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Chapter 7

Conclusions and Future Work

In this thesis, research is presented on how constraint multi-objective problems can

be optimized with as few function evaluations as possible. This final chapter provides

a summary of all previous chapters, followed by an overall conclusion and answer to

the main research question. The thesis is finalized by proposing directions for future

work.

7.1 Summary

Chapter 1: In the introduction an overview and motivation for the study are pro-

vided. The main research question that is answered in this work is:

How to identify the Pareto frontier of constraint multi-objective

optimization problems with only a few function evaluations?

The main question is divided into sub-questions that are addressed in the subse-

quent chapters. The secondary objective is to apply the newly developed algorithms

to ship design optimization problems and show their applicability.

Chapter 2: The preliminary chapter presents the formal problem notations, the

basic theory of expensive black-box optimization, the benchmark functions used in

this work, performance metrics for validation, and visualization techniques for multi-

objective optimization. This chapter forms the foundational knowledge and notations

that are further developed in the remaining chapters.
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7.1. Summary

Chapter 3: An investigation of ship design optimization problem characteristics is

presented in the third chapter. The subquestion What are typical ship design optimiza-

tion problem characteristics? is addressed, providing details about both empirical and

simulated design methods. The empirical design method utilizes data from similar ves-

sels for conceptualizing new designs, while the simulated design method is typically

employed to create and optimize more detailed versions of ship designs. Alongside

these design methods, important ship design software is described, and guidelines for

parameterization and optimization problem setup are summarized. Finally, the holis-

tic accelerated concept design methodology is introduced that can be used to evaluate

ships for multiple key performance indicators at different levels of accuracy.

Chapter 4: The empirical design methodology is elaborated upon in the fourth

chapter. A newly proposed empirical design methodology is the reference finder,

which utilizes machine learning, optimization algorithms, and a dataset with static

ship data to identify promising solutions. The reference finder is trained by fitting

a random forest regressor to predict key performance indicators and an isolation for-

est to detect outliers. Finally, the NSGA-II algorithm is coupled with the random

forest regressor and isolation forest to discover promising Pareto optimal ship design

solutions that do not exist yet but are predicted to be feasible and favorable by the

machine learning algorithms. These new preliminary designs can be further developed

with the simulation-based design approach as shown in Chapter 6.

Chapter 5: The most significant scientific contribution and the key points of this

work are detailed in Chapter 5. In this chapter, the IOC-SAMO-COBRA algorithm

is introduced, providing the answer to the main research question. The IOC-SAMO-

COBRA algorithm adeptly handles constraint multi-objective problems that could

have both computationally expensive and inexpensive evaluation functions. It achieves

this by fitting surrogates for the computationally expensive functions and directly

utilizing the inexpensive functions during the search for promising feasible Pareto

optimal solutions. The identification of Pareto optimal solutions is facilitated through

the optimization of a multi-point acquisition function capable of proposing one or

more feasible solutions per iteration. By proposing multiple solutions per iteration,

the computationally expensive evaluations can be run in parallel. With each iteration,

the algorithm learns from evaluated solutions by updating surrogates and subsequently

continues the search for solutions that maximize the joint hypervolume.
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Chapter 7. Conclusions and Future Work

Chapter 6: In the last content-focused chapter of this work, the algorithms intro-

duced in Chapter 5 are used and validated in practice. Five different simulation-based

ship design optimization problems are optimized using the accelerated concept de-

sign methodology in combination with optimization algorithms. In the first optimiza-

tion study, the most promising solution from a trailing suction hopper dredger study

demonstrated a 19% reduction in resistance and a 14% decrease in steel weight com-

pared to the original design. In the second optimization study, the design of a wind

feeder is optimized, revealing a very complete Pareto frontier with improvements in all

three objectives: operability, resistance, and lightship weight. The third optimization

case focused on optimizing cargo volume and damage stability criteria for a single-hold

cargo ship. Here, the power of the multi-point infill criteria (and therefore the pos-

sibility of parallel evaluations) and the exploitation of inexpensive functions directly

in the algorithm demonstrated significant time savings with the IOC-SAMO-COBRA

algorithm compared to traditional approaches. In the final two cases, resistance op-

timization was conducted for two real-world commercial ship design projects. In the

first commercial project, a 26% reduction in resistance was achieved by optimizing the

complete hull below the waterline. In the second commercial project, a 4.8% required

power reduction was realized by exclusively refitting the bulb of a containership with

a capacity of approximately 10,000 containers.

