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Summary

Inherent biologic drivers of
the oligometastatic (OM)
state determine conversion to
polymetastatic (PM) dissem-
ination over the impact of
effective OM ablation by
ultra-high dose radiation
therapy. Baseline volumetric
and metabolic OM metrics
derived from positron emis-
sion tomography/computed
tomography (PET/CT) scan-
ning before radioablation
predict long-term PM con-
version after ablation, cate-
gorizing diverse OM
phenotypes by susceptibility
to PM conversion. The PET/
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Purpose: The current oligometastatic (OM) model postulates that the disease evolves
dynamically with sequential emergence of OM (SOM) lesions requiring successive
rounds of SOM ablation to afford tumor cure. The present phase 2 study explores
the ablative efficacy of 24 Gy single-dose radiation therapy (SDRT), its feasibility
in diverse OM settings, and the impact of radioablation on polymetastatic (PM)
dissemination.
Methods and Materials: One hundred seventy-five consecutive patients with 566 OM
or SOM lesions underwent periodic positron emission tomography/computed tomog-
raphy (PET/CT) imaging to stage the disease before treatment, determine tumor
response, and monitor timing of PM conversion after SDRT. When 24 Gy SDRT
was restricted by dose or volume constraints of serial normal organs, radioablation
was diverted to a nontoxic 3�9 Gy SBRT schedule.
Results: SOM/SOMA occurred in 42% of the patients, and 24 Gy SDRT was feasible
in 76% of the lesions. Despite 92% actuarial 5-year OM ablation by 24 Gy SDRT,
respective PM-free survival (PMFS) was 26%, indicating PM conversion dominates
over effective OM radioablation in many patients. Multivariate analysis of OM metrics
derived from staging PET/CT scanning before first treatment predicted PMFS outcome
after SDRT. Bivariate analysis of dichotomized high versus low baseline metric com-
binations of CT-derived tumor load (cutoff at 14.8 cm3) and PET-derived metabolic
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CT platform provides guide-

lines for phenotype-driven
OM therapy and promotes
discovery of tractable PM
conversion drivers as targets
for new experimental
treatments.
SUVmax (cutoff at 6.5) yielded a 3-tiered PMFS categorization of 89%, 58% and 17%
actuarial 5-year PMFS in categories 1, 2, and 3, respectively (P < .001), defining OM
disease as a syndrome of diverse clinical and prognostic phenotypes.
Conclusion: Long-term risk of PM dissemination, predicted by preablation PET/CT
staging, provides guidelines for phenotype-oriented OM therapy. In categories 1 and 2,
radioablation should be a primary therapeutic element when pursuing tumor cure,
whereas in the PM-prone category 3, radioablation should be a component ofmultimodal
trials addressing primarily the risk of PM dissemination. PET/CT baseline staging also
provides a platform for discovery of pharmacologically accessible PM drivers as targets
for newphenotype-oriented treatment protocols.� 2019Elsevier Inc.All rights reserved.
Introduction
The biologic basis of oligometastatic (OM) disease remains
a conundrum in cancer medicine. In 1995, Hellman and
Weichselbaum1,2 proposed the hypothesis that OM consti-
tutes a temporary state of what might be termed meta-
statogenic equilibrium, providing a transient opportunity
for tumor cure with localized ablative therapy if delivered
before a polymetastatic (PM) escape occurs. The concept
was derived from empirical surgical ablation of limited
OM disease (1-5 lesions) from the lung or liver, yielding
approximately 20% sustained disease-free survival at 10 to
20 years.3,4 Although this model has driven the manage-
ment of human OM disease, the underlying biologic
mechanisms regulating metastatogenic equilibrium and PM
escape have remained obscure.5-8

The introduction of image-guided, high-precision radia-
tion therapy provides an alternative to surgery in metastasis-
directed ablation. Whereas early phase 1/2 studies demon-
strated the feasibility and safety of OM ablation by hypo-
fractionated stereotactic body radiation therapy (SBRT),9,10

the most effective outcomes have been achieved with ultra-
high-dose (3 � 18-20 Gy) stereotactic ablative radiation
therapy (SABR)11-14 or with �24 Gy single-dose radiation
therapy (SDRT),15-18 yielding >90% actuarial local control
of lesions at risk at 1 to 3 years. The impact of OM radio-
ablation on clinical outcome has recently been confirmed in
prospective randomized phase 2 studies. Two trials
engaging OM non-small cell lung cancer (NSCLC) without
progression after first-line systemic therapy demonstrated
consolidative radiation therapy improved local progression-
free survival over standard maintenance therapy,19,20

whereas the SABR-COMET randomized trial21 reported
that in addition to progression-free survival, SABR also
improved overall survival (OS) over standard of care ther-
apy, regardless of OM tumor type or organs involved.

