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Chapter 5

Multi Objective Simulation

Based Optimization

In simulated design optimization, a naval architect designs and optimizes a design

by using a 3D model (ideally according to the guidelines from Section 3.2) and cou-

ples this 3D model to a simulator that evaluates Key Performance Indicators (KPIs).

The simulators that evaluate the KPIs can be computationally very demanding. To

speed up the process, occasionally calculations can be run in parallel, while other

simulations require expensive licenses for each simulation in combination with specific

hardware and software. Simulations are in some cases used to evaluate constraints, but

more frequently to compute the objective scores. Where simulations can be costly to

evaluate, some objectives and constraints are also computationally inexpensive. Such

simple calculations can be called many times and in parallel. In this chapter research

question 3 is answered How to find the Pareto frontier of computationally expensive

problems? This chapter describes new optimization algorithms that can be used to

optimize design problems with continuous decision variables, multiple constraints, and

multiple objectives.

This chapter deals with the challenging design characteristics as efficiently as pos-

sible by splitting them up into separate research topics that answer the subquestions:

1. The first topic that is dealt with answers the following two subquestions: How

to deal with expensive multi-objective problems? How to efficiently satisfy con-

straints in multi-objective optimization? Answers to these questions will make

clear how to find the Pareto frontier of constraint multi-objective optimization

65



5.1. Constraint Multi-Objective Optimization

problems in as few function evaluations as possible.

2. The second topic deals with the subquestion: How to propose multiple solutions

for evaluation in parallel? Answering this question helps us to reduce the total

wall clock time for the evaluation.

3. As mentioned in the introduction of this chapter, not all evaluation methods are

computationally expensive, therefore the last research question to addressed is

How to deal with a mix of expensive and inexpensive functions?

Finally, the research question How do the proposed algorithms compare to state-

of-the-art algorithms? is addressed throughout the entire chapter for every topic

separately so that it becomes clear how the proposed methodologies perform compared

to other algorithms.

5.1 Constraint Multi-Objective Optimization

Handling constraints in optimization problems can be done in several ways: using

penalty functions, by separating the constraints and objectives, treating constraints

as additional objectives, or hybrid methods [13, 59]. In this work, only separation

of constraints and objectives is considered because the main issue with penalty func-

tions is that the ideal penalty factors cannot be known in advance, and tuning the

parameters requires a lot of additional function evaluations. The issue with treating

constraints as additional objectives is that it makes the objective space unnecessarily

more complex with a too strong bias towards the constraints.

In this Section, the SAMO-COBRA algorithm is introduced that uses separation of

constraints and objectives in combination with surrogates. SAMO-COBRA, which is

an abbreviation for Self-Adaptive Multi-Objective Constraint Optimization by using

Radial Basis Function Approximations, owes its name to the very efficient constraint

handling algorithms: COBRA [123] and SACOBRA [13]. Besides constraint handling,

SAMO-COBRA has shown to be efficient in finding Pareto-optimal solutions, thereby

solving constraint multi-objective problems by using a limited number of function

evaluations. SAMO-COBRA is compared to two new state-of-the-art algorithms to

empirically show the efficiency.
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Chapter 5. Multi Objective Simulation Based Optimization

5.1.1 Related Work

Existing work on surrogate-assisted optimization is typically limited to a subset of

three relevant requirements: multi-objective, constraint, and speed. For example,

methods exist for quickly solving constraint single-objective problems (e.g. SACO-

BRA [13]), for multi-objective optimization without efficient constraint handling tech-

niques (e.g. SMS-EGO [118] and PAREGO [88]), or for constraint multi-objective op-

timization without using meta-models, leading to a large number of required function

evaluations (e.g. NSGA-II [49], NSGA-III [83], SPEA2 [174], and SMS-EMOA [18]).

The recently proposed CEGO [154] and ECMO [133] algorithms address all three re-

quirements, however, their computational cost grows very fast as they use Kriging

surrogates that have a higher computational complexity compared to Radial Basis

Functions [12, 60, 160].

Only very occasionally a surrogate-based algorithm is published that deals with

both constraints and multiple objectives in an effective manner without using a Kriging

surrogate (e.g., Datta’s and Regis’ SMES-RBF [44] and Blank and Deb’s SA-NSGA-

II [19].)

The algorithms used in the experiments of this section are described in more detail.

NSGA-II

The Non-dominated Sorting Genetic Algorithm, version II [49] is a classic multi-

objective optimization algorithm. NSGA-II starts with a random design of experi-

ments that is evaluated on all objectives. After the initial sample, all the solutions

are ranked with a non-dominated sorting algorithm that defines multiple Pareto fron-

tiers on different dominance levels. The crowding distance (density of the solutions

in the objective space) is then computed for all solutions per dominance level. The

crowding distance and the Pareto frontier rank are used to determine which solutions

are selected to create an offspring population. The solutions with a higher crowding

distance score and better dominance score have a higher chance of getting selected.

The offspring population is then created with a crossover and mutation operator to

introduce new combinations of decision parameters. For the offspring population and

the parent population, the crowding distance and non-dominated sorting algorithm

again define which p solutions from the parent and offspring population combined

survive to the next iteration. The algorithm terminates until the evaluation budget is

exhausted.
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5.1. Constraint Multi-Objective Optimization

NSGA-III

The adaptive NSGA-III algorithm [83] is a many-objective optimization algorithm

based on NSGA-II [49] and the original NSGA-III algorithm [48]. the adaptive NSGA-

III algorithm starts with a random initial sample. Then in every iteration it emphasizes

certain individuals in the population who are both non-dominant and close to a set

of reference points are well distributed and are generated in desirable locations for

solutions. The algorithm can both be used for constraint and unconstraint problems

since in every iteration the non-useful reference points are re-allocated around the

useful feasible reference points [83]. For each solution in the population, the degree

of constraint violation is measured which influences together with the closeness to the

reference points if it is selected for recombination.

CEGO

The CEGO optimization algorithm [154] by default uses a Latin Hypercube Sample

of size 3 · d. After the initial sample Kriging models (also sometimes referred to

as Gaussian Process Regression models) are trained for the objectives, while RBFs

are used for the constraints. The CEGO algorithm then combines the S-Metric-

Selection-based Efficient Global Optimization (SMS-EGO [118]) algorithm with the

constraint handling techniques from the Self-Adjusting Constraint Optimization by

Radial Basis Function Approximation (SACOBRA [13]) to propose feasible Pareto

efficient solutions. After a user-defined number of function evaluations, the algorithm

terminates the evaluated solutions and the corresponding objective and constraint

solutions are returned.

SMES-RBF

SMES-RBF [44] is a surrogate-assisted evolutionary strategy that uses cubic Radial

Basis Functions as a surrogate for the objectives and constraints to estimate the actual

function values. In every iteration, a large number of offspring solutions are generated

by using a mutation operator on the parent population. The number of offspring so-

lutions that are generated from the parent population is chosen rather large however,

not all offspring solutions are evaluated on the real objective and constraint functions.

Instead, the RBFs that are updated every iteration are used to determine the off-

spring solutions feasibility and objective scores. Only the most promising solutions

according to a non-dominated sorting procedure are evaluated on the real objective
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Chapter 5. Multi Objective Simulation Based Optimization

and constraint function. This process continues until the evaluation budget limit has

been reached.

SA-NSGA-II

A variant of NSGA-II [49], called Surrogate-Assisted NSGA-II (SA-NSGA-II)1, in-

tegrates surrogate assistance into the optimization cycle for the optimization of un-

constraint and constraint multi-objective optimization problems. The surrogates em-

ployed in the SA-NSGA-II algorithm are RBFs with a cubic kernel and a linear tail.

The idea is based on executing the optimization algorithm for multiple generations

only on surrogate models (one for each objective and constraint) before calling the

expensive optimization function. This embedded surrogate-based optimization loop

provides a set of candidate solutions, from which a subset is selected. Assuming p

solutions shall be evaluated using the expensive simulation in each optimization cycle,

the candidates are first separated into p clusters in m-dimensional objective space be-

fore determining the selected solution for each cluster by performing a roulette wheel

selection based on their crowding distances. After evaluating these p solutions on the

expensive function, all surrogate models are updated and the new optimization cycle

is started if the solution evaluation budget is not exhausted yet. SA-NSGA-II can also

optimize constraint optimization problems by using the parameter-less domination

approach [47] used in NSGA-II’s selection operators.

5.1.2 SAMO-COBRA

The new SAMO-COBRA algorithm is designed to deal with continuous decision vari-

ables, multiple objectives, multiple complex constraints, and expensive objective func-

tion evaluations in an efficient manner. The idea behind the algorithm is that in every

iteration, for each objective and for each constraint independently, the best transfor-

mation and the best RBF kernel are sought. In each iteration, the best fit is used to

search for a new unseen feasible Pareto efficient point that contributes the most to

the hypervolume between a user-defined reference point and the Pareto frontier. The

pseudocode of SAMO-COBRA can be found in Algorithm 1. The Python implemen-

tation can be found on the Github page [143]. More details about the algorithm are

given in the subsections below.

1Availabe on pysamoo as SSA-NSGA-II [20].
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5.1. Constraint Multi-Objective Optimization

Algorithm 1: SAMO-COBRA. Input: Objective functions f(x), constraint
function(s) g(x), decision parameters’ lower and upper bounds [xlb,xub] ⊂
Rd, reference point ref ∈ Rk, number of initial samples N , maximum eval-
uation budget Nmax, RBFkernels (ϕ) = {cubic, gaussian, multiquadric,
invquadric, invmultiquadric, thinplatespline} Output: Evaluated feasible
Pareto efficient solutions.
1 Function SAMO-COBRA(f , g, [xlb,xub], ref , N , Nmax, RBFkernels):
2 X← {x1, · · · ,xN } . Generate initial design, X ∈ Rd×N

3 F← f(X) . Obtain objective scores, F ∈ Rk×N

4 G← g(X) . Obtain constraint scores, G ∈ Rm×N

5 RBF ∗ ← {(Cubic, standardized)|∀f ∈ {F ∪G}} . initialize best RBF

6 while N < Nmax do

7 X̂← Scale(X, [−1, 1]d) . Scale input space to [−1, 1]d

8 F̃← Plog(F) . See function plog in Eq. (2.6)

9 G̃← Plog(G) . See function plog in Eq. (2.6)

10 F̂← Standardize(F) . Standardize objective space

11 Ĝ← Scale Constraint(G) . 0 remains feasibility boundary

12 for ϕ ∈ RBFkernels do . For each kernel

13 for i← 1 to k do . For each objective

14 Ŝϕ
i ← FitRBF(X̂, F̂(i,·),ϕ) . Fit with std(F) values

15 S̃ϕ
i ← FitRBF(X̂, F̃(i,·),ϕ) . Fit with Plog(F) values

16 end
17 for j ← 1 to m do . For each constraint

18 Ŝϕ
k+j ← FitRBF(X̂, Ĝ(j,·),ϕ) . Fit with scaled(G) values

19 S̃ϕ
k+j ← FitRBF(X̂, G̃(j,·),ϕ) . Fit with Plog(G) values

20 end

21 end

22 S∗ ←
{
S

(RBF∗i )
i | ∀i = 1, . . . , (k +m)

}
. Apply best RBF conf.

