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1.1. Incubation time and latency time distribution

1.1 Incubation time and latency time distribution

Incubation and latency time of an infectious disease are crucial quantities to understand

and manage infectious disease outbreaks. The incubation time is the time interval from

infection to symptom onset, and the latency time refers to the period between infection

and the start of infectiousness. The corresponding distributions are typically estimated

at the beginning of an outbreak with a novel pathogen. Table 1.1 gives some examples

of different ways in which incubation time is used [Nishiura, 2007].

Table 1.1: Common uses of the incubation period distribution of infectious diseases [Nishiura, 2007].
The author distinguishes the major field of use and the various functionalities.

Major field of use Explanation and example

Clinical practice

Rough estimates of the time of exposure of bedside cases (e.g., to
determine the causes and/or sources of infection)
Development of a treatment strategy that extends the incubation period
(e.g., antiretroviral therapy for HIV/AIDS)
Early projection of disease prognosis when the incubation period is clearly
associated with clinical severity (e.g., diseases caused by exotoxin)
Clinical investigations of the impact of infecting dose on the clinical
appearance of a disease (i.e., the dose-response mechanism)

Public health practice Determination of the length of quarantine required for a potentially exposed
individual (e.g., limiting the movement of those exposed to SARS within a
household)

Epidemiologic study

Determination of the eradicability of a disease (e.g., determination of the
effectiveness of isolation measures)
Estimation of the time of exposure during a point source outbreak (e.g., in
identification of the source of infection during large-scale food poisoning)
Determination of the end of a point source outbreak (i.e., statistical tests
that determine if case onset is over)
Reconstruction of epidemic curves and short-term predictions of slowly pro-
gressing diseases (e.g., backcalculation of HIV/AIDS and prion diseases)
Estimation of the transmission potential and infectiousness relative to
disease-age (e.g., estimation of the relative infectiousness of smallpox)

Ecological study Determination of the adaptation strategy of a parasite (e.g., evolution of
vivax malaria owing to seasonal selection pressure)

Estimates of the incubation time and latency time are not necessarily the same because

when an infected individual starts to be infectious may not coincide with symptom onset.

For SARS-CoV-2, presymptomatic transmission was observed [Tindale et al., 2020].

The time elapsed between the start of infectiousness and symptom onset has been
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1. Introduction

important. Namely, a long time lag between start of infectiousness and symptom onset

indicates that isolation of symptomatics is most likely ineffective [Nishiura, 2007], i.e. when

latency time is considerably shorter than incubation time.

While all individuals infected with SARS-CoV-2 experience a latency period, the same

cannot be said for the incubation time. Among SARS-CoV-2 infected individuals, 40.5%

did not develop symptoms until recovery [Ma et al., 2021]. Individuals with asymptomatic

infection are typically more challenging to notify. The latency time is one of the factors

determining the efforts required to control the spread of an infectious disease [Demers

et al., 2023]. Despite its relevance, estimates of the latency time are rare and therefore,

public health measures are typically informed by incubation time instead.

The incubation time differs considerably by type of infection, from few hours for toxic

food poisoning to sometimes a few decades for tuberculosis, AIDS and variant Creutzfeldt-

Jakob disease [Nishiura, 2007]. The incubation time for a specific infectious disease varies

as well and may, amongst others, depend on age, transmission route, received pathogen

dose, vaccination status and natural immunity [Held et al., 2019].

Figure 1.1: Epidemic curve related to two infectious disease outbreaks: (a) point source outbreak
of salmonellosis among 57 cases visiting a wedding reception in Malahide, Ireland (1996) [ECDC,
2018]; (b) propagated (person-to-person transmission) outbreak of measles in Hagelloch, Germany
(1861) in 187 cases [Groendyke et al., 2010]. Each square represents one case.

In some infectious disease outbreaks all infected individuals are thought to be infected

at the same calendar time by a shared source and the infection is not transmitted further.

These so called point source outbreaks provide the most straightforward scenario for
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1.2. Statistical assumptions: a short history

estimating the incubation time. Figure 1.1a is the epidemic curve, a specific type of

histogram, corresponding to an outbreak of salmonellosis related to a wedding reception

in Ireland [ECDC, 2018]. Each box represents an infected individual. The notified cases

(y-axis) are organized by the six-hour time window in which each respective case exhibits

the first symptom(s) (x-axis). Contaminated turkey served at the wedding was identified as

the most likely vehicle of infection. Since the infection probably occurred at the wedding

reception, the distribution of individual symptom onset days can be directly observed, as it

approximately equals the incubation time of salmonellosis. The median incubation time

of salmonellosis is known to be 45 hours [Eikmeier et al., 2018].

