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Appendix B

Appendix

B.1 Expensive Single Objective Optimization

For the optimization of the two single objective ship design problems of Chapter 6

the Modular Adaptive Global Optimization Framework (MAGOF) is introduced. The

objective from the two ship design problems were computationally expensive and the

constraints are computationally inexpensive. To be ready for more different problem

characteristics a modular adaptive framework is proposed. In this appendix a pseu-

docode and a detailed explanation is presented together with experiments and results

on the well known constraint single objective G-Problem suite [93, 61].

B.2 Modular Optimization Framework

The pseudocode of the Modular Adaptive Global Optimization Framework (MAGOF)

is presented in Algorithm 4. The evaluation method and strategy are described in

more detail in Algorithm 5 and Section B.2.3. The input, the overall explanation of

the pseudocode, and the working of the framework are described in more detail in the

following subsections.

B.2.1 Input parameters

The input arguments for the modular framework are:

1. Objective function f(x) that is to be minimized. The objective function is

defined by the user as expensive fe(x), or inexpensive fc(x).
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B.2. Modular Optimization Framework

2. Constraint function(s) g(x) that consist out of m separate constraint func-

tions, where m ≥ 0. The constraint function(s) are either defined by the user

as expensive ge(x), or inexpensive gc(x). The constraint functions return the

constraint violation, meaning that constraint values g(x) ≤ 0 are defined as

feasible.

3. Input space x ∈ Ω ⊂ Rd that is limited by the lower and the upper boundary

[xlb,xub].

4. Initial sample strategy and sample size Ninit and DoE define how many

samples are evaluated in the design of experiments. This should at least be larger

than d+ 1.

5. Evaluation budget Nmax defines how many expensive function evaluations are

allowed to be evaluated.

6. RBF strategy domain, Φ = {Cubic, Gaussian, Multiquadric, InverseQuadratic,

InverseMultiquadric, ThinP lateSpline} × {Plog, standardized}. The RBF

strategy domain defines the different surrogates that are used in every iteration

to model the computationally expensive functions.

7. Parallelism p, is the number of solutions that can be evaluated in parallel. Note

that parallelism is not a requirement as p can also be 1.

8. Acquisition function α that used to find promising solutions. The acquisi-

tion function uses the surrogates or the inexpensive functions directly to find p

promising solutions for evaluation.

9. Constraints first indicator that defines if the constraints should all be satisfied

before the objective function can be evaluated.

B.2.2 Design of Experiments

The framework in Algorithm 4 starts in line 2 by creating a Design of Experiments

(DoE). The size and the strategy for the DoE can be chosen by the user and can be

random, a latin hypercube sample, solutions on the boundaries, or a Halton sample.

Each of these sample strategies has its strengths, however, an empirical comparison

by Bossek et al. [23] showed that an as small as possible initial Halton sample [73]

is in most cases the most efficient strategy. It is also possible to start with an initial

sample that is already evaluated.
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Chapter B. Appendix

Algorithm 4: MAGOF.
Input: Objective function f(x), that can be computationally expensive fe(x)
or computationally inexpensive fc(x), constraint function(s) g(x), split where
required into expensive constraint function(s) ge(x), computationally inex-
pensive constraint function(s) gc(x), decision parameters’ lower and upper
bounds [xlb,xub] ⊂ Rd, sampling strategy DoE, number of initial samples
Ninit, maximum evaluation budget Nmax, RBF strategy domain consisting of
12 RBF strategies Φ = {Cubic, Gaussian, Multiquadric, InverseQuadratic,
InverseMultiquadric, ThinP lateSpline} × {Plog, standardized}, number
of solutions that can be evaluated in parallel p, acquisition function α, con-
straint first indicator cfirst.
Output: Evaluated solutions.

1 Function MAGOF(f , g, xlb,xub,DoE, Ninit, Nmax, Φ, p, α, cfirst):
2 x∗ ← {x1, · · · ,xNinit

} ← DoE (xlb,xub, Ninit) . Generate DoE, X ∈ Rd×Ninit

3 F,G,X← Evaluate(x∗, f, g, p, cfirst, Ninit,F = [],G = [],X = []) . Evaluate

initial sample and initialize archives F, G and X
4 h← {fe ∪ ge} . Union of expensive objective and constraint functions

5 ϕ∗ ←
(
ϕ1, . . . ,ϕ|h|

)
← (Cubic, standardized)|h| . Initialize RBF strategy for all

expensive functions, ϕ∗ ∈ Φ
6 Ei,j ← 0 ∀(i, j) ∈ h× Φ . Initialize RBF approximation errors for each

possible RBF configuration(Φ) for all expensive functions(h)
7 j ← Ninit . Initialize expensive evaluation counter