23 PF←Pareto(X,F,G) . PF indicator PF ∈ {0, 1}N
24 x∗ ← Max(HV, PF, ref , S∗) . Get solution with largest HV

25 xnew ← Scale(x∗, [xlb,xub]) . Scale to original scale

26 N ← N + 1 . Increase iteration counter to new matrix sizes

27 X← [X xnew] . Add new solution, X ∈ Rd×N

28 F← [F f(xnew)] . Add evaluated objectives, F ∈ Rk×N

29 G← [G g(xnew)] . Add evaluated constraints, G ∈ Rm×N

30 RBF ∗,SE←SelectBestRBF(SE, S,x∗,F,G,PF, N)

31 end

32 return (F(·,PF), G(·,PF), X(·,PF))
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Chapter 5. Multi Objective Simulation Based Optimization

Initial Design of Experiments

Bossek et al. showed empirically that, when dealing with sequential model-based

optimization, in most cases it is best to use the Halton sampling strategy [73] with an

initial sample that is as small as possible [23]. The smallest initial sample for RBF

surrogate-assisted optimization algorithms is d + 1 since that many evaluations are

required to train the first RBF. A few experiments where 2 alternative initial sampling

strategies are compared to the d+1 initial Halton sample strategy proposed by Bossek

et al. confirmed that a small initial sample size and Halton sampling also lead to the

best results when applied to the BNH, CEXP, SRN, TNK, CTP1, and TRICOP

constraint multi-objective problems from Section 2.4. In the small experiments, the

SAMO-COBRA algorithm was run 10 times and the hypervolume performance metric

was checked after 40 · d function evaluations

Table 5.1: Hypervolume after 40 ·d function evaluations for SAMO-COBRA with different
initial sampling sizes and strategies. Bold indicates significantly better or indifferent results
according to a Wilcoxon rank-sum test with p ≤ 0.05.

Function Halton d + 1 Halton 3 · d LHS d + 1
BNH 5256.4 5255.7 5256.3
CEXP 3.7973 3.7976 3.7979
SRN 62391 62375 62387
TNK 8.0505 8.0487 8.0442
CTP1 1.3030 1.3030 1.3029
TRICOP1 20611 20611 20610

As can be seen from the results in Table 5.1, the Halton sampling strategy with

d + 1 initial samples in most cases leads to better or similar results compared to the

other two initial sampling strategies. Therefore, it is advised to create an initial Halton

sample of size d + 1 before the sequential optimization procedure starts, when using

SAMO-COBRA.

Every sample in the initial design is then evaluated (lines 2-4 of Algorithm 1) so

that all samples have their corresponding constraint and objective scores.

Radial basis Function Surrogates

The SAMO-COBRA algorithm employs Radial Basis Functions with a polynomial tail

as a surrogate. Details on how his surrogate can be fitted and how it can be used to

predict values for unseen data points are described in Section 2.3.2. Because upfront

it can not be known if a Plog transformation is beneficial, and which kernel is ideal,
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5.1. Constraint Multi-Objective Optimization

all different kernels and transformations are applied. This results in 6× 2 = 12 RBF

options to choose from: Φ = {Cubic, Gaussian, Multiquadric, InverseQuadratic,

InverseMultiquadric, ThinP lateSpline}×{Plog, standardized}. Initially, the RBF

configuration with a Cubic kernel with standardized objective scores is selected (line 5

from Algorithm 1. This surrogate configuration is then used in the search for a feasible

Pareto-Efficient solution by maximizing the hypervolume contribution.

Maximize Hypervolume Contribution

After modeling the relationship between the input space and the response variables

with the RBFs, the RBFs are used as cheap surrogates. By using Eq. (2.4) for each

unseen input x′, every corresponding constraint and objective prediction can be calcu-

lated. Given the RBF approximations for a solution x′, the constraint predictions can

be used to check if the solution is predicted to satisfy all the constraints. Besides the

constraint predictions, the objective predictions can be used to see if the solution is

a preferred solution or not. Whether one solution is preferred above another solution

can be computed with an infill criteria, also known as acquisition function. There are

two infill criteria considered in this work, the S-Metric Selection criterion (S-metric),

and the Predicted HyperVolume criterion (Phv). Computation of the two infill criteria

is done as follows:

1. Compute all objective values for a given solution x′ with Eq. (2.4). With the

interpolated objective values, compute the additional predicted hypervolume

(Phv) score this solution adds to the Pareto frontier. This is a purely exploitative

infill criterion without any uncertainty quantification method.

2. Compute all objective scores for a given solution x′ with Eq. (2.4) and subtract

the uncertainty of each objective given x′ and Eq. (2.5). With the interpolated

objective score minus the uncertainty, the potential HV that this solution could

add to the Pareto frontier is calculated. This infill criterion is similar to the

Kriging S-metric Selection (S-metric) criterion from Emmerich et al. [18]. Be-

cause of the subtracted uncertainty, it will be more exploratory compared to the

Phv criterion.

How much a solution adds to the Pareto frontier is based on how much HV the

solution adds between the already evaluated non-dominated solutions and a predefined

reference point. A visual representation of the HV scores of two different solutions is

displayed in Figure 5.1. By using any of the two infill criteria, the constraint multi-

objective problem has been translated into a constraint single-objective problem.
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Figure 5.1: Visual representation of hypervolume contribution of two solutions. The hyper-
volume contribution of solution F1 is equal to 0.2 · 0.4 = 0.08, the hypervolume contribution
of solution F2 is equal to 0.1 · 0.1 = 0.01. This makes solution F1 more desirable compared
to solution F2.

The single point acquisition function optimization problem can be mathematically

defined as follows:

x∗ ∈ argmax
x∈Ω⊂Rd

Phv(f ′(x))

subject to g′(x) ≤ 0

(5.1)

After an infill criterion is chosen by the user, the constraint single-objective problem

can be optimized. The COBYLA (Constraint Optimization BY Linear Approxima-

tions) algorithm [120] is used to maximize the infill criterion (line 24 of Algorithm 1).

COBYLA is allowed to vary x′ between the lower and the upper bound of the design

space x′ ∈ [xlb,xub]. This way, COBYLA searches for a Pareto-optimal solution that

does not violate any of the constraints and has the highest possible infill criterion

score.

If no feasible solution can be found, the solution with the smallest constraint vio-

lation is selected for evaluation. Note that COBYLA does not use the real objective

and constraint function evaluations during the search for the next best solution. In-

stead, COBYLA uses the cheap RBF surrogates as surrogates for the real objective

and constraint functions. The chances of finding the best feasible Pareto-optimal solu-
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5.1. Constraint Multi-Objective Optimization

tion can be increased by starting the surrogate search not from one solution but from

multiple randomly generated solutions independently. Therefore COBYLA starts 16

times from a randomly generated solution. Each independent local search done by

COBYLA gets an allocated search budget.

Only after the next best solution on the surrogates is found, it is evaluated on the

real objective and constraint functions (lines 25-29 of Algorithm 1).

Surrogate Exploration and RBF adaptation

Because in the first iterations the RBFs do not model the constraints very well yet, an

allowed error (ε) of 1% for each constraint is built in. If the solution evaluated on the

real constraint function is feasible, the error margin of this constraint approximation

is reduced by 10%. If a solution is infeasible, the RBFs surrogate approximation is

clearly still wrong. Therefore, the error margin of the corresponding constraint is

increased by 10%.

Besides the error margin, in every iteration, also the best RBF kernel and trans-

formation strategy is chosen (line 30 of Algorithm 1). The pseudocode of this function

can be found in Algorithm 2. Finding the best RBF kernel and transformation strat-

egy is done by computing the difference between the RBF interpolated solution and

the solution computed with the real constraint and objective functions. This difference

is computed every iteration, resulting in a list of historical RBF approximation errors

for each constraint and objective function, for each kernel, with and without the Plog

transformation.

Based on the RBF approximation errors, the best RBF kernel and transformation

are chosen. Bagheri et al. show empirically, that if only the last approximation error

is considered in the single objective case, the algorithm converges to the best solution

faster [11]. This is the case because when closer to the optimum, the vicinity of

the last solution is the most important. In the multi-objective case, the vicinities of

all the feasible Pareto-optimal solutions are important. Experiments confirmed that

the approximation errors of the feasible Pareto-optimal solutions and the last four

solutions should be considered. The approximation errors of the last four solutions

ensure that the algorithm does not get stuck on one RBF configuration and the error of

the Pareto-efficient solutions ensures that all the vicinities of the optimal solutions are

considered. The Mean Squared Error measure is used to quantify which RBF kernel

and which transformation function in the previous iterations resulted in the smallest

approximation error.
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Algorithm 2: SelectBestRBF
Input: SE Historic squared RBF approximation error, per RBF kernel, with
and without Plog transformation, for each objective, and for each constraint.
S surrogate models for each kernel, with and without Plog transformation,
for each objective, and for each constraint. x∗ last evaluated solution. F
objective scores, G constraint scores, PF Pareto frontier indicator vector. N
number of function evaluations.
Output: best RBF kernel, and Plog strategy for each objective and con-
straint separately, and historic squared approximation errors.

1 Function SelectBestRBF((SE, S,x∗,F,G,PF, N)):
2 ID← PF ∪ {IDi ← 1 | ∀i = N − 4, . . . , N} . Mark last 4 and Pareto front in a

vector to select relevant approximation errors

3 T ← {Ti ←∞ | ∀i = 1, . . . , (k +m)} . Temporary approx. errors

4 for ϕ ∈ RBFkernels do . For each kernel check approx. errors

5 for i← 1 to k do . For each obj. with and without Plog

6 ŜE
ϕ
i,N ←

(
Interpolate(Ŝϕ

i ,x
∗)− Fi,N

)2
. Save RBF Error

7 S̃E
ϕ
i,N ←

(
Interpolate(S̃ϕ

i ,x
∗)− Fi,N

)2
. Save RBF Error

8 end
9 for j ← 1 to m do . For each constr. with and without Plog

10 ŜE
ϕ
k+j,N ←

(
Interpolate(Ŝϕ

k+j ,x
∗)−Gj,N

)2
. Save RBF Error

11 S̃E
ϕ
k+j,N ←

(
Interpolate(S̃ϕ

k+j ,x
∗)−Gj,N

)2
. Save RBF Error

12 end
13 for i← 1 to k +m do . For each surrogate find best strategy

14 if (
∑N

n=1 IDn · ŜE
ϕ
i,n) < Ti then . If error sum < temp

15 Ti ←
∑N

n=1 IDn · ŜE
ϕ
i,n . Save approx. errors in temp

16 RBF ∗i ← (kernel = ϕ, Plog=False) . Save best strategy

17 if (
∑N

n=1 IDn · S̃E
ϕ
i,n) < Ti then . If error sum < temp

18 Ti ← IDn · S̃E
ϕ
i,n . Save approx. errors in temp

19 RBF ∗i ← (kernel = ϕ, Plog=True) . Save best strategy

20 end

21 end

22 return (RBF∗,SE)

5.1.3 Multi-Objective Optimization Experiments

Two experiments are set up to compare SAMO-COBRA with other state of the art

algorithms. In these experiments, two variants of the SAMO-COBRA algorithm are

tested, one without the uncertainty quantification method (Phv), and one with the

uncertainty quantification method (S-metric). The performance of the two variants

are compared to the performance of the following algorithms: CEGO [154], SA-NSGA-

II [19], NSGA-II [49], NSGA-III [83], and SMES-RBF [44]. The performance of the

algorithms except for SMES-RBF are assessed on 18 benchmark functions. SMES-

RBF could not be tested since the implementation of SMES-RBF has not been made

available and as such it could only be compared to the results reported in the SMES-
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5.1. Constraint Multi-Objective Optimization

RBF publication.

