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Chapter 6

Real World Applications

In this Chapter the last sub-question: What is the performance of the proposed algo-

rithms in real-world scenarios? is answered. This is done by solving five real-world

simulation-based ship design optimization problems using optimization algorithms.

This is done to verify algorithm performance in real-world scenarios and with the

algorithms that were readily available at the time the designs had to be optimized

at C-Job Naval Architects. The first three problems are computationally expensive

multi-objective problems with constraints that can be solved with the algorithms dis-

cussed in the previous chapters. The last two real-world optimization problems in this

chapter required modifications to the optimization algorithm as these problems had

one objective and the computational difference between the objective evaluation and

the constraint evaluation was much larger compared to the other problems.

6.1 Trailing Suction Hopper Dredger

The first problem solved with the constraint multi-objective optimization algorithm

is the Trailing Suction Hopper dredger as described in Chapter 3 and displayed in

Figure 3.3. To repeat the optimization problem briefly, the problem is a two-objective

problem where the steel weight and the resistance at operating speed should be min-

imized. The problem has 11 constraints concerning room and tank capacities, draft,

trim, heel, the forepeak bulkhead, and intact stability criteria. All these constraints

and objectives are evaluated in the commercial NAPA software.

The original design has a resistance coefficient of 1.08 and a steel weight of 2039

tonnes. This original design is parameterized and optimized by the ACD framework
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6.1. Trailing Suction Hopper Dredger

from Chapter 3 using 200 ship design evaluations proposed by the CEGO algorithm

from Section 5.1.1. The framework is allowed to do 200 evaluations to evaluate the

trailing suction hopper dredger. The reference point is fixed and set to [5000, 2]. By

setting the reference point to [5000, 2] the algorithm is limited to solutions with a

smaller steel weight than 5000 tonnes,and a resistance coefficient smaller than 2. The

experiment has been repeated five times independently with different initial starting

points to check for consistency.

In a small first experiment, the severity of the constraints is investigated. In this

experiment, 200 random design variations are generated and evaluated. 24% of these

design variations turned out to be feasible.

6.1.1 Results of Trailing Suction Hopper Dredger Design Ex-

periment

The results of the five independent runs were very similar. The hypervolume metric

as used in multi-objective optimization between the reference point and the Pareto

optimal set was on average 3819 and the standard deviation of this volume was 3.3.

The parameter combinations of a typical run of 200 evaluated design variations are

displayed in the parallel coordinate plot in Figure 6.1. The red lines represent the

obtained infeasible solutions, the blue lines represent the feasible solutions, and the

green lines represent the Pareto optimal solutions.

The Pareto optimal results of a typical run are presented in Figure 6.2. During this

run, the CEGO algorithm in combination with the ACD framework found a set of 10

non-dominated design variations where the most interesting solution has a resistance

coefficient of 0.87 and a steel weight of 1748 tonnes. Therefore, compared to the

original design, the improved design has a 19% smaller resistance coefficient and 14%

less steel weight.

6.1.2 Analysis of the TSHD Results

In Figure 6.3a and Figure 6.3b the original and the improved design are shown respec-

tively. From the first observation, there is not a lot of difference, but the optimized

result is 9 meters longer, and 50 centimeters less wide. Typically when a ship is longer

more steel is needed to fulfill the strength requirements. But in this case, the hopper is

higher which eases the imposed longitudinal bending moment on the ship. The extra

strength results in less thick required steel plates and smaller profiles required to meet

the longitudinal strength.
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Figure 6.1: Parallel coordinate plot of the 200 different design variations. The red lines
represent infeasible solutions, blue lines represent feasible solutions, green lines represent
Pareto optimal solutions.

Furthermore, because the vessel is longer and less wide, the resistance also signifi-

cantly decreased. This can also be seen from the wave pattern around the two design

variations in the Figures 6.3a and Figure 6.3b.

6.1.3 Conclusion from Trailing Suction Hopper Dredger Study

From the results, it can be concluded that the Accelerated Concept Design framework

is capable of optimizing parameterized vessels in a fully automated manner and in a

very efficient way. On top of this, it is shown that this design process can reduce time

and human effort while significantly improving ship designs. Furthermore, because of

the use of surrogate-assisted models, and therefore objective and constrained predic-

tion, the whole design space can be explored which would never have been an option

for a human expert alone.