8 while j < Nmax do

9 SΦ ←
(
SΦ1
h1
, . . . , SΦ12

h|h|

)
← {FitRBF(X, h,Φ,xlb,xub) | ∀h ∈ h} . Fit RBFs

using all strategies(Φ) for all expensive functions(h)

10 Sϕ∗ ←
(
S∗1 , . . . , S

∗
|h|

)
. Select best RBF strategy based on line 5 or 15

11 x∗1, . . . ,x
∗
p ← Max(α, p, Sϕ∗ , fc, gc) . Get p new solutions based on

acquisition function α, use cheap functions fc and gc directly

12 j ← j + p . Increase iteration counter to new matrix sizes

13 X←
[
X, x∗1, . . . , x

∗
p

]
. Add p new solution vectors, X ∈ Rd×j

14 F,G,X← Evaluate(x∗, f, g, p, cfirst, j,F,G,X) . Evaluate new solutions

15 ϕ∗,E←SelectBestRBFStrategy(E, SΦ,F,G,X) . Update RBF approximation

errors E, and new best RBF configuraiton ϕ∗

16 end

17 return (F, G, X)

B.2.3 Evaluation of the solutions

On lines 3 and 14 of Algorithm 4 the solutions that are proposed by the DoE, or

after optimizing the acquisition function, are evaluated as described in the evaluate

Algorithm 5. The approach is dependent on the inexpensiveness of the constraint

and objective functions. There are 3 levels of expensiveness. (1) the function can be

evaluated almost instantly and can therefore be evaluated millions of times (it must at

least be faster than fitting and interpolating an RBF surrogate model). (2) the function
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requires a little bit of evaluation time and can therefore not be evaluated numerous

times and evaluating them millions of times is too costly. Function evaluations of

level 2 for example require a few seconds up to a few minutes and are significantly less

costly compared to the most expensive evaluations. (3) the function is computationally

expensive and the evaluation budget is very limited e.g. computational fluid dynamic

simulations or finite element analysis that can take up to hours on a cluster to evaluate.

The inexpensive functions level 1 are used directly in the optimization algorithm,

see Section B.2.5. If the constraints are inexpensive level 2, they are evaluated first

before the computationally expensive functions. Only if the constraints are satisfied,

the expensive functions (level 3) are evaluated. If the constraints are violated, a null

is stored instead of the expensive outcome. This way, in the next iteration of MAGOF

the RBF surrogates for the expensive functions remain the same as in the previous

iteration while for the inexpensive functions level 2 the RBF surrogates are updated.

Algorithm 5: Evaluate.
Input: Solutions x∗ to be evaluated, Objective function f(x), that can be
computationally expensive fe(x) or computationally inexpensive fc(x), con-
straint function(s) g(x), split where required into expensive constraint func-
tion(s) ge(x), computationally inexpensive constraint function(s) gc(x), num-
ber of solutions that can be evaluated in parallel p, constraint first indicator
cfirst, objective values of evaluated solutions F, constraint values of evaluated
solutions G, evaluated solutions X.
Output: Evaluated solutions.

1 Function Evaluate(x∗, f , g, p, cfirst, j, F, G, X):
2 G←

[
G, gc(x∗1), . . . , gc(x∗p)

]
. Add vectors of cheap constraints, G ∈ Rm×j

3 if not cfirst then
4 . If constraints do not need to be satisfied first then add

5 F←
[
F, fe(x∗1), . . . , fe(x∗p)

]
. Vector of evaluated objectives, F ∈ Rj

6 G←
[
G, ge(x∗1), . . . , ge(x∗p)

]
. Vectors of evaluated constr G ∈ Rm×j

7 else
8 for xi ∈ {x∗1, . . . , x∗p} do
9 if gc(xi) ≤ 0 then

10 . If constraints need to be satisfied first

11 F← [F, fe(xi)] . Only add objective value of feasible solutions

12 G← [G, ge(xi)] . Only add constraint value of feasible solutions

13 else
14 . If constraints are violated

15 F← [F, null] . Don’t evaluate and add null

16 G← [G, null] . Don’t evaluate and add null

17 end

18 return (F, G, X)
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B.2.4 Radial Basis Functions

In every iteration of MAGOF, surrogates are fitted to approximate the constraint and

objective functions (line 9 of Algorithm 4). However, there are many kernel options

and scaling techniques available when fitting RBF surrogates and each option can be

good for different scenarios. Therefore, RBF surrogates are fitted with the following

kernels: Cubic, Gaussian, Multiquadric, InverseQuadratic, InverseMultiquadric,

ThinP lateSpline and two different scaling strategies are used to scale the constraint

and objective values. The standardization method is used so that the uncertainty

quantification method can be used for the RBFs. The Plog transformation from

Equation B.1 is selected so that the RBFs can better model steep slopes. For each

combination of these kernels and transformation methods, a surrogate is fitted which

results in a total 12 RBF surrogate models per expensive function. In every iteration,

the RBF strategy with the smallest approximation error is selected (line 5 and 15 of

Algorithm 4) and the RBF approximation errors are stored.