All test functions from Table 2.1 are used except for the MW test problems. This is

because these problems have a very low feasibility ratio and therefore are not ideal for

testing the performance of surrogate-assisted optimization algorithms. Each algorithm

is tested 10 times on every test function to get a trustworthy result. The results for

NSGA-II and NSGA-III had a high variance. Therefore, 100 runs are executed for

those algorithms. In the first experiment, the algorithms are given a fixed budget to

find a feasible Pareto frontier. In the second experiment the algorithms are evaluated

to see how many function evaluations they require to achieve a predefined threshold

performance.

Hyperparameter Settings

In the experiments for each algorithm either the original implementation is used or

an implementation which was readily available in Python. For all algorithms, the

recommended hyperparameters from the original implementations are used. Since

there are no clear recommendations for the hyperparameters of NSGA-II and NSGA-

III, a grid search is conducted. In the grid search the optimal population size and

number of generations are determined for NSGA-II. For NSGA-III a grid search is

done to find the best parameter value for the number of divisions that influence the

spacing of the reference points of NSGA-III. For the sake of brevity, only the results

with the best scores from this grid search are reported.

The implementations of the different algorithms are listed here: the original im-

plementation of CEGO can be found on the dedicated Github page2. The original

implementation of IC-SA-NSGA-II and SA-NSGA-II can be found on the personal

page of Julian Blank3. For NSGA-II and NSGA-III the implementation of Platypus is

used4. The implementation of the SMES-RBF algorithm is not provided. Therefore,

only the reported results from the SMES-RBF paper [44] can be compared.

More details concerning the implementation of SAMO-COBRA, the experiments,

and the statistical comparison can be found on a dedicated Github page [143].

Fixed Budget Experiment

In the first experiment, each algorithm was given a limited fixed number of function

evaluation after which the HV performance metric is computed. Each algorithm is

2https://github.com/RoydeZomer/CEGO
3https://julianblank.com/static/misc/pycheapconstr.zip
4https://platypus.readthedocs.io/
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allowed to do 40 · d function evaluations, here d represents the number of decision

variables of the optimization test function. As a performance metric, the HV metric

is selected to quantify the results. The HV is computed between the obtained feasible

Pareto-optimal solutions and the reference point reported in Table 2.1. Higher HV

scores mean that more HV is covered and therefore a better approximation of the

Pareto frontier is found.

Convergence Experiment

In the second experiment, each algorithm is tested to see when it reaches a threshold

value of the HV metric. The threshold is set to 95% of the maximum achievable HV

per test function between the reference points in Table 2.1 and the Pareto frontier.

Since the Pareto frontier is not known for every function, NSGA-II is used to find the

maximal HV between a reference point and the Pareto frontier by running it with a

population size of 100 · d and allowing the algorithm to run for 1000 generations.

For each algorithm, after each iteration or generation, the HV is computed. As

soon as the threshold value is achieved, the number of function evaluations are used as

the performance metric. A small number of required function evaluations is desirable

so the algorithm with the smallest number of evaluations is classified as the winner in

this experiment.

To be able to compare the results of SMES-RBF with the results of SAMO-

COBRA, a different experiment is conducted. In this experiment the number of func-

tion evaluations are compared between SAMO-COBRA and SMES-RBF to achieve

the HV as reported in the SMES-RBF paper [44].

5.1.4 Results

The complete set of results from the experiments can be found on Github [143]. The

results of the fixed budget and the convergence experiment are reported in table format

in the following Sections.

Fixed Budget Experiment Results

The results of the first experiment, in which the HV is computed after 40 · d function

evaluations, is reported in Table 5.2. A Wilcoxon rank-sum test with Bonferroni

correction is used to determine if there is a significant difference between the algorithm

with the best results and the algorithm with the lesser results.
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Table 5.2: Mean hypervolume after 40 · d function evaluations for each algorithm on
each test function. Phv and S-metric represent the SAMO-COBRA variants. The highest
mean hypervolumes per test function are presented in bold. The Wilcoxon rank-sum test
(with Bonferroni correction) significance is represented in cyan. Background colours represent
the significant best and incomparable results: p ≤ 0.001, while one shade lighter represents
incomparability with p ≤ 0.01, finally Red shows that the algorithm required more than 24
hours.

Function PHV SMS CEGO NSGA-II NSGA-III SA-NSGA-II
BNH 5072.10 5067.05 5037.20 4910.44 4673.78 4862.96
CEXP 3.7968 3.7968 3.7658 3.1545 2.9585 3.5790
SRN 25016 25004 24974 20767 19749 23261
TNK 0.2887 0.2930 0.2837 0.1181 0.1209 0.2485
CTP1 0.3026 0.3023 0.2972 0.2250 0.2193 0.2739
C3DTLZ4 1.3162 1.4698 1.3644 1.5069 1.5024 1.6560
OSY 12628 12515 12318 2260 2231 12313
TBTD 486.7 485.5 484.5 350.2 361.3 416.3
NBP 798532 798204 792130 737269 705200 763128
DBD 34.635 34.174 34.112 30.107 30.297 33.654
SRD 3068272 3028279 3011838 1839509 1761892 3064597
WB 0.3850 0.3799 0.3984 0.3247 0.3303 0.3718
BICOP1 0.6641 0.0 terminated 0.0003 0.0470 0.6489
BICOP2 0.2283 0.1752 terminated 0.1442 0.1466 0.1265
TRICOP 49.654 49.602 49.599 39.6356 38.1846 42.6394
SPD 5.849 · 109 5.407 · 109 4.960 · 109 3.144 · 109 3.106 · 109 5.060 · 109

CSI 8.3148 7.2818 terminated 4.4687 4.3737 7.0922
WP 3.4315 · 1018 3.3544·1018 3.2455·1018 2.1620·1018 2.2026·1018 1.6930 · 1018

SAMO-COBRA with the predicted hypervolume infill criterion (Phv) achieves in

15 out of the 18 test functions the highest mean hypervolume. The SAMO-COBRA

algorithm with the S-Metric Selection (S-metric) infill criterion achieves the highest

mean hypervolume on the TNK test problem and in 7 other cases achieves a mean

hypervolume that is statistically incomparable to the SAMO-COBRA algorithm with

the Phv infill criterion. The CEGO algorithm achieves the best mean hypervolume

on the WB test function but this is incomparable with the Phv-SAMO-COBRA, S-

metric-SAMO-COBRA and SA-NSGA-II algorithms. On three other problems, the

CEGO algorithm also achieves incomparable results. The CEGO algorithm however

was terminated while optimizing 3 functions since the experiments took longer than

24 hours to find a Pareto frontier. This mainly happened on test problems with a high

number of parameters. The SA-NSGA-II algorithm achieves the best hypervolume

on the C3DTLZ4 test function. On the WB test function, SA-NSGA-II found an

incomparable mean hypervolume.

Convergence Experiment Results

In Table 5.3, the number of function evaluations are reported that are required to

achieve the 95% threshold value of the maximum HV. For some test functions, this
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was quite easy to achieve since it only required to evaluate the initial sample. On other

test functions the algorithms required many more evaluations to achieve the threshold.

NSGA-II and NSGA-III are terminated after 5000 function evaluations on the

C3DLTZ4, OSY, SPD, and SRD test function. CEGO was not able to obtain the

threshold value for the SPD and CSI function within 24 hours.

Table 5.3: The table shows the number of function evaluations needed to achieve the
threshold hypervolume for each test function. The results of the algorithm with the smallest
number of function evaluations are reported in bold accompanied with a ↑. Phv and S-metric
represents the SAMO-COBRA variants. Experiments that required more than 5000 function
evaluations are terminated and displayed as +5000. Experments that required more than 24
hours are terminated and represented with a (-).

Function Threshold PHV SMS CEGO SA-
NSGA-
II

NSGA-
II

NSGA-
III

BNH 5005.5 11 ↑ 16 12 36 56 114
CEXP 3.6181 13 ↑ 16 23 71 392 404
SRN 59441 15 ↑ 15 ↑ 17 66 200 227
TNK 7.6568 11 9↑ 9 ↑ 66 432 586
CTP1 1.2398 10 ↑ 14 14 36 140 170
C3DTLZ4 6.4430 179 ↑ 181 226 275 +5000 +5000
OSY 95592 15 ↑ 31 16 105 +5000 +5000
TBTD 3925 31 ↑ 58 49 357 324 369
NBP 1.024E8 5 ↑ 9 6 36 102 206
DBD 217.31 13 ↑ 19 16 48 112 142
SPD 3.6887E10 43 ↑ 125 - 205 +5000 +5000
CSI 25.717 59 ↑ 484 - 376 +5000 +5000
SRD 3997308 17 ↑ 55 28 81 952 1357
WB 32.9034 7 ↑ 10 10 43 24 24
BICOP1 76.6328 22 ↑ 25 35 119 1700 1975
BICOP2 4606.57 17 18 18 109 10 ↑ 12
TRIPCOP 19578.0 7 ↑ 8 7 ↑ 21 42 8
WP 1.5147E19 48 ↑ 66 111 292 3120 3876

As can be seen in Table 5.3, SAMO-COBRA with the Phv infill criterion again

outperforms the other algorithms for the majority of the test functions. This is inter-

esting because this infill criterion is designed to be exploitative, despite that the infill

criterion is exploitative the algorithm can still find 95% of the Pareto frontier.

SMES-RBF Convergence Experiment Results. As mentioned before, the im-

plementation of SMES-RBF is not publicly available. Therefore, the reported results

of SMES-RBF are compared with the results of SAMO-COBRA. In Table 5.4 the
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number of function evaluations are reported that are required to obtain the same HV

as reported in the SMES-RBF paper.

Table 5.4: Number of function evaluations after which SAMO-COBRA with the Phv infill
criterion achieved the same hypervolume for the test functions as SMES-RBF.