For future work, more software tools have to be automated and coupled to the

Accelerated Concept Design framework to gather more high fidelity results. On top
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Figure 6.2: Obtained non-dominated design variations and original design. The marked
solutions are the original solution and the most interesting optimized solution.

(a) Original Trailing Suction Hopper
Dredger design optimized by human experts.

(b) Trailing Suction Hopper Dredger design
optimized with the CEGO algorithm.

Figure 6.3: Comparison of the two Trailing Suction Hopper Dredger designs

of this, a more in-depth analysis of ship parameterization should be done to achieve

even better results.

6.2 Wind Feeder Vessel

One of the advancements of the accelerated concept design framework after the TSHD

optimization problem is the implementation of the Operability Robustness Index to

optimize a Wind Feeder vessel. The SAMO-COBRA algorithm has been used in

practice to design a wind feeder vessel to support the installation of windmills at sea.

Although high winds are good for power production, they usually also result in rough
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Chapter 6. Real World Applications

seas. These rough seas around the wind park installation sites increase the demand for

reliable vessels. The impression of such a wind feeder vessel is presented in Figure 6.4.

This vessel has been designed and later optimized at C-Job Naval Architects [30].

This vessel is specifically designed to support the construction of wind farms and to

transport the materials from the shore to the installation sites for the US market.

Figure 6.4: Impression of the Wind Feeder Vessel design by C-Job Naval Architects.

The objectives of the optimization case of the wind feeder vessel are to have a robust

seakeeping performance to maximize the year-round operability, while also keeping

the operational cost and capital expenses at a minimum. The operability can be

optimized by maximizing the so-called Operability Robustness Index (ORI)[71]. The

ORI objective takes the area of operation into account and therefore can be optimized

for a certain wave spectrum. In this case the Pierson Moskowitz spectrum is used

as recommended by the DNV-GL maritime classification bureau [52]. The seakeeping

assessment is done with a strip theory code of NAPA1. Strip theory is proven to be

fast and reliable with sufficient accuracy for conventional hull forms [16, 69]. The

capital expenses can be translated into the cost of steel that is required to build the

vessel, this is roughly equal to the Lightship Weight (LSW) of the vessel. The LSW is

calculated by summing the weight of all the equipment plus the minimum amount of

steel that is required to fulfill the longitudinal strength requirements. The operational

1Intelligent solutions for the maritime industry, https://www.napa.fi/
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6.2. Wind Feeder Vessel

expenses can be dealt with by minimizing the ship resistance in the water at service

speed (Rt[kN]). This resistance is calculated with the Holtrop & Mennen method [79].

More details about the wind feeder design study can be found in the paper and

master thesis from Bronkhorst et al. [27, 28].

All objectives, practical constraints, relevant rules, regulations, and loading con-

ditions can be evaluated with the modular Accelerated Concept Design framework as

described in Chapter 3. In this software, a parametric 3D model of the ship is set

up by a naval architect after which automated software tools can evaluate any design

variation in one function call. In the wind feeder vessel case, five design parameters

are defined: Aftship Length, Midship Length, Foreship length, Beam at Waterline, and

Draught. Since sea-keeping and longitudinal strength are already captured in the ob-

jectives, only two constraints are needed. The two constraints are for space reservation

of the wind turbine blades and the meta-centric height for intact stability of the vessel.

SAMO-COBRA from Section 5.1.2 is then used to optimize this ship design op-

timization problem. To enhance the exploration in this case study, SAMO-COBRA

started with more than the advised 50 initial Halton samples. After evaluation of

the initial sample, the SAMO-COBRA algorithm with the PHV infill criterion is used

to propose 250 more solutions. On a desktop with an Intel Xeon Processor E3-1245

V3 quad-core processor with 16 GB of working memory, the 300 evaluations required

three and a half hours of wall clock time.

6.2.1 Results of Wind Feeder Design Experiment

Based on the first 50 Halton samples, 36% of the design space is estimated to be

feasible. Out of the total 300 design variants SAMO-COBRA was able to find 154 non

dominated solutions, 35 feasible but dominated solutions, and proposed 111 infeasible

solutions.

The convergence of the SAMO-COBRA optimization run is visualized in Fig-

ure 6.5a. This plot shows that after the Design of Experiments, SAMO-COBRA

quickly finds the most promising solutions. When zooming in on the solutions after

evaluation 60 (see Figure 6.5b) it can also be observed that the algorithm continues

finding solutions that contribute hypervolume.