Plog(y) =

+ ln(1 + y), if y ≥ 0

− ln(1− y), if y < 0
(B.1)

B.2.5 Acquisition Function Optimization

The acquisition functions integrated into the framework are: the expected improve-

ment acquisition function [85], the generalized expected improvement acquisition func-

tion [119] for parallel evaluations when p > 1, and the purely exploitative acquisition

function that predicts the objective value with the RBF surrogate without uncertainty.

This acquisition function is optimized with the COBYLA algorithm [120]. COBYLA

is a single objective optimization algorithm that optimizes an optimization problem

with constraints by linearly approximating the acquisition function and the most vio-

lated constraint in a small trust region. COBYLA finds the most promising solution

in this trust region, then checks the constraint and objective values, and iteratively

adjusts the trust region until the trust region is so small and the local optimum is

found.

For the functions with expensiveness levels 2 and 3, COBYLA is instructed to

use the surrogate models when optimizing the acquisition function. The inexpensive

functions (level 1) that can be calculated instantly, are directly used by COBYLA

when optimizing the acquisition function. The usage of the inexpensive functions is

beneficial because they don’t make approximation errors that surrogate models make.
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Note that during the optimization of the acquisition function, the inexpensive functions

(or surrogate for expensive functions) are evaluated many times.

Because COBYLA is a local optimizer, the COBYLA algorithm starts searching

from multiple random locations. This makes it more likely that the global optimum

is found.

B.3 Experiments

For this algorithm, four types of experiments are conducted. All experiments are

conducted on the G-problem test suite [93, 61].

B.3.1 G-Problem experimental setup

The G-Problems (G1 to G11 from [93, 61]) are selected as an artificially created

benchmark suite to validate the performance of MAGOF. A Python implementation

of the G-Problems is taken from the CEC 2006 Special Session on Constrained Real-

Parameter Optimization [63]. The G-problems considered have between 1 and 9 con-

straints and between 2 and 20 decision parameters, and all are to be minimized. The

optimal solutions are known for all G-problems, some problems have active constraints

at the optimum, while other optima are somewhere in the feasible region. The feasibil-

ity ratio of the G-Problems varies between less than 1% feasible and 99% feasible per

test problem. More details regarding the G-Problems can be found in e.g. [13, 93, 61].

Evaluation of the constraint and the objective functions of the G-problems are compu-

tationally inexpensive. However, for the experiments, it is assumed that the objectives

are computationally expensive to evaluate.

To test the functionality of the mixed expensiveness, four different configurations

of MAGOF are tested with different infill criteria and different inexpensive function

handling techniques.

1 Traditional The ”traditional” configuration uses MAGOF without any special

treatment and/or separation of expensive versus inexpensive functions. The objective

and constraint methods are considered equally expensive which in MAGOF means

that in every iteration the RBFs are fitted for the constraints and objective, the best

RBF strategy is selected, and then the default acquisition function is optimized. The

resulting solution is computed and evaluated with the constraints and the objectives.

2 Constraints First: The ”constraints first” configuration of MAGOF utilizes

the adjustment in the evaluation strategy as presented in Algorithm 5. In this con-
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figuration it is assumed that the constraints evaluations are computationally way less

expensive compared to the objective evaluation. In every iteration, the RBFs are

fitted, the best RBF strategy is selected, and the default acquisition function is op-

timized using the surrogates. The solution that is proposed is now evaluated first on

the constraints. In case any of the constraints are violated, the objective function is

not evaluated and the next iteration starts. In case the constraints apply the objective

function is evaluated.

3 Constraints Integrated: The ”constraint integrated” configuration in MAGOF

is not conventional as instead of fitting RBFs for the constraints, the constraints are

directly used when optimizing the acquisition function because it is assumed that the

constraint function evaluations are computationally cheaper than fitting an RBF and

making predictions with RBFs. The RBFs are now only used to model the objective

function since the objective function evaluation is assumed to remain computationally

expensive.

4 Parallel: The ”parallel” configuration of MAGOF does not assume inexpensive

constraints or objectives and therefore uses RBF models to model the assumed ex-

pensive constraint and objective functions. After the RBF models are fitted, the best

RBF approximation is selected, and the generalized expected improvement acquisi-

tion function is optimized. The hyperparameter (gEI) of the acquisition function is

set in such a way that one solution proposed by the algorithm is purely exploitative

(gEI = 0), one is explorative and would be most similar to solutions proposed by the

expected improvement acquisition function (gEI = 6), and one solution is a balance

between exploitative and explorative (gEI = 3). This way, the generalized expected

improvement acquisition function can be used to propose 3 different solutions. After

the solutions are proposed, they are evaluated in parallel with both the objective and

constraint functions.