Function SMES-RBF PHV-SAMO-COBRA
BNH 200 50
BNH 500 122
SRN 200 23
SRN 500 27
TNK 200 24
TNK 500 194
OSY 500 14
OSY 1000 14
OSY 2000 14

TRICOP 200 12
TRICOP 500 12
BICOP1 500 56
BICOP2 500 31
BICOP2 1000 31
BICOP2 2000 38
BICOP2 5000 82

As shown in Table 5.4, the number of function evaluations for SAMO-COBRA

is much smaller. For the BICOP1 test function, the Nadir point reported in the

original paper [44] is [3.458533.44905]. The objective scores of BICOP1 can only be

positive; therefore, the absolute maximum achievable hypervolume should be smaller

than 3.45853 · 3.44905 ≈ 11.93. Interestingly, the hypervolume results from SMES-

RBF algorithm after 1000, 2000, and 5000 function evaluations, as reported in the

original paper [44], are higher than 12 (which is impossible). A comparison between

the SMES-RBF and SAMO-COBRA algorithm could therefore not be made for the

BICOP1 problem with more than 500 function evaluations.

Convergence Plots. To further inspect the performance of the algorithms over time,

convergence plots are made for the BNH and TRICOP test functions. The conver-

gence plots show the HV score computed after every iteration. In the convergence

experiments, the same estimation of Nadir points as in the original SMES-RBF pa-

per [44] are used as the reference points. The convergence of the HV on the BNH test

function can be found in Figure 5.2. The convergence of the HV on the TRICOP test

function can be found in Figure 5.3.
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Figure 5.2: Convergence plot on BNH test problem for the NSGA-II, NSGA-III, SA-
NSGA-II, CEGO, Phv-SAMO-COBRA, S-metric-SAMO-COBRA algorithms. . The dashed
lines represents the final obtained Hypervolume of SMES-RBF after 200 and 500 function
evaluations.

5.1.5 Discussion Phv vs. S-metric Infill Criterion

An interesting conclusion from all the experiments is that the exploiting strategy of

the Phv infill criterion leads in most cases to the highest HV and to the least number

of required function evaluations to obtain the 95% threshold. It is no surprise that this

exploiting strategy works well in a constraint multi-objective setting, since a similar

effect was already shown by Rehbach et al. [126]. Rehbach et al. show that in the single

objective case, it is only useful to include an expected improvement infill criterion if

the dimensionality of the problem is low, if it is multimodal, and if the algorithm can

get stuck in a local optimum. The results in Table 5.2 and Table 5.3 allow us to give

the following advice based on empirical results: When searching for a set of Pareto-

optimal solutions, an uncertainty quantification method should not be used. This is

due to the fact that, when searching for a trade-off between objectives, the algorithm is

forced to explore more of the objective space in the different objective directions. The

exploration of objectives stimulates diversity, which makes the algorithm less likely to
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Figure 5.3: Convergence plot on TRICOP test problem for the NSGA-II, NSGA-III, SA-
NSGA-II, CEGO, Phv-SAMO-COBRA, S-metric-SAMO-COBRA algorithms. The dashed
lines represent the final obtained Hypervolume of SMES-RBF after 1000 and 2000 function
evaluations.

get stuck in a local optimum, thereby making the uncertainty quantification method

redundant.

5.1.6 Conclusion and Future Work on Multi-Objective Opti-

mization

In this paper, two variants of the SAMO-COBRA algorithm are introduced, based on

using two different infill criteria: S-Metric-Selection (S-metric) and Predicted Hyper-

volume (Phv), of which the latter is more exploitative than the former. The perfor-

mance of the two SAMO-COBRA variants is compared to five other state-of-the-art

algorithms: SA-NSGA-II, NSGA-II, NSGA-III and SMES-RBF. On 17 out of the 18

test functions, SAMO-COBRA with the Phv infill criterion showed similar or better

results. On the C3DTLZ4 test function, SA-NSGA-II obtained significantly better

results. This can be explained that this function benefits much more from exploration

than exploitation.
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The SAMO-COBRA algorithm with the Phv infill criterion showed to be very effi-

cient at solving constraint multi-objective optimization problems in terms of required

function evaluations. We speculate that this exploiting infill criterion works best in

most cases because of the characteristics of multi-objective problems. While dealing

with multi-objective problems, the algorithm is already forced to explore more of the

objective space, making the uncertainty quantification method redundant.

The final conclusion from this research is that further research efforts should be

put into creating infill criterion that can propose multiple solutions simultaneously.

This way, in each iteration, evaluations can be run in parallel, and wall clock time

can be reduced even further. That is why in the next section the multi-point infill

criterion is introduced.

5.2 Parallel Multi-Objective Optimization

Algorithm classes that can deal with computationally expensive constraint multi-

objective problems in parallel include multi-objective variants of evolutionary algo-

rithms [56] and of Bayesian optimization [107]. In general, the former offers naturally

built-in parallelism while typically requiring more function evaluations and the lat-

ter is more efficient in terms of function evaluations while typically not allowing for

parallelism.

As described in earlier related work in Section 5.1.1, researchers have extended

evolutionary algorithms by using surrogate models trained on the evaluated search

points to allow for a fast prediction of objective and constraint function values for

new candidate solutions (infill points), making them more efficient while keeping the

benefits of parallelism [109]. A state-of-the-art algorithm from this class is for exam-

ple the earlier described algorithm Surrogate-assisted Non-dominated Sorting Genetic

Algorithm (SA-NSGA-II) [19].

Traditionally Bayesian Optimization algorithms on the other hand use an infill

criterion to find a good solution on surrogate models. These infill criteria traditionally

only propose one solution per iteration. Where the use of surrogates can potentially

reduce the number of required evaluations to find optimum solutions, the infill crite-

rion that proposes one solution per iteration drastically increases the time since all

promising solutions have to be evaluated in series instead of in parallel.

Solving expensive optimization problems faster can, according to [92], be done in

three different ways:
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1. problem approximation and substitution,

2. algorithm design enhancement,

3. parallel and distributed computation.

In this section, it is demonstrated how a variety of these techniques are combined in

one algorithm.

As mentioned before, Bayesian optimization algorithms approximate the fitness

and constraint functions by using surrogates. In each iteration, the algorithm finds

a new promising solution by optimizing an acquisition function using the response

surface of the surrogates. Over time, different acquisition functions have been pub-

lished for different surrogate models and for different purposes e.g; for single objective

optimization [85], with an emphasis on exploration/exploitation [126], for constraint

optimization [13], for parallel optimization [72], multi-objective optimization [118],

and for constraint multi-objective optimization [154]. However, not much attention

has been spent on an acquisition function that can both handle multiple constraints,

multiple objectives, and propose multiple solutions for evaluation in parallel in an

efficient manner.

For many real-world problems, candidate solutions can be evaluated in parallel

using large computer clusters and multiple simulations. To make use of these resources,

the optimization algorithm needs to be able to propose multiple candidate solutions in

each iteration. Evaluating multiple solutions in parallel can reduce the total wall clock

time significantly. Following the example of Li et al. [72], the total evaluation time,

also referred to as the total cost of solving a computationally challenging optimization

problem can be formulated as follows: Totalcost = O(C) · O(N). Here O(C) is the

average cost of the expensive evaluation, and O(N) the average number of iterations

of the optimization algorithm until a satisfactory solution is found. If two expensive

evaluations can be run in parallel the cost can already be cut in half in terms of wall

clock time (p = 2), i.e., Totalcost = O(C)·O(N)
p . Obviously, when p solutions are

proposed per iteration, the total cost can also be reduced by a factor p. The downside

of proposing multiple solutions simultaneously is that the new batch of p solutions

is selected based on the surrogates trained on p − 1 less samples as opposed to the

sequential optimization procedure (where p = 1). This means that using parallel

evaluations potentially results in additional required function evaluations compared

to a sequential optimization run with a single solution per iteration.

To propose multiple solutions per iteration, in this section a new acquisition func-

tion is proposed that incorporates problem approximation and substitution, algorithm
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design enhancement, and parallel and distributed computing techniques. This acqui-

sition function is introduced and used in the SAMO-COBRA to demonstrate the

effectiveness of proposing multiple solutions simultaneously. This makes the parallel

SAMO-COBRA algorithm capable of doing multi-objective optimization while dealing

with constraints and doing batch or one-shot optimization. The results of the exper-

iments with this new infill criteria indicate that the missed information per iteration

can also be beneficial since it also provides a means of exploration.

5.2.1 Related Work

Traditionally, evolutionary algorithms, genetic algorithms, and particle swarm opti-

mization are population-based [9]. The evaluations of these populations can naturally

be parallelized. However, evolutionary algorithms have the downside that they require

a lot of function evaluations because they move in small steps before they converge to

the global optimum.

On the other hand, Bayesian optimization does not require a lot of function evalu-

ations and is used in case the objective and/or the constraint functions are expensive

to evaluate. These surrogate-assisted optimization algorithms however typically do

not use acquisition functions that can propose multiple solutions simultaneously. Al-

lowing the surrogate-assisted algorithms to only propose one solution per iteration,

which leads to longer running times and ineffective use of available resources.

Parallel Single Objective Optimization

According to a survey on parallel single objective optimization [72], the three most

obvious techniques for parallelization are; multi-start local searches (if derivatives of

the objective function are available), multiple parallel optimization runs (optionally

in different sub-regions), and as described above with a population of designs. Other

parallelization techniques often tend to combine different acquisition functions with

different hyper-parameters to balance exploration and exploitation. Wang et al. [165]

for example proposed a single objective multi-point acquisition function for Bayesian

optimization. This acquisition function is based on the moment-generating function

where the expected improvement is raised to the power t. For different values of t, the

moment-generating function will therefore result in different proposed solutions with

different trade-offs between exploration and exploitation.

Other techniques used to select p different solutions simultaneously are, for exam-

ple:
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• One way is to optimize a single point acquisition function, then assume that

the surrogate prediction is accurate by adding the prediction to the evaluated

solutions, and then optimize the acquisition p − 1 more times until p solutions

are found [65]. This strategy is better known as the Kriging believer.

• It is also possible to use different surrogates (or weighted combinations of surro-

gates) fitted on the same data and optimize the infill criteria on these different

surrogate models [75].

Parallel Multi-Objective Optimization

Besides the algorithm described in this paper, several surrogate-assisted multi-objective

algorithms are already proposed where multiple points are proposed per iteration, e.g.

MIP-EGO [137], MMBO [164], MOPLS-N [3]. The downside is that they all lack a

constraint handling mechanism and fail to propose solutions on the constraint bound-

aries.

Mixed-Integer Parallel Efficient Global Optimization (MIP-EGO) [137] for example

is designed to automatically optimize the configuration of artificial neural networks.

MIP-EGO uses multiple random forests as surrogates and different infill criteria are

optimized to propose different solutions simultaneously.

Wada and Hino proposed MMBO [164], a Bayesian multi-objective multi-point op-

timization algorithm together with a gradient approximation of the acquisition func-

tion. This algorithm proposes multiple points simultaneously in every iteration based

on multi-point expected hypervolume improvement. This algorithm uses the expected

hypervolume improvement as infill criteria and therefore uses the uncertainty quan-

tification of the solutions to balance exploration and exploitation.