The Pareto frontier found on this problem is plotted in Figure 6.6. In this plot, it

can be observed that the solutions on the Pareto frontier are nicely spread.
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Figure 6.5: Wind feeder optimization process convergence plot (a) and zoomed in part
(b).

Figure 6.6: Pareto Frontier of Ship Design case with Original Design by human expert
represented by a square. Objectives are maximize the Operability Robustness Index (ORI[-]),
minimize ship resistance (Rt [kN]), and minimize Lightship Weight (LSW[t]).
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6.3. Single Hold Cargo Ship Damage Stability Optimization

6.2.2 Analysis of Wind Feeder Optimization Results

All evaluated, feasible solutions are visualized on the Pareto frontier in Figure 6.6.

After analysing the results from the optimization study, the base design by the naval

architect was shown to be much too large, causing the ship to be too heavy with a sub-

optimal performance. When a few of the Pareto-optimal solutions are compared to

the original, then the solution with the same ORI score has a 10.3% smaller resistance

value, and 19.64% less light ship weight. The solution with the same resistance score

has a 4% better ORI score, and 13.68% less light ship weight. The lightship weight

reduction can be explained with that a significant reduction in length was possible.

6.2.3 Conclusion for Wind Feeder Vessel

SAMO-COBRA has been used in practice on a wind feeder optimization problem with

three objectives, two constraints, and five decision variables. In this application, the

algorithm demonstrates its ability to outperform the human expert in all objectives

simultaneously mainly due to the fact that the original design was too large and could

have been designed much smaller. The larger design did not contribute to a higher

operability robustness index in the area of interest nor was it good for steel weight and

resistance. However, a significant amount of wall-clock time would have been able to be

saved if at the time of experimenting the IOC-SAMO-COBRA algorithm would have

been available since a few of the constraints and the objectives are computationally

inexpensive to evaluate.

6.3 Single Hold Cargo Ship Damage Stability Opti-

mization

As a real-world application, the mid-ship section of a single-hold general cargo vessel

design2 as presented in Figure 6.7 is optimized for two conflicting objectives: stability

(↑ max) after potential damage (survivability), and cargo hold capacity (↑ max).

Besides the conflicting objectives, the problem has three volumetric constraints

and one regulatory constraint:

• Volumetric: The two fuel tanks should be of sufficient size so that enough fuel can

be stored and the technical space should be large enough to host the equipment.

2Figure courtesy of C-Job Naval Architects, Hoofddorp, Netherlands.
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Chapter 6. Real World Applications

Figure 6.7: Longitudinal section and top view of cargo vessel design optimized for damage
stability (survivability) and cargo hold capacity (both to be maximized). The pink com-
partments (1) annotates the cargo hold, the red compartments (2) are fuel tanks, the green
compartments (3) are water ballast tanks, the orange compartments (4) are the technical
spaces, and the blue compartments (5) are part of the crew accommodation.

• Regulatory: The attained damage stability index (survivability) score should be

larger compared to the required damage stability index.

The objectives and constraints depend on 17 geometric parameters, which influence the

longitudinal and transversal positioning of the bulkheads and the heights of openings.

The bulkheads split the different compartments and tanks together with the height of

decks and openings in the vicinity of the cargo hold.

The evaluation of the damage stability (survivability) objective and the correspond-

ing comparison between the required damage stability constraint is computationally

expensive. Evaluation of the damage stability index requires a run of the commercial

maritime simulator Delftship pro3. The volumetric objective and the three volumet-

ric constraints are inexpensive to evaluate. This offers the opportunity to optimize

the design problem with the IOC-SAMO-COBRA algorithm from Section 5.3. The

inexpensive constraints and objective are directly used in the IOC-SAMO-COBRA al-

gorithm while for the expensive objective and constraint, RBF surrogates are updated

and selected every iteration. More details about the ship design problem are given

in [103, 102, 146].

This real-world problem is optimized in three different ways:

1. IOC-SAMO-COBRA with number of candidate solutions per iteration p = 1 and

300 function evaluations.

2. IOC-SAMO-COBRA with number of candidate solutions per iteration p = 3 and

3Version 14.20.343; see Delftship: Visual hull modeling and stability analysis. https://www.

delftship.net/
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6.3. Single Hold Cargo Ship Damage Stability Optimization

501 function evaluations.

3. SA-NSGA-II with number of candidate solutions per iteration p = 3 and 501

function evaluations.