The phase 2 study reported here was designed to assess
the efficacy and potential limitations of 24 Gy SDRT as a
primary radioablation tool in the spectrum of a large cohort
of consecutive patients with OM. Ultra-high dose SDRT has
attracted increasing attention because of its unique
mechanism of action, which is inherently different from
that of fractionated radiation therapy,22 rendering high rates
of OM tumor ablation regardless of tumor type.15-18,23,24

Early phase 1/2 studies reported a steep dose-dependent
increase of OM ablation within the range of 18-24 Gy
SDRT, plateauing at 24 Gy with approximately 90% actu-
arial local control at 1 to 3 years.15,16,25 There is, however, a
known limitation to 24 Gy SDRT, associated with anatomic
proximity of OM lesions to serial normal organs.14,26 Serial
structures display organ-specific sensitivity to a single
exposure within the range of 14 to 18 Gy to a so-called
point volume (�0.035 cm3),26 and violation of the dose-
volume constraint can result in severe toxicity. When
treatment planning deemed 24 Gy SDRT unfeasible because
of a serial organ dose-volume constraint, the radioablation
protocol was diverted to 3�9 Gy hypofractionated SBRT,
known to be generally safe, albeit less effective in tumor
ablation.27 Importantly, the same serial organ dose-volume
restrictions apply to 3 � 18-20 Gy SABR.14

Recent advances in the field provided evidence that
human OM disease is a dynamic biologic entity, often
producing sequential bouts of bona fide OM lesions
(sequential oligometastases [SOMs]), requiring successive
SOM ablations (SOMA) if tumor cure is pursued.28,29 In
the current phase 2 study, periodic PET/CT scans were used
to explore the natural history of this phenomenon, defining
the frequency and dynamics of SOM and the impact of
SOMA on long-term clinical outcome. A cutoff of �6
metastatic lesions was adopted to dichotomize the OM
from the PM state, as defined previously.9,10 Furthermore,
recent studies suggested that in-field local relapses (LRs) of
irradiated OM lesions are potential targets for rescue with a
repeated radioablation.28 Hence, the primary endpoint of
the study was to assess the feasibility and efficacy of 24 Gy
SDRT in ablating initial OM, SOMs, or LR lesions when-
ever detected, provided the apparent clinical setting at each
radioablative event fulfilled independently the protocol
definition of an OM state (�5 lesions), regardless of cu-
mulative number of previously ablated lesions.

A secondary endpoint of the study was to identify the
timing and incidence of clinical evidence of OM to PM
transition in different OM clinical settings. A fundamental
principle of the OM paradigm assumes that depletion of the
OM compartment is sufficient to cure OM cancer, provided
ablation is achieved before PM escape occurs. There may,
however, be instances in which PM dissemination occurs



Volume 104 � Number 3 � 2019 Radioablation of oligometastasis 595
subclinically before effective ablation is achieved. Thus,
periodic PET/CT scans were performed after radioablation
to document LR-free survival (LRFS), polymetastasis-free
survival (PMFS), and the first instance of �6 concomitant
metastatic lesions as a clinical indicator of PM conversion.
Figure E1 (available online at https://doi.org/10.1016/j.
ijrobp.2019.02.033) displays a diagram demonstrating pa-
tient flow through the study and status at the last follow-up.

The study outcomes show that whereas 24 Gy SDRT
renders an actuarial �92% ablation at 5 years, the respec-
tive PMFS was only 26%, indicating PM conversion
inherently dominates effective radioablation in a large
portion of patients with OM. Furthermore, baseline PET/
CT volumetric and metabolic metrics acquired before the
first radioablative event disclosed OM phenotypes with
distinct tendencies for eventual PM conversion. A detailed
analysis of local response, PMFS, and PM spread provides
new insights into the natural history of the OM syndrome
and defines the baseline PET/CT platform as a guide in
selecting phenotype-oriented therapy.