All configurations start with an as small as possible initial Halton sample as a

DoE. After the DoE the first 3 configurations are allowed to do a total of 300 −
|DoE| iterations for the non-parallel configurations. The configuration that proposes

3 solutions per iteration was allowed to do an additional 100 iterations. This way

each algorithm configuration has in theory the possibility to do 300 objective function

evaluations. Note that the configuration with constraint first, does not necessarily

use all these 300 objective evaluations since in the 300 iterations, this configuration

also sometimes proposes infeasible solutions. The constraints integrated configuration

uses a lot more constraint function evaluations since when optimizing the acquisition

function, the constraints are evaluated many more times.
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B.4 Results

In Table B.1 the results are presented for the G-problem test suite. In this table, the

mean smallest objective scores of the feasible solutions are presented after 10 indepen-

dent runs of MAGOF with the four different options. Besides the mean objective score,

the number of required function evaluations is reported that was required to reach the

minimum. Please refer to [63] for the complete set of minima for all functions. A red

cross (x) indicates that the optimum was not found within 300 evaluations.

Function Traditional Constraint Constraint Parallel
First Integrated P=3

G01 fv −15.00 −15.00 −15.00 −13.54
fe 28 24 22 x

G02 fv −0.304 −0.304 −0.383 −0.304
fe x x x x

G03 fv −0.000 −0.089 −0.006 −0.000
fe x x x x

G04 fv −30665 −30665 −30665 −30665
fe 26 19 11 111

G05 fv 5126.5 5126.5 5126.5 5126.5
fe 41 12 10 x

G06 fv −6957 −6959 −6959 −6956
fe x x x x

G07 fv 24.306 24.306 24.306 35.479
fe 34 22 21 x

G08 fv −0.096 −0.096 −0.096 −0.096
fe 13 30 28 100

G09 fv 680.63 1186.8 680.64 1597.8
fe 240 x 89 x

G10 fv 7114.3 7088.6 7049.3 9233.1
fe x x 65 x

G11 fv 0.7500 0.7500 0.7500 0.7500
fe 7 5 5 12

Table B.1: The mean minimum encountered objective score of feasible solutions (fv), and
the mean objective function evaluations (fe) required to find the optimal value (a x indi-
cates the known optimal value was not reached in 300 iterations). Four different approaches
are compared, the traditional optimization technique, the constraint first approach, the con-
straints integrated into the acquisition function optimization process, and the approach with
the generalized expected improvement acquisition function that proposes 3 solutions in par-
allel. The best combination of fv and fe are marked in bold per G-problem. All G-problems
are optimized in 10 independent optimization runs.

Inspection of the results shows that in the majority of the problems using the cheap
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constraints directly in the optimization algorithm when optimizing the acquisition

function is beneficial in terms of execution time and convergence. The other option

where the constraints are first evaluated to check for feasibility before the objective

function is evaluated also shows better results compared to the conventional approach

where the objective is evaluated together with the constraints. The option to propose

3 solutions in parallel with the generalized expected improvement acquisition function

does not show good results. It was expected upfront that when proposing multiple

solutions for parallel evaluation (and this way save computation time), the number

of iterations of the algorithm could be reduced. However, the number of required

iterations and therefore also the number of function evaluations is higher compared to

the other approaches.

On the G08 test problem, the traditional approach finds the optimum in less re-

quired objective evaluations compared to the other approaches. It is assumed that the

reason for this quick convergence is that the information gathered from the evaluated

infeasible solutions is of great value for this optimization problem. The information

from the infeasible evaluated solutions is missing when the constraint first configura-

tion or constraints integrated configuration is used in MAGOF.

B.5 Conclusion and Future Work

Specifically for the optimization of the two single objective ship design problems from

Chapter 6, the Modular Adaptive Global Optimization Framework (MAGOF) is intro-

duced. MAGOF can solve constraint single objective problems with a mix of computa-

tionally expensive and computationally inexpensive constraint and objective functions.

MAGOF uses RBF surrogates for expensive functions, the inexpensive functions can

directly be used when searching for promising solutions with an acquisition function.

Besides this, a strategy is added to MAGOF that enforces the feasibility of the inexpen-

sive constraints before computationally expensive objective and/or computationally

expensive constraints are evaluated. MAGOF with the inexpensive constraints used

directly when optimizing the acquisition function showed to be the most promising

option when optimizing the G-Problem test suite.

In the future, more research is required on how to effectively propose multiple

solutions in parallel with other batch acquisition functions described in e.g. [67, 171, 8].

Secondly, more research is required on setting up the parameterization of optimization

problems.
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