The experiments with p = 3 aim at investigating the potential benefit of parallelism in

terms of wall-clock time provided that the corresponding number of simulator licenses

is available. The HV metric is used to compare the performance of SA-NSGA-II

and IOC-SAMO-COBRA. IC-SA-NSGA-II is not experimented with since one of the

constraints is expensive to evaluate, and IC-SA-NSGA-II does not have a built-in

option to use RBFs for that constraint.

6.3.1 Results of Cargo Vessel Design Experiment

For the expensive objective (damage stability), requiring a Delftship pro simulator run,

the median evaluation time was 248 seconds. In experiment 1 (IOC-SAMO-COBRA,

p = 1, 300 evaluations), a HV of 9115 with respect to the reference point (0, 0) was

obtained. In experiment 2 (IOC-SAMO-COBRA, p = 3, 501 evaluations), the same

HV was obtained in the 129th iteration (after 385 function evaluations), saving a total

wall-clock time of 682 minutes compared to experiment 1.

A comparison of the Pareto fronts resulting from experiments 2 and 3 (i.e., a direct

comparison between IOC-SAMO-COBRA and SA-NSGA-II) is shown in Figure 6.8a,

where cargo hold capacity (↑ max) is shown on the y-axis and the attained damage

stability index (↑ max) on the x-axis. The Pareto front obtained by the SA-NSGA-

II algorithm is dominated by the obtained Pareto front obtained by IOC-SAMO-

COBRA, and the latter algorithm also finds more extreme solutions (especially for

damage stability).

Figure 6.8b illustrates the convergence of the algorithms by showing the HV (mea-

sured between the Pareto fronts obtained by the two algorithms and the approximated

Nadir point) over the number of function evaluations. The difference in the two Pareto

fronts (Figure 6.8a) is also clearly visible in this illustration. The different behavior

in the first few evaluations can be explained by the difference in the initial sampling

strategies (Latin Hypercube Sampling [138] for SA-NSGA-II vs. Halton Sampling [73]

for IOC-SAMO-COBRA).
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Figure 6.8: Obtained Pareto Frontier and Convergence plot of single hold cargo optimiza-
tion problem.

6.3.2 Analysis of Cargo Vessel Design Results

The IOC-SAMO-COBRA results were further analyzed by naval architects to un-

derstand and interpret them in the light of vessel design expertise, resulting in the

following observations:

• For every point on the Pareto front, the parameter that defines the tanktop

height has converged to the minimum value. The algorithm learned that extra

height in the double bottom of the vessel does not improve the damage stability

index. The compartments above the tanktop benefited from this in terms of their

size. Interestingly, this finding could be confirmed since it is also prescribed in

the International Convention for the Safety of Life at Sea (SOLAS chapter II-1

part B-2 regulation 9) [81].

• The algorithm also found that a large space between the hull and cargo hold is

beneficial for the damage stability criterion. This result can be explained well

by the fact that a small distance between the hull and cargo hold makes it less

likely for the design to survive in case of damage (flooding of the cargo hold will

always lead to the loss of a single cargo hold vessel).
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6.4. Roll-on/Roll-off Ferry Hull Optimization

6.3.3 Conclusion Cargo Vessel

The single-hold cargo vessel has been optimized with the IOC-SAMO-COBRA algo-

rithm. By using the IOC-SAMO-COBRA algorithm the available resources (3 avail-

able Delftship licences, 3 desktops) are perfectly exploited. The constraints and objec-

tive evaluations that where computationally very inexpensive have been used directly

in the algorithm instead of also training an RBF. With this new functionality, it is

illustrated that a significant amount of wall clock time can be saved and much better

Pareto frontier approximations could be made.

6.4 Roll-on/Roll-off Ferry Hull Optimization

After an operational data analysis study and a feasibility study for alternative fuels,

an initial design is made by C-Job naval Architects for a fully battery-powered Roll-

on/-Roll-off (Ro-Ro) ferry with a capacity of 800 passengers [31, 32]. This vessel is

designed to sail between the Saronic islands and the port of Piraeus. A render of this

C-Job design is presented in Figure 6.9.

Figure 6.9: Render of Saronic Roll-on/Roll-off ferry designed and created by C-Job Naval
Architects.