Many outbreaks propagate as direct transmission takes place between individuals or

indirect transmissions mitigated by vectors like mosquitos. The epidemic curve curve of

such a propagated outbreak is different from a point-source related curve. Figure 1.1b

visualizes the daily number of individuals with measles [Groendyke et al., 2010], a highly

infectious disease transmitted from person to person. The epidemic curve no longer resem-

bles the incubation time distribution as individuals acquire the infection on different calendar

dates. Often, the moment of infection is not precisely observed but it is, at best, known to

occur within a specific time window. The information needed to estimate the incubation

time distribution typically includes the exposure window along with the symptom onset day.

Additional assumptions are needed to estimate the distribution of incubation time.

1.2 Statistical assumptions: a short history

The first estimate of the incubation time for influenza dates back to 1919 [McKendrick,

1925; Nishiura, 2007]. McKendrick, who gained recognition primarily for his infectious

disease transmission models, estimated the incubation time on data from 92 maritime ships

that left different harbours in Australia. He used the counts of individuals with symptom

onset each day t since departure, i.e. I(t) = 64, 17, 5, 2 cases on the 1st, 2nd, 3rd and

4th day (t = 1, 2, 3, 4), respectively. Assuming that infection took place on shore and

no transmission took place on board, he used the idea that individuals that developed

symptoms on the second day since departure (t = 2) were exposed at least two days before

when he estimated the daily probability Zr of the incubation time r days after exposure as
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1. Introduction

Zr = p(1 − p)r−1. (1.1)

where r ≥ t. Until today, the uncertainty of the infection moment that McKendrick

acknowledged remains a major challenge in incubation time estimation. Nowadays, it

is common to assume that infection is equally likely to occur on all exposure days (in the

example: 1, 2, 3 or 4 days before departure). We will revisit the validity of the latter

assumption later in the thesis.

The first attempt to model the incubation time distribution for infectious diseases using

a continuous parametric distribution was attributed to John Miner in 1916 [Miner, 1922;

Nishiura, 2007]. Miner suggested employing the right skewed Pearson I distribution while

Philip E. Sartwell later proposed the lognormal distribution as an alternative [Sartwell,

1950; Nishiura, 2007]. The rationale for choosing a lognormal distribution was that

pathogens were thought to grow exponentially within a host. While there is little evidence

to support this reasoning for all infectious diseases, the lognormal distribution remains

part of the commonly assumed triplet of right-tailed distributions today, alongside the

gamma and Weibull distribution.

Coronaviruses are known to have a relatively long tailed incubation time distribution.

The WHO has expressed concern about the validity of the commonly assumed parametric

distributions, as they may not adequately capture the tail behaviour of the incubation time

distribution of corona viruses [WHO, 2003]. The mismatch is particularly problematic since

the percentiles are of particular interest; for instance, the 95th percentile is typically used

to choose the minimum duration of quarantine for potential cases.

In Chapter 2, we investigate the impact of using parametric distributions through a

simulation study and assess the performance of a more flexible alternative. In Chapter 4,

we assume another flexible distribution for the SARS-CoV-2 latency time distribution that

includes the gamma and Weibull distributions as a special case.

Two common statistical concepts for observations of time-to-event complicate estimation

of incubation and latency time. A time-to-event or survival time is the time interval

between an initial event and the occurrence of an event of interest such as death, disease-

progression, relapse, et cetera.

Often, the start- or endpoint of such an interval of interest cannot be observed precisely,

which is referred to as censoring (Section 1.4). Moreover, in observational data it is
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1.3. Contact tracing data: SARS-CoV-2 in Vietnam

common that certain individuals are observed whereas others go unnoticed, which may

lead to truncation (Section 1.5). Survival analysis is the statistical discipline devoted

to studying time-to-event data, which can be incubation time, latency time, the age of

breast cancer diagnosis et cetera.

Several concepts from survival analysis are relevant to the infectious disease context.