Akhtar and Schoemaker proposed MOPLS-N [3], a Multi Objective Population-

based Parallel Local Surrogate-Assisted Search. MOPLS-N uses Radial Basis Func-

tions (RBF) as surrogates, uses parallel local candidate search from the parent pop-

ulation centers, and uses boxed hypervolume improvement to judge one candidate

solution in a box around one center.

Constraint Parallel Multi-objective Optimization

Additionally, as also mentioned in the survey [72], there is still a lack of well-performing

adaptive sampling algorithms for constraint optimization. Constraint optimization is

traditionally done by making use of penalty functions [72]. Tuning these penalty

functions demands a lot of function evaluations [13]. To save function evaluations
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during the optimization process, just like for the objective functions, surrogates can

be used to model the constraint functions.

A few multi-objective optimization algorithms are found with both a constraint

handling mechanism and capable of proposing multiple solutions per iteration:

1. GOMOEI is a Generalized Asynchronous Multi-objective Expected Improvement

infill criteria (GAMOEI) proposed by Wauters et al. [167]. GAMOEI allows

multiple points to be selected for evaluation asynchronously while balancing

exploration and exploitation in an adaptive manner. The expected improvement

infill criteria depends on the regular multi-objective expected improvement raised

to a higher power. Constraints are dealt with by multiplying the probability of

feasibility with the expected improvement. In their experiments, this however

resulted in undesirable points far away from the Pareto frontier with little to no

points on the constraint boundaries.

2. cK-RVEA is a many-objective reference vector-guided evolutionary algorithm

that uses Kriging models as surrogates for the objectives and deals with the con-

straints by only using the feasible solutions for surrogate training [39]. Because

this algorithm has as a basis an Evolutionary Algorithm, it has naturally built-in

parallelism.

3. EGMOCO is a constraint multi-objective optimization algorithm that uses Krig-

ing as a surrogate and exploits four different acquisition functions to propose

multiple feasible Pareto-optimal solutions per iteration [173]. These four differ-

ent acquisition functions all result in different proposed solutions so at maximum,

four different solutions can be proposed and evaluated per iteration.

4. SBMO is a multi-objective algorithm that uses Kriging models as a surrogate

for both the constraints and objectives. Because of the scalarization of the

objectives, it can propose as many solutions per iteration as scalarizations are

possible [74]. However, when the number of decision parameters increases the

Kriging surrogates quickly become impractical to use.

One Shot Optimization

One-shot optimization [22, 24] or global surrogate modeling can be characterized by

surrogate-assisted optimization algorithms where a surrogate is fitted only once with

training data of an initial sample. After the surrogate is fitted, an optimal solution (or

set of optimal solutions) is found on the surrogate, the obtained solutions are evaluated
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and the algorithm terminates. This means that in contrast to other surrogate-assisted

optimization algorithms, there is no evaluation budget for adaptive sampling. One-

shot optimization is very popular and a classical approach in the maritime [130],

automotive [131], aerospace [111] and other engineering domains. As already stated in

the introduction of this Section, a lot of potentially available information for the last

evaluation is missing when using this approach as all new solutions should be found

based on the first initial samples. A benefit of one-shot optimization is that when a

lot of computational resources are available they can easily be exploited.

5.2.2 Multi-Point Acquisition function

The related work gave inspiration for a new multi-point acquisition function that is

introduced in this section. This new multi-point acquisition function is a reformulation

of the single-point acquisition function from SAMO-COBRA as formally described in

Equation 5.1. This single point acquisition function can also be used to propose

multiple solutions simultaneously. For this to work, first the optimization problem

should be reformulated so that multiple solutions can easily be optimized and judged

on solution quality simultaneously. The reformulation of the solution vector is done

by simply concatenating different solutions in one big solution vector. Suppose one

solution contains d decision variables, then p solutions together can be formulated as

a vector of d · p real values Rp·d. In this formulation, the first d values represent the

first solution, whereas the last d values in this vector represent the pth solution.

Given the p solutions (xi, i ∈ {i, . . . , p}), and the cheap RBF surrogate for each

objective (fi()
′, i ∈ {i, . . . , k}), also p predictions can be made for each objective.

Since there are p solutions and k objectives, the RBF predictions can be combined in

a vector of p · k objective function values as follows:

F = (f ′1(x1), . . . , f ′k(x1), . . . , f ′1(xp), . . . , f ′k(xp))

Here the vector F has a size of p · k. The p solutions with the corresponding p ·
k predictions for the k objectives can, after this step, be split into the matrix F

with p solutions (as rows) with k objective values (as columns). These p solutions

can then be mapped to the objective space so that their combined performance in

terms of hypervolume contribution can be judged. The judging of how good the

combined p solutions are again computed with the Phv infill criteria resulting in a

Multi-Point Acquisition Function (MPhv). The hypervolume contribution of a set

of solutions can be computed with the individual hypervolume contribution of each
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solution minus the overlap. Because this multi-point acquisition function evaluates

p solutions simultaneously, it will automatically prefer a set of solutions with diverse

objective scores above a set of similar solutions with similar objective scores. This is

the case because a set with diverse solutions with little overlapping hypervolume will

dominate more objective space compared to a set of solutions with very similar scores

with a lot of overlapping hypervolume. After the objectives are predicted with the

RBFs for all p solutions, the p · k is then translated with the multi-point acquisition

function into a single real value which represents the hypervolume contribution of the

p solutions. Predicting p solutions simultaneously does not increase the total number

of RBF surrogates, only the RBF surrogates are now used p times when evaluating p

new solutions in parallel.

A similar formulation and strategy is used for the constraints. Because multiple

solutions are now to be dealt with, also all the p solutions should be judged on fea-

sibility simultaneously. Each solution has m constraints, leading to p ·m constraint

values to consider. With the RBF surrogates (g) representing the m constraints, each

RBF surrogate (gj) can be used p times to predict the constraint values for the p solu-

tions. This results in one long constraint vector of length p ·m, the first m constraint

values represent the m constraint values for the first solution, the last m constraint

predictions represent the constraints for the pth solution.

With this new formulation for p solutions simultaneously, the multi-point acquisi-

tion optimization problem can be mathematically represented in the following way:

(x∗1, . . . ,x
∗
p) ∈ argmax

xi∈Ω⊂Rd

MPhv(f ′(x1), . . . , f ′(xp))

subject to g′(xi) ≤ 0

A visual representation of the multi-point acquisition function is given in Figure 5.4.

Integration of Multi-Point acquisition function in SAMO-COBRA

The newly formulated acquisition function can be directly integrated into the SAMO-

COBRA algorithm. The SAMO-COBRA with the new acquisition function is very

similar to the original acquisition function. The difference is that now expensive

evaluations can be evaluated in parallel. To maximally exploit the parallelism, the

initial size of the design of experiments is now set to max(p, d + 1). After the initial

sample is evaluated, the all RBF model variants are again fitted for every objective and

constraint independently. In the first iteration again the default RBF configuration is
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Figure 5.4: Visual representation of hypervolume contributions of two sets containing two
solutions each. The hypervolume contribution of set 1 is equal to 2(0.6 ·0.2)−(0.2 ·0.2) = 0.2.
The hypervolume contribution of set 2 is equal to 2(0.35 · 0.4) − (0.35 · 0.35) = 0.1575.
So although the individual hypervolume contributions of the solutions of set 2 are higher
compared to the individual hypervolume contributions of the solutions in set 1, the total
hypervolume contribution of set 2 is smaller compared to the total hypervolume contribution
of set 1. This makes set 1 more desirable compared to set 2.

chosen and the new acquisition function is optimized.

For the optimization of the multi-point acquisition function, any optimizer capable

of optimizing one objective and dealing with multiple constraints can be chosen. For

the integration in SAMO-COBRA, the COBYLA algorithm is again selected for this

task.

By letting COBYLA start from a randomly generated vector of length p · d repre-

senting p solutions, COBYLA iteratively also optimizes these p solutions. Important

to note is that COBYLA still does not use the real objective and constraint func-

tions but the RBFs of the constraint and the RBFs of the objectives to optimize the

acquisition function.

Experiments showed that the optimization problem characteristics like the num-

ber of decision variables d, the number of constraints m, the number of objectives k,

and the number of solutions to be optimized in parallel p, all have an influence on

whether COBYLA can converge to good solutions. The experiments show that more

random starting points and larger evaluation budget for COBYLA lead to better re-

sults. However, more starting points and larger evaluation budgets for COBYLA also
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lead to higher computational costs. Therefore, as a rule of thumb, it is recommended

to let COBYLA start from 2(d+m+ k) solutions when using the single point acqui-

sition function, let COBYLA converge from 4(d+m+ k) when using the multi-point

acquisition function, and when doing one shot optimization, let COBYLA start from

8(d+m+k) solutions. A similar rule is created for the evaluation budget of COBYLA:

The budget for using the single point acquisition function is 50(d+m+ k), for using

multi-point acquisition function 100(d + m + k), and for one shot optimization the

evaluation budget for COBYLA is 200(d + m + k). After COBYLA has converged

from the starting points, the solution set with the highest acquisition score is selected

to be evaluated on the real objectives and constraint functions. If COBYLA can not

find any feasible solutions, the solution set with the smallest cumulative constraint

violation is selected and evaluated on the real objective and constraint functions.

Now instead of evaluating only one solution at a time, all p solutions are evaluated

in parallel with the real objective and constraint functions. The results are added to

the solution archive, and the RBF approximation error is again checked. Selection of

the new best RBF modeling strategy is now not done by checking the approximation

error from the solutions on the Pareto frontier and the last four evaluated solutions.

Instead, the approximation error from the solutions on the current Pareto frontier and

the last 2 · p evaluated solutions are taken into consideration when selecting the best

RBF modeling strategy. This way, if the parallel number of evaluations p is large,

then the algorithm doesn’t get stuck in a local optimal RBF configuration.

The process of surrogate fitting, acquisition function optimization, solution eval-

uations in parallel, and RBF strategy selection continues until the evaluation budget

is exhausted. The SAMO-COBRA algorithm continues until the evaluation budget is

exhausted. Note that this is not equal anymore to the number of iterations except

for when p = 1 is chosen which is also still possible with the use of this acquisition

function.

One Shot Optimization

The new Acquisition function can also be used for one-shot optimization. In the

one-shot optimization configuration, the initial sample is of a size equal to half the

evaluation budget. After the initial Halton sample is evaluated, the RBFs with the dif-

ferent configurations are fitted and the best RBF configurations are selected. Selection

of the best input transformation and RBF kernel can in this case not be done based on

historic approximation error. Nor can the best configuration be selected based on the

RBFs trained with all the input data. Instead 10-fold cross-validation is used to select
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the RBF kernel and transformation strategy. Selecting the optimal RBF configuration

based on 10-fold cross-validation requires some computation time, however spending

half of the evaluation budget based on wrongly estimated solutions is for obvious rea-

sons much more computationally expensive. After the selection of the optimal RBF

configurations for each constraint and objective separately, the multi-point acquisition

function is optimized. The multi-point acquisition function is optimized such that in

one run all solutions for the other half of the evaluation budget can be found. Finally,

the predicted optimal solutions are evaluated with the real objectives and constraint

functions and the algorithm terminates.