As this design is intended to sail powered on batteries the vessel requires an op-

timized hull. To accomplish the energy-efficient hull, the hull form is optimized for

minimal resistance at design speed. However, three imposed restrictions limit the
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search space of the to-be-designed hull:

1. The hull above the waterline is only allowed to be modified marginally.

2. The displacement of the new hull design should be equal to or larger than the

original hull displacement to be able to carry the passengers, vehicles, parcels,

and all equipment.

3. The Longitudinal Centre of Buoyancy (LCB) should remain within 1% of the

original hull to keep a good trim, heel, and intact stability without the need to

move heavy components around.

With these conditions, two completely independent experiments are set up. In the

first experiment experienced naval architects with hydrodynamic experience manually

optimized the hull for minimal resistance. In the second experiment, the vessel is pa-

rameterized and optimized with an optimization algorithm. The hull is parameterized

below the waterline varying the following seven parameters (d = 7):

1. transom height,

2. the transom angle,

3. the start of the midship in the longitudinal direction,

4. the shoulder location in the longitudinal direction,

5. the bulb size, (can be 0 which results in a design without a bulb)

6. the bulb width,

7. and finally the foreship width.

The design variants are parameterized and generated in the Rhino software. Af-

ter generation the three computationally relatively inexpensive constraints are also

calculated in the Rhino software. Finally, the hull is exported to evaluate the com-

putationally expensive objective in the Star-CCM+ software on a High Performance

Computer with 120 cores in the Microsoft Azure cloud. The constraints are compu-

tationally relatively inexpensive but still require communication between a software

package they can not be called directly in the optimization algorithm as seen in Sec-

tion 5.3. However, the constraints are computationally much cheaper compared to

the objective. Therefore, a variant of the IOC-SAMO-COBRA algorithm is developed

that models the objectives and constraints with radial basis function surrogates. Since
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6.4. Roll-on/Roll-off Ferry Hull Optimization

we are optimizing a single objective problem, the hypervolume infill criteria of SAMO-

COBRA is exchanged for the feasible predicted value infill criteria of the SACOBRA

algorithm [13]. The most promising solution according to the infill criteria is evalu-

ated first on the constraints, and only if the design variant is feasible according to

the constraints the objective is evaluated. If the constraints are infeasible only the

constraint surrogates are updated and the objective surrogate remains the same as

in the previous iteration. This process continues until the algorithm has converged

and no significant improvements are found for several consecutive iterations. More

details and test results for this single objective optimization algorithm framework can

be found in Appendix B.1 and in [147].

6.4.1 Results of Ferry Hull Optimization Experiment

After 10 initial samples, the algorithm was allowed to do 110 more evaluations. In the

design of experiments, not a single feasible solution is found, however, the first solution

proposed by the algorithm was feasible right away. After enough feasible solutions

(d + 1 = 8) are found to fit a first surrogate model for the objectives, the algorithm

started also optimizing the objective score. In total out of the 120 evaluations 21

feasible hulls are found. The best of the 21 feasible hulls had a 26% smaller resistance

value compared to the original design.

The convergence plot of the feasible solutions are plotted in Figure 6.10. The

convergence plot also shows exactly what was expected. The first 8 feasible designs

still show a relatively high objective value as the algorithm is not minimizing the

objective score yet but putting its attention to finding feasible solutions. After the

algorithm has seen enough solutions to learn from (8 in this case since there are 7

parameters), the algorithm immediately started minimizing the objective value. The

overall best hull found by the algorithm is given in Figure 6.11.

6.4.2 Analysis of Ferry Hull Results

As described earlier, besides the experiment with the algorithm, naval architects with

hydrodynamic experience also optimized the hull of the ferry. In their experiment,

they used their creativity to design the underwater part of the hull in a completely

different way. The engineers chose a knuckle line and fitted the bulb under the bow

flare instead of in front of the ship. After their choice, the naval architects used a total

of 8 CFD evaluations and found a hull with almost identical objective value (a 26%

reduction). The final optimized hull of the naval architects is displayed in Figure 6.12.
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Figure 6.10: Convergence plot of the feasible solutions. Objective score in % compared to
the original design.

Figure 6.11: Optimized hull found by the optimization algorithm.

When compared to the design proposed by the optimization algorithm, the hull

designed by the naval architects is better for a very practical reason. As this is a
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6.5. Roll-on/Roll-off Ferry Hull Optimization

Figure 6.12: Proposed optimized hull design by naval architects.