Estimation of the time from infection to a certain event, such as initial multiplication of

gametocytes, a stage of malaria parasites, in the human body, is complicated when some

individuals recover from the infection before the endpoint occurred [Andolina et al., 2023;

Ramjith et al., 2022]. Clearance of the infection is referred to as a competing risk. There

are parallels between survival analysis models and those for spread of infectious disease

as well, in specific with the stochastic SIR model [Putter et al., 2024] that models how

individuals migrate through the susceptible, infectious and recovery stages. However, the

data available early onwards in an infectious disease outbreak is typically fuzzy, stressing

the need of tailored approaches for the infectious disease context in specific.

In the applications of this thesis, the estimates rely on observational data. This type

of data contrasts clinical trial data in which individuals are assigned specific treatments

at known time points and are monitored during follow-up. Before the statistical concepts

relevant to our estimation problem are discussed in more detail, the spatiotemporal context

and the corresponding data that inspired this thesis are introduced.

1.3 Contact tracing data: SARS-CoV-2 in Vietnam

Acknowledging its limited intensive care capacity and the long-stretched, 1297 km long

border with China, the policy of Vietnam was characterised by stringent and early policy

measures such as complete border closure. The country initially strived to prevent any

introduction and local transmission of SARS-CoV-2. The main pillars of the elimination

policy were extensive contact tracing of infected individuals and quarantining of potential

infecteds. The quarantine policy for each potential case depended on the closeness

to an infected individual, which is referred to as the ’F-system’ and is unique to the

pandemic response of Vietnam [Hardy et al., 2020]. For direct contacts of an infected

individual, quarantine typically took place in designated quarantine facilities. Further

details are provided in Chapter 4.
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During contact tracing, notified cases were typically asked to recall their potential risk

exposures and if so, when they first exhibited symptoms. In the designated quarantine

facilities in Vietnam, swabs were taken regularly to test individuals for SARS-CoV-2. This

context provides a unique data set that allowed to estimate the latency time for the SARS-

CoV-2 Delta variant, which to the best of the author’s knowledge is the first estimate

based on data from outside of China.

1.4 What is observed and what is not: censoring

Whereas symptom onset is typically observed up to a day precise, the knowledge of the

moment of infection and the start of infectiousness is generally limited to the time interval

during which these start- and endpoints occurred. Typically, RNA shedding is used as a

proxy for infectiousness. Common practice is to assume that the start of infectiousness

occurs between the last negative and first positive test for SARS-CoV-2, such that instead

of the exact start of infectiousness, a time window containing the endpoint of latency time

is observed. Hence, an observation of incubation time consists of an exposure window

and the symptom onset day, while an observation of latency time consists of an exposure

window and a start-of-shedding window. Observations of incubation and latency time are

single interval censored (time origin) and doubly interval censored, respectively.

Standard methodology is available when the endpoint is interval censored rather

than the time origin. It is common to assume a constant risk of infection within the

exposure window. As discussed in more detail in Chapter 2, this assumption is convenient

because the likelihood can be rewritten with a reversed time axis and yields an interval

censored endpoint. Therefore the incubation time can be estimated using available

software. Unfortunately, the validity of this assumption is doubtful in the context of

an evolving outbreak. At the beginning of an outbreak of a novel pathogen we are

confronted with an exponential growth of new infections and this implies that the constant

risk assumption is unrealistic. We performed simulation studies to investigate the impact

of the constant risk assumption on the estimates of the percentiles of the SARS-CoV-2

incubation time distribution. Real data from the beginning of the pandemic are used

as illustration (Chapter 2).

Another bias that may occur is related to the imperfection of our memory. Recalling
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when risk exposure took place becomes more challenging when it occurred a long time

ago. We refer to this phenomenon as ’differential recall’. Due to uncertainty in recall,

exposure windows of less recent exposure may become relatively wide, increasing the

risk of bias due to violation of the constant risk assumption. To limit the latter bias, the

analysis is often restricted to observations with a narrow exposure window. Even though

the term recall bias is frequently mentioned in papers estimating incubation time, to the

best of the author’s knowledge, differential recall of exposure, where recent exposures are

memorised more precise than exposures longer ago, has never been explicitly studied

in this context. In Chapter 3 we show that in the presence of differential recall selecting

observations with narrow exposure windows leads to an additional bias.

While censoring concerns incomplete information and can be seen as a specific type of

missing data, another statistical challenge in incubation and latency time estimation consists

of observations that remain unobserved. In the following section we will elaborate on this.

1.5 Who is included and who is not: biases related to
ascertainment

Random sampling is at the core of unbiased estimation. Every individual in the population

of interest should have the same probability of being included in the sample. The latter can

be challenging, especially when data is collected retrospectively. This thesis discusses

three examples of observational data in which certain individuals from a study population

were included with a higher probability than others. We briefly introduce the three concepts

and refer to the respective chapters for further details.

The earliest estimates of the SARS-CoV-2 incubation time distribution were based on

data from individuals who left Wuhan around the Lunar New Year and developed symptoms

on or after their travel day [Backer et al., 2020]. Individuals who developed symptoms

before travelling, i.e. those with short incubation times, were less likely to be included in

the analyzed data. What in survival analysis is referred to as late entry or left truncation

was not addressed in the estimates for SARS-CoV-2 in literature. We examined the impact

on the estimates in a simulation study (Chapter 3).

Observations are right truncated when those with a relatively long time-to-event are less

likely to be included in the data set. This phenomenon has been described for observations
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of the SARS-CoV-2 latency time from China [Xin, Li, Wu, Li, Lau, Qin, Wang, Cowling,

Tsang and Li, 2021]. Right truncation occurred in the data from Vietnam, as individuals

were only included in the data when tested positive for SARS-CoV-2 before the end of

quarantine or the last day of sampling which in our data was marked by the start of a decline

in case incidence due to reporting delay: contact tracing system became overwhelmed

with large numbers of cases that could no longer be investigated as thoroughly as before.

Right truncation is addressed in our analysis in Chapter 4, a consideration that is not

immediately apparent for doubly interval censored observations.

Facing non-random samples is not unique to the infectious disease context and may

also occur in other settings. For example, in breast cancer research, individuals are likely to

attend a clinic for genetic risk when several family members developed breast cancer. When

breast cancer is not frequent in the family, the presence of a genetic component is less

likely to be observed. To examine the high risk due to specific genetic variants, researchers

include data available from genetic clinics which typically concerns high-risk families with

multiple affected individuals. This data is a non-random sample of the population, leading

to biased estimates of the increased risk associated with a genetic variant. By means of a

tailored weighting method, we restore the data composition such that the results can be

extrapolated to the population of interest (Chapter 5). The robustness of our method is

investigated by simulations and a two real data applications are provided.

1.6 This thesis

This thesis is a collection of four papers concerning different themes in survival analysis

and (infectious disease) epidemiology. Table 1.2 presents an overview of the estimation

problems we addressed in each chapter and the field of application. In Chapter 6, we

place our work in a broader context by discussing future directions.
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Table 1.2: Overview of the estimation problems discussed in this thesis.

Application Cause Effect Remedy
Estimation of in-
cubation and la-
tency time

Assuming a constant
risk of infection is not
realistic

Overestimation in ex-
ponential growth phase
(Chapter 2)

Assuming that the risk of infection
within the exposure window increases
congruently with the infection incidence
during the exponential growth phase
(Chapter 4)

Assuming a gamma,
lognormal and/or
Weibull distribution
for the time-to-event;
subsequent choice
based on AIC or LOO
IC

Biased estimates of
the tail percentiles
(Chapter 2); potential
misfit between true
and chosen distribution
(Chapter 2)

A flexible modelling choice, such as Pe-
nalized Gaussian Mixture (Chapter 2);
fitting a generalized gamma distribution
that includes gamma, lognormal and
Weibull as special cases (Chapter 4)

Differential recall Underestimation when
observations with nar-
row exposure windows
are selected (Chapter
3)

Analyze all observations, including also
wider exposure windows (Chapter 4)

Delayed entry (left trun-
cation)

Overestimation
(Chapter 3)

Not straightforward as the late entry
time is not observed exactly due to the
interval censored infection time

Right truncation Underestimation
(Chapter 4)

Addressed in the analysis; available as
a ready-to-use R package (doublIn)
(Chapter 4)

The genetic risk
of breast, ovarian
or prostate can-
cer

Family-based sampling Ascertainment bias: un-
derestimation of the risk
associated with a ge-
netic variant or poly-
genic risk score (PRS,
Chapter 5)

A weighting approach that generalizes
the state-of-the-art method; available
as a ready-to-use R package (wcox)
(Chapter 5)
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