Methods and Materials

Patient accrual criteria

Between November 2011 and March 2017, 175 consecutive
eligible patients with �5 OM lesions were recruited to
this institutional review board-approved phase 2 study
(clinicaltrials.gov NCT03543696). Accrual eligibility
included age�18 years, Karnofsky performance status�80,
a controlled primary tumor, and�5 OM lesions independent
of lesion location. Patients with brain tumors were excluded
from the study. Systemic therapy was permitted at the
discretion of the treating physician. Patients were staged at
protocol admissionwith [18F]-fluorodeoxyglucoseePET/CT
scans, whereas prostate OM disease was staged with the PET
tracer [68Ga]prostate-specific membrane antigen. Detectable
lesions were characterized in terms of volume, location, and
PET metabolic parameters (SUVmax and metabolic tumor
volume).

SDRT/SBRT techniques and doses

Simulation and treatment planning were performed as
described previously,30 based on PET/CT, co-registered
with MRI whenever indicated, to outline the gross tumor
volume (GTV) and to contour the clinical target volume
(CTV). An isotropic margin of 3 mm was added to the CTV
to generate the treatment planning volume (PTV). Four-
dimensional CT scanning of mobile lesions in the lung
was used to design an internal target volume (ITV) to
compensate for respiratory target motion according to the
Radiation Therapy Oncology Group 0236 guidelines.
Treatment planning was performed with Eclipse software
(Varian Medical Systems, Palo Alto, CA) using volumetric
modulated arc therapy.30 The same treatment planning
guidelines were used for 24 Gy SDRT and 3�9 Gy SBRT.
The EDGE/TrueBeam STx platforms (Varian Medical
Systems) were used for treatment delivery. Both units are
equipped with an ExactCouch system for 6-degrees-of-
freedom patient setup.

Endpoints

Definitions of tumor response or failure were based on the
PERCIST (PET Response Criteria in Solid Tumors)
guidelines,31 using PET/CT scans, initially at 3 months and
subsequently at 6-month intervals. The duration of LRFS
was calculated for each lesion independently from the date
of radioablation, whereas the durations of PMFS and OS
were calculated for each patient from the date of the first
radioablative event. Acute and late toxicities were scored
based on the National Institutes of Health Common Ter-
minology Criteria for Adverse Events Guidelines, version
4.0.

Statistical analysis

Actuarial analysis was calculated using the Kaplan-Meier
algorithm. Univariate analysis to explore the association of
relevant prognostic variables with actuarial LRFS, PMFS,
or OS was performed using the Cox proportional hazards
regression method. A stepwise multivariate model was then
set to estimate the association of covariates that had a
significance alpha level Z 0.10 in the univariate study,
using the Cox proportional hazard algorithm. Hazard ratio,
95% confidence intervals, and c2 were obtained, and the
level of statistical significance was set at P < .05. Whereas
several of the covariates exhibiting statistical significance
were registered as a continuum of quantitative values (eg,
initial tumor load, metabolic SUVmax), univariate and
multivariate analyses were also conducted with continuous-
scale variables converted into binary-partitioned bins, using
the method of Contal and O’Quigley.32 This method pro-
vides an objective dichotomization via maximizing the
hazard ratio of partitioning values based on log-rank sta-
tistics. Statistical computations were performed using R
software Version 3.4.4 or GraphPad Prism 7.0 software
(Prism, Reston, VA).

Results

Patients and lesions treated by radioablation

The study accrued 175 consecutive patients (Fig. E1;
available online at https://doi.org/10.1016/j.ijrobp.2019.02.
033) with initial 354 OM lesions. SOMA was used in 73
(42%) patients (Table 1; Fig. E1, available online at https://
doi.org/10.1016/j.ijrobp.2019.02.033), contributing addi-
tional 191 lesions treated at 4-17 months intervals.
Although in-field LRs were detected in 44 patients (25%),
only 17 patients with 21 lesions were eligible for

https://doi.org/10.1016/j.ijrobp.2019.02.033
https://doi.org/10.1016/j.ijrobp.2019.02.033
http://clinicaltrials.gov
https://doi.org/10.1016/j.ijrobp.2019.02.033
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Table 1 Patient characteristics