Ro-Ro ferry, vehicles have to roll on and roll off the ship. When a bulb is in front of

the ship, the ramp that the vehicles use to enter and exit the ship should be longer

compared to when the bulb is under the bow flare. The downside of the design with

the knuckle line is that it might be more complex to build.

6.4.3 Conclusion on Ferry Hull Optimization

The underwater part of a hull from a Ro-Ro ferry is optimized with an optimization

algorithm by optimization experts and independently by naval architects with hydro-

dynamic experience. The best hulls from both the naval architects as the hull from

the optimization algorithm showed a 26% smaller resistance compared to the original

hull. The hull from the naval architects however had practical benefits compared to

the hull from the naval architect. Therefore the hull of the naval architect is preferred

above the hull proposed by the optimization algorithm. The conclusion that can be

drawn from this is that the parameterization part of any optimization problem is the

most important part when optimizing. If not all constraints are captured, the practical

application is ignored, or the objective function does not perfectly represent the true

goal then optimization algorithms can converge to less ideal solutions. Therefore, hu-

man experience remains important and the algorithm can only find as good solutions

as the parameterization allows.
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6.5 Bulb Optimization Problem

The optimization problem in this section is a refit of an existing container vessel with

a container capacity around 10 000 standardized containers. Due to increasing fuel

prices and more strict emission regulations, this vessel must reduce its operational

speed since sailing at the design speed emits too much greenhouse gas and is way too

costly. To sail efficiently at the different operational conditions, the vessel required a

bulbous bow (in short bulb) refit. This bulb refit is done by cutting the current bulb

off and welding a new optimally shaped bulb back in place. However, optimizing the

bulb for all different loading conditions and speeds would lead to four different optimal

bulb shapes. Therefore, the goal of this study is to find the bulb that performs well

on (weighted)average on all four conditions.

Since the SAMO-COBRA algorithm and other algorithms discussed in this work

are designed for multi-objective optimization problems and the problem at hand is a

single objective problem, a single objective variant of the SAMO-COBRA algorithm

has been introduced to optimize the bulb of a container vessel. The new algorithm

variant uses an as small as possible initial Halton sample during the design of experi-

ments, in every consecutive iteration the best RBF transformation strategy and kernel

are chosen, and a purely exploiting infill criteria is used to find promising solutions in

the adaptive sampling steps. If no improvements have been found for three consecutive

iterations, the algorithm switches to an exploring infill criterion. The single objective

SAMO-COBRA variant in this way is similar to the traditional Efficient Global Op-

timization (EGO) algorithm [85] but now with radial basis functions as surrogates

and self-adjusting parameters. More details and test results for this single objective

optimization algorithm framework can be found in Appendix B.1 and in [147].

The main cutting line to cut the current bulb off is at the design draft and 24

meters from the most forward part of the bulb. This allows us to change 24 meters of

the fore hull and only the part below the design waterline. The bulb of the vessel is

parameterized in Rhino, by varying 6 parameters that define the bulb length, height,

width at two locations, and by changing the overall contour lines of the bulb. The

objective is defined by a weighted sum of the required power that is needed to reach

four different speeds with different loading conditions and therefore different drafts.

Instead of searching for an optimal bulb for each condition, the weighted sum of the

four different conditions is chosen as the objective function so that this bulb will

perform well in all four conditions. However, this did mean that the complete hull

had to be evaluated with RANSE calculations in the Star-CCM+ software for all
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four conditions. The mesh for the vessel consists of between 1.7 and 3.7 million cells

depending on the speed and draft of the calculation. For this optimization challenge

the new algorithm is coupled with a high-performance computer on the Microsoft

Azure cloud with 120 CPUs. One RANSE calculation in Star-CCM+ of the complete

hull required approximately 20 minutes, since there are 4 different conditions, one

iteration required 1 hour and 20 minutes of computation time on the high-performance

machine.

6.5.1 Results of Bulb Design Experiment

After a design of experiments of 7 initial Halton Samples, and 38 adaptive sampling

steps, the algorithm converged to several similar optimal solutions that were all found

on the boundary of the design space. However, because the solutions were found on

the boundary of the design space, a second parameterization setup was made that

allowed a smaller bulb in terms of height and width. The second optimization run

resulted in a bulb that in total for all conditions considered had 4.8% less required

power compared to the original design.