5.2.3 Multi-Point Acqusition Function Experiments

To test the performance of the multi-point acquisition function in the SAMO-COBRA

algorithm and the one shot option several experiments are conducted. In the exper-

iments, different batch (parallel candidate solution sizes p) sizes are tested for the

multi-point acquisition function: 1 (original), 2, 3, 4, 5, 6, 10 and 20. Bigger batch

sizes are not considered because then multi-point optimization strategy becomes too

similar to one shot optimization. The test functions from Table 2.1 with the exception

of the MW problems are selected for the experiments. Each test function is optimized

in 11 independent runs with different seeds. Optimization of the test functions is done

by using a reference point which is the worst possible objective score per function.

The Nadir point [15] of the test functions is approximated by taking the extremes

of the objective scores on the Pareto frontier from all combined experiment results.

The hypervolume reported in the results of the experiments are calculated by comput-

ing the hypervolume between the Pareto frontier and the Nadir point. The algorithms

variant, the experiments, and the raw results are also published on a dedicated Github

page [144].

Hypervolume after Fixed Evaluation Budget

In the first experiment the hypervolume between the approximated Nadir point and

the obtained Pareto frontier is calculated after a fixed evaluation budget. SAMO-

COBRA with the different batch sizes has a total allowed evaluation budget of 40 · d.

This evaluation budget leads to an initial Halton sample of d+1 samples and 39 ·d−1

iterations for the SAMO-COBRA algorithm with the single-point infill criteria. For

batch sizes larger then 1, max(d + 1, p) initial Halton samples and 40·d−max(d+1,p)
p

iterations are done.
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Convergence Experiment

As explained before, with batch optimization, potentially a lot of wall clock time can

be saved. The downside of proposing multiple solutions simultaneously is that the

new batch of solutions is based on less information compared to when one solution

would be added per iteration. In this experiment, it is tested how much information

is lost per iteration, and on the other hand how much time can be saved. This is

tested by taking 90% of the maximum achievable hypervolume as a threshold, then

the algorithm convergence results can tell how much algorithm iterations and total

number of function evaluations are required to achieve this hypervolume threshold for

the different batch sizes.

One Shot Optimization Experiment

In the last experiment the algorithm and multi-point acquisition function is tested

to see if it is capable of one shot optimization. The one shot optimization algorithm

configuration is tested with 40 initial Halton samples and then in one iteration 40

new solutions are proposed with the multi-point acquisition function and then evalu-

ated. The hypervolume between the Nadir Point and the obtained Pareto frontier is

computed and compared to the hypervolume obtained with batch size 1.

5.2.4 Results

The results of the three experiments are presented in two Pareto frontiers, two con-

vergence plots, and three tables. The overall results show that for test functions with

a low feasibility rate, larger batch sizes lead to worse results after the same number

of function evaluations. For other test functions with a higher feasibility rate, larger

batch sizes can be very beneficial in terms of the required number of evaluations and

therefore iterations.

Hypervolume Results

In Table 5.5 the mean hypervolume and standard deviation of the hypervolume be-

tween the Pareto frontier and Nadir point are given for the different test functions.

As can be seen in the table, the hypervolume in most cases slightly decreases, and the

standard deviation increases, when a larger batch size is chosen. In a few cases, the

mean hypervolume is significantly better for larger batch sizes. It is expected that this
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is the case because more exploration can be beneficial for functions that are hard to

fit with RBF models with few initial data samples.

Table 5.5: Mean and standard deviation of hypervolume (hv) between Pareto frontier and
Nadir point on set of test functions after 40 · d function evaluations with different batch sizes
(1,2,3,4,5,6,10,20) for theMPhv infill criteria given 11 independent runs. HV Scores in bold
indicate a higher mean compared to batch size 1. A ∗ is added if the difference was significant
according to the Wilcoxon rank-sum test with p < 0.05.

Function Batch size 1 Batch size 2 Batch size 3 Batch size 4
hv std hv std hv std hv std

BNH 4969.2 0.0133 4969.0 0.1 4967.5 1.5 4967.6 0.5
CEXP 3.7972 0.0005 3.7961 0.0015 3.7963 0.0016 3.7944 0.001
SRN 25019 5 25008 10 24977 16 24843 22
TNK 0.2988 0.0016 0.2966 0.0033 0.2965 0.0026 0.2949 0.0018
CTP1 0.2985 0.0001 0.2985 0.0001 0.2984 0.0001 0.2984 0.0001
C3DTLZ4 1.5446 0.0759 1.4288 0.17 1.3569 0.0018 1.2526 0.0473
OSY 12629 2 12352 97 12609 3 12526 71
TBTD 8052.6 48.5 7892.3 90.0 7690.2 153.9 7506.0 237.4
NBP 799579 190 800186 130 799770∗ 258 798810 643
DBD 59.9960 0.0806 60.0550∗ 0.0152 60.0614∗ 0.0063 60.0034 0.0391
SPD 5.511 · 109 2 · 106 5.513 · 109 3 · 106 5.502 · 109 3 · 106 5.497 · 109 8 · 106

CSI 7.5394 0.0038 7.5343 0.0049 7.5438 0.0064 7.5372 0.0077
SRD 2952123 95 2949030 574 2945522 755 2941958 935
WB 0.6375 0.0185 0.6435 0.0133 0.6373 0.0138 0.6416 0.0209
BICOP1 0.6640 0.0004 0.6609 0.0010 0.6442 0.0052 0.6226 0.0111
BICOP2 0.2549 0.0381 0.2623 0.0161 0.2289 0.0358 0.2294 0.0364
TRICOP 49.6407 0.0430 49.6971∗ 0.0206 49.7224∗ 0.0215 49.6470 0.0449
WP 3.677 · 1018 5 · 1015 3.662 · 1018 3 · 1015 3.653 · 1018 9 · 1015 3.631 · 1018 1.4 · 1016

Function Batch size 5 Batch size 6 Batch size 10 Batch size 20
hv std hv std hv std hv std

BNH 4967.9 0.7 4967.6 1.2 4960.3 2.3 4949.8 5.7
CEXP 3.7964 0.0004 3.7981∗ 0.0004 3.7925 0.0005 3.7794 0.0030
SRN 24729 53 24723 39 24583 97 24516 103
TNK 0.2953 0.0012 0.2985 0.0018 0.2957 0.0024 0.2676 0.0144
CTP1 0.2981 0.0001 0.2984 0.0002 0.2977 0.0003 0.2956 0.0008
C3DTLZ4 1.3375 0.0512 1.3933 0.0813 1.5091 0.0659 1.5827 0.0308
OSY 12396 139 12443 90 12073 105 11501 297
TBTD 7471.3 205.5 7419.4 300.2 7237.2 272.6 7213.8 231.5
NBP 798377 844 797753 1496 793709 2257 776697 1517
DBD 59.9676 0.0334 59.8961 0.0262 59.8108 0.0296 59.6967 0.0506
SPD 5.497 · 109 8 · 106 5.474 · 109 1.3 · 107 5.369 · 109 1.7 · 107 5.259 · 109 3.0 · 107

CSI 7.5432 0.0076 7.5409 0.0112 7.4329 0.018 6.8714 0.0704
SRD 2940695 1019 2939470 2003 2934512 941 2925597 3690
WB 0.6475 0.0128 0.6089 0.0263 0.6213 0.0169 0.5952 0.0125
BICOP1 0.6029 0.0160 0.5901 0.0139 0.4302 0.1118 0.3375 0.0809
BICOP2 0.2320 0.0356 0.2267 0.0160 0.2198 0.0435 0.2138 0.0250
TRICOP 49.7100 0.0402 49.7270∗ 0.0259 49.5006 0.0825 49.3136 0.1001
WP 3.583 · 1018 1.4 · 1016 3.556 · 1018 1.3 · 1016 3.492 · 1018 2.1 · 1016 3.471 · 1018 1.5 · 1016

For two test functions, the obtained feasible solutions are plotted for the algorithm

with different batch sizes. In Figure 5.5a all the obtained feasible solutions of the test

problem TNK are presented. In this figure, it can be observed that the algorithm with

batch size 1 rarely misses the Pareto frontier, while solutions of the larger batch sizes

are often dominated by other solutions from these batch sizes. In Figure 5.5b all the

obtained feasible solutions of the test problem C3DTLZ4 are presented. In this figure,
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it can be observed that the solutions with the larger batch sizes show better coverage

among the Pareto frontier versus the solutions from other batch sizes.
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Figure 5.5: Obtained Pareto Frontiers for TNK and C3DTLZ4 test function

Convergence Results

The results of the second experiment can be found in Table 5.6. This table clarifies

that for the majority of the test functions, the threshold of 90% was reached before the

allowed number of function evaluations. When comparing batch size 1 with the larger

batch sizes for each test function. The best result with the least number of iterations

on average required 75% less iterations, the trade-off is that the number of evaluations

on average increases with 58% to find the 90% hypervolume threshold. So in the cases

where time-consuming objective and constraint functions can be evaluated in parallel,

the wall clock time can significantly be reduced.

In Figure 5.6a the convergence plot is given for the TNK test function. For this

test function, the algorithm with different batch size combinations all converge to the

approximated optimum except for batch size 20. In Figure 5.6b the convergence plot

is given for the C3DTLZ4 function. Interestingly enough, in this convergence plot

the extra exploration which is naturally included for larger batch sizes seems to be

beneficial since the larger batch sizes 20, 10 and 6 perform better compared to batch

sizes, 2, 3, 4, and 5.
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Table 5.6: Rounded mean number evaluations (Eval), mean number of algorithm iterations
(Itr) given different batch sizes (1, 2, 3, 4, 5, 6, 10, 20) to achieve the hypervolume threshold.
The threshold is 90% of the dominated area between the Nadir point and the Pareto frontier
of all runs combined. A dash (-) indicates that the threshold is not achieved within 40 · d
function evaluations for any of the 11 runs, an arrow down (↓) indicates that not every run
reached the threshold.