Characteristics N Z 175 %

Sex
Male 95 54
Female 80 46

Age, y
Median (range) 64.6 (36-90)
Mean � SD 65.1 � 10.2

Primary cancer
Non-small cell lung cancer 31 18
Breast 30 17
Prostate 37 21
Colorectal 25 14
Pancreas 8 5
Bladder, urothelial 7 4
Sarcoma 6 3
Renal cell 6 3
Ovarian 4 2
Other 21 13

No. of OM lesions at first ablation
1 74 42
2 54 31
3 25 14
4 14 8
5 8 5

Target organs involved initially
1 126 72
2 42 24
3 7 4

Time (mo) to first ablation
Median (range) 43.9 (1-327)

Adjuvant Systemic therapy
No 73 42
Yes 102 58

Regimen at first OM ablation
SDRT 24 Gy 127 73
3 � 9 Gy 46 26
Both 2 1

Tumor burden at first OM ablation
(sum of gross tumor volume, cm3)

Median (range) 15.3 (0.2-461.5)
Mean � SD 38.4 � 62.2

Highest SUVmax at first OM ablation
Median (range) 9.6 (1.5-57.7)
Mean � SD 12.5 � 10.8

Sequential OM ablation
No. of patients 73 42
1 event 43 24
2 events 19 11
�3 events 10 6

Abbreviations: OM Z oligometastatic; SDRT Z single-dose radi-

ation therapy.
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radioablative LR rescue; in 20 patients LR occurred
concomitant with PM conversion, and in 7 patients local
rescue was not feasible because of restrictive comorbidities.
When considering the final throughput of lesions in the
ablation regimens, 108 patients (61%) with 322 lesions
received 24 Gy SDRT alone, 31 (18%) patients with 59
lesions received 3�9 Gy hypofractionation alone, and 36
(21%) patients received a combination of 3�9 Gy hypo-
fractionation (74 lesions) and 24 Gy SDRT (111 lesions).
Fifty-five patients (35%) experienced grade 1 toxicity not
requiring symptomatic therapy. There were no grade �2
toxicities. Follow-up for the entire study cohort ranged
between 3.0 and 66.0 months (median, 28.2 months).

OM ablative potential of 24 Gy SDRT

Table 2 shows that of 566 lesions, 432 (76%) were treated
with 24 Gy SDRT. An additional 134 (24%) lesions that did
not fulfill serial organ doseevolume constraints for a 24 Gy
exposure were treated with 3�9 Gy SBRT. OM lesion
characteristics for each subgroup are listed in Table 2.
Predictably, there was a prevalence of SDRT-treated lesions
in organs with nonserial architecture (eg, lung and bone), as
opposed to lesions treated with 3�9 Gy involving lymph
nodes, frequently located adjacent to critical serial struc-
tures. Lesions treated with 3�9 Gy displayed a higher mean
GTV (22.4 � 47.2 cm3; median, 7.9 cm3) than lesions
receiving 24 Gy SDRT (13.6 � 29.8 cm3; median. 4.9 cm3;
P Z .03).

Figure 1A shows the actuarial OM LRFS at 5 years after
24 Gy SDRT was 92%, compared with 55% and 38%
actuarial LRFS for lesions treated with 3�9 Gy SBRT at 3
and 4 years, respectively (P < .0001). LRFS of 24 Gy
treated lesions was not affected by tumor size (Fig. 1B;
overall volume range, 1-417 cm3), tumor type (Fig. 1C),
OM target organ (Fig. 1D), or application of adjuvant
systemic therapy (P Z .70; not shown). Although
Figure 1C shows a borderline significant reduction of LRFS
in NSCLC and colorectal OM lesions (P Z .05), this could
represent a dominating effect of 20% of these lesions (29 of
146) involving the mobile subdiaphragmatic liver and ad-
renals. The 3-year NSCLC and colorectal LRFS after 24 Gy
SDRT in the adrenal and liver was 50%, compared with
88% 5-year LRFS for the same OM histologies in all other
target organs (P Z .002; not shown). A similar impact of
target organ mobility on LRFS was not observed in the
peripheral lung (actuarial 4-5 year LRFS of 93%; Fig. 1D),
where an improved ability to precisely contour OM lesions
and the use of the 4-dimensional CT-based ITV33 suc-
cessfully compensated for lesion respiratory motion. All
evaluable locally relapsed and re-treated OM lesions have
remained locally controlled at 7 to 38 months (median,
18.5 months), regardless of whether 3�9 Gy hypofractio-
nation (n Z 14) or SDRT (n Z 8) was used.