7.2 Conclusions

This study aimed to address the overarching research question: How to identify the

Pareto frontier of constraint multi-objective optimization problems with only a few

function evaluations? The development of innovative algorithms, particularly the

IOC-SAMO-COBRA algorithm, is a significant scientific contribution that helps in

answering this research question. This algorithm demonstrates its effectiveness in han-

dling constraint multi-objective problems, considering both computationally expensive

and inexpensive evaluation functions. It does so by iteratively learning and updat-

ing surrogates for computationally expensive functions and directly using inexpensive

functions when searching for solutions that jointly contribute the most hypervolume.

The practical application of the developed algorithms in real-world ship design opti-

mization problems showcased their impact and flexibility. From reducing the resistance

of trailing suction hopper dredgers, ferries, and container ships, to optimizing cargo

volume and damage stability in cargo ships, the algorithms consistently demonstrated

improvements. Notably, the IOC-SAMO-COBRA algorithm’s ability to handle paral-
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7.3. Future Work

lel simulations and exploit inexpensive functions showcased its efficiency in achieving

significant time savings.

In conclusion, this work provided a constraint multi-objective optimization algo-

rithm and the accelerated concept design methodology for ship design that offered

valuable insights and practical solutions. The investigation into the research ques-

tions, the development of algorithms, and their practical applications have collectively

made a substantial contribution to the naval and global multi-objective optimization

research fields.

7.3 Future Work

There are many research directions possible to enhance the constraint multi-objective

optimization algorithms for computationally demanding problems that are proposed

in this thesis. One significant contribution would be to extend the algorithms with

functionality that could also deal with discrete, integer, and categorical parameters.

This way, computationally expensive mixed-inter constraint multi-objective problems

could be solved. Other contributions would be to investigate and extend the limits

of the SAMO-COBRA algorithm. For example, what is the limit on the number

of objectives, constraints, and parameters that the SAMO-COBRA algorithm can

deal with, and does increasing any of these significantly influence the performance?

Other directions that require less effort but might improve the performance of the

SAMO-COBRA algorithm and its extensions would be an advanced hyperparameter

optimization study and validation of the algorithm on different benchmark problems.

From a ship design perspective, setting up the parameters (and their upper and

lower limit), constraint functions, and objectives functions correctly before the first

run remains challenging. This is problematic, especially when the evaluation functions

are computationally demanding. Another open issue is that the parameterization de-

fines the decision freedom and the outcome. Typically, only a small part of the vessel

is parameterized and a lot is kept constant which drastically reduces the potential of

the optimization process. Therefore, ship design could benefit from more research into

generative models to generate feasible optimal solutions and domain-specific optimiza-

tion algorithms that apply transfer learning to have a warm start in the optimization

process.

A final interesting future research direction would be to investigate the applicability

of the proposed algorithms in different application domains like aviation, automotive,

or civil engineering disciplines.
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Appendix A

Appendix

A.1 Empirical Attainment Difference Functions

To visually compare the IOC-SAMO-COBRA and the IC-SA-NSGA-II algorithms,

Empirical Attainment Difference Function (EAF) plots are made. The EAF plots of

the two-dimensional problems can be found in the 18 Figures. In the EAF difference

plots the dark areas mark where the two algorithms obtained different results. The

more frequently a certain area is dominated the darker the gray scale is. As can be

seen in the majority of the figures (except for BICOP2, MW2 and WB), the IOC-

SAMO-COBRA algorithm manages to find solutions that dominate the solutions of

the IC-SA-NSGA-II algorithm.
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Figure A.1: EAF difference plot BIOCP1
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A.1. Empirical Attainment Difference Functions
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Figure A.2: EAF difference plot BIOCP2
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Figure A.3: EAF difference plot BNH
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Figure A.4: EAF difference plot C3DTLZ4
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Figure A.5: EAF difference plot CEXP
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Figure A.6: EAF difference plot CTP1
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Figure A.7: EAF difference plot DBD
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Figure A.8: EAF difference plot MW1
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Figure A.9: EAF difference plot MW2
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Figure A.10: EAF difference plot MW3
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Figure A.11: EAF difference plot MW11

3000 5000 7000 9000 1.1e+04
objective 1

20
40

60
80

10
0

ob
je

ct
iv

e 
2

EAF Differences for IC−SA−NSGAII NBP

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

3000 5000 7000 9000 1.1e+04
objective 1

20
40

60
80

10
0

ob
je

ct
iv

e 
2

EAF Differences for IOC−SAMO−COBRA NBP

Figure A.12: EAF difference plot NBP
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Figure A.13: EAF difference plot OSY
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Figure A.14: EAF difference plot SRD
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Figure A.15: EAF difference plot SRN
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Figure A.16: EAF difference plot TBTD
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Figure A.17: EAF difference plot TNK
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Figure A.18: EAF difference plot WB
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