In Figure 6.13 the free surface plot is made of the original bulb (left) and the new

bulb (right) in one of the four operating conditions. The color indicates the height of

the water at that location (Red shows a crest, while blue shows a trough). As can be

concluded from the figure, the waves that are generated with the new proposed bulb

are especially in the front less extreme compared to the original hull.

Figure 6.13: Free surface plot of the original bulb (left) and the new bulb (right). The
color indicates the height of the water at that location (Red shows a crest, while blue shows
a trough).
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6.5.2 Analysis of Bulb Design Results

When designing completely new hulls for new build designs the hull surface is modeled

with the Rapid Hull Modelling Methodology of Rhino [64]. In the rapid hull modeling

methodology, the hull surface of the vessel consists of a loft that is fitted around

multiple control lines. However, when refitting a bulb, wrapping a loft around a set of

control lines is a bit less straightforward since the loft should exactly fit the current

hull and there is only decision freedom after the cutoff line. Therefore some manual

fairing was needed to create smooth and continuous hull lines without bumps and

irregularities at the transition point between the hull and the bulb. After some manual

fairing and checking a few extra operating conditions, the final optimized bulb showed

to be able to reduce the power required the most in the slow steaming conditions and

when sailing at a limited draught. This could have been expected upfront because the

original bulb was designed with the principle of interacting waves for a much higher

operating speed and in fully loaded conditions. This principle of interacting waves

involves shaping the bulb to minimize wave resistance by strategically managing the

interaction between waves generated by the bulb and the hull of the ship. The waves

generated by the bulb are intended to cancel the other waves out so that in total, there

is less wave resistance. Because of this principle of interacting waves, the original bulb

worked best in that one condition (one draft and one speed) it was designed for.

However, When a bulb is optimized for multiple different drafts and different

speeds, there is not one bulb design that generates the perfect wave for all differ-

ent conditions. Therefore, the bulb that was proposed in this study does not cancel

out all the waves in all conditions but it is designed to work better on the combined

weighted conditions.

6.5.3 Conclusion on Bulb Optimization

To accommodate slower more energy-efficient trips a bulb refit is proposed for a con-

tainer vessel with a capacity of approximately 10 000 containers. Up front, it was

expected that during the optimization process a bulb would be found that generates

the perfect wave to accommodate the principle of interacting waves. However, since

the operating conditions to be optimized for were so different, it was difficult to find

a bulb that cancels out the waves of the hull in all conditions. The newly developed

single objective optimization algorithm proposed smaller than expected bulbs. The

estimated performance of the small bulbs was better compared to the more traditional

larger bulbs according to RANSE calculations executed with STAR-CCM+. The ini-
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tial results showed that the search space was too narrow and it should be expanded to

allow the algorithm to search for a bulb that was even smaller than initially thought.

After the second optimization run, the optimal bulb required some manual fairing

since the parameterization didn’t align the new bulb perfectly with the already ex-

isting hull. Overall the optimization was a success since the hull with the new bulb

showed to be 4.8% more efficient in terms of power required compared to the original

hull. The largest reduction was found in the operating conditions that deviated the

most from the original design condition which had a significantly higher speed.

6.6 Real World Optimization Conclusions and Fu-

ture Work

Provided with the parameterization, constraint functions, and objective functions,

the optimization algorithm variants were able to find feasible and optimal solutions.

In the most complex design problems, feasible and optimal solutions are for naval

architects often difficult to find as naval architects can’t oversee all the interactions

between the parameters, constraints, and objectives. The solutions found by the

algorithms are however only as good as the parameterization allows, and typically

after optimization require some additional practical modifications. In a few cases,

it was realized that the parameterization did not lead to the expected result which

therefore required a different parameterization setup, a different problem setup, or

a change in objective function after which the optimization process is started again.

This shows that optimization experts and naval architects should continue to work

together to set up optimization problems.

In the future, more research is required in setting up the parameterization of opti-

mization problems as usually the objective and constraint functions are quite clear but

the ideal parameter and the parameter ranges that define the outcome are difficult to

determine upfront. Setting up the optimization problems can be a labor-intensive and

error-sensitive task. So instead of having to parameterize, define objective functions,

define constraint functions, and finally optimize, it would be nice to use a generative

model that could replace these steps. A start with such an approach is made with

ShipHullGAN [86]. However, this thus far can only generate hulls and not complete

designs including room arrangements for example.

Another future research direction that could be interesting to investigate is verify-

ing if the proposed algorithms are also effective in other application domains.

134