Conversion from OM to PM

Serial follow-up PET/CT revealed clinical PM conversion
begins in all subgroups shortly after completion of the first
radioablative event (Fig. 2A-C), and it continues at a
constant rate over 3 years. Figure 2A shows that despite a
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Fig. 1. Actuarial local relapse-free survival (LRFS) of oligometastatic tumors from the time of radioablative therapy of
individual lesions. (A) LRFS after 24Gy single-dose radiation therapy (SDRT) or 3 � 9-Gy hypofractionated stereotactic
body radiation (SBRT). LRFS after 24Gy SDRT by (B) tumor size, (C) tumor type, or (D) OM target organ. Abbreviations:
CRC Z colorectal cancer; NSCLC Z non-small-cell lung cancer.

Table 2 Lesion characteristics

Lesions n (%) SDRT 24 Gy (%) 3 � 9 Gy (%) P value

Total 566 432 (76%) 134 (24%)
Histology .40

Breast 72 (13%) 54 (13%) 18 (13%)
Colorectal 84 (15%) 63 (15%) 21 (15%)
NSCLC 114 (20%) 83 (19%) 31 (23%)
Prostate 139 (24%) 118 (27%) 21 (16%)
Other histology 157 (28%) 114 (26%) 43 (32%)

Lesion site <.001
LN 192 (34%) 116 (26%) 76 (57%)
Bone 185 (33%) 150 (35%) 35 (26%)
Lung 103 (18%) 93 (22%) 10 (7%)
Liver 39 (7%) 35 (8%) 4 (3%)
Soft tissues 47 (8%) 38 (9%) 9 (7%)

Systemic therapy .91
No 93 (16%) 75 (17%) 18 (13%)
Yes 473 (84%) 357 (83%) 116 (87%)

GTV volume (cm3) .03
Median (range) 5.2 (0.1-417) 4.9 (0.1-283) 7.9 (0.3- 417)
Mean � SD 15.7 � 34.9 13.6 � 29.8 22.4 � 47.2

SUVmax .2
Median (range) 7.0 (1.5-76.4) 6.9 (1.5-76.4) 7.4 (1.8-37.3)
Mean � SD 9.4 � 8.7 9.1 � 8.4 10.5 � 9.2
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superior efficacy of 24 Gy SDRT in OM ablation (Fig. 1A),
PMFS did not differ significantly in patients treated with
24 Gy SDRT versus 3�9 Gy SBRT (Fig. 2A; P Z .33), nor
did adjuvant systemic therapy (Fig. 2B; P Z .26) or the
time elapsing from clinical OM diagnosis to the first radi-
oablation in early (<3 months) versus delayed (�3 months;
median, 11 months; range, 3-88 months) affect PMFS
(Fig. 2C; P Z .33). Similarly, PMFS was not affected by
LRs (Fig. 2D, P Z .21), OM histologic type (Table 3),
single versus multiple lesions (P Z .40; not shown), or
single versus multiple OM target organs (P Z .55; not
shown).

Nonetheless, univariate analysis revealed that the initial
OM tumor load (sum of GTVs of all OM lesions) derived
from the baseline staging PET/CT before the first radio-
ablative event, its respective metabolic 18F-FDG- or [68Ga]-
SUVmax, and the application of SOMA each significantly
affected PMFS (Table 3). Of note, the initial tumor load and
the metabolic SUVmax are normally registered as a con-
tinuum of quantitative values, and the Cox proportional
hazards regression analysis does not disclose which value
range best predicts PM dissemination. To convert the
continuous scale into binary-partitioned subgroups, we
derived the most significant cutoff values for initial tumor
load and SUVmax dichotomization, using the statistical
partitioning method of Contal and O’Quigley.32 This
analysis yielded dichotomization cutoff values of 14.8 cm3

for baseline staging tumor load (Fig. 3A) and a respective
6.5 for SUVmax (Fig. 3B) as the best predictors of PMFS.

Figure 3C shows that a bivariate analysis of a combi-
nation of <14.8 cm3 initial tumor load and <6.5 SUVmax

defines a favorable PMFS prognosis (category 1), exhibit-
ing a 5-year actuarial PMFS of 89% (Fig. 3C), whereas the
combination of <14.8 cm3 OM initial tumor load and �6.5
SUVmax predicted intermediate prognosis (category 2)
yielding 58% actuarial 5-year PMFS (P Z .02 versus
category 1). Figure 3C also shows that an initial tumor load
value �14.8 cm3 regardless of the SUVmax defined a poor
prognostic category 3, showing a rapid deterioration of
PMFS over the first 36 months after ablation, and rendering
an actuarial 17% PMFS at 5 years (P < .001 as compared
with category 2). Deterioration of PMFS in category 3 was
not affected by the time elapsing between the initial clinical
OM diagnosis and first radioablation, with nearly super-
imposed actuarial PMFS curves for early (<3 months)
versus delayed (�3 months) first ablation (not shown),
rendering 20% and 14% PMFS at 5 years, respectively
(P Z .22).



Table 3 Univariate and multivariate analysis of PMFS and OS

Predictive factor

PMFS UV analysis OS UV analysis

HR 95% CI P value HR 95% CI P value

Sex 0.65 0.56-1.44 .65 0.39 0.22-0.70 .006
Age 1.00 0.98-1.03 .94 1.03 1.00-1.06 .06
First treatment SDRT 1.00 0.57-1.76 .99 0.77 0.41-1.48 .44
SOMA 0.38 0.23-0.63 < .001 0.70 0.39-1.26 .08
No. of OM (1 vs � 2) 0.73 0.45-1.18 .42 1.00 0.56-1.79 .79
Time to first OM ablation (<3 mo) 0.81 0.48-1.36 .46 0.99 0.98-1.01 .29
OM primary site

Breast 1.51 0.82-2.81 .19 0.23 0.06-0.97 .04
Prostate 0.45 0.17-1.20 .11 2.10 0.38-11.58 .39
NSCLC 0.53 0.23-1.24 .14 3.54 0.76-16.41 .10
Colorectal 4.38 0.80-24.4 .09 0.82 0.31-2.15 .68
Other 2.05 0.57-7.40 .27 0.72 0.36-1.35 .36

Initial tumor load (continuous variable) 1.00 1.00-1.00 .002 1.00 1.00-1.01 .001
SUVmax (continuous variable) 1.02 1.00-1.04 .03 1.04 0.99-1.05 .12
Initial tumor load (dichotomization by best cutoff)* 0.39 0.24-0.60 <.001 0.27 0.13-0.56 .004
SUVmax (dichotomization by best cutoff)y 0.59 0.35-0.99 .04 0.45 0.23-0.90 .02

Predictive factors on MV
analysis Predictive factors on MVanalysis

Initial tumor load* 0.55 0.32-0.94 .02 0.35 0.19-0.67 .001
SUVmax

y 0.58 0.34-0.99 .04
Male sex 2.38 1.14-5.00 .02

Abbreviations: CI Z confidence interval; HR Z hazard ratio; MV Z multivariate; NSCLC Z non-small-cell lung cancer; OM Z oligometastatic;

OS Z overall survival; PMFS Z polymetastasis-free survival; SDRT Z single-dose radiation therapy; SOMA Z sequential oligometastases ablation;

UV Z univariate.

* Sum of gross tumor volumes; cutoff point at <14.8 cm3.
y SUVmax cutoff point at <6.5.
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The univariate analysis (Table 3) also revealed that
SOMA delays PM dissemination (Fig. 4A; P < .0001). This
phenomenon might reflect an impact of SOM disease on
PM conversion. To further explore this notion, we per-
formed trivariate analyses of SOMA effects in the context
of the 3-tiered PET/CT-derived PMFS categories. In cate-
gory 1, 12 of 24 patients (50%) required SOMA, which did
not affect the inherent minimal rate of PM conversion
(Fig. 4B; P Z .94). In category 2, 29 of 60 patients (48%)
underwent SOMA, revealing a tendency, albeit not statis-
tically significant, of delayed PM conversion associated
with SOMA (Fig. 4C; P Z .06). In the poor prognostic
category 3, 32 of 91 patients (35%) underwent SOMA,
associated with a significant delay in PM conversion
(Fig. 4C; P Z .02), although by 48 months the SOMA/no-
SOMA curves appeared to converge, indicating that SOMs
can delay but not prevent clinical PM conversion.
Overall survival after OM ablation

Univariate and multivariate analyses revealed that OS
significantly correlated with pretreatment baseline PET/CT-
derived tumor load and SUVmax (Table 3). Categorizing
patient survival by dichotomized metric combinations of
these pretreatment parameters, as performed earlier for
PMFS, yielded actuarial 5-year OS rates of 100%, 56%,
and 36%, respectively (Fig. 5A), closely correlating with 3-
tiered PMFS categories (Fig. 3C). The actuarial 5-year OS
was not affected by the use of adjuvant systemic therapy
after the first radioablative event (P Z .40; Fig. 5B).
Notably, the actuarial 5-year OS directly correlated in all
tumor types with the actuarial PMFS (45% and 49%,
respectively; Fig. 5C), except for in breast cancer, in which
a relatively small group of breast OM patients (n Z 30)
displayed an actuarial 5-year PMFS of 21% versus an OS
of 79% (P < .01; Fig. 5C). This unique pattern of breast
cancer response is consistent with previous data reporting
that breast OM patients treated with radioablation fare
better than patients with other OM tumor types,10 and with
recent reports demonstrating that metastatic breast cancer is
exceptionally sensitive to systemic therapies, promoting
prolonged survival in the disseminated metastatic phase of
the disease.34

Discussion

The present study confirms the attributes of 24 Gy SDRT as
a robust and cost-effective radioablative tool, given that it
renders �92% of sustained ablation of OM lesions in a
wide range of OM settings. However, it also reveals a
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Fig. 3. Analysis of factors affecting polymetastases-free
survival (PMFS). (A, B) Univariate analysis of volu-
metric and metabolic variables derived from baseline PET/
CT evaluation performed before first treatment. (A) The
effect of the initial tumor load calculated as the sum of CT-
derived gross tumor volumes (GTVs) of all detected OM
lesions dichotomized at a cutoff value 14.8 cm3. (B) The
respective metabolic PET SUVmax dichotomized at a cutoff
value of 6.5. (C) Bivariate analysis of combined baseline
tumor load and SUVmax on PMFS. Category 1 comprises
patients with baseline oligometastases (OM) tumor load of
<14.8 cm3 and SUVmax < 6.5; category 2 with <14.8 cm3

OM tumor load and SUVmax � 6.5; and category 3
with OM tumor load value of �14.8 cm3 regardless of
SUVmax.
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relatively high incidence of serial normal organ interfer-
ence with 24 Gy, requiring diversion to nontoxic ablative
hypofractionated radiation therapy. The 3�9 Gy SBRT
regimen used here was associated with a high rate of in-
field LRs. Although LR rescue with repeated radioablation
appeared to be effective in a limited number of patients,
rescue was deemed unfeasible or of no therapeutic value in
>60% of LR cases, highlighting a need for an alternative
toxicity-free ablative approach to the 3�9 Gy regimen.

Given that ablative ultra-high-dose (3 � 18-20 Gy)
SABR is restricted by the same serial organ constraints as
SDRT,14,35 lower doses per fraction of ablative SBRT (eg,
4�12 Gy36,37 or �8-10 Gy14,38-40) are the preferred alter-
natives to 3�9 Gy. SBRT schedules using �12 Gy/fraction
are below the thresholds of serial organ point dose con-
straints26 but could still result in toxicity.41,42 Normal tissue
complication probabilities of �12 Gy/fraction SBRT are
determined by dose-volume correlations of the exposed
organ at risk with increasing grades of toxicity.43,44 Hence,
when 24 Gy SDRT is restricted by serial organ tolerance
and an alternative SBRT regimen is needed, emerging al-
gorithms, such as the Dose-Volume Histogram Risk Maps
protocol,44 can be used at treatment planning to select an
ablative SBRT schedule that predicts an acceptable risk of
organ-at-risk toxicity.

An alternative approach can be derived from the recent
understanding of the SDRT biology22 that mechanistically
links a transient microvascular acid sphingomyelinase
(ASMase)-mediated ischemia or reperfusion to DNA
double-strand break repair in parenchymal tumor cells,
disabling tumor cell homology-directed double-strand
break repair to render synthetic tumor cell lethality.22

Pharmacologic enhancement of the ASMase response
selectively radiosensitizes SDRT lethality,45-47 rendering a
25% reduction of the nominal SDRT dose required to
achieve an iso-cure effect normally observed at 20 Gy, with
no added normal tissue toxicity.47 Translation of this
approach to clinical use could enable de-escalation of
ablative SDRT tumor dosing to below the threshold of se-
rial organ toxicity.46,47 Hence, the use of advanced treat-
ment planning algorithms, and the potential of
pharmacologic modulation of the SDRT response, provides
approaches to resolve the current intractable restriction of
serial organ dose-volume constraints on ablative SDRT in
OM cancer.

The development of a baseline PET/CT-based, 3-tiered
PMFS categorization at initial OM diagnosis transforms the
field because it provides an objective, noninvasive staging
system based on functional tumor metrics, rather than the
traditional arbitrary use of numerical counts of 3 or 5 le-
sions to define a dynamic biological entity. The 3-tiered
categorization defines human OM disease as a syndrome
of diverse clinical and prognostic phenotypes. We posit
that the phenotypes share a common biologic core of
transient metastatogenic equilibrium, with each driven by
phenotype-specific pathways that regulate the balance
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Fig. 4. Effect of sequential oligometastases ablation (SOMA) on polymetastases-free survival (PMFS) (A) in the total
cohort of study patients, (B) in category 1, (C) in category 2, and (D) in category 3 patients.
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between metastatogenic equilibrium and PM escape. A
basic element of this paradigm is the apparent dichotomi-
zation between the PMFS favorable category 1, amenable
to OM ablative cure, and category 3, which mostly converts
to PM dissemination despite effective OM ablation. Thus,
our reported 89% 5-year disease-free status in category 1
represents the classical OM phenotype originally predicted
by Hellman and Weichselbaum1,2 to be curable if ablated
before a PM escape occurs. In this regard, previous studies
reported that OM patients with no evidence of disease at
5 years after surgery exhibit a low risk (5%-11%) of sub-
sequent relapse or PM dissemination.48-50 Category 2 ap-
pears to represent a transitional phase from category 1 to
category 3, wherein regulatory pathways that promote PM
escape appear to be gradually activated. Although a sig-
nificant proportion of patients in this category cross a point
of no return in PM conversion, we suggest that until these
patients can be identified upfront, there is an indication for
consented OM radioablation in all category 2 patients;
approximately 60% hold a chance of attaining cure of an
otherwise life-threatening tumor progression. In category 3,
the great majority of patients appear to be beyond rescue by
ablation alone, and the current indiscriminate use of sur-
gical or radiation OM ablation in this category is unwar-
ranted. We suggest that comprehensive OM radioablation,
if used in category 3, should be used as a component of
prospective multimodality clinical trials designed primarily
to address the risk of PM dissemination. Importantly, we
foresee a potential for the PET/CT staging system in
serving as a platform for discovery of biomarkers that
define new phenotypic subgroups, potentially promoting
innovation in phenotype-driven OM therapy.

There are no animal models of bona fide OM disease,
and progress in the field largely depends on interpretation
of clinical observations. Recent transcriptional profiling
of archived human primary and metastatic lesions dis-
closed noncoding microRNA (miRNA)/mRNA networks
are ectopically overexpressed in OM lesions (termed
oligomiRs), discriminating OM from PM lesions across
different tumor types.51 A subgroup of oligomiRs enco-
ded in a polycistronic miRNA gene locus on human
chromosome 14q32 were characterized as tumor sup-
pressors,52 repressing experimental MDA-MB-231 met-
astatic colonization of the lung,52 and arresting growth of
HCT116 tumors in hepatic xenograft lesions.53 Whether
suppressor miRNA signatures are associated with our
observation that SOM/SOMA delay PM conversion in
category 3 disease (Fig. 4D) is a testable hypothesis.
Furthermore, future research will be required to assess
whether the 3-tiered PMFS categorization reflects
phenotype-specific acquisition or loss of suppressor
miRNA signatures.
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Conclusions

Coordinate exploration of OM biology in the context of the
3-tiered PMFS categorization holds promise in research of
specific drivers of OM biology, with a potential for novel
therapeutic approaches. Notwithstanding future de-
velopments, the current 3-tiered staging system has im-
mediate practical implications for phenotype-oriented
clinical trials in the treatment of OM disease.
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