Function Threshold Batch size 1 Batch size 2 Batch size 3 Batch size 4
Eval Itr Eval Itr Eval Itr Eval Itr

BNH 4496.2 9 9 10 5 10 4 8 2
CEXP 3.4380 9 9 11 6 11 4 12 3
SRN 22810 17 17 19 10 20 7 22 6
TNK 0.2775 44 44 47 24 48 16 48 12
CTP1 0.2717 13 13 15 8 15 5 15 4
C3DTLZ4 1.5788 197↓ 197↓ 219↓ 110↓ - - - -
OSY 11393 18 18 64 33 20 7 27 7
TBTD 7359.8 16 16 29 15 43 15 57↓ 15↓
NBP 725935 16 16 15 8 14 5 19 5
DBD 54.133 14 14 15 8 15 6 14 4
SPD 5.106 · 109 59 59 58 30 62 21 68 17
CSI 7.1691 120 120 124 62 119 40 118 30
SRD 2658080 14 14 14 7 16 6 17 5
WB 0.61745 94↓ 94↓ 88 45 106↓ 36↓ 65↓ 17↓
BICOP1 0.59988 82 82 67 34 106 36 139 35
BICOP2 0.27667 353↓ 353↓ 338↓ 169↓ - - 356↓ 89↓
TRICOP 45.3701 13 13 16 8 15 6 21 6
WP 3.517 · 1018 58 58 62 31 66 22 74 19

Function Threshold Batch size 5 Batch size 6 Batch size 10 Batch size 20
Eval Itr Eval Itr Eval Itr Eval Itr

BNH 4496.2 8 2 9 2 13 2 21 2
CEXP 3.4380 13 3 11 2 17 2 31 2
SRN 22810 18 4 20 4 30 4 37 2
TNK 0.2775 46 10 44 8 49 5 68↓ 4↓
CTP1 0.2717 19 4 16 3 19 2 34 2
C3DTLZ4 1.5788 - - - 232↓ 24↓ 187↓ 10↓
OSY 11393 37 8 25 5 39 4 125↓ 7↓
TBTD 7359.8 61↓ 13↓ 36↓ 6↓ 76↓ 8↓ 77↓ 4↓
NBP 725935 19 4 20 4 26 3 46 3
DBD 54.133 15 3 20 4 27 3 32 2
SPD 5.106 · 109 62 13 77 13 103 11 140 7
CSI 7.1691 119 24 123 21 179 18 - -
SRD 2658080 18 4 20 4 23 3 68 4
WB 0.61745 81 17 133↓ 23↓ 132↓ 14↓ - -
BICOP1 0.59988 206↓ 42↓ 322↓ 54↓ - - - -
BICOP2 0.27667 - - - - - - - -
TRICOP 45.3701 16 4 17 3 19 2 33 2
WP 3.517 · 1018 92 19 103 18 - - - -

One Shot Optimization Results

The Hypervolumes of the one-shot optimization algorithm experiments are presented

in Table 5.7. Inspection of this table tells us that the test functions with a high
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Figure 5.6: Obtained hypervolume convergence for TNK and C3DTLZ4 test function

feasibility rate tend to give much better results compared to test functions with a low

feasibility rate. This indicates that the constraints are not well fitted after the initial

sample and that more adaptive sampling steps lead to better constraint boundary

approximation and therefore to better Pareto frontier approximations.

5.2.5 Discussion on Parallelization

Bayesian optimization is often used to optimize expensive black box optimization prob-

lems with long simulation times. Typically Bayesian optimization algorithms propose

one solution per iteration. The downside of this strategy is the sub-optimal use of

available computing power. To efficiently use the available computing power (or a

number of licenses etc.) a multi-point acquisition function for parallel efficient multi-

objective optimization algorithms is introduced. The multi-point acquisition function

is based on the hypervolume contribution of multiple solutions simultaneously, lead-

ing to well-spread solutions along the Pareto frontier. By combining this acquisition

function with a constraint-handling technique, multiple feasible solutions can be pro-

posed and evaluated in parallel every iteration. The hypervolume and feasibility of

the solutions can easily be estimated by using multiple cheap radial basis functions

as surrogates with different configurations. The acquisition function can be used with

different population sizes and even for one shot optimization. The strength and gener-

alizability of the new acquisition function is demonstrated by optimizing a set of black

box constraint multi-objective problem instances. The experiments show a huge time

saving factor by using our novel multi-point acquisition function, while only marginally
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Table 5.7: Mean and Standard deviation of hypervolume of the one-shot optimization
algorithm configuration between the Nadir point and the obtained Pareto frontiers over 11
runs after 80 function evaluations with an initial Halton sample of 40. The results are
compared to the result of the original infill criteria with batch size 1 by computing the
hypervolume differences in a percentage.

Function hv std Difference
BNH 4939.6 2 −0.60%
CEXP 3.6507 0.0240 −4.01%
SRN 23649 262 −5.79%
TNK 0.2044 0.0341 −46.18%
CTP1 0.2731 0.0091 −9.30%
C3DTLZ4 1.4308 0.0458 −7.95%
OSY 6144.9 1240.3 −105.52%
TBTD 6007.2 425.2 −34.05%
NBP 768803 4997 −4.00%
DBD 56.812 0.541 −5.60%
SPD 2.9674 · 109 3.058 · 108 −85.72%
CSI 5.9929 0.0472 −25.81%
SRD 2855825 61403 −3.37%
WB 0.5601 0.0126 −13.82%
BICOP1 0.4193 0.0482 −52.04%
BICOP2 0.0759 0.0296 −235.84%
TRICOP 47.750 0.798 −3.96%
WP 3.198 · 1018 2.44 · 1017 −14.98%

worsening the hypervolume after the same number of function evaluations. However,

this claim only holds in cases where the evaluation of one of the objectives or con-

straints is computationally expensive and when they can be run in parallel. The results

of the one shot optimization experiment however does not show very good results on

problems that have a small feasibility ratio. Inspection of the results shows that the

constraints are not well fitted after the initial sample and therefore, a lot of infeasible

solutions are proposed in the one shot step. More adaptive sampling steps will lead

to better constraint boundary approximation and therefore to more feasible solutions

and therefore better Pareto frontier approximations.

5.2.6 Conclusion and Future Work on Parallel Optimization

A new acquisition function capable of multi-point multi-objective optimization is in-

troduced and implemented together with a constraint handling mechanism. This new

acquisition function is used to enhance the SAMO-COBRA algorithm, making the
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algorithm able to propose multiple solutions per iteration. Experiments on a bench-

mark test set show that with larger batch sizes, in the ideal case on average 75% of

the iterations can be saved, and therefore the waiting time can be reduced. This is

especially interesting in cases where the evaluation of solutions is very time-consuming

and when they can be evaluated in parallel. The new infill criteria offer the possibility

to save wall-clock-time and give the user the power to better exploit the computational

resources and the use of commercial licenses.

Future work will have to be put into dealing with multi-fidelity optimization prob-

lems, asynchronous function evaluations, and exploiting inexpensive functions to de-

crease wall clock time even further.

5.3 Expensive and Inexpensive Function Optimiza-

tion

Real-world problems are often defined through multiple objectives and constraints,

combined with the fact that objectives or constraints can be time-consuming (“expen-

sive”) to evaluate [14, 161, 172]. Expensive optimization problems are for example

maritime design problems from Chapter 2 in which (commercial licenses of) finite el-

ement simulation or computational fluid dynamic tools are used for computing the

performance characteristics of a design. These third-party software packages are com-

putationally expensive to run, thereby increasing the overall duration of the optimiza-

tion process. This leads to a very limited amount of allowed solution evaluations for

the optimization algorithms.

Assuming that, at a maximum, a few hundred simulation runs are possible (i.e.,

solution evaluations of objective and constraint functions), the goal becomes to ap-

proximate the true Pareto front of feasible solutions as closely as possible with the

given limited budget. To decrease the wall-clock-time, solution evaluations can be

run in parallel as was shown in the experiments from Section 5.2.3. To decrease the

wall-clock-time even more and to make fewer mistakes in the optimization process,

the inexpensive constraint and objective functions (like volume objective, or main

pariticulars check) can directly be used in the optimization algorithm instead of using

a surrogate for them.

A state-of-the-art algorithm that can deal with similar problems is the recent In-

expensive Constraint extension of the SA-NSGA-II algorithm (IC-SA-NSGA-II [19]).

The IC-SA-NSGA-II algorithm uses radial basis function surrogates only for the ob-
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jectives and assumes that all constraints are inexpensive to evaluate.

The other algorithm that can be extended to exploit inexpensive functions is the

SAMO-COBRA algorithm in combination with the multi-point acquisition function.

Like SA-NSGA-II, the SAMO-COBRA algorithm uses radial basis function approxi-

mations for all objectives and all constraints. These two algorithms are designed with

the purpose of modeling and optimizing surrogates of both the objective and constraint

functions. However, there is a fundamental difference between the working of these

two algorithms. While SA-NSGA-II and IC-SA-NSGA-II use a genetic algorithm’s op-

erators to create new candidate solutions, SAMO-COBRA uses a local search-based

hypervolume maximization approach for creating new candidate solutions.

To facilitate a complete experimental comparison, a SAMO-COBRA variant that

is inspired by IC-SA-NSGA-II’s approach to differentiate between inexpensive con-

straints and expensive objectives is developed. This new variant however generalizes

this approach and can exploit not only the inexpensive constraints but also the in-

expensive objectives. The proposed Inexpensive Objectives and Constraints-SAMO-

COBRA (IOC-SAMO-COBRA) allows the user to identify the expensive objectives

and constraints, for which IOC-SAMO-COBRA will then use radial basis function

surrogates, while it will use the inexpensive objectives and inexpensive constraints

directly. A tabular overview of the four different algorithms and how they deal with

expensive and inexpensive objectives and constraints is given in Table 5.8.

Algorithm Expensive Inexpensive Expensive Inexpensive
constraints constraints objectives objectives

SA-NSGA-II surrogate surrogate surrogate surrogate
IC-SA-NSGA-II direct direct surrogate surrogate
SAMO-COBRA surrogate surrogate surrogate surrogate
IOC-SAMO-COBRA surrogate direct surrogate direct

Table 5.8: Overview of how the four algorithms deal with the (in)expensiveness of con-
straints and objectives. ”Surrogate” means a surrogate replaces the objective/constraint,

direct means that the objective/constraint is used without learning a surrogate for it.

5.3.1 Related Work

There is a growing interest in surrogate-assisted optimization [92, 84], surrogate-

assisted constraint optimization [124], surrogate-assisted optimization in combination

with parallelism [72], surrogate-assisted multi-objective optimization [38], and prob-

lems with heterogeneous evaluation times [4]. Different approaches have been devel-

oped for solving constraint multi-objective problems. However, very little research has
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been done on surrogate-assisted algorithms that can deal with a mix of both expensive

and inexpensive constraints and objective functions. There exists two algorithms that

are very relevant and already partly address the problem:

1. GP-CMOEA, is like the IC-SA-NSGA-II algorithm a multi-objective optimiza-

tion algorithm that uses both surrogates and exploits the inexpensiveness of the

constraints to find feasible Pareto-optimal Solutions [170]. Due to the Gaussian

Process regression surrogates, this method quickly becomes impractical when

the number of parameters increases.

2. CHVPEI and CHVPOI are a bi-objective optimization acquisition functions

that exploit the inexpensiveness of only the second objective that is always as-

sumed to be inexpensive [95]. For the first objective, the expected improvement

or the probability of improvement are computed depending on the infill criteria.

This infill criteria however still needs to be extended for more than 2 objectives,

and cannot deal with constraints yet.

However, an algorithm that can deal with a mix of expensive and inexpensive objectives

and constraints has not been proposed yet. It is for this reason that in this section a

parallel constraint multi-objective optimization algorithm is proposed that is capable

of dealing with mixed expensiveness of objective and constraint functions.

In the following subsections, the closely related relevant methods IC-SA-NSGA-II

that is used as reference algorithm is described in more detail.

IC-SA-NSGA-II

An extension of SA-NSGA-II has been proposed to address optimization problems

where objectives are computationally expensive, but the constraints are not [19]. For

such problems, the optimization method shall exploit the asymmetry of expensiveness,

or in other words, the fact that one can collect significantly more information regarding

the feasibility of a solution before having to run an expensive simulation. The novelty

of the proposed method is the constraint sampling for finding feasible designs in the

first optimization cycle. The challenge of finding a feasible yet diverse set of solutions is

addressed by incorporating a Riesz s-energy [77] based sampling method [21] modified

for constraint search spaces. Furthermore, to make IC-SA-NSGA-II more efficient for

the optimization of highly constraint problems (still with inexpensive constraints), the

embedded surrogate-based optimization loop has been extended by a repair operator

applied to each solution after mating [87]. The repair operator ensures that only
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feasible solutions are evaluated (on the surrogates and on the expensive functions)

and has demonstrated to be effective for problems with complex constraints. The

novel evaluated solutions are added to the archive which is used in the next iteration

to retrain the surrogates. This continues until the objective evaluation budget has

been exhausted. A more extensive explanation of the IC-SA-NSGA-II algorithm is

given in [19].

5.3.2 Inexpensive Function Exploitation

In the original SAMO-COBRA algorithm for every objective and constraint function,

an RBF surrogate is used during the search for new candidate solutions. In the IOC-

SAMO-COBRA extension, one or more of the RBFs can be replaced with the real

inexpensive constraint or objective function. Instead of finding good solutions on the

RBFs, in IOC-SAMO-COBRA the inexpensive constraints and objectives are used

directly during the search for feasible Pareto efficient solutions that contribute HV to

the Pareto front. The direct use of inexpensive functions can be beneficial because

the real functions do not make approximation errors like RBF surrogates do in unseen

regions. This should, especially in the early iterations, lead to better results compared

to the use of RBFs since in early iterations the RBF approximation error might still

be large. Besides a benefit during the early iterations, inexpensive constraints can also

be exploited when finding the Pareto fronts of optimization problems with very few

feasible solutions. The pseudocode of the IOC-SAMO-COBRA algorithm is given in

Algorithm. 3.

Hypervolume Maximization

The IOC-SAMO-COBRA algorithm uses the same acquisition function as presented

in Section 5.2.2 (line 12 in Algorithm 3). While the original SAMO-COBRA algorithm

with the multi-point acquisition function used the RBF surrogates for each constraint

and each objective, the IOC-SAMO-COBRA algorithm does this differently. If one

or more of the constraints or objectives are inexpensive to evaluate, then this can

be indicated by the user. This allows the IOC-SAMO-COBRA algorithm to directly

use them to compute the corresponding function values. These inexpensive functions

in combination with the RBF approximations of the expensive functions are used by

COBYLA to find the most promising solution set that is expected to contribute the

most hypervolume.

When optimization of the acquisition function with COBYLA, also with the use
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Algorithm 3: IOC-SAMO-COBRA. Input: Number of decision vari-
ables d, objective functions f(x), split where required into expensive
objective function(s) fe(x), computationally inexpensive objective func-
tion(s) fc(x), constraint function(s) g(x), split where required into ex-
pensive constraint function(s) ge(x), computationally inexpensive con-
straint function(s) gc(x), decision parameters’ lower and upper bounds
[xlb,xub] ⊂ Rd, reference point ref ∈ Rk, number of initial samples
Ninit, maximum evaluation budget Nmax, RBF strategy domain Φ =
{Cubic, Gaussian, Multiquadric, InverseQuadratic, InverseMultiquadric,
ThinP lateSpline} × {Plog, standardized}, acquisition function HV.
Output: Evaluated solutions.

1 Function IOC-SAMO-COBRA(d, f , g, xlb,xub, ref , N , Nmax, RBFkernels):
2 X← {x1, · · · ,xN } . Generate initial design, X ∈ Rd×N

3 F← f(X) . Evaluate objective functions, F ∈ Rk×N

4 G← g(X) . Evaluate constraint functions, G ∈ Rm×N

5 h← {fe ∪ ge} . Union of expensive obj. and constr. functions

6 ϕ∗ ← {(Cubic, standardized) | ∀ h ∈ h} . Init best RBF, ϕ∗ ∈ Φ
7 E← {0 | ∀ h ∈ {h× Φ}} . Init RBF approx. errors for each configuration/

8 j ← N . Initialize expensive evaluation counter

9 while j < Nmax do
10 SΦ ← {FitRBF(X, h,Φ,xlb,xub) | ∀ h ∈ h} . Fit RBF with all Φ strategies

for all h

11 Sϕ∗ ←
{
Sϕ∗ | ∀ h ∈ h

}
. Select best RBF surrogate based on line 6 or 17

12 x∗1, . . . ,x
∗
p ← Max(HV, p, ref , Sϕ∗ , fc, gc) . Get p new solutions based on HV

13 j ← j + p . Increase iteration counter to new matrix sizes

14 X←
[
X, x∗1, . . . , x

∗
p

]
. Add p new solution vectors, X ∈ Rd×j

15 F←
[
F, f(x∗1), . . . , f(x∗p)

]
. Add vectors of evaluated objectives, F ∈ Rk×j

16 G←
[
G, g(x∗1), . . . , g(x∗p)

]
. Add vectors of evaluated constraints,

G ∈ Rm×j

17 HV,ϕ∗,E←SelectBestStrategy(E, SΦ,X,F,G) . Update HV, RBF approx.

errors E, and new best RBF configuraiton ϕ∗ based on E

18 end

19 return (F, G, X)

of inexpensive functions where possible, COBYLA can get stuck in local optima. To

overcome this problem also in the IOC-SAMO-COBRA algorithm, COBYLA is run

in parallel starting from multiple random starting points.

After all COBYLA instances have converged, all feasible solutions found are 10000

times randomly combined in groups of size p. Since there are
(

16·p·d
p

)
such groups,

for small values of p and d fewer combinations are sufficient. However, due to the

negligible computational effort, it is decided to fix this number to 10000. The set of

p solutions which together contribute the most HV are selected for evaluation on the

expensive objective and constraint functions.
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After the parallel evaluation of the solutions on the real functions (line 14, 15, 16

of algorithm 3), the RBF approximation errors (E) are stored for each RBF modeling

strategy (line 17 of algorithm 3), the RBFs are updated (line 10 of algorithm 3), the

best RBF modeling strategy is selected based on the historic approximation errors (line

11 of algorithm 3) and COBYLA is used again to find the next set of optimal solutions

(line 12 of algorithm 3). This optimization process continues until the expensive

evaluation budget is exhausted (line 9 of algorithm 3).

Acquisition Function Switching

IOC-SAMO-COBRA maximizes the predicted HV contribution every iteration, mean-

ing that by default it does not use any uncertainty quantification of the RBF models

for the objectives. Just like the RBF functions, by default, the inexpensive objectives

also do not have an uncertainty quantification method. Other Bayesian optimization

algorithms, however, often use Kriging or Gaussian process regression models, which

provide an uncertainty quantification method for the objectives to encourage explo-

ration [154, 118, 85]. Earlier experiments from Section 5.1.3, showed that the use of

uncertainty quantification is in many cases redundant because by maximizing the HV,

the algorithm is naturally forced to explore the objective space [148]. If, however,

IOC-SAMO-COBRA gets stuck and does not find any HV improvement for three con-

secutive iterations, an uncertainty quantification method for RBFs (see Section 2.3.2

and Equation 2.5 or [12]) is enabled to help with exploration (this is part of line 17 of

algorithm 3, but for space reasons not explicitly formulated in the pseudocode). By

enabling the uncertainty quantification method, the acquisition function changes to

an RBF variant of the S-Metric selection criterion [118]. Note that the inexpensive

objectives still do not have an uncertainty quantification and therefore, only for the

objectives modeled with RBFs the uncertainty is calculated.

5.3.3 IOC-SAMO-COBRA Experiments

The four algorithms (SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA, IOC-SAMO-

COBRA) are compared on the complete set of diverse test functions from Table 2.1.

The surrogate-assisted algorithm and the Inexpensive function exploiting counterparts

are compared to confirm our hypothesis that exploiting inexpensive functions in the op-

timization process directly is beneficial. The metrics used to compare the algorithms’

performances are the HV and the IGD+ performance metrics which are described in

more detail in Section 2.5.1.
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Experimental Settings

The allowed number of function evaluations for the different algorithms is set to 40·d for

all functions experimented with. The performances of the algorithms are checked with

a different number of candidate solutions per iteration (In the SA-NSGA-II variants

also referred to as population sizes) p ∈ {1, 2, 3, 4, 5, 6, 10, 20}. To get statistically

significant results on all test functions, each test function is optimized 10 times per

algorithm configuration.

All benchmark test functions are inexpensive to evaluate. However, SA-NSGA-II

and SAMO-COBRA are developed to optimize computationally expensive problems.

To test this functionality, in the experiments done with SA-NSGA-II and SAMO-

COBRA all constraints and objectives are assumed to be expensive and are therefore

modeled with the RBF surrogates. To test the functionality where inexpensive func-

tions are directly used instead of a surrogate with IC-SA-NSGA-II and IOC-SAMO-

COBRA, a decision needs to be made concerning the expensiveness of the objective and

constraint functions. To be able to compare IOC-SAMO-COBRA to IC-SA-NSGA-II

as fairly as possible, the assumption from IC-SA-NSGA-II that the constraints are

inexpensive and the objectives are expensive to evaluate is also adopted in the ex-

periments with IOC-SAMO-COBRA. A description and implementation of the test

functions, the obtained Pareto frontiers for the IGD+ performance metric, all raw

experiment results, and implementation of the IOC-SAMO-COBRA algorithm can be

found on a dedicated Github page [145].

5.3.4 Results

The results obtained from the four algorithm variants are presented in tables, empirical

cumulative distribution function plots, and empirical attainment function difference

plots. Special attention is given to the problems with a very small feasibility ratio since

these test problems benefit the most from using the inexpensive constraint functions

directly in the optimization algorithms.

Performance Metrics Results

The two performance metrics used to assess and compare the performance of the dif-

ferent algorithms are the IGD+ metric and the HV metric. Table 5.9 and Table 5.10,

respectively, report the mean and standard deviation of the HV and the IGD+ per-

formance metric after 40 · d function evaluations. The HV is computed between the

Nadir point and the obtained Pareto fronts, the IGD+ metric is computed between
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a well-spread Pareto front approximation and the obtained Pareto fronts by the dif-

ferent algorithms. The performance metrics for the SA-NSGA-II, IC-SA-NSGA-II,

and SAMO-COBRA are statistically compared with a Wilcoxon rank sum test to the

results of IOC-SAMO-COBRA at a 5% confidence level. A (−) in the tables indi-

cates significantly worse results, (≈) indicates indifference between the results, and

(+) indicates significantly better results of the given algorithm, compared to IOC-

SAMO-COBRA. In the second last row of Table 5.9 and Table 5.10 a summary is

given of the results of the significance test. Inspection of this summary shows that

IOC-SAMO-COBRA in most cