting of a

vehicle load and a tire (Table 3.1).

Table 3.1: Explanation of the vehicle settings.

Name Tires Vehicle Load
y1 High performance Partially loaded
y2 Medium performance Partially loaded
y3 Under performance Partially loaded
y4 High performance Fully loaded
y5 High performance Little loaded

The braking distance (Equation 3.2) is sensitive to slight variations in environmen-

tal conditions, vehicle characteristics and the functionality of ABS. In order to reduce

the resulting variation in braking distance, the performance of a parameter configura-

tion is averaged across the braking distances obtained from ten individual simulation

runs.

Moreover, to accommodate algorithms designed for continuous input spaces, the

problem is treated as quasi-continuous: for any input x ∈ R2 within the specified

bounds, the ABS performance is approximated by rounding x1 and x2 to the nearest

valid points within the discrete input space D2 = ×2
i=1Di. In summary, the objective

is to find a parameter setting x that minimizes the mean braking distance yi(x) for a

vehicle setting i across 10 simulations:
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x∗ = arg min
x∈D2

1

10

10∑
k=1

yi(x). (3.4)

By exhaustively simulating every combination of the two ABS parameters (a brute-

force approach), the relationship between x1, x2 and the braking distance can be

mapped for each setting considered.

Figure 3.3 shows the resulting mean braking distances across 10 simulations yi

(Equation 3.4) for each of the 10 101 possible combinations of the two ABS parameters

x1 and x2 for the five vehicle settings (Table 3.1). All braking distances of a particular

vehicle setting i are specified as the distance in meters to the corresponding optimum.
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Figure 3.3: The resulting mean braking distances across 10 simulations yi (Equation 3.4)
for each of the 10 101 possible combinations of the two ABS parameters x1 and x2 for the five
vehicle settings i (Table 3.1). The braking distances are specified as the distance in meters
to the corresponding optimum yi,opt. The objective is minimization, thus dark blue-purple
indicates better solutions and yellow worse.
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Chapter 4

Tuning CMA-ES Parameters

In various scientific and technical domains, ranging from economics and finance to com-

puter science and engineering, optimization algorithms are applied to solve complex

optimization problems. The performance thereby depends on the specific employed

parameter configuration of the optimization algorithm. The identification of the most

suitable parameter configuration of an optimization algorithm for a specific optimiza-

tion problem or a class of optimization problems requires comparing the performance

of different parameter configurations. One approach to this challenge is to frame

automatic parameter tuning as a secondary optimization problem (Section 2.6.3).

However, an accurate assessment of the performance of an optimization algorithm

requires solving the original optimization problem repeatedly. This is contrary to the

primary goal in practical applications: solving the actual optimization problem. More-

over, many real-world optimization problems are computationally expensive, making

it impractical to tune the parameters of the optimization algorithm directly on the

original optimization problem.

Nevertheless, parameter tuning can significantly increase the performance of an

optimization algorithm. The challenge is to select the optimal parameters for the

optimization algorithm to solve a given computationally expensive black-box opti-

mization problem without any prior experience in solving the original optimization

problem. Consequently, in order to tune the parameters of the optimization algorithm,

surrogate optimization problems that mimic the key characteristics of the original op-

timization problem and are less expensive to evaluate are needed. The knowledge

gained from these surrogate optimization problems can then be transferred to the

original optimization problem.
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This Chapter is based on the results from [126, 127]. Section 4.1 introduces the pro-

posed parameter tuning method for computationally expensive black-box optimization

problems.

A set of five two-dimensional optimization problems from the field of vehicle dy-

namics (Section 3.4) serves as the real-world optimization problems for evaluating this

method. The landscape properties of these five real-world optimization problems are

analyzed to identify functions with similar properties as surrogate optimization prob-

lems (Section 4.2). Subsequently, the most effective CMA-ES configurations for these

similar functions are determined and applied to the five real-world problems. The

performance of the proposed method is then assessed by the performance of the trans-

ferred CMA-ES configurations on the original real-world optimization problems. Two

distinct optimization approaches for parameter tuning are considered: a brute-force

search within a limited CMA-ES parameter space (Section 4.3) and a comprehensive

parameter tuning using a meta-optimization algorithm (Section 4.4).

The feasibility of creating a comprehensive dataset is more practical in lower dimen-

sions, as the number of possible parameter combinations increases exponentially with

higher dimensions. Thus, the real-world problems considered are two-dimensional and,

therefore, relatively easy to solve. However, the focus of this chapter is not on solving

these optimization problems per se but on tuning the parameters of the optimiza-

tion algorithm and evaluating the effectiveness of transferring configurations tuned

on surrogate optimization problems. Consequently, the fidelity with which surrogate

optimization problems replicate the landscape properties of the original problems is

prioritized over problem dimensionality. This requires actual real-world optimization

problems since benchmark problems, such as the 24 BBOB functions (Section 2.6.1),

cannot fully capture the intricacies and complexities present in real-world scenarios.

The five real-world problems differ in the vehicle setting. The objective function, and

thus the optimization problem from an engineering perspective, is the same. In this

way, it can be investigated how different the optimization landscapes are for a class

of real-world optimization problems, such as different vehicle settings, and further,

whether the proposed method can find different optimal parameter configurations for

each of the five real-world optimization problems.

However, to demonstrate the applicability of the proposed method in higher di-

mensions, Section 4.5 examines five instances of the ten-dimensional Büche-Rastrigin

function from the BBOB benchmark suite as an original optimization problem. Fur-

thermore, in Section 4.6, a comparative analysis of several meta-optimization algo-

rithms is conducted. Finally, the results of this chapter are concluded in Section 4.7.
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4.1 Methodology

Selecting the optimal algorithm parameters for an optimization problem without solv-

ing the original problem requires predicting the performance of the algorithm without

prior problem-solving attempts. One approach is to assess the performance of an algo-

rithm on optimization problems that share properties similar to those of the original

problem.

However, to assess the performance of parameter configurations of an optimiza-

tion algorithm in the first place, multiple full optimization runs must be executed. To

ensure computational efficiency, it is advisable to perform assessments on computation-

ally inexpensive problems that share key characteristics with the original optimization

problem. Benchmark problems can serve as surrogate optimization problems for tun-

ing the parameters of an optimization algorithm. In the following, these surrogate

problems are referred to as tuning references. After identifying the most effective pa-

rameter configuration using the tuning references, this configuration can be applied to

the original optimization problem.

This thesis presents a structured process for efficiently solving black-box optimiza-

tion problems by tuning the parameters of an optimization algorithm with the use of

tuning references. The process consists of four distinct steps (Figure 4.1):

1) identification of similar optimization problems (tuning references),

2) tuning the optimization algorithm’s parameters on tuning references,

3) transfer of the best parameter configuration on tuning references, and

4) application of the tuned optimization algorithm to solve the original problem.

Original Optimization Problem

Optimization Algorithm

parameter
tuning

problem
solving

Tuning Reference

Optimization Algorithm

Meta-Optimization Algorithm

similarity

parameter
transfer

1

23

problem
solving

4 2

Figure 4.1: Schematic representation of the methodology for parameter tuning by employ-
ing computationally inexpensive tuning references similar to the computationally expensive
original optimization problem.
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The following sections address some unanswered details within this process, such

as how to quantify the similarity between optimization problems (Section 4.1.1) and

how to acquire a large set of surrogate problems from which the tuning references can

be selected (Section 4.1.2).

4.1.1 Similarity Quantification

The assessment of similarity between two optimization problems is determined by the

characteristics of their respective tasks. These characteristics include the properties of

the objective function landscape. To systematically capture and quantify the high-level

characteristics of the objective function landscape, Exploratory Landscape Analysis

(ELA) is employed (Section 2.5). ELA provides a set of features for each problem based

on a limited sample of points. These features characterize the low-level properties of

the objective function landscape.

However, the raw feature set generated by ELA can contain overlapping or redun-

dant information. Principal Component Analysis (PCA) [69] is employed to reduce

the dimensionality of the feature set while retaining the most salient information.

The refined feature set obtained from PCA allows for a quantification of the degree

of similarity between two distinct optimization problems p1 and p2. This quantification

is achieved through the computation of the city block distance between their respective

feature vectors, fp1
and fp2

:

dsim(p1, p2) :=
∑
i

|fp1,i − fp2,i|. (4.1)

The city block distance, also known as the Manhattan distance, is particularly suited

for this task since it is sensitive to variations in feature space. The distance between

two vectors is measured as the sum of the absolute differences between coordinates.

A smaller distance dsim is indicative of a greater degree of similarity between the

problems in terms of their ELA features. Conversely, a larger distance points to a

more pronounced dissimilarity. In a nutshell, this metric can quantify the similarity

for comparing and contrasting optimization problems based on their feature vectors.

The computed distance can guide the selection of suitable optimization problems for

use as surrogate problems.
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4.1.2 Artificial Functions

Standard benchmark problems can be utilized to tune the parameters of an optimiza-

tion algorithm. For instance, the Black-Box Optimization Benchmarking (BBOB)

suite provides a set of 24 diverse functions. These functions range from separable

functions with a clear global structure to complex multi-modal functions with no

global structure (Section 2.6.1). However, in order to expand the range of potential

tuning references and encompass a greater variety of landscapes, the generation of

artificial functions is considered.

An artificial function (AF) is constructed for a specific purpose and is often defined

by a mathematical expression. These functions can be used in various contexts. An

example of an application is algorithm tuning. Here an artificial function may be

designed, e.g., to have multiple local minima to challenge optimization algorithms.

Tian et al. [129] proposed a method for generating a large number of artificial

functions. This method employs a randomly constructed tree structure to generate

an artificial function. Operands are placed in the leaf nodes. Operators are placed

in the non-leaf nodes. The operands and operators are selected with an associated

probability from a set of seven operands and 20 operators. Operands are either real

numbers or representations of the decision variables, such as the decision vector x or

the first decision variable x1. The operators are classified into four binary operators,

such as addition or subtraction, eleven unary operators, such as the sine function or

the square root, and five vector-oriented operators, such as the sum or the mean of a

vector.

The hierarchical tree representation of an artificial function is then translated into

a mathematical expression. Once created, this expression represents the artificial

function and returns a function value when evaluated at a point x ∈ X . Both the gen-

eration and the evaluation processes of these artificial functions are computationally

inexpensive. Furthermore, the desired dimensionality of the artificial function can be

specified beforehand.

The instance-generating mechanism of the BBOB suite [48] is replicated by shifting

and rotating the artificial functions after generation. This allows to generate several

instances of the same artificial function. The optimization landscape is fundamentally

influenced by the objective of maximization or minimization. Therefore, the negation

of an artificial function is created by multiplying the original artificial function by

minus one. Figure 4.2 presents five instances of a two-dimensional randomly generated

artificial function along with their negative counterparts.
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Figure 4.2: Five instances of a two-dimensional randomly generated artificial function (top
row) and their negative counterparts (bottom row).

4.2 Analysis of Landscape Similarities

To obtain tuning references for the five two-dimensional, real-world problems from

vehicle dynamics design (Section 3.4), a large set of artificial functions is generated,

and the ELA features of these problems are computed for the similarity quantifica-

tion (Section 4.2.1). The similarity between the real-world problems, the generated

artificial functions and benchmark functions from the BBOB suite is analyzed, and

the functions with the highest similarity (Equation 4.1) to the real-world problems are

identified (Section 4.2.2).

4.2.1 Experimental Setup

In addition to the 24 BBOB functions (Section 2.6.1), a set of 100 000 two-dimensional

artificial functions is generated. Five instances of each artificial function are consid-

ered, as well as their negative counterparts. This results in a total of 120 BBOB

functions and 1 000 000 unique artificial functions. Each BBOB function is denoted

as BBOBid,i, where id corresponds to the specific identifier within the BBOB suite

(Table 2.1), and i denotes the instance number. The 100 000 artificial functions are

systematically numbered and referred to as AFnumber,i. For the negated versions of

these functions, the notation is extended to AFnumber,i,n. The input domain for all

functions, including the artificial and BBOB functions, is aligned with the input space

of the five real-world problems yi, x1 ∈ [−5, 6] and x2 ∈ [−5, 4].
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To quantify similarity using ELA, the focus is on features that can be computed effi-

ciently without additional resampling. This approach results in 55 individual features,

categorized into five groups: classical ELA (distribution, level and meta-features),

information content, dispersion, nearest better clustering and principal component

analysis (Section 2.5.2). Five features (ela level.lda qda {10, 25, 50}, ic.eps {s, ratio})
were found to be infeasible to compute across all functions and were subsequently

omitted from the analysis. In the context of ELA, a sample size of 50 times the

dimensionality of the problem space is suggested as a balanced trade-off between ac-

curacy and computational effort when classifying the BBOB functions using ELA

features [71]. To improve the precision of feature estimation, a Sobol’ sequence de-

sign [96, 121] with 1 000 samples is employed. To ensure equal contribution of each

feature to the similarity quantification, the feature values are min-max scaled to [0, 1].

The feature computation was successfully completed for 99.5% of the randomly gener-

ated artificial functions. The remaining 0.5% of cases where feature calculation failed

are primarily caused by the emergence of “not a number” values within the function

values or the presence of a flat fitness landscape. To remove redundant features and

reduce the dimensionality of the feature space, PCA is used. A cumulative variance

greater than 0.999 results in a dimensionality of the feature space of 31.

The artificial functions are generated using the Python implementation provided

by [83], which itself is based on the methodology outlined in [129]. This implemen-

tation is extended with the described instance generation mechanism. The pflacco

package [102] is utilized for the calculation of ELA features. pflacco offers a native

Python implementation of the extensive collection of ELA features available in the

flacco R package [73].

4.2.2 Results

The landscape properties of each function are described by a feature vector, which

is then reduced using PCA. Figure 4.3 shows the location of the functions based on

the two primary principal components derived from the PCA. The BBOB functions

occupy only a subset of the possible space. The gaps within this space are filled by the

randomly generated artificial functions, suggesting a broader exploration of landscape

characteristics. The real-world problems (Table 3.1) are scattered over a relatively

large area in the principal component space, suggesting notable dissimilarities within

their respective landscapes. In particular, only problems y1 and y2 are close to each

other, indicating a high degree of similarity.
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Figure 4.3: Positions defined by the two main PCA components of the 50 ELA features
for each artificial function (AF), the BBOB functions and the ABS real-world problems yi.

Employing Equation 4.1, the exact distances quantifying the similarity between

the five real-world problems yi and the other functions can be calculated. Figure 4.4

presents the range of these distances. The smallest distance value is observed between

problems y1 and y2, with a value of 0.84. In stark contrast, the distance between

problems y2 and y3 is the greatest with 6.4. The relatively small distance of 0.84

between y1 and y2 implies that these two problems share similar landscapes, whereas

the other real-world problems demonstrate distinct dissimilarities from both y1 and

y2, as well as among themselves.

y1 y2 y3 y4 y5

y1

y2

y3

y4

y5

0 0.84 6.3 4.3 4.2
0.84 0 6.4 4.2 4.3
6.3 6.4 0 6 6
4.3 4.2 6 0 2.6
4.2 4.3 6 2.6 0

Figure 4.4: Similarity distances of the five real-world problems yi to each other (as defined
in Equation 4.1).
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Figure 4.5 illustrates the distances between the real-world problems and their ten

closest artificial counterparts, as well as the ten BBOB functions most similar to each

real-world problem. On average, the artificial functions exhibit a distance of 1.2 from

the real-world problems, while the BBOB functions show an average distance of 2.8.

Based on the ELA features, the artificial functions resemble the real-world problems

closer compared to the BBOB functions. Nonetheless, apart from y1 and y2, the real-

world problems tend to be more dissimilar to each other than even the most similar

artificial function identified for each respective problem.
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Figure 4.5: Similarity distance between the five real-world problems yi and their ten most
similar artificial functions (AF) and BBOB functions (as defined in Equation 4.1).

Figure 4.6 illustrates the landscape of the five real-world problems yi, alongside the

landscapes of the five artificial functions that exhibit the highest degree of similarity

to each of them. All real-world problems yi are characterized by an inherent noise

component, contributing to a highly multi-modal landscape. This is similarly reflected

in the landscapes of the corresponding artificial functions.

Moreover, apart from y3 (under performance tires), the real-world problems ex-

hibit a global structure. Notably, the global structure of y1 and y2 is similar, which

aligns with the small distance calculated (Figure 4.4). The artificial functions that

are identified as similar to these real-world problems successfully replicate this global

structure. In fact, certain artificial functions are similar to both y1 and y2, such as

AF17523,4 and AF27980,4.
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Figure 4.6: The landscapes of the five two-dimensional real-world problems yi and the
five most similar artificial functions (AF) to each problem yi. The objective is minimization.
Thus, dark blue-purple indicates better solutions and yellow worse.
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Figure 4.7: The landscapes of the five two-dimensional real-world problems yi and the five
most similar BBOB functions to each problem yi. The objective is minimization. Thus, dark
blue-purple indicates better solutions and yellow worse.
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Figure 4.7 illustrates the landscapes of the five real-world problems yi, along with

the landscapes of the five BBOB functions from the considered set of 120 that exhibit

the highest degree of similarity to each of them. The BBOB functions capture essential

landscape properties. This is especially noticeable for y3, where the four most similar

BBOB functions are all instances of the Weierstrass function BBOB16. Similar to

the landscape of y3, the Weierstrass function is characterized by high multimodality

and a weak global structure. For y1 and y2, nine out of the ten most similar BBOB

functions are instances of either the Rastrigin function BBOB3 or the Büche-Rastrigin

function BBOB4. Furthermore, the Rastrigin function is identified as the most similar

BBOB function for both y4 and y5. Notably, the Rastrigin function BBOB15 exhibits

similarities to both y4 and y5. Overall, some BBOB functions, in particular the Rast-

rigin function, are similar to all four real-world problems: y1, y2, y4 and y5, indicating

shared high-level landscape properties with these four real-world problems and also

among the four real-world problems.

However, essential landscape properties of the real-world problems are not resam-

pled by the most similar BBOB functions. For example, the Rastrigin function and

the Büche-Rastrigin function are separable. Thus, each variable can be optimized

independently of the others, which does not reflect the more complex interactions be-

tween the real-world problem parameters, x1 and x2. Overall, the BBOB functions do

not resemble the global structure of the real-world problems as much as the artificial

functions.

The global structure and appearance of functions have a strong influence on the

similarity between these functions. Figure 4.8 shows the first five instances of the

sphere function. Due to shifting and rotation, the global minimum for each instance

is located in a different position. This, combined with the bounded decision space,

results in vastly different landscapes.
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Figure 4.8: The landscapes of the first five instances of the sphere function. The objective
is minimization. Thus, dark blue-purple indicates better solutions and yellow worse.



4.2 Analysis of Landscape Similarities 55

The dissimilarity between the five considered instances of the sphere function (Fig-

ure 4.8) is quantified by calculating the distances according to Equation 4.1. For

example, the calculated distance to instance 1 exceeds 5 for instances 2 and 3. In

contrast, the instances with the smallest distance are 1 and 4, with a distance of 1.6.

This pattern of high dissimilarity across the instances of the same BBOB function

can also be observed for other BBOB functions [84]. The reason for this is that the

ELA features are specifically designed to distinguish between instances of the same

BBOB function.

4.2.3 Conclusion

The randomly generated artificial functions successfully augment the BBOB function

set by covering a wide range of landscapes with different properties. With the proposed

distance metric (Equation 4.1) to quantify the similarity between landscapes of opti-

mization problems, similar function landscapes to the five two-dimensional real-world

problems can be identified.

Furthermore, the process of randomly generating an enormous number of artificial

functions yields landscapes that are more similar to real-world problems than the few

considered instances of the 24 BBOB functions. This similarity is supported by both

quantitative comparisons and visual inspection of the plotted landscapes, confirming

that the considered ELA features effectively capture the essential high-level properties

and global structure of the landscapes.

Although instances of the same BBOB functions share many high-level landscape

properties, such as modality or separability, instances of the same BBOB function can

exhibit considerable variation in their ELA feature values. This variation is also evi-

dent in their visual representations. Moreover, functions that appear visually similar

do not necessarily share the same high-level properties, such as separability.

In the following sections, the ten most similar artificial functions and the ten most

similar BBOB functions to each of the five real-world problems are selected as tuning

references for further analysis. Due to duplicates within the 100 similar functions

initially identified, only a total of 34 distinct BBOB functions and 44 distinct artificial

functions are ultimately selected.
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4.3 Brute Force Search

The aim of the following study is to investigate the transferability of the performance

of CMA-ES parameter configurations from the selected tuning references to the five

two-dimensional real-world problems (Section 3.4). A limited set of CMA-ES param-

eters and options is considered. Using a brute force search approach, all possible

combinations of these parameter options are generated and evaluated on the five real-

world problems, as well as on the 34 selected BBOB functions and the 44 selected

artificial functions (Section 4.3.1). This method provides a table containing a per-

formance value for each parameter configuration across all functions considered. The

collected data is subsequently used to analyze the correlation between the performance

on the tuning references and the real-world problems (Section 4.3.2). Furthermore,

the specific parameter options that lead to either strong or weak performance on the

functions are examined in order to identify similarities between the tuning references

and the original optimization problems in terms of the impact of specific parameter

options on these functions.

4.3.1 Experimental Setup

CMA-ES is considered a state-of-the-art method for solving single-objective continu-

ous black-box optimization problems. The performance of CMA-ES thereby depends

on the chosen parameters and variants (Section 2.4). Table 4.1 summarizes the pa-

rameters and variants considered for the brute force search, along with their respective

options. Combining these options results in a total of 864 different parameter combi-

nations.

Table 4.1: Parameters of the IPOP-CMA-ES with value options considered in the brute
force search. The option 0 for each parameter is the default configuration.

Parameter Description Option 0 Option 1 Option 2
λ Number of offspring 6 12 18
µr Selection ratio µr = µ

λ
1
2

1
6

5
6

σ0 Initial standard deviation 2 4 6
bc Box constraint handling Projection Reflection
Active Covariance matrix update off on
Elitism Selection strategy (µ, λ) (µ + λ)
om Orthogonal mirrored sampling off on
Weights Option for recombination logarithmic equal
Restart Restart strategy IPOP
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Because a restart can utilize the remaining evaluation budget and thus has the

potential to improve performance, the IPOP restart strategy is selected and always

enabled by default. The CMA-ES default parameter configuration, as referenced in the

following section, is the configuration with parameter option 0 set for each parameter.

To assess the performance of CMA-ES parameter configurations in solving opti-

mization problems, the Area Under the Curve (AUC) of the ECDF is utilized. This

metric gauges the effectiveness of an optimization algorithm in terms of anytime per-

formance (Section 2.6.2). The ECDF curves are computed using 81 target values

logarithmically distributed from 108 to 10−8. Furthermore, the AUC values are nor-

malized by the evaluation budget. To use the same target values for all functions,

the objective functions are shifted by the function value at the global optimum. The

adjusted objective functions now return the distance to the global optimum.

The performance of a solution candidate for the real-world problems is given by

the mean braking distance over ten braking maneuvers (Equation 3.4). The objec-

tive function of the real-world problem returns the distance to the global best brak-

ing distance. As the input parameters for the five real-world problems are discrete,

the returned objective function values are also discrete. For instance, for the real-

world problem y1, the second-best solution is already 0.0005 m less optimal, and the

third-best is 0.00146 m less optimal. Therefore, achieving a smooth approach and

convergence to the optimal solution by the optimization algorithm is not possible for

the real-world problems. Moreover, due to noise and simulation accuracy, a differ-

ence in braking distance measured in millimeters cannot be regarded as significant.

In the real world, such a small difference is within the measurement tolerance and,

therefore, practically indistinguishable. Therefore, target values as precise as 10−8 are

not suitable. Instead, the performance of a parameter configuration on the real-world

problems is evaluated using target values of 0.2 m, 0.1 m, 0.05 m and 0.01 m. A

solution that is within 1 cm of the optimal braking distance is deemed adequate for

solving the real-world problems.

To evaluate the performance of a parameter configuration on the two-dimensional

problems, the mean AUC value is calculated over 200 independent runs, each with

an evaluation budget of 2 000 evaluations. For the artificial functions, an exhaustive

search is conducted using CMA-ES with the default parameter configuration, and the

evaluation budget is increased to 200 000 evaluations. This ensures that at least one

high-quality solution is discovered.

The study employs a modular implementation of CMA-ES [26, 131], which supports

various CMA-ES variants that can be combined in an arbitrary manner.
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4.3.2 Results

Each of the 864 parameter configurations is evaluated across all five real-world prob-

lems and the tuning references. For each real-world problem, the configuration that

achieves the highest average AUC value across the ten most similar tuning references

is chosen. This reduces the risk of overfitting to a single function. Two sets are consid-

ered as tuning references: the artificial functions and the BBOB functions. In addition

to the configurations derived from tuning references, the six parameter configurations

that exhibit the highest AUC values on each real-world problem and across all five

real-world problems are selected for comparison.

Figure 4.9 presents the AUC values obtained on the five real-world problems along-

side the average AUC across all. These values are expressed as the relative improve-

ment in the AUC value in percent compared to the default configuration.
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Figure 4.9: Relative improvement in percent of AUC to the default configuration when
transferred to the five real-world problems and across all ȳ1:5. The best configuration on each
and across all real-world problems, across the ten most similar artificial functions AFsim yi

and across the ten most similar BBOB function BBOBsim yi to each real-world problem ȳ1:5
are listed. The values on the diagonals are each highlighted in bold.
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The optimal parameter configuration for each real-world problem consistently out-

performs the default configuration. The degree of improvement varies across the prob-

lems. The improvement for y1 is 0.54%, and for y4 1.1%. In contrast, y2 and y5 see

more notable gains of 3.7% and 4.3%, respectively. The most substantial enhance-

ment is observed for y3, with an impressive improvement exceeding 21%. The best

configuration across all real-world problems achieves only marginal performance im-

provements for y1, y2 and y5, and a slight decrease for y4. However, this configuration

remains the best on average due to the significant 20% enhancement on y3. The weak

global structure in the landscape of y3 impedes finding the solution. This is reflected

in the AUC value of the default configuration, which is only 0.49. In contrast, the

AUC values for the other problems are 0.98 for y1, 0.89 for y2, 0.91 for y4 and 0.76

for y5. Therefore, y3 presents the greatest opportunity for performance gains due to

its initially lower AUC value.

When the best parameter configurations are exchanged between the similar prob-

lems y1 and y2, an improvement in performance is observed, reflecting their similarity.

However, applying these parameter configurations to the more distinct problems y3,

y4 and y5 yields variable results: performance deteriorates for y4 but improves for

y5 and y3. Interchanging configurations among the real-world problems tend not to

result in significant performance improvements and can actually reduce performance.

For example, employing the best configuration for y5 on y3 and y4 results in perfor-

mance degradation of roughly 10% and 12%, respectively. Also, transferring any of

the best parameter configurations from y1, y2, y3 or y5 to y4 results in performance

degradation.

The transfer of the best parameter configuration from the ten most similar artificial

functions to each of the five real-world problems leads to increased performance on

y1, y2 and y5 compared to the default configuration. However, for y3 and y4, the

resulting performance is significantly worse. Moreover, these two best configurations

on AFsim y3
and AFsim y4

also perform very poorly when applied to the other three

real-world problems. The best configurations on AFsim y1
and AFsim y2

are identical.

The reason for this is that y1 and y2 are very similar to each other and six of the ten

most similar artificial functions are the same for both y1 and y2. The performance

improvement gained through the transfer from similar artificial functions is noteworthy

when compared to the actual best configurations for these problems.

The transfer of the best parameter configuration from the ten most similar BBOB

functions to each of the five real-world problems leads to increased performance only

on y1 and y3 compared to the default configuration.
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The observed performance degradation for certain parameter configurations, when

transferred to the real-world problems, may be attributed to specific parameter options

that yield favorable results on the tuning references but underperform on the original

problems. To identify these problematic options, an examination of the parameter

options that are successful on the real-world problems is conducted. Accordingly, the

20 most effective parameter configurations for each of the five real-world problems are

analyzed. Figure 4.10 illustrates the frequency of occurrence of each option for every

parameter within these configurations.
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Figure 4.10: Frequency of occurrence of each parameter option given in Table 4.1 for
every parameter within the best 20 configurations for each real-world problem yi. Options
corresponding to the best-performing configuration are highlighted with yellow hatching.

Different parameter configurations perform best on each real-world problem. How-

ever, there are discernible patterns and similarities in the frequency of occurrence for

some parameter options within the best 20 parameter configurations. Notably, for all

five real-world problems, the elitist option 0 is consistently chosen, which corresponds

to the standard (µ, λ) selection strategy in CMA-ES. Similarly, the box constraint

handling method of the best configuration is consistently option 1 reflection which is

also more frequently observed than its counterpart, option 0 projection. The default

weights option appears more often in the top 20 configurations for four out of the

five problems. In contrast, the use of the active update is roughly as frequent as not

using it across the problems, with the exception of y3 where option 0 is more frequent.

However, the best configuration for y3 includes the active update, suggesting that its
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importance for high-performing configurations may not be as significant. Orthogonal

mirrored sampling option 1 is part of the best configuration and is frequently within

the top 20 for y1, y2 and y5, while option 0 is favored for y3 and y4.

Regarding the population size, option 0, which represents the smallest number of

6 offspring, and for the initial standard deviation, options 1 and 2, which represent

larger values of 4 and 6 compared to the default value of 2, seem to offer some per-

formance improvement across all problems. For the selection ratio, no clear pattern

emerges across the five real-world problems, and the preference for each problem is

also ambiguous. The only exceptions are on y5, where the default option is more fre-

quent, and on y4, where option 2 is more frequent within the top 20 configurations.

Interestingly, for y2, option 2 never occurs.

Therefore, overall, for the five real-world problems, the (µ, λ) selection strategy,

reflection, and the default weights option lead to good performance and should be used.

Using active leads to no significant improvement. Also, a small number of offspring and

an increased initial standard deviation should be used. Mirror orthogonal sampling

should only be used for y1, y2 and y5.

Figure 4.11 illustrates the frequency of occurrence of each option for every pa-

rameter within the best 20 parameter configurations on the ten most similar artificial

functions to each of the five real-world problems.
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Figure 4.11: Frequency of occurrence of each parameter option given in Table 4.1 for every
parameter within the best 20 configurations on the ten most similar artificial functions to
each real-world problem yi. Options corresponding to the best-performing configuration are
highlighted with yellow hatching.
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Patterns also emerge on the artificial functions, some of which are very similar

to those observed on the real-world problems. The default weights option and the

orthogonal mirrored sampling option exhibit patterns that almost perfectly resemble

those seen on the real-world problems. For the active update, the step size, the number

of offspring and the selection ratio, the patterns are similar for the majority of cases.

However, there is a clear difference in how often the box constraint handling method

and the elitist option occur. On artificial functions similar to y3, y4 and y5, the projec-

tion method is more effective, and the (µ+ λ) selection strategy always occurs within

the top 20 configurations on artificial functions similar to y3 and y4. In fact, the

(µ + λ) selection strategy can be identified as the reason for the poor performance on

the real-world problems. When configurations are limited to those with a (µ, λ) se-

lection strategy coupled with reflection, the best parameter configuration significantly

enhances performance on the real-world problems. For y3, the improvement is the

most pronounced, with a leap from -35% to 21%. For y4, the increase is from -6.6% to

-0.4%, and for y5, a slight improvement from 1.6% to 1.8% is observed (Figure 4.12).

Thus, the artificial functions similar to y3 and y4 exhibit properties where the (µ+ λ)

selection strategy can be beneficial.
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Figure 4.12: Relative improvement of the AUC to the default configuration when trans-
ferred to the five real-world problems and across all yi. The performance of the best configu-
ration, limited to those with a (µ, λ) selection strategy coupled with reflection, across the ten
most similar artificial functions AFsim yi to each of the five real-world problems yi are listed.

Similarly, on the BBOB functions that are similar to each of the five real-world

problems, the (µ + λ) selection strategy is often within the top 20 parameter con-

figurations (Figure 4.13). Furthermore, the parameter options that perform well on

the real-world problems differ from the pattern within the similar BBOB functions,

except for the weights option and the box constraint handling. The difference in per-

formance is also evident in the decrease observed when applying the best parameter

configurations from the similar BBOB functions to the real-world problems.
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Figure 4.13: Frequency of occurrence of each parameter option given in Table 4.1 for
every parameter within the best 20 configurations on the ten most similar BBOB functions
to each real-world problem yi. Options corresponding to the best-performing configuration
are highlighted with yellow hatching.

4.3.3 Summary

Significant opportunities for performance improvement are revealed by the conducted

study. For each of the five real-world problems, a different parameter configuration

achieves the best performance. However, clear patterns have emerged across all five

real-world problems. The (µ, λ) selection strategy, reflection and the default weights

option lead overall to an enhanced performance. The active update option appears to

have a negligible impact on the results and can be retained in its default setting. More-

over, employing a smaller number of offspring and a larger initial standard deviation

is recommended. The use of mirrored orthogonal sampling is particularly beneficial

for the real-world problems y1, y2 and y5.

However, these patterns do not always translate to similar artificial functions. The

(µ + λ) selection strategy, while advantageous for artificial functions similar to y3

and y4, results in a significant drop in performance when applied to their real-world

counterparts. Similarly, transferring the box constraint handling method from the

artificial functions similar to y3, y4 and y5 results in a performance drop. Yet, when

these two parameter options are set beforehand, the similar functions always provide

a configuration that is better than the default configuration in four out of five cases.

Only for y4 is the performance 0.4% worse.
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The application of parameter configurations derived from BBOB functions that are

similar to the real-world problems is advantageous for y1 and y5, albeit marginally.

However, for the other problems, such an approach is detrimental because the pat-

terns of parameter options that frequently occur are very dissimilar. Consequently,

transferring parameters from BBOB functions to real-world problems is generally not

recommended. An exception is observed for y3, where similar BBOB functions, often

instances of the Weierstrass function, provide a valuable reference for tuning.

The objective function landscapes of the real-world problems exhibit multimodality

because of noise. This characteristic is reflected in the similar functions by an inter-

nal sine function. Especially the (µ + λ) selection strategy is not recommended for

noisy functions. Given this knowledge, a (µ+ λ) selection strategy that is effective on

artificial functions should be approached with caution when applied to the real-world

problems. The discrepancy in how these artificial functions mimic noise-induced mul-

timodality suggests that the (µ + λ) selection strategy should be disregarded entirely

for the real-world applications.

4.4 Meta-Optimization

Following the previous Section 4.3, this section aims to expand the number of CMA-

ES parameters considered for tuning to unlock additional potential for performance

improvement. Especially the learning rates of CMA-ES have a significant impact on

the performance of CMA-ES. With the expansion of CMA-ES parameters, the use of

a meta-optimization algorithm becomes necessary.

Since each real-world problem has a unique optimal parameter configuration, it

is necessary to perform similarity quantification and tuning for each specific case.

Practically, however, it is not feasible to perform a new analysis for each variation just

to determine the best parameter setting for a particular vehicle setting (Table 3.1).

Therefore, the objective is to identify a robust parameter configuration that enhances

the performance across all five real-world problems.

The experimental setup details are provided in Section 4.4.1. The best configura-

tions identified for the real-world problems are compared with the optimal configura-

tions derived from the most similar artificial functions and the most similar BBOB

functions (Section 4.4.2).
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4.4.1 Experimental Setup

The brute force search revealed that the (µ+λ) selection strategy does not yield benefi-

cial results when applied to the five two-dimensional real-world problems (Section 4.3).

However, this strategy did show some utility when employed on artificial functions

similar to the real-world problems. Therefore, in the upcoming meta-optimization

process, the (µ + λ) selection strategy is excluded from the set of parameters to be

tuned. Table 4.2 lists the CMA-ES parameters selected for consideration and their

corresponding value ranges.

Table 4.2: CMA-ES parameters with value space considered in the meta-optimization.

Parameter Description Space
c1 Learning rate rank-one update ]0, 1]
cc Learning rate adaption of C ]0, 1]
cµ Learning rate rank-µ update ]0, 1]
cσ Learning rate step size control ]0, 1[
λ Number of offspring {6, 9, ..., 18}
µr Selection ratio µr = µ

λ { 16 ,
2
6 , ...,

5
6}

σ0 Initial standard deviation {2, 3, . . . , 6}
bc Box constraint handling {projection, reflection,

wrapping, reinitialization}
Active Covariance matrix update {on, off}
Orthogonal Orthogonal sampling {on, off}
Mirrored Mirrored sampling {on, off}
Weights Option for recombination {logarithmic, equal}
Restart Restart strategy {IPOP, BIPOP}

The tuning process is performed separately on three distinct sets: the five real-

world problems, the 24 distinct BBOB functions and the 44 distinct artificial functions

that resemble the real-world problems. The performance metric used is consistent with

the one employed in the brute force search (Section 4.3.1). However, performance

is assessed across all functions within each set. Therefore, the number of runs to

assess the performance of a single parameter configuration during meta-optimization

is reduced from 200 runs to 100 for the real-world problems and to 20 for both the

artificial and BBOB functions.

CMA-ESwM is selected as the meta-optimization algorithm (Section 2.4.3). The

meta-optimization evaluation budget is set to 2 500 for a single meta-optimization run.

To ensure statistically significant results, the meta-optimization is repeated five times

for each set. This study utilizes Optuna’s implementation of CMA-ESwM [2].
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4.4.2 Results

The brute force search assessed 864 parameter configurations, and the optimal con-

figuration identified improves the performance across all five real-world problems by

2.9% compared to the default parameter configuration (Figure 4.9). Further improve-

ments are observed when in addition, the learning rates of CMA-ES parameters are

considered. The performance gains of the meta-optimization directly on the real-world

problems range from at least 3% to 4.4% across the five conducted runs. The average

improvement is 3.6% across all runs.

However, in practical scenarios, tuning would not be performed directly on real-

world problems. Therefore, the results obtained serve as a benchmark for the best-case

scenario. Tuning references are used as surrogate problems for this purpose. When

the artificial functions most similar to the real-world problems are used as tuning

references, the average improvement gain of the five optimal configurations on the

real-world problems is 1.1%, with the best configuration achieving a 1.7% increase

and the least effective configuration showing a 0.7% improvement. Using the most

similar BBOB functions as tuning references results in an average improvement of

1.9% across the five configurations, with results ranging from 1.7% to 2.5%. All three

sets show significant variation in improvement.

In contrast to the previous study, using artificial functions as tuning references leads

to inferior outcomes compared to using BBOB functions. The optimal configuration

derived from the artificial functions performs similarly to the least effective out of the

five meta-optimization runs using the BBOB functions as a tuning reference.

Figure 4.14 shows the values of the learning rates of the optimal configurations

from the meta-optimization runs and the recommended default values within CMA-

ES. Across all five meta-optimization runs on the real-world problems, a slight increase

in cµ and a decrease in c1 are found to be optimal. The learning rate for the rank-

one update of the covariance matrix c1 utilizes information on correlations between

generations by exploiting the evolution path. The rank-µ update efficiently incorpo-

rates information from the entire population. Reducing c1 and increasing cµ suggests

that the covariance matrix updates should be more influenced by information from

the current population rather than from past generations via the evolution path to

improve the performance of CMA-ES on the real-world problems. The similar func-

tions capture this phenomenon but do not reflect the exact magnitude. The increase

from the default value is excessive for cµ, while the decrease from the default value is

inadequate for c1 compared to the optimal values.
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Figure 4.14: Values of the learning rates of the CMA-ES default configuration and the
best configurations from five meta-optimization run on the five real-world problems yi, the
most similar artificial functions (AF) and the most similar BBOB functions.

In contrast, the optimal values for cσ and cc for the five real-world problems are

widely dispersed throughout the feasible range of values. The values obtained from the

artificial functions and the BBOB functions also exhibit significant variation. However,

each configuration yields superior results compared to the default configuration. Since

there is no discernible underlying trend for cc and cσ, the default values appear to be

appropriate.

The optimal choices for the remaining parameters on real-world problems align with

those identified by the brute force search (Section 4.3). A smaller number of offspring,

a selection ratio of 0.5 and an increased initial standard deviation are deemed optimal.

Furthermore, equal weights, no orthogonal sampling and reflection are among the best

options. These clear trends are similarly captured by the artificial functions similar to

the real-world problems and by the BBOB functions, with the exception of the box

constraint handling method. The meta-optimization algorithm consistently selects

projection for the artificial functions, while for the BBOB functions, reinitialization is

chosen two out of five times instead of reflection.



68 Chapter 4 Tuning CMA-ES Parameters

4.5 Tuning for Higher Dimensional Problems

This section builds upon the method outlined in Section 4.4 and extends the analysis to

higher-dimensional spaces by replacing the five two-dimensional real-world problems

with five instances of the ten-dimensional Büche-Rastrigin function from the BBOB

benchmark suite.

The experimental setup remains consistent with that of the previous section, with

specifics provided in Section 4.5.1. The performance of the identified best configu-

rations for the BBOB instances is then evaluated against the optimal configurations

derived from the most similar artificial functions (Section 4.5.2).

4.5.1 Experimental Setup

To obtain tuning references for the five instances of the ten-dimensional Büche-

Rastrigin function from the BBOB benchmark suite, a large set of artificial functions

is generated, and the ELA features of these problems are computed for similarity

quantification, similar to Section 4.2. The differences are explained below.

A set of 100 000 ten-dimensional artificial functions is generated. Again five in-

stances of each artificial function are considered, as well as their negations, resulting

in a total of 1 000 000 unique artificial functions. The input domain for all functions

is x ∈ [−5, 5]10. A Sobol’ sequence design [96, 121] with 2 000 samples is employed

for the ELA feature calculation. The feature computation was successfully completed

for 76.5% of the randomly generated artificial functions. A PCA, with a cumulative

variance threshold above 0.999, reduces the feature space to 27 dimensions. For each

BBOB problem, the ten most similar artificial functions in terms of their distance in

feature space (Equation 4.1) are selected. This results in a set of 41 distinct functions.

The meta-optimization process adheres to the same parameter space as introduced

in Section 4.4. Only the number of offspring is adjusted to accommodate the higher

dimensionality. Table 4.2 lists the CMA-ES parameters and their corresponding value

ranges. The new considered numbers of offspring are {10, 16, 22, . . . , 40}. The tun-

ing process is executed separately for the five BBOB functions and the 41 artificial

functions. To evaluate the performance of each parameter configuration, 20 runs are

conducted for each function. CMA-ESwM (Section 2.4.3) is selected as the meta-

optimization algorithm with an evaluation budget exceeding 2 000 for each run. To

ensure statistically significant results, the meta-optimization is repeated five times for

each set.
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4.5.2 Results

Figure 4.15 visualizes the position of the functions based on the two primary principal

components derived from the PCA. The five BBOB functions are observed to be clus-

tered within a relatively confined region of this principal component space, showing

less dispersion compared to the five two-dimensional real-world problems illustrated in

Figure 4.3. The randomly generated ten-dimensional artificial functions span a broad

area, encompassing the space where the five instances of the Büche-Rastrigin func-

tion are situated. Thus, for ten-dimensional optimization problems similar artificial

functions can also be generated to serve as tuning references.

Figure 4.15: Positions defined by the two main PCA components of the 50 ELA features
for each of the ten-dimensional artificial function (AF) and the five instances of the ten-
dimensional Büche-Rastrigin function from the BBOB benchmark suite.

Transferring the best parameter configurations, tuned on the 41 most similar ar-

tificial functions, to the five BBOB problems yields performance improvements over

the default CMA-ES parameter configuration, with gains ranging from at least 1.6%

to 1.8% across the five meta-optimization runs. The average improvement is 1.7%

across all five runs. In contrast, direct tuning on the BBOB problems results in per-

formance gains between 1.7% and 2.4%, with an overall average of 2.1% across the five

runs. Therefore, the proposed method attains approximately 81% of the total possible

improvement for the five instances of the ten-dimensional Büche-Rastrigin function.
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Figure 4.16 presents the learning rates from the optimal configurations obtained in

the meta-optimization runs compared to the recommended default settings for CMA-

ES. The meta-optimization runs performed on the five BBOB problems consistently

identify a decrease in the learning rates for cc and c1 as optimal. Conversely, the

optimal values for cσ, and to a lesser extent cµ, show a wide dispersion over the allowed

range of values. This variation is also captured by the similar artificial functions,

although with a smaller range for cσ.
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Figure 4.16: Values of the learning rates of the CMA-ES default configuration and the best
configurations from five meta-optimization runs on the five instances of the ten-dimensional
Büche-Rastrigin function from the BBOB benchmark suite and the most similar artificial
functions (AF).

The optimal settings for the other parameters show congruence between the similar

artificial functions and the BBOB problems. For example, both show that a higher

number of offspring, about 22 to 26, is preferable to the default of 10, and an initial step

size between 3.0 and 6.0 is more effective than the default of 2.0. The selection ratio for

both sets varies between 0.33 and 0.66. Moreover, the active update of the covariance

matrix is consistently chosen by the meta-optimization algorithm, while orthogonal

sampling is not. For the remaining parameters, no definitive pattern emerges from the

analysis of either the BBOB problems or the similar artificial functions.
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4.6 Comparison of Meta-Optimization Algorithms

The tuning of CMA-ES parameters represents a meta-optimization task (Figure 2.3).

In Sections 4.4 and 4.5, a specific optimization algorithm is utilized for this purpose.

This section presents a comparative analysis of various meta-optimization algorithms

that can also be applied to this task.

The objective of meta-optimization is to identify the optimal set of parameter

values that enhance the performance of the optimization algorithm in solving the orig-

inal optimization problem. The optimization of CMA-ES parameters can be viewed

as a mixed-integer optimization problem. This means tuning both continuous CMA-

ES parameters and various combinations of discrete parameter values and CMA-ES

variants.

Several meta-algorithms have been developed. These algorithms efficiently navi-

gate through both continuous and discrete parameter spaces, balancing exploration

and exploitation to converge on a robust set of parameters that yield optimal perfor-

mance for the given optimization tasks.

The Sequential Model-based Algorithm Configuration (SMAC) [62] is a well-

known algorithm for parameter tuning. It uses a sequential model-based optimization

(SMBO) strategy that integrates Bayesian optimization with random forest regression

models to predict the performance of parameter configurations. SMAC is mainly ap-

plied in machine learning for algorithm configuration, feature selection and the search

for optimal deep neural network architectures [35, 82].

Another notable SMBO algorithm is the Tree-structured Parzen Estimator

(TPE) [16]. This algorithm uses a methodology based on tree-structured density

estimation to identify optimal parameter settings efficiently. Employing TPE to tune

CMA-ES parameters improved the performance on various benchmark optimization

problems [142].

Additionally, CMA-ES itself can be used as a meta-algorithm. To address the

challenge of mixed-integer optimization, the margin extension [46] for integer handling

within CMA-ES can be utilized (Section 2.4.3).

The focus of this study is to investigate the efficacy of CMA-ESwM as a meta-

algorithm in the context of CMA-ES parameter tuning. To this end, a series of exper-

iments on several benchmark optimization problems are conducted. The performance

of CMA-ESwM is then compared to that of SMAC, TPE and random search.
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4.6.1 Experimental Setup

The effectiveness of CMA-ES is evaluated using four benchmark functions from the

BBOB set (Section 2.6.1): BBOB1, BBOB4, BBOB20 and BBOB21. Functions BBOB1

and BBOB4 are separable with a global structure, while BBOB20 and BBOB21 lack

a global structure and are non-separable. BBOB1 is unimodal, whereas BBOB4,

BBOB20 and BBOB21 are multimodal. These functions are considered in two di-

mensions to reduce computational effort.

Each run of CMA-ES is allocated a maximum of 400 evaluations for BBOB1 and

2 000 for BBOB4, BBOB20 and BBOB21. The lower budget for BBOB1 is due to its

unimodal nature, which generally requires fewer evaluations for optimization. Four

instances of each BBOB function are tested, with 25 runs per instance, resulting in a

total of 100 runs for each function. The AUC is calculated from these runs to evaluate

the effectiveness of a CMA-ES configuration.

Table 4.3 provides an overview of the parameters and variants of CMA-ES chosen

for tuning in this study. The four learning rates c1, cc, cµ and cσ are continuous

variables, the number of offspring λ is an integer, and the remaining parameters are

categorical. Thus, tuning these CMA-ES parameters represents a mixed-integer opti-

mization problem.

Table 4.3: CMA-ES parameter space for the meta-optimization.

Parameter Description Variants and Parameters
c1 Learning rate rank-one update ]0, 1]
cc Learning rate adaption of C ]0, 1]
cµ Learning rate rank-µ update ]0, 1]
cσ Learning rate step size control ]0, 1[
λ Number of offspring {4,6,..,20}
µr Selection ratio µr = µ

λ {0.3, 0.5, 0.7}
σ0 Initial standard deviation {0.2, 0.4, 0.6, 0.8}
bc Box constraint handling {projection, reflection, wrapping,

uniform reinitialization, normal
reinitialization}

Active Covariance matrix update {on, off}
Elitism Selection strategy {(µ, λ), (µ + λ)}
Orthogonal Orthogonal sampling {on, off}
Mirrored Mirrored sampling {on, off}
Threshold Mutation vector threshold [100] {on, off}
Weights Option for recombination {logarithmic, equal, α-decay}
Restart Restart strategy {IPOP, BIPOP}
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This study utilizes for the meta-optimization algorithms the SMAC3 implementa-

tion [82], as well as Optuna’s CMA-ES sampler, TPE sampler and Random sampler [2],

each with their default parameters. The evaluation budget for the meta-algorithm is

3 000, and 50 full parameter tuning runs are performed on each BBOB function for

each meta-algorithm.

4.6.2 Results

Figure 4.17 shows the median performance of CMA-ES parameter configurations dur-

ing the parameter tuning across 50 runs for each meta-algorithm considered, on the

four BBOB functions BBOB1, BBOB4, BBOB20 and BBOB21, which serve as the

original optimization problems. The objective for the meta-optimization algorithm is

to maximize the AUC.
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Figure 4.17: Median AUC values over evaluations of 50 runs for the four meta-optimization
algorithms considered for tuning CMA-ES parameters on the four two-dimensional BBOB
functions BBOB1,BBOB4,BBOB20,BBOB21.
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For all four BBOB functions, the majority of performance improvements in CMA-

ES parameters occur within the first 1 000 evaluations. CMA-ESwM and TPE show

comparable performance over the course of evaluations, with TPE slightly performing

better in the early stages (up to 1 000 evaluations), while CMA-ESwM tends to perform

better thereafter. During the initial 1 000 evaluations, SMAC may appear to be slower

in discovering high-quality solutions when compared to other algorithms. However, the

performance improves over time. In the end, SMAC achieves comparable or slightly

better results compared to the meta-algorithms mentioned above. In contrast, the

progress of the random search significantly declines after 500 evaluations.

To verify the efficacy of the best configuration identified by a meta-algorithm,

the configurations are subjected to 50 additional runs on the BBOB functions for

validation purposes (Figure 4.18).
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Figure 4.18: Boxplot of the validated AUC values of the best CMA-ES configurations
found by the different meta-algorithms on each of the four BBOB functions considered. For
each meta-algorithm and BBOB function, 50 parameter tuning runs were performed. Each
configuration found in this process is, in turn, validated by 50 validation runs.
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CMA-ESwM can compete with state-of-the-art algorithms like SMAC and TPE as

a meta-optimization algorithm for tuning the parameters of CMA-ES. The overlap in

the AUC values of the solutions identified by each meta-algorithm is notably greater

than the disparities in their median values across all problems. Nevertheless, all three

algorithms outperform random search. Consequently, for the selection of the meta-

algorithm, additional factors, such as the wall-clock time, are required.

In terms of wall-clock time, CMA-ESwM proves to be the fastest of the trio on

average. This is due to its ability to parallelize the evaluation of the population

within a single generation. Consequently, evaluating a new configuration in random

search incurs minimal computational overhead but still requires approximately 50%

more time than CMA-ESwM to finalize a parameter tuning run when evaluations

are conducted sequentially. In contrast, both SMAC and TPE take roughly two to

three times longer than CMA-ESwM. The longer wall-clock time of these algorithms

is not only due to their sequential evaluation processes but also to the additional

internal computations and model training required. These computations remain time-

consuming despite potential increases in parallelization.

In a nutshell, CMA-ES outperforms SMAC and TPE in terms of wall clock time.

The reason for that is the inherent efficiency and parallelization capabilities of CMA-

ES. However, a simple random search as a meta-optimization algorithm can identify

very good parameter configurations. Especially when the meta-optimization can be

executed fully parallel, the use of random search can significantly reduce the wall-clock

time required.

4.7 Conclusion

This chapter presents a method for tuning CMA-ES parameters using a meta-

optimization approach (Section 4.1). The method relies on computationally inexpen-

sive functions similar to the original optimization problems. These similar functions

are employed as tuning references. The study generates a set of artificial functions

that augment the BBOB function set, thereby offering a broad array of optimization

landscapes. ELA features are employed to measure the similarity between different

landscapes and identify functions that closely resemble the landscapes of five two-

dimensional real-world problems. Based on quantitative measures and visual compar-

isons, these artificial functions reflect the real-world landscapes more accurately than

the BBOB functions (Section 4.2).
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Through a brute force approach (Section 4.3), the patterns between the best pa-

rameter configurations on the similar functions and their real-world counterparts can

be analyzed. This conducted study revealed that certain landscape properties of these

similar functions remain elusive. In particular, the choice of the selection strategy

within CMA-ES and the box constraint handling method for real-world applications

should not rely on the performance results obtained from these similar functions.

The results from the brute-force approach described in Section 4.3 highlight the

uniqueness of each real-world problem landscape. Each problem requires a tailored

parameter configuration for an optimal performance of the optimization algorithm.

However, due to the computational effort required to identify similar functions, tuning

the parameters for each real-world problem instance is not feasible. Therefore, a

single parameter configuration that outperforms the default across all five problems

is identified (Section 4.4). Moreover, the tuning method is also successfully applied

to the ten-dimensional Büche-Rastrigin function from the BBOB benchmark suite

(Section 4.5).

Furthermore, the use of CMA-ESwM as a meta-optimization algorithm is a cost-

effective strategy for parameter tuning. This approach delivers competitive results

compared to established algorithms for parameter tuning, such as SMAC and TPE

(Section 4.6).

Tuning the parameters of CMA-ES to specific low-level probabilities of real-world

problem instances can lead to significant improvements. However, this procedure is

computationally expensive. Moreover, the identified configuration is only optimal for

that particular instance. An alternative is to identify an optimal general-purpose

configuration that solves a wide range of problem instances of one problem class.

This means tuning the algorithm to more high-level probabilities prevalent across all

problem instances. Thus, a well-performing parameter configuration can be identified

computationally efficiently for many problems simultaneously.



Chapter 5

Handling Discretization

Optimization problems can be characterized by whether the input variables are con-

tinuous or discrete (Section 2.1). However, in practice, the distinction between con-

tinuous and discrete variables is not as binary as it may first appear. For instance,

the optimization of industrial designs must contend with the physical limits of preci-

sion, effectively introducing a level of discretization to variables that are theoretically

continuous. Additionally, the computational representation of continuous variables in

the form of floating-point numbers possesses finite precision.

This chapter examines the impact of variable discretization on the performance of

CMA-ES. The presented results build upon [124]. A method for discretizing continuous

functions is introduced (Section 5.1) and a comprehensive study is conducted to assess

the effects (Section 5.3). The performance of various CMA-ES variants are compared

alongside with an EA (Section 5.2) designed for discrete optimization problems. The

results are presented in Section 5.4 followed by a short conclusion (Section 5.5).

5.1 Function Discretization

To investigate the impact of discretization on optimization algorithm performance a

test function is required. Any continuous optimization problem can be transformed

into a discrete optimization problem by limiting the set of feasible values and rounding

continuous values to this finite set. However, such a transformation can significantly

change the search landscape. The location of the global optimum does not remain

constant in the general case.
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The proposed method only considers problems for which the location of the global

optimum x∗ is known. This ensures that the location of the optimum can be adjusted

after the discretization if necessary. The discretization process begins by creating a

grid with a specified number of levels nlevels between a lower bound l and an upper

bound u for each dimension di, resulting in evenly spaced numbers over the interval,

with a distance ∆ between two discrete values:

Gdi = l + j · u− l

nlevels − 1︸ ︷︷ ︸
∆

, for j = 0, 1, . . . , nlevels − 1. (5.1)

Continuous values are then rounded to the nearest feasible value on the grid. This

procedure creates a modified landscape in which each discrete value lies in the center

of a plateau of identical fitness. To ensure that the global optimum x∗ is included in

the discretized space, a subsequent translation is applied. Since the bounds remain

fixed, this translation can cause values adjacent to the bounds to shift outside the

feasible domain. To address this, all out-of-bounds values are clipped to the nearest

bound. Additionally, the plateaus near the bounds may be smaller because values

on one side are rounded to the nearest grid point within the bounds, while values on

the other side fall outside the bounds. Figure 5.1 illustrates the discretization of an

ellipsoid function in one dimension for different numbers of levels nlevels.
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Figure 5.1: Discretized one-dimensional ellipsoid function f(x), with x ∈ [−5, 5] for the
different numbers of levels nlevels ∈ {inf, 2, 4, 6} with the global optimum at x∗.
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Discretization alters the original landscape of an optimization problem and can

thereby change its key characteristics. Figure 5.2 illustrates the effect of discretizing

a two-dimensional Rosenbrock function (BBOB function F8 (Table 2.1)) for different

numbers of levels. The primary challenge for optimization algorithms operating on

the continuous Rosenbrock function is the need to constantly adjust search directions

to navigate along a narrow, curved ridge toward the optimum.

The application of the discretization method introduces additional complexity by

creating multiple local optima. The original unimodal problem is transformed into a

multimodal one. These artificially induced local optima can mislead an optimization

algorithm and complicate the search process. The emergence of multimodality in an

originally unimodal problem due to discretization has also been reported by Tušar et

al. [130]. However, this effect does not occur if the original problem is axis-parallel

(such as the BBOB sphere function f1 or ellipsoid function f2), where one of the

neighboring discrete values always improves the objective function.

Reducing the number of levels nlevels to a small number, such as five levels, results

again in a unimodal landscape. However, this simplification comes at the cost of losing

the characteristic ridge feature of the Rosenbrock function. Thus, maintaining the

intricate features of a complex landscape without introducing multimodality presents

a significant challenge. Conversely, if there are too few levels, these defining features

are inevitably lost.
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Figure 5.2: Discretized two-dimensional Rosenbrock function f(x), with x ∈ [−5, 5]2 for
the different numbers of levels nlevels ∈ {inf, 100, 25, 10, 5}. Several local optima can be
created due to the discretization, clearly observable for nlevels = 25.
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5.2 EA for Integer Programming

A benchmark algorithm for solving discrete optimization problems is needed to com-

pare and assess the effects and the extent of the impact of variable discretization on

the performance of CMA-ES. The Evolutionary Algorithm for Integer Programming

(int-EA), devised by Rudolph in 1994 [110], represents such a specialized approach for

solving optimization problems within integer domains and is described in the following.

The int-EA is characterized by employing a mutation distribution that is designed

for integer search spaces, deviating from traditional continuous space evolutionary

strategies. Theoretical analysis has revealed the maximum entropy mutation distribu-

tion for unbounded integer domains to be [110]:

pk =
p

2− p
(1− p)|k|, (5.2)

where pk denotes the probability of the integer k being selected. This distribution is

symmetric around zero. Therefore, smaller mutations are favored, while larger varia-

tions are still possible. To generate random numbers that conform to this specialized

distribution, a technique can be employed that involves the difference of two indepen-

dent random variables. These variables, G1 and G2, are parameterized by:

p = 1−m/((1 + m)1/2 + 1), (5.3)

where m is the deviation parameter that directly controls the mutation variance of the

int-EA [110]. The deviation parameter m within int-EA is analogous to the mutation

strength σ in traditional ES algorithms and is encoded as a strategy parameter, similar

to σ, allowing the int-EA to self-adapt its mutation rate over time. Structurally, the

int-EA closely follows the general framework of the (µ, λ)-ES, with nearly identical

core mechanics.

To enable the int-EA to operate on the same discretized function, the discrete set

of values is encoded as an integer space z ∈ [0, nlevels]
d ⊆ Zd. These values are then

transformed back to the original space using the formula x = l+z · u−l
nlevels

, where l and

u denote the lower and upper bounds of the original search space, respectively. This

encoding and transformation process allows both integer-based and continuous solvers

to be assessed on the same discretized version of the original objective function f(x).

This facilitates a direct comparison between, e.g., the int-EA and CMA-ES.
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5.3 Experimental Setup

The experimental setup is designed to study the effects of discretization on the per-

formance of different CMA-ES variants and to compare them with the int-EA using

the proposed discretization approach (Section 5.1). The BBOB sphere function f1 and

the ellipsoid function f2 serve as the original continuous optimization problems. These

problems are chosen because they are unimodal and also separable, which ensures that

the discretization does not introduce multimodality. Thus, there are no local optima

where the optimization algorithm can get stuck in both continuous and discretized

domains.

The performance metric chosen for this study is the success rate, which measures

the proportion of runs that solve the problem within a given budget. The BBOB

framework defines a problem as “solved” if the distance to the optimum in the objective

space, defined as δf∗ = f(x)− f(x∗), is less than 10−8.

For the experimental analysis, the first ten instances of the BBOB problems f1 and

f2 are utilized, with 20 independent optimization runs conducted for each instance,

resulting in a total of 200 runs per setting. The experiments cover a range of different

numbers of levels, with nlevels ∈ {2, 3, 5, 10, 102, 103, 104, inf}, across dimensions d ∈
{2, 5, 10, 20, 40}. Each run is allocated a budget of 2 000 function evaluations per

dimension, amounting to 40 settings per BBOB problem and algorithm.

The used configuration of the int-EA is for the population parameters µ = 30

and λ = 100, which showed good performance. The initial values for the deviation

parameter mi mirror the initialization of σi in traditional ES, providing a comparable

baseline for the evolutionary process. This configuration ensures that the int-EA is

well-equipped to navigate the integer search space.

5.4 Results

To investigate the impact of discretization on the performance of the standard (µ, λ)-

CMA-ES without integer handling, the algorithm is applied to a discretized five-

dimensional sphere function with a spectrum of different numbers of levels nlevels.

Figure 5.3 shows the evolution of the distance to the optimal function value δf∗ across

successive generations for 100 independent runs for each of the five considered number

of levels nlevels ∈ {2, 10, 103, inf}.
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In the absence of discretization (nlevels = inf), CMA-ES consistently solved the

sphere function across all 100 runs. The distance to the optimal function value δf∗

consistently declines as the algorithm progresses through generations. Upon introduc-

ing discretization (Equation 5.1), two notable patterns emerged (Figure 5.3).

First, with a finite number of levels, the runs diverged. A fraction of the runs

rapidly achieves a δf∗ value below 10−8, indicating successful optimization, while

others experienced stagnation. This divergence is attributed to the size of the region

surrounding the optimum, which is of the size ∆d. When the algorithm reaches this

optimal region, the distance to the optimal function value δf∗ directly falls to zero.

Second, if the optimal plateau is not reached quickly, the CMA-ES can become

trapped on a suboptimal plateau, progressively reducing the step size. This lowers

the probability of reaching another, potentially superior plateau. The likelihood of

convergence to the optimum decreases. As the number of levels increases, these effects

diminish. Nevertheless, for 1 000 levels some runs of CMA-ES still exhibits stagnation

on the discretized five-dimensional sphere function.
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Figure 5.3: Distance to the optimal function value δf∗ over generations of single CMA-ES
runs on a discretized five-dimensional sphere function with a spectrum of different numbers
of levels nlevels ∈ {2, 10, 103, inf} for a total of 100 runs and the median (bold line) for each
number of levels.
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5.4.1 Success Rates

The discretization not only slows convergence but causes stagnation, stopping the

convergence progress of the standard (µ, λ)-CMA-ES entirely. Therefore, the rate of

successful runs emerges as a good metric for evaluating the impact of discretization

on the performance of CMA-ES. The analysis commences with a comparison between

the standard CMA-ES, the CMA-ESwM and the int-EA. Figure 5.4 shows the results

for different numbers of levels and dimensions (Section 5.3). For comparison, in the

continuous case, where nlevels = inf, all runs of CMA-ES on the two considered BBOB

problems f1 and f2 successfully converge within the prescribed budget across all

dimensions, achieving a success rate of 1.0.
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Figure 5.4: Success rates for CMA-ES, CMA-ESwM and int-EA on the sphere function
(top row) and ellipsoid function (bottom row), across various dimensions (x-axis) and dis-
cretization levels nlevels (y-axis). Each algorithm is given a budget of 2 000 evaluations per
dimension, with 200 runs conducted for each setting. The target function value is set to 10−8.

For all the considered algorithms, the discretized ellipsoid function is more difficult

to solve than the discretized sphere function. The sphere function is isotropic, which

facilitates a more straightforward optimization process even after discretization. In

contrast, the ellipsoid function is anisotropic. The variable scale varies along different

axes.
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The step size adaptation mechanism of CMA-ES is sensitive to the scale of the

search space. The various scales along different dimensions of the ellipsoid function

mean that the step size needs to be carefully balanced in order to progress. This bal-

ancing becomes increasingly complex within a discretized search landscape. Here, the

step size needs to be sufficiently large to escape the plateaus in some dimensions while

simultaneously being adequately restrained to permit precise, incremental advance-

ments in others. The interplay between these requirements can significantly hinder

the optimization process.

Adding a certain amount of discretization considerably increases the difficulties

faced by the standard (µ, λ)-CMA-ES. The higher the dimension, the more the dis-

cretization has a negative impact on the performance of CMA-ES (Figure 5.4 left

column). However, already in the two-dimensional setting, the discretization leads to

a failure rate of at least around 10% for the sphere function and around at least 20%

for the ellipsoid function, indicating that CMA-ES stagnates. In higher dimensions,

such as 20 and particularly 40, the success rate decreases further, with almost no runs

finding the solution. The extension with the margin improves the performance sig-

nificantly and outperforms the standard CMA-ES on all problem settings (Figure 5.4

center column). For the sphere function, the CMA-ESwM nearly always solves the

problem, regardless of the setting. However, for the ellipsoid function, CMA-ESwM

struggles particularly with a moderate number of levels. The complexity of the prob-

lem amplifies with increasing dimensionality. A small number of levels simplifies the

optimization task due to the enlarged region containing the optimal solution. Con-

versely, a large number of levels diminishes the size of the plateaus with identical

function values, reducing the risk of stagnation. These effects, however, are mitigated

as the dimensionality rises. For example, in the 20-dimensional space with 100 levels,

the success rate decreases to a mere 0.13 on the ellipsoid function.

When applied to the sphere function, the int-EA performs comparably to the

CMA-ESwM, successfully resolving the problem nearly every time, regardless of the

discretization (Figure 5.4 right column). However, in the case of the ellipsoid func-

tion, particularly at moderate numbers of levels and in higher dimensions, the int-EA

achieves a higher success rate than the CMA-ESwM. In settings with discretization

levels above 1 000, the ability of the int-EA to find the solution diminishes significantly.

Consequently, while there are scenarios where the CMA-ESwM performs worse than

the int-EA, for cases involving a large number of levels, the CMA-ESwM emerges as

the preferred algorithm. For a small number of levels, both int-EA and CMA-ESwM

exhibit comparable performance.
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To enhance the capability of the standard CMA-ES in addressing the challenges

posed by discretization, three modifications are considered. A BBOB problem is de-

fined within the search space x ∈ [−5, 5]d. Especially in higher dimensions, the proba-

bility of the initial population being generated entirely outside of this space increases.

Therefore, the repair method projection is employed for box constraint handling (Sec-

tion 2.4.2). This significantly improves the performance of CMA-ES (Figure 5.5 left

column) by preventing stagnation beyond the given lower and upper bounds. With

the box-constraint handling, on the sphere function for 5 and higher numbers of levels,

the success rate approaches 1.0 across the considered dimensions, with the exception

of the higher dimensions 20 and 40, where the success rate drops to approximately 0.9

and 0.7, respectively. The performance is still suboptimal for a very small number of

levels, such as two and three. For the ellipsoid function, CMA-ES with box constraint

handling continues to face challenges, particularly in solving problems with a moderate

number of levels.
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Figure 5.5: Success rates for CMA-ES with box-constraint handling (CMA-ES b), CMA-
ES with a doubled default population size (CMA-ES 2) and CMA-ES with an IPOP restart
strategy (IPOP-CMA-ES) on the sphere function (top row) and ellipsoid function (bottom
row), across various dimensions (x-axis) and discretization levels nlevels (y-axis). Each algo-
rithm is given a budget of 2 000 evaluations per dimension, with 200 runs conducted for each
setting. The target function value is set to 10−8.
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Doubling the default population size of CMA-ES generally improves performance

across all considered settings (Figure 5.5 center column). The primary advantage

of a larger population is the increased probability of sampling individuals outside of

the plateaus created by discretization. This enhancement enables CMA-ES to escape

plateaus, thus mitigating the risk of stagnation more effectively. However, despite

these improvements, stagnation of the optimization progress does occur in some runs

across all settings, with a higher incidence in scenarios involving higher dimensions

and larger numbers of levels.

The adoption of a restart strategy with an increasing population size affords CMA-

ES the opportunity for additional runs in the event of early stagnation, provided that

the evaluation budget has not been fully expended. This approach achieves a success

rate approaching 1.0 in the majority of settings considered (Figure 5.5 right column).

However, while a restart is potentially beneficial, a restart does not inherently preclude

the possibility of subsequent stagnation. Notably, in the case of the 40-dimensional

ellipsoid function and 100 or more levels, the majority of runs still fail to find a solution

and continue to stagnate. Therefore, employing a restart strategy should be considered

a measure of last resort.

To address the low success rates of the CMA-ESwM on the ellipsoid function with

a moderate number of levels, both an increased population size and a restart strategy

are applied to the CMA-ESwM (Figure 5.6). At first, the combination of a larger

population size and the margin extension (CMA-ESwM) synergistically enhances the

capacity of CMA-ES to escape the plateaus. As a result, doubling the default popula-

tion size of the CMA-ESwM leads to a significant increase in success rates, particularly

for the more challenging settings in 20 dimensions with 5 or more levels. However,

particularly for 10 levels, the int-EA still slightly outperforms CMA-ESwM (Figure 5.6

left column).

The addition of a restart strategy significantly improves the performance of CMA-

ESwM, which is now able to solve all problem settings except in cases with 100 or more

levels in 20 and 40 dimensions, where the success rate does not reach 1.0 (Figure 5.6

center column). When the restart strategy is combined with the increased population

size, CMA-ESwM consistently finds the solution across all considered settings, with

the sole exception of the three settings with 100 or more levels in 40 dimensions on

the ellipsoid function (Figure 5.6 right column). It is important to note that in these

particular settings, the int-EA does not exhibit superior performance either (Figure 5.4

right column).
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Figure 5.6: Success rates for CMA-ESwM with a doubled default population size (CMA-
ESwM 2), CMA-ESwM with an IPOP restart strategy (IPOP-CMA-ESwM) and CMA-ESwM
with an IPOP restart strategy and a doubled default population size (IPOP-CMA-ESwM
2) on the sphere function (top row) and ellipsoid function (bottom row), across various
dimensions (x-axis) and discretization levels nlevels (y-axis). Each algorithm is given a budget
of 2 000 evaluations per dimension, with 200 runs conducted for each setting. The target
function value is set to 10−8.

5.4.2 ECDF

So far, the success rate has only been considered after a predefined budget of evalua-

tions. To assess the convergence performance over time, success rates can be illustrated

with the ECDF over the complete evaluation process. The performance of IPOP-

CMA-ESwM with a doubled population size on the discretized 10-dimensional ellipsoid

function is compared with the standard CMA-ES on the continuous 10-dimensional

ellipsoid function (Figure 5.7).

The ECDF for the IPOP-CMA-ESwM on the discretized ellipsoid function closely

resembles that of the CMA-ES on the continuous ellipsoid function in shape. All runs

achieve the target threshold of 10−8 within the allocated budget of 20 000 evaluations,

and practically no runs stagnated. However, the ECDF curves reveal differences in

the number of evaluations required to attain specific success rates.
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Figure 5.7: Empirical Cumulative Distribution Function for the IPOP-CMA-ESwM with
a doubled default population size on the 10 dimensional ellipsoid function for nlevels ∈
{2, 3, 5, 10, 102, 103, 104} and the standard CMA-ES for nlevels ∈ {inf}. The target func-
tion value is set to 10−8 and 200 runs are conducted for each setting.

For settings with 10 or fewer levels, the number of evaluations required to achieve

a given success rate decreases with fewer levels and is consistently lower than that re-

quired for the standard CMA-ES on the continuous function. Therefore, CMA-ESwM

seems to benefit from discretization, transforming the negative effects of discretization

on standard CMA-ES performance into a positive outcome when the margin extension

is incorporated into CMA-ES.

In the setting with 100 levels, only for the last 10 percent, as the success rate

approaches 1.0, the number of evaluations required by the IPOP-CMA-ESwM exceeds

that of the standard CMA-ES on the continuous function. This increase in required

evaluations can be attributed to the need for a restart to achieve a success rate of 1.0.

Without such a restart, CMA-ESwM achieves only a success rate of 0.95 (Figure 5.6

left column).

For 1 000 and 10 000 levels, the ECDF curves closely align with the continuous case.

However, particularly towards the latter stages of optimization, CMA-ESwM requires

a slightly higher number of evaluations to achieve a success rate of 1.0 across all

runs compared to the CMA-ES on the continuous function. This observation means

that discretization can slow down convergence somewhat but does not prevent the



5.4 Results 89

algorithm from being successful. Remarkably, for both the 1 000 and 10 000 levels, a

success rate of 1.0 is achieved with a reduced number of evaluations relative to the

setting with 100 levels, which implies that a higher number of levels aids in facilitating

convergence. Additionally, the absence of stagnation in individual runs indicates that

a restart strategy is not required for these settings to attain a success rate of 1.0

(Figure 5.6 left column).

For the 20-dimensional discretized ellipsoid function, the ECDF curves show a

pattern similar to those observed in the 10-dimensional settings (Figure 5.8). Notably,

for 10 levels, the ECDF curve displays a slight inflection at a success rate of 0.4,

suggesting that restarts have been conducted. In the absence of restarts, the success

rate for CMA-ESwM is 0.67 (Figure 5.6 left column). For 100 levels, the success

rate without restarts increases to 0.77, the inflection in the ECDF curve occurs later,

at a higher success rate. This suggests a slower convergence speed compared CMA-

ES on the continuous ellipsoid function. Similarly, at 1 000 and 10 000 levels, the

convergence speed is slightly slower than that observed in the 10-dimensional case

when benchmarked against CMA-ES on the continuous ellipsoid function.

Figure 5.8: Empirical Cumulative Distribution Function for the IPOP-CMA-ESwM with
a doubled default population size on the 20 dimensional ellipsoid function for nlevels ∈
{2, 3, 5, 10, 102, 103, 104} and the standard CMA-ES for nlevels ∈ {inf}. The target func-
tion value is set to 10−8 and 200 runs are conducted for each setting.
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5.5 Conclusion

This chapter introduced a method for discretizing continuous optimization problems by

creating a grid with a specified number of discrete levels per dimension. The discretized

problems are then used to assess the impact of different levels of discretization on the

performance of an optimization algorithm. The analysis showed that the discretized

ellipsoid function is more difficult to solve than the discretized sphere function.

The standard CMA-ES struggles with discretized spaces. This issue is addressed by

employing CMA-ESwM for integer handling. This variant improves the performance

on the sphere function and on the ellipsoid function across all levels.

The int-EA, here used as a benchmark algorithm, outperforms CMA-ESwM on the

ellipsoid function for moderate numbers of discrete levels and particularly in higher di-

mensions. However, for higher numbers of levels, the int-EA cannot compete with the

CMA-ESwM on the ellipsoid function across all considered dimensions. The combina-

tion of CMA-ESwM with the IPOP restart strategy and an increased initial population

size outperforms the int-EA in all considered settings.

The convergence speed of the modified CMA-ESwM compared to the standard

CMA-ES on the continuous ellipsoid function is not significantly impeded across the

majority of considered settings. In fact, the discretization with small numbers of

levels simplifies the difficulty of the problem, and convergence of the CMA-ESwM is

accelerated. Nonetheless, for 100 levels, the convergence speed of CMA-ESwM is, on

average, slightly reduced towards the end of the optimization process because of the

need for restarts, particularly in higher dimensions such as 20.

In the 40-dimensional setting with a higher number of levels, neither the IPOP-

CMA-ESwM with an increased population size nor int-EA managed to solve these

settings effectively. Therefore, to solve these settings, another strategy or optimiza-

tion algorithm is required. However, up to 20 dimensions, CMA-ESwM proved to

be a robust optimization algorithm for wide numbers of discrete levels, from binary

optimization problems with just two levels to settings with over 10 000 levels.

In conclusion, the results from this chapter reveal the capability of CMA-ESwM

to address discretized optimization problems across diverse dimensions and numbers

of discrete levels. The use of a restart strategy and an increased population size is

highly recommended.
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Uncertainty Quantification

Optimization algorithms, such as CMA-ES, are designed to minimize an objective

function by selecting the top-µ individuals from a population (Section 2.4). However,

due to measurement errors, external disturbances or the inherent stochastic nature of

the system under consideration, real-world optimization problems often exhibit noise

or non-deterministic characteristics. This means that evaluating the objective with

identical inputs can yield different results. Consequently, selecting the top-µ individu-

als based solely on a single evaluation of the objective function per individual can lead

to inaccuracies. Section 2.7 provides a comprehensive overview of uncertainty quan-

tification and allocation strategies to increase the certainty of this selection process.

This chapter introduces a novel Dynamic Allocation (DA) methodology that inte-

grates uncertainty quantification with CMA-ES [50, 51] to mitigate the uncertainty in

selecting the top-µ individuals in each generation (Section 6.2). The uncertainty quan-

tification method utilized is based on the recently introduced concepts of Confidence

Interval Sequences (CISs) (Section 2.7.3) and Rank Intervals (RIs) (Section 2.7.4).

First, an artificial objective function characterized by inherent noise is developed to

facilitate the design and testing of the proposed methodology (Section 6.1). The

analysis evaluates the performance of this methodology and compares it to Static Al-

location (SA) schemes within the CMA-ES algorithm. Finally, the methodology is

applied to a real-world problem that exhibits noise, demonstrating its practical utility

(Section 6.3).



92 Chapter 6 Uncertainty Quantification

6.1 Noisy Test Function

The investigation and analysis of various DA methods with minimal computational

resources require test functions that are inexpensive to evaluate. To this end, a normal-

ized ellipsoid function is defined, characterized by the dimensionality d and a distinct

weight wj for each dimension:

f(x) =

∑
d
j wj x

2
j∑

d
j wj

, with wj ∈ {1, 2, . . . , d}. (6.1)

To introduce asymmetry into the landscape, each xj is transformed according to the

following equation:

xj =

xj , if xj ≤ 0

(1 + pskew)xj , if xj > 0
, (6.2)

where pskew governs the degree of skewness in the objective landscape. The landscape

reverts to that of the original ellipsoid function for pskew = 0.

The black-box nature of many real-world optimization problems necessitates mini-

mizing assumptions about the distribution of objective function values across repeated

evaluations. Therefore, this thesis adopts a frequentist perspective. Each function

evaluation corresponds to a specific scenario zi, which is randomly sampled without

replacement from the set of all possible scenarios ΩZ . After evaluating all possible

scenarios, the sample mean is identical to the true mean of the objective function

(Equation 2.23).

For a given input xk, a set of |ΩZ | values is sampled from a normal distribution

with standard deviation σZ representing the scenarios zi. After being sampled, this

set of |ΩZ | values remains fixed and is unique to each input xk. Furthermore, the

mean across all |ΩZ | values is subtracted from each individual value:

n(xk, zi) := zi −
1

|ΩZ |

|ΩZ |∑
i=1

zi, where ΩZ :=
{
z1, . . . , z|ΩZ |

∣∣ zi s∼ σZ N (0, I)
}
, (6.3)

This ensures that the sample mean over all possible scenarios ΩZ is equal to the true

mean, which is always zero for each input xk:

EZ [n(xk, Z)] = ÊZ [n(xk, Z)] =
1

|ΩZ |

|ΩZ |∑
i=1

n(xk, Z) = 0. (6.4)
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Equation 6.3 defines the values used to model both additive and proportional noise

within the test function. The parameter rnoise governs the balance between these

two noise types. Consequently, for a given input xk and scenario zi, the noisy test

function f(xk, zi) can be expressed as follows:

f(xk, zi) :=f(xk) · (1 + rnoise · n(zi) + (1− rnoise) · n(zi). (6.5)

The test function is with no noise original unimodal. The multimodality results

only from the noise introduced. Therefore, if an optimization algorithm fails to locate

the global optimum, the failure cannot be attributed to local optima inherent to the

original function. When all possible scenarios are sampled, the noisy test function

converges to the original function.

The noisy test function employed in this chapter is defined with pskew = 0.5,

rnoise = 0.7 and |ΩZ | = 50. Figure 6.1 illustrates the one-dimensional noisy test

function with σZ = 0.5 and different numbers of evaluated scenarios.
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Figure 6.1: Mean values across 1, 10 and 50 evaluated scenarios on the noisy test function
(Equation 6.5). Due to Equation 6.4, the noisy test function is equivalent to the original
function as defined by Equation 6.1, when all 50 possible scenarios are evaluated. The degree
of skewness pskew is set to 0.5 (Equation 6.2). The standard deviation σZ of the normally
distributed noise is set to 0.5 (Equation 6.3) and split to proportional and additional noise
with the ratio rnoise = 0.7.
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6.2 Methodology

The goal of the proposed methodology is to reliably identify the top-µ individuals

within a population of λ individuals while minimizing the number of evaluations re-

quired. To achieve this, a DA methodology is proposed.

Algorithm 2 outlines the process of the proposed DA methodology. First, each

individual xk is evaluated on the objective function f(xk, zi) for n0 scenarios zi, which

are sampled WoR from the set of all possible scenarios ΩZ . Scenarios are continuously

allocated WoR to individuals until either the uncertainty in the selection of the top-µ

individuals, quantified by the UQiSµ value (Equation 2.41), falls below a predefined

threshold uthr or the maximum number of evaluations N is reached. In each iteration,

the CISs CISk and RIs RIk of each individual xk are computed based on the until

then determined Kk objective function values f(xk, zi) of each individual xk. In order

to apply the CISs introduced in Section 2.7.3, the objective function values are min-

max scaled to [0, 1] with the provided lower bounds lb and upper bounds ub. The

UQiSµ value is computed from the RIs. If the UQiSµ value is not below the threshold

uthr, a DA policy πtop-µ allocates nallocate more scenarios to the individuals. Each

individual xk is then evaluated with the scenarios zi allocated to that individual,

and Kk is adjusted accordingly. Finally, the sample mean across the Kk evaluated

scenarios ÊZ [f(xk, Z)] is returned for each individual.

Algorithm 2 Proposed DA methodology to minimize UQiS.

Require: λ, {xk}λk=1, µ, |ΩZ |, nallocate, uthr, α, lb, ub
n0 ← 1
UQiSµ ← inf
Evaluate all individuals {xk}λk=1 for n0 scenarios zk ▷ sampled WoR from ΩZ

n← λ · n0

N ← λ · |ΩZ |
while n ≤ N − nallocate and UQiSµ > uthr do

Compute CISk ▷ according to Equation 2.29 and 2.33
Compute RIk and UQiSµ ▷ according to Equation 2.39 and 2.41
if UQiSµ > uthr then

Allocate nallocate scenarios ▷ according to DA policy πtop-µ (Sections 6.2.1)
Evaluate individuals with allocated scenarios
Adjust Kk ▷ according to the number of allocated scenarios to xk

n←
∑λ

k=1 Kk ▷ total number of allocated scenarios
end if

end while
return ÊZ [f(xk, Z)] = 1

Kk

∑Kk

i=1 f(xk, zi)
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6.2.1 Dynamic Allocation Policy

A DA policy proposed by Ellmaier [32] for the top-µ selection task is utilized. This DA

policy, denoted as πtop-µ, allocates additional scenarios to specific individuals based

on the computed RIs RIk of each individual xk. For the top-µ selection task, only

those individuals need to be considered that, according to their RI, are neither clearly

among the top-µ nor the bottom-(λ-µ) subset.

Λµ :=
{
k ∈ {1, . . . , λ}

∣∣∣RIk{1, . . . , µ} and RIk{µ + 1, . . . , λ}
}
, (6.6)

consist of the indices of these individuals. The excess of the RI RIk of individual xk,

denoted as ξk, is defined as follows:

ξk :=

max(RIk)− µ, if ˆrankfrq(xk) ≤ µ

µ + 1−min(RIk), else
. (6.7)

Figure 6.2 exemplarily shows the excesses of the RI ξk for the selection of the top-3

individuals from a population of six individuals. According to their RIs all individuals

can be among the top-3 individuals. Thus, the UQiS3 equals three, and selecting the

top-3 individuals is ambiguous. If all the excesses of the RIs ξk are zero, the UQiSµ

value is zero, and the selection of the top-µ individuals is unambiguous.

1 2 3 4 5 6
x1

x2

x3

x4

x5

x6

UQiS3 = 3

RIk k rank(xk)

Figure 6.2: Given the RIs RIk for each individual in {x1, . . . ,x6} the excess of the RIs ξk
computed according to Equation 6.7 is illustrated for the selection of the top-3 individuals.
According to the RIs all individuals can be among the top-3 individuals, and therefore the
UQiS3 equals three.
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Algorithm 3 outlines the process of the proposed DA policy πtop-µ. In each itera-

tion, the policy can allocate nallocate additional scenarios among the |Λµ| individuals

that play a pivotal role in differentiating the top-µ individuals from the rest of the

population according to Equation 6.6. The policy prioritizes individuals based on the

excesses of their RIs ξk. This assumes that the magnitude of this excess is indica-

tive of the uncertainty in the selection process. Then, the policy allocates additional

objective values to these individuals to thereby narrow the width of their CIs and,

consequently, their RIs.

To distribute more than one scenario per iteration in proportion to the magnitude

of the excesses of the RIs, the policy employs the Imperiali method. The Imperiali

method [39] originally designed to allocate parliamentary seats to political parties

based on their proportion of votes, is repurposed here to allocate scenarios. With the

Imperiali method, an integer number of scenarios Kallocated,i is allocated to each of

the |Λµ| individuals not clearly assigned to either the top-µ or bottom-(λ-µ) subset.

Thereby, the sum of the allocated scenarios Kallocated,i to the individuals is equal to

the total number of allocated scenarios:

nallocate =

λ∑
k

Kallocated,k. (6.8)

The allocation is based on the proportional excess of the RI RIk of individual xk in

percent of the total excess of the RIs of the |Λµ| individuals, denoted as ξpercent,k:

ξpercent,k :=
100 · ξk∑
j∈Λµ

ξj
. (6.9)

Algorithm 3 DA policy πtop-µ to allocate nallocate additional scenarios [32].

Require: λ, {RIk}λk=1, µ, nallocate

Determine Λµ ▷ according to Equation 6.6
Compute ξk ▷ according to Equation 6.7
Compute ξpercent,k ▷ according to Equation 6.9
{Kallocated,k}λk=1 ← Imperiali(totalseats = nallocate,percentages = ξpercent,k)
return {Kallocated,k}λk=1

If the excess of the RIs of two individuals is equal, the width of their CIs is consid-

ered as a secondary attribute for the allocation. Apart from the proportional excess

of the RIs, other metrics based on, for example, the excess of the CIs can be used as

an alternative.
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6.2.2 Top-µ Selection and Ranking

The mechanism of the DA methodology in selecting the top-µ individuals from a

population, as outlined in Algorithm 2, is exemplarily demonstrated by utilizing the

noisy test function defined in Section 6.1 with a dimensionality of two and a standard

deviation σZ of 0.5. A population is generated by randomly sampling six individuals

{x1, . . . ,x6} from a uniform distribution within the input space [−1, 1]2. In each

iteration, six additional scenarios can be allocated to the individuals, with a total

limit of 50 scenarios per individual. The allocation is stopped when the UQiS of the

top-µ individuals UQiSµ is zero. The significance level α for the computation of the

CISs is set to 0.3. Furthermore, for the uncertainty quantification, the lower bound lb

and upper bound ub are set to the true minimum and maximum possible objective

function values, respectively, by evaluating all possible scenarios for each individual in

advance. The provision of broader lower and upper bounds does not affect the core

principles of the qualitative findings that emerge from the results presented with the

true lower and upper bounds. Table 6.1 summarizes the chosen hyperparameters of

Algorithm 2 for the top-µ selection task and the utilized noisy test function.

Table 6.1: Chosen hyperparameters of the utilized noisy test function (Section 6.1) and of
the DA (Algorithm 2) for the top-µ selection task.

Component Parameter Description Parameter Value
Dimensionality 2

Noisy Standard deviation σZ 0.5
Test Degree of skewness pskew 0.5

Function Ratio proportional noise rnoise 0.7
Possible scenarios ΩZ {z1, . . . , z50}
Population X {x1, . . . ,x6}
Significance level α 0.3
UQiS of top-µ individuals µ

DA UQiS threshold uthr 0
Allocations per iteration nallocate 6
Lower bound lb minxk∈X,zi∈ΩZ

(f(xk, zi))
Upper bound ub maxxk∈X,zi∈ΩZ

(f(xk, zi))

First, the task of selecting the top-1 individual out of the population of the six

individuals {x1, . . . ,x6} is examined. Figure 6.3 illustrates the state after the final

iteration of the DA by Algorithm 2, showcasing the determined objective function

values f(xk, zi), along with the computed CIs CIk, RIs RIk and the resultant UQiS

of the top-1 individual UQiS1.
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A total of 114 scenarios are allocated across all individuals. The top-1 individual x1

is evaluated on all 50 scenarios, which narrows the CI for this individual to a width

of zero. The number of scenarios allocated to an individual Kk decreases along with

the rank of the individual. This allocation pattern arises because the employed DA

policy πtop-µ (Algorithm 3) stops allocating additional scenarios to an individual once

this individual can be definitively assigned to the top-1 or bottom-5 subset based on

the RIs RIk. This trend is especially noticeable for the individuals in the lower ranks,

which can be assigned to the bottom-5 subset with only a few scenarios, resulting in

comparatively large CIs. However, in the final iteration, the CIs of the individuals in

the bottom-5 subset are tight enough to avoid overlapping with the CI of the top-1

individual. Thus, the UQiS of the top-1 individual UQiS1 is zero, and the selection

of the top-1 individual is clear.
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f(xk, zi) EZ[f(xk, Z)] lb ub 0 10 20 30 40 50
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8 Kk = 114
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1 2 3 4 5 6

UQiS1 = 0

RIk rank(xk)

Figure 6.3: State after the final iteration of the DA by Algorithm 2 with hyperparameters
of Table 6.1 for the selection of the top-1 individual from the population X = {x1, . . . ,x6}.
Top Left : Determined objective function values f(xk, zi), sample means and given bounds.
Top Right : Number of allocated scenarios Kk sampled WoR from the 50 possible scenarios.
Bottom Left : Computed CIs from the determined objective function values and sample means.
Bottom Right : Resulting RIs, sample ranks and UQiS of the top-1 individual UQiS1.
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Subsequently, the task of selecting the top-3 individuals from the population of

the six individuals {x1, . . . ,x6} is considered. Figure 6.4 illustrates the final state.

A total of 180 scenarios are allocated across the population, requiring 66 additional

evaluations compared to selecting only the top-1 individual. Moreover, a significant

shift in the allocation pattern is observed. The number of scenarios allocated to

individuals in the middle ranks is increased. This is necessary to narrow the CIs

for an unambiguous assignment of these individuals to either the top-3 or bottom-3

subsets. In comparison, the individuals at the extreme ranks need fewer allocations for

an unambiguous assignment. In the final iteration, the RIs of individuals in the top-3

subset do not overlap with those in the bottom-3 subset. Therefore, the selection of

the top-3 individuals is unambiguous, and the UQiS of the top-3 individuals UQiS3

is zero.
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Figure 6.4: State after the final iteration of the DA by Algorithm 2 with hyperparameters
of Table 6.1 for the selection of the top-3 individual from the population X = {x1, . . . ,x6}.
Top Left : Determined objective function values f(xk, zi), sample means and given bounds.
Top Right : Number of allocated scenarios Kk sampled WoR from the 50 possible scenarios.
Bottom Left : Computed CIs from the determined objective function values and sample means.
Bottom Right : Resulting RIs, sample ranks and UQiS of the top-3 individual UQiS3.
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In each generation of CMA-ES, the top-µ individuals from a population are

selected. Additionally, in the subsequent recombination step, the individuals are

weighted based on their rank (Equation 2.5). Therefore, besides selecting the top-

µ individuals, the ranking within these top-µ individuals is required. To achieve this,

the DA by Algorithm 2 is conducted several times, sequentially increasing the selection

of the top-µ individuals from 1 to 3. If UQiS1 is zero, then UQiS2 is used to allocate

additional scenarios until it is zero. Once UQiS3 is also zero, a total of 204 scenarios

are allocated (Figure 6.5). As the top three individuals have similar objective function

values, all three are evaluated on all 50 possible scenarios. The remaining individuals

are assigned to the bottom three sets with fewer allocated scenarios.
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Figure 6.5: State after the final iteration of the DA by Algorithm 2 with hyperparameters
of Table 6.1 for the ranking of the top-3 individual from the population X = {x1, . . . ,x6}.
Top Left : Determined objective function values f(xk, zi), sample means and given bounds.
Top Right : Number of allocated scenarios Kk sampled WoR from the 50 possible scenarios.
Bottom Left : Computed CIs from the determined objective function values and sample means.
Bottom Right : Resulting RIs, sample ranks and UQiS of the top-3 individual UQiS3.
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6.2.3 CMA-ES and Bound Adaption for UQiS

The DA methodology (Algorithm 2) can be combined with CMA-ES to identify the

top-µ individuals within each generation g of CMA-ES. However, since CMA-ES min-

imizes the objective function, the values of the objective function are likely to decrease

as the generations progress. Moreover, the amount of noise may change during the

optimization process. Therefore, using static lower and upper bounds for the UQiS

throughout the entire optimization procedure is suboptimal.

To address this issue, a bounds adaptation mechanism is introduced. This mech-

anism adjusts the bounds for the UQiS dynamically after each generation based on

the minimum and maximum objective function values from the last ngen generations,

denoted as ymin,ngen
and ymax,ngen

. To account for potential future increases or de-

creases in the bounds, the range between the determined minimum and maximum

values, scaled by a factor bfactor, is added to the current minimum and maximum

values, respectively:

ub(g+1) = ymax,ngen + bfactor · (ymax,ngen − ymin,ngen),

lb(g+1) = ymin,ngen
+ bfactor · (ymax,ngen

− ymin,ngen
),

(6.10)

Figure 6.6 illustrates the bound adaption with bfactor = 0.25 and ngen = 3 during

a CMA-ES run on the noisy test function with σZ = 0.5 and rnoise = 0.9.

0 5 10 15
CMA-ES generation g
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f(
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mean EZ[f(xk, Z)]
true ymin ymax

lb ub (adapted)

Figure 6.6: Adaption of the lower bound lb and the upper bound ub according to Equa-
tion 6.10 with bfactor = 0.25 and ngen = 3 in each generation g of a CMA-ES run on the
noisy test function (Section 6.1) with σZ = 0.5 and rnoise = 0.9. In addition, for the DA
methodology, unknown true minimum ymin and maximum ymax objective function values are
provided along with the true mean objective function value across the CMA-ES population
X = {x1, . . . ,x6}.
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The significance level α is set to 0.99, and the UQiS threshold uthr is set to 1.

This configuration results in fewer scenarios being allocated for selecting the top-µ

individuals, which resembles a more complex case for bound adaptation due to the

less information available from past generations. Starting with an initial lower bound

of −0.5 and an upper bound of 2.5, the first adaptation is conducted after three

generations. During the 20 generations of CMA-ES, the mean objective function

value and thus also the proportional noise component decreases, which results in a

continuous adjustment of the bounds.

For each generation g, the bounds are considered correctly adapted if the lower

bound lb(g) is less than the true minimum objective function value y
(g)
min and the up-

per bound ub(g) is greater than the true maximum objective function value y
(g)
min.

Over the course of 20 generations, the bounds are correct in 95% of the cases (Fig-

ure 6.6). Only in generation 10 is the upper bound slightly too low compared to the

true maximum objective function value. This violates the assumptions for the UQiS,

which requires that all objective function values fall within the given lower and upper

bounds. Increasing the factor bfactor leads to looser bounds and a higher percentage of

correct bounds. However, looser bounds also result in larger CIs, necessitating more

function evaluations to unambiguously select the top-µ individuals. To investigate

this trade-off, an experiment is conducted with varying the values of the factor bfactor.

Table 6.2 summarizes the chosen hyperparameters, resulting in 30 configurations. For

each configuration, 100 CMA-ES runs are conducted for 20 generations on the noisy

test function, defined in Section 6.1.

Table 6.2: Chosen hyperparameters of the utilized noisy test function (Section 6.1) and of
the DA (Algorithm 2) for the analysis of the bound adaption mechanism.

Component Parameter Description Parameter Values
Dimensionality 2

Noisy Standard deviation σZ {0.1, 0.25, 0.5}
Test Degree of skewness pskew 0.5

Function Ratio proportional noise rnoise 0.9
Possible scenarios ΩZ {z1, . . . , z50}
Population X {x1, . . . ,x6}
Significance level α 0.99
UQiS of top-µ individuals {1, 3}

DA UQiS threshold uthr 1
Allocations per iteration nallocate 6
Initial lower bound lb -0.5
Initial upper bound ub 2.5
Bound adaption factor bfactor {0.0, 0.1, 0.25, 0.5, 1.0}
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Figure 6.7 illustrates the relationship between the ratio of correct bounds and the

ratio of evaluated scenarios, averaged across 200 CMA-ES runs, for various combina-

tions of standard deviation σZ and factor bfactor values. As expected, a higher factor,

which corresponds to looser bounds, results in a higher percentage of correct bounds.

With a factor of zero, slightly more than half of the bounds are correct. Increasing

the factor to 0.1 leads to approximately 90% of the bounds being correct. However, as

the factor increases, the increase in accuracy decreases while the number of scenarios

evaluated continues to increase. Therefore, for the subsequent experiments, the factor

bfactor is set to 0.1 as a compromise between accuracy and computational efficiency.
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bfactor

0.
1
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Z

52.1 92.0 97.4 98.8 99.8
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58.2 88.8 95.1 96.9 97.8

Bounds correct in %

0.0 0.1 0.25 0.5 1.0
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48.6 52.1 57.3 62.4 68.6
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Figure 6.7: The ratio of correct bounds in percent (left) and the ratio of evaluated scenarios
in percent (right) on average across 200 CMA-ES runs for different combinations of the
standard deviations σZ and factors bfactor for the bound adaption according to Equation 6.10.

6.2.4 CMA-ES Convergence

The DA methodology (Algorithm 3) can be employed to determine the ranking of

the top-µ individuals within a CMA-ES population (Section 6.2.2). The magnitude

of uncertainty in the ranking can be primarily controlled by the user through two

parameters: the significance level α and the threshold for the UQiS uthr. With higher

levels of uncertainty, the probability of an incorrect ranking increases.

In this section, the effect of increased uncertainty in the ranking on the convergence

of CMA-ES is investigated for µ = 1 and µ = 3. The significance level α is varied

first, followed by the threshold uthr. Finally, the DA methodology is compared to SA.

Table 6.3 summarizes the chosen hyperparameters. For each configuration, 100 CMA-

ES runs are conducted over 50 generations on the noisy test function, defined in

Section 6.1.
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Table 6.3: Chosen hyperparameters of the utilized noisy test function (Section 6.1) and of
the DA (Algorithm 2) for the analysis of the convergence of CMA-ES.

Component Parameter Description Parameter Values
Dimensionality 2

Noisy Standard deviation σZ {0.1, 0.25, 0.5}
Test Degree of skewness pskew 0.5

Function Ratio proportional noise rnoise 0.7
Possible scenarios ΩZ {z1, . . . , z50}
Population X {x1, . . . ,x6}

DA Allocations per iteration nallocate 6
Initial lower and upper bound -0.5, 2.5

Three values for the significance level α ∈ {0.3, 0.6, 0.9} are considered (Figure 6.8).

Higher values of α correspond to increased uncertainty, which leads to larger dis-

tances to the optimal objective function value ∆f∗ and, therefore, slower convergence

of CMA-ES. This trend is observed across all three standard deviations. The DA

methodology adapts to the different noise levels for a given α by adjusting the number

of evaluations. For higher values of α, fewer evaluations are required to achieve an

unambiguous ranking due to the resulting tighter CIs. Determining an unambiguous

ranking for µ = 3 requires more evaluation than for µ = 1.
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Figure 6.8: Distance to the optimal objective function value ∆f∗ after 50 generations of
CMA-ES and the ratio of evaluated scenarios on average across 100 runs for µ = 1 (first row)
and µ = 3 (second row). Different configurations of the significance level α ∈ {0.3, 0.6, 0.9}
(Equation 2.26) and the standard deviation σZ of the noisy test function are considered.



6.2 Methodology 105

To examine the convergence of CMA-ES across generations, the configuration with

µ = 1 and σZ = 0.5 is analyzed in detail. Figure 6.9 presents the distance to the

optimal objective function value ∆f∗, the ratio of evaluated scenarios and the ratio of

correct ranking (RCR) of the top-µ individuals, denoted as RCRµ, across 100 CMA-

ES runs for each generation g. For α = 0.9, the decrease in the distance to the

optimal objective function value slows down after 10 generations compared to α = 0.3

and α = 0.6. Simultaneously, the RCR falls below 0.9. With α = 0.6, the RCR

remains above 0.9, and the convergence of CMA-ES is not noticeably impacted, even

though fewer scenarios are evaluated compared to the case with α = 0.3. CMA-ES

can internally compensate for the incorrect rankings to some extent.
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Figure 6.9: Mean distance to the optimal objective function value ∆f∗, the ratio of
evaluated scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g
across 100 runs. Different values of the significance level α ∈ {0.3, 0.6, 0.9} (Equation 2.26)
for the DA (Algorithm 2) are considered. The standard deviation of the noisy test function
is set to 0.5.
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However, there is no significant difference in convergence among the different con-

sidered significance levels α until the first five to ten generations. The RCR is also 1.0

for all three significance levels. Therefore, a significance level of 0.3 is too conservative

in the beginning and leads to unnecessary evaluations. Conversely, a significance level

of 0.9 is too high after the beginning, as not enough scenarios are allocated, and the

RCR falls to 0.7.

Subsequently, the UQiS threshold uthr is varied between zero and three, with the

significance level α set to 0.3. The DA methodology allocates scenarios until the UQiS

does not exceed the set threshold. Therefore, for thresholds greater than zero, the

DA methodology allocates fewer scenarios, and the resulting ranking includes µ+uthr

individuals within the top-µ set. Thus, higher thresholds result in a higher uncertainty

in the ranking of the top-µ individuals, leading to poorer convergence across all three

standard deviations (Figure 6.10). For µ = 1 and µ = 3, the distance to the optimal

objective function value after 50 generations of CMA-ES is similar for the different

considered thresholds. However, for µ = 3, more scenarios are required.
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Figure 6.10: Distance to the optimal objective function value ∆f∗ after 50 generations of
CMA-ES and the ratio of evaluated scenarios on average across 100 runs for µ = 1 (first row)
and µ = 3 (second row). Different configurations of the UQiS threshold uthr ∈ {0, 1, 2, 3} and
the standard deviation σZ ∈ {0.1, 0.25, 0.5} of the noisy test function are considered.
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For the configuration with µ = 1 and σZ = 0.5, Figure 6.11 presents the distance

to the optimal objective function value ∆f∗, the ratio of evaluated scenarios and the

ratio of correct ranking (RCR) of the top-µ individuals across 50 generations of CMA-

ES for the different considered thresholds uthr ∈ {0, 1, 2, 3}. With higher thresholds,

the convergence slows down with further generations. After a continuous increase in

the number of allocated scenarios in the first ten generations, the allocation stagnates.

With a threshold of one, almost all possible scenarios are allocated. However, the

RCR is only around 0.8 due to the two possible individuals within the top-1 individual

according to the UQiS. Thus, the threshold needs to be zero to receive a correct ranking

according to the UQiS.
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Figure 6.11: Mean distance to the optimal objective function value ∆f∗, the ratio of eval-
uated scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g across
100 runs. Different values of the UQiS threshold uthr ∈ {0, 1, 2, 3} for the DA (Algorithm 2)
are considered. The standard deviation of the noisy test function is set to 0.5.
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However, to reduce the number of evaluations, the threshold can be set greater than

zero in the beginning. This will not significantly impact the RCR and convergence.

The reason for this is that in the beginning, the objective function values of the

individuals overlap less, resulting in fewer rank changes as more scenarios are allocated.

Therefore, the initial ranking is often already correct. Furthermore, selecting the

second-best individual can also lead to significant improvement, and the CMA-ES

population evolves even with an incorrect ranking provided.

Finally, the DA is compared to SA with different numbers of allocated scenar-

ios Kk ∈ {45, 40, 30, 20, 5} per individual considered (Figure 6.12).
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Figure 6.12: Mean distance to the optimal objective function value ∆f∗, ratio of evaluated
scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g across 100
runs. Different numbers of allocated scenarios Kk ∈ {45, 40, 30, 20, 5} per individual for the
SA are considered. The standard deviation of the noisy test function is set to 0.5.
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Due to the SA, the number of allocated scenarios is constant across all genera-

tions. Thus, no adaptation to the current uncertainty in the ranking is conducted.

Concerning convergence of CMA-ES, in the beginning, only five allocated scenarios to

each individual are enough for progress, even with an RCR of below 0.75. However,

the RCR of the other SA with more scenarios also falls below 0.5 within the first ten

generations. Here, two clear drawbacks of the SA are present. To reach efficiently a

constant high RCR, in the beginning, fewer evaluations are needed, and with further

progress, more and more evaluations are needed for a correct ranking. Thus, a DA is

required. A further drawback of SA is the allocation of the same number of scenarios

to each individual, which wastes evaluations on the last ranked individuals with no

information gain for ranking the top-1 individual.

6.2.5 Conclusion

The DA methodology (Algorithm 2) introduced in this work, which is based on un-

certainty quantification, effectively addresses the drawbacks associated with SA. By

employing a policy (Algorithm 3), scenarios are dynamically allocated to individuals

within a population, thereby reducing the uncertainty in the ranking of these individ-

uals. This methodology enables the ranking or selection of the top-µ individuals with

a high degree of confidence. The DA methodology distributes function evaluations

more effectively to the individuals than SA. However, the uncertainty quantification

method requires the user to provide upper and lower bounds for the objective function

values, which are a priori unknown and must be estimated.

The combination of the DA methodology and CMA-ES is not without its imper-

fections. Initially, the DA tends to allocate too many scenarios to achieve a correct

ranking, which is unnecessary for the early stages of CMA-ES. The algorithm is capa-

ble of evolving effectively even with a ranking that is not perfectly accurate. Therefore,

allowing for higher uncertainty, for example, by setting a higher threshold in the be-

ginning, can reduce the number of allocated scenarios. Furthermore, no information

about the uncertainty from past generations is used, the uncertainty quantification

starts anew for each population. Only the bounds are adjusted based on information

from previous generations. Using more information from past generations could be a

valuable direction for future research.
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6.3 Application to Real-World Problems

The optimization of parameters in vehicle dynamics control systems, such as ABS and

ARP, is a challenging task due to the inherent noise. The objective function value

for a given parameter configuration is determined by the sample mean across several

repeated maneuvers, with each maneuver considered a distinct scenario.

In this section, the uncertainty quantification and DA methodology is applied to

the two-dimensional real-world problem y1, which involves a partially loaded vehicle

with high-performance tires (Section 3.4). For each of the 10 101 possible param-

eter configurations, 30 braking maneuvers are simulated, and the resulting braking

distances are obtained.

The objective function for the real-world problem y1 returns the distance of the

braking distance in meters to the global optimal average braking distance across all

30 considered scenarios. Figure 6.13 illustrates these distances, which are averaged

over various numbers of randomly selected scenarios. The first input parameter x1 is

varied, while the second input parameter x2 is held at its optimal value.
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Figure 6.13: Distance of the braking distance in meters to the global optimal average brak-
ing distance across different numbers of randomly selected scenarios for the two-dimensional
real-world problem y1 (Table 3.1). The first input parameter x1 is varied, while the second
input parameter x2 is held at its optimal value.
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The dataset for the two-dimensional real-world problem y1 consists of 303 030

objective function values, which maps the objective function landscape completely.

Evaluating the objective function by using the dataset is inexpensive and eliminates

the need for further costly simulations. This allows to analyze the performance and

convergence of CMA-ES in combination with the DA methodology on the real-world

problem, similar to Section 6.2.4. For the analysis, CMA-ES is configured with a

population size of six individuals. The DA methodology allocates scenarios during

each generation of CMA-ES until the UQiS of the top-1 individual reaches zero. For

each significance level α ∈ {0.3, 0.6, 0.9}, 100 CMA-ES runs of 50 generations each are

performed. The initial lower and upper bounds of the objective function values are

set between -0.3 and 1.2 m. Figure 6.14 presents the results.
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Figure 6.14: Mean distance to the optimal objective function value ∆f∗, the ratio of
evaluated scenarios and RCR of the top-1 individual RCR1 for each CMA-ES generation g
across 100 runs on the two-dimensional real-world problem y1 (Table 3.1). Different values
of the significance level α ∈ {0.3, 0.6, 0.9} (Equation 2.26) for the DA (Algorithm 2) are
considered.
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Across the 50 generations of CMA-ES, the distance to the optimal objective func-

tion value decreases consistently for all three significance levels α ∈ {0.3, 0.6, 0.9}
considered, with no discernible differences in convergence. However, the ratio of eval-

uated scenarios is lower for higher significance levels across all 50 generations. Thus,

on the real-world problem, a higher significance level for the uncertainty quantifica-

tion is more efficient when applied in combination with CMA-ES. The lower RCR

results from higher significance levels and decreases further across generations. This

does not negatively impact the convergence of CMA-ES and is similar to the results

on the noisy test function in Section 6.2.4. The DA methodology demonstrates that

evaluations can be significantly reduced compared to evaluating all individuals across

all scenarios. Specifically, with significance levels of 0.3 and 0.9, reductions of 8% and

26%, respectively, are achieved.

Regardless of the selected significance level, not every CMA-ES run reaches the

optimal value of the objective function. On average, the deviation from the optimal

value is approximately 2 cm. The reason for this is the presence of noise, even if

all possible scenarios are evaluated. This noise contributes to a multimodal objective

function landscape and can cause CMA-ES to converge to a local optimum instead of

the global optimum. Two potential strategies can be employed to address this chal-

lenge: increasing the population size or the number of possible scenarios. First, a larger

population size enhances the exploratory capabilities of the optimization algorithm.

Thus, the optimization algorithm is more likely to escape a local optima. Second, a

larger number of scenarios reduces the impact of noise and smoothes the objective

function landscape. This simplifies the identification of the true global optimum for

the optimization algorithm.

The RCR is with a significance level of 0.3 above 0.9 across all 50 generations. Thus,

a significance level of 0.3 is effective for selecting the best parameter configuration

with high probability, regardless of the generation. In the last generations of CMA-

ES, almost all scenarios must be allocated to achieve correct ranking. Thus, even low

levels of noise can complicate the differentiation between individuals. This could serve

as a termination criterion or a sign to increase the number of scenarios.

Combining the DA methodology with CMA-ES can reduce the required evalua-

tions by up to 26% in a real-world setting. However, the precision of uncertainty

quantification for CMA-ES may be excessive, as the algorithm can progress even with

some incorrect rankings, suggesting potential for further efficiency gains. Nonetheless,

the DA methodology is adept at ranking individuals correctly and efficiently within a

population.
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The DA methodology and associated uncertainty quantification are not restricted

to simulated objective function values but can also be applied to real-world vehicle

measurements on a test track. Uncertainty quantification can provide information to

reduce the number of maneuvers required. Furthermore, this information can guide

engineers when choosing between parameter configurations of comparable quality.
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Chapter 7

Conclusion and Outlook

This thesis focuses on designing and tuning optimization algorithms that efficiently

navigate through the complicated problem landscapes typical of real-world challenges

in the design of vehicle dynamics control system parameters. Methods are presented

for analyzing and improving the performance and applicability of optimization algo-

rithms in solving computationally expensive mixed-integer black-box problems. Seven

research questions posed in Section 1.2 are addressed in this thesis. The answers to

these questions are summarized below.

In Chapter 3, the first research question is addressed by objectifying the desired

behavior of the two control systems ABS and ARP. For example, the performance

of the ABS parameters can be assessed through the braking distance, which enables

the translation of the complex engineering problem into a quantifiable mathematical

objective function. Defining the objective function of an engineering problem is a basic

requirement for the application of optimization algorithms. Moreover, this objective

function serves as the basis for subsequent algorithmic developments. To circumvent

the computational costs of vehicle dynamics simulations, a comprehensive dataset is

created using the workflow described in Section 3.3. Once created, this dataset serves

as a complete replacement for the simulation with very low evaluation costs. Multiple

optimization runs to obtain robust statistical results when benchmarking optimization

algorithms on the real-world problem can be conducted time-efficiently.

Chapter 4 stands as a cornerstone of this thesis, addressing the second research

question of how to tune optimization algorithm parameters for specific computationally

expensive real-world optimization problems. The research explored the creation and

use of computationally inexpensive surrogate problems to tune the parameters of an
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optimization algorithm. The similarity of optimization problems is quantified based

on ELA features. This allows for precise calibration of algorithm parameters in a more

computationally tractable but similar environment. The validation of the presented

method through rigorous experimentation shows that the performance of CMA-ES

can be significantly improved by using surrogate problems with similar properties to

the original optimization landscape.

Furthermore, Chapter 4 contributes to answering the third research question,

whether a universal parameter configuration can suffice for a class of related real-

world problems or whether each instance requires a tailored approach. The research

has shown that while a singular, well-tuned parameter configuration can indeed yield

superior performance across different instances within a problem class, such as the

design of vehicle dynamics control system parameters, there is also merit to the ar-

gument that individual problems may benefit from tailored parameter configurations.

The meta-optimization framework developed allows for both strategies: tuning for gen-

eral applicability or problem-specific optimization. The answer to the fourth research

question is to define the identification of the optimal parameters of an optimization

algorithm for solving a specific optimization problem as a meta-optimization task. The

results of a comprehensive experiment show that compared to established algorithms

such as SMAC and TPE, the use of CMA-ESwM as a meta-optimization algorithm is

a cost-effective strategy for tuning the parameters of CMA-ES.

The parameters of the considered real-world problems are discrete, which raises

the fifth research question addressed in Chapter 5: How does this discretization af-

fect the optimization performance of the used optimization algorithm CMA-ES? The

chapter presents a comparison and in-depth analysis of different CMA-ES variants

and an extension of CMA-ES specifically designed to deal with discrete parameters.

A spectrum of discretization levels and problem dimensionality is considered. The

extension of CMA-ES, combined with strategic algorithmic adaptations, has demon-

strated remarkable robustness in effectively handling the challenges introduced by

discretization.

The sixth research question is: How can uncertainty in the objective function be

quantified? Therefore, methods for the uncertainty quantification are presented in

Section 2.7. Moreover, these methods can be combined with a DA policy described

in Chapter 6, enabling the allocation of scenarios to individuals within a population

dynamically. The presented methodology ensures efficient ranking with a high degree

of confidence, which in turn reduces the number of evaluations required in uncertain

landscapes.
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The final research question asks about the advantage of combining this policy with

CMA-ES. On the real-world problem, the computational resources saved throughout

the optimization process are up to 26%. However, the proposed methodology is quite

conservative. Thus, there is further potential for improvements by allocating fewer

evaluations.

In a nutshell, by using the developed meta-optimization framework and specific

extensions for CMA-ES, this thesis provides tailored CMA-ES configurations to solve

mixed-integer black-box optimization problems with inherent uncertainty, such as the

design of VDCS parameters. Furthermore, the developed meta-optimization frame-

work is also applicable to other optimization algorithms and optimization problems

beyond the scope of VDCSs.

From this thesis, several promising avenues for future research emerge. One po-

tential direction is to extend the tuning methodology presented in Chapter 4 to other

real-world problem classes. Moreover, this allows for the analysis of the differences

and similarities of these problem classes, such as vehicle dynamics, vehicle crash, or

even non-vehicle domains, such as economics or finance. Furthermore, a database that

stores and uses information from previous tuning and optimization runs can provide

a path to enhance the efficiency of the developed method. Finally, an open research

question is the extension from single-objective to multi-objective optimization, espe-

cially in the context of algorithm tuning.

As highlighted in Chapter 5, future research may address strategies for managing

high-dimensional settings with numerous discrete levels. Improving the efficiency of

uncertainty quantification in optimization algorithms, such as CMA-ES, as discussed

in Chapter 6, also provides fertile ground for research.

The methods and findings presented in this thesis narrow the gap between the

application of sophisticated optimization algorithms and computationally expensive

black-box problems. These methods provide a basis for future developments and

improvements in vehicle design and control as the automotive industry and scientific

research continue to evolve.
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[16] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
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SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Opti-

mization. Journal of Machine Learning Research, 23(54):1–9, 2022.

[83] Fu Xing Long, Bas van Stein, Moritz Frenzel, Peter Krause, Markus Gitterle,
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Samenvatting

Deze dissertatie onderzoekt optimalisatiealgoritmes voor het oplossen van complexe

en rekenintensieve optimalisatieproblemen uit verschillende domeinen. Als voorbeeld

van een realistisch optimalisatieprobleem beschouwen we het ontwerpen van para-

meters voor voertuig-dynamische regelsystemen. De toenemende concurrentie in de

auto-industrie vereist een op maat gemaakte, snelle ontwikkeling van technologisch

geavanceerde voertuigen. Daarom worden de computationeel dure state-of-the-art

simulatietechnologieën gecombineerd met optimalisatiealgoritmes.

Dit proefschrift richt zich op één centrale vraag: Hoe kan een optimalisatiealgoritme

effectief en efficiënt worden ontworpen om computationeel dure problemen in de echte

wereld op te lossen? Deze centrale vraag leidt tot een aantal verdere onderzoeksvragen

die het hele ontwerpproces omvatten, van het wiskundige definiëren van de problemen

als functies die geoptimaliseerd kunnen worden tot het kwantificeren van onzekerheid

in optimalisatie.

Een belangrijke praktische bijdrage van dit proefschrift is de creatie van een

dataset die instanties van optimalisatieproblemen uit het veld van voertuigdynamica

representeert. Deze dataset vermindert de rekeninspanning die gepaard gaat met

complexe simulaties en maakt efficiënte benchmarking van algoritmes mogelijk. Dit

vergemakkelijkt de ontwikkeling van geavanceerde optimalisatiealgoritmes voor speci-

fieke uitdagingen in de auto-industrie in een rekenkundig efficiënt en methodologisch

robuust kader.

Een centraal aspect van het onderzoek is de ontwikkeling van een meta-

optimalisatie methodiek voor het afstemmen van de parameters van de Covariance

Matrix Adaptation Evolution Strategy (CMA-ES). De voorgestelde methode omvat

het genereren van surrogaat-optimalisatieproblemen die de complexiteit van de oor-

spronkelijke optimalisatieprobleemlandschappen weerspiegelen. Vervolgens worden

de gegenereerde surrogaat-optimalisatieproblemen gebruikt als afstemmingsreferenties
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voor de meta-optimalisatie. De uitgevoerde experimenten tonen het potentieel van de

aanpak aan voor brede toepassing op verschillende optimalisatieproblemen.

Verder worden de effecten van discretisatie op de prestaties van optimalisatiealgo-

ritmes besproken. Een CMA-ES variant die discrete variabelen kan verwerken wordt

onderzocht op verschillende discretisatieniveaus en probleemdimensies. Aanbevelingen

voor het aanpassen van de parameters worden gegeven om de prestaties te verbeteren.

Daarnaast wordt een dynamische toewijzingsmethode ontwikkeld om dynamisch

evaluaties toe te wijzen aan individuen binnen een populatie. Deze methode kwan-

tificeert de onzekerheid in de selectie van de top individuen. Door deze methode te

combineren met CMA-ES wordt het aantal vereiste evaluaties aanzienlijk verminderd.

Dit verbetert de rekenefficiëntie in onzekere optimalisatieomgevingen.

Tot slot wordt het potentieel voor het toepassen van het meta-optimalisatie frame-

work op verschillende probleemklassen en industrieën besproken. Bovendien kan de

efficiëntie nog verder worden verbeterd, bijvoorbeeld door de rekeninspanning voor

evaluaties en functieberekeningen te minimaliseren en een database te ontwikkelen om

informatie van eerdere optimalisaties te gebruiken. Daarnaast is de uitbreiding naar

multi-objectieve optimalisatie een veelbelovend gebied voor toekomstig onderzoek.



Summary

This thesis investigates the design of optimization algorithms for solving complex and

computationally expensive optimization problems from various domains. As an exam-

ple of a real-world optimization problem, the task of designing parameters for vehicle

dynamics control systems is considered. The increasing competition in the automotive

industry requires the tailored, swift development of technologically sophisticated vehi-

cles. Therefore, the computationally expensive state-of-the-art simulation technologies

are combined with optimization algorithms.

The thesis focuses on one central question: How can an optimization algorithm

be effectively and efficiently designed to solve computationally expensive real-world

problems? This central question leads to a number of further research questions that

cover the design process from the mathematical definition of the objective function of

real-world problems to the complicated issues of quantifying uncertainty in optimiza-

tion.

An important practical contribution of this thesis is the creation of a dataset that

represents real-world optimization problem instances from the field of vehicle dynam-

ics. This dataset reduces the computational effort associated with complex simulations

and enables efficient benchmarking of algorithms. This facilitates the development of

advanced optimization algorithms for specific challenges in the automotive industry

in a computationally efficient and methodologically robust framework.

A central aspect of the research is the development of a meta-optimization frame-

work for tuning the parameters of the Covariance Matrix Adaptation Evolution Strat-

egy (CMA-ES). The proposed method involves the generation of surrogate optimiza-

tion problems that mirror the complexity of the original optimization problem land-

scapes. Then, the generated surrogate optimization problems are used as tuning

references for the meta-optimization. The experiments conducted demonstrate the

potential of the approach for broad application to various optimization problems.
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Furthermore, the effects of discretization on the performance of optimization algo-

rithms are discussed. A CMA-ES variant able of handling discrete variables is investi-

gated across different discretization levels and problem dimensions. Recommendations

for adjusting the parameters are provided to improve performance.

In addition, a dynamic allocation method is developed to dynamically assign eval-

uations to individuals within a population. This method quantifies the uncertainty

in the selection of the top individuals. Combining this method with CMA-ES sig-

nificantly reduces the number of evaluations required. This improves computational

efficiency in uncertain optimization environments.

Finally, the potential for applying the meta-optimization framework to different

problem classes and industries is discussed. Moreover, further efficiency improvements

are achievable, for example, by minimizing the computational effort associated with

evaluations and feature computations as well as developing a database to leverage

information from previous optimizations. In addition, the extension to multi-objective

optimization is a promising area for future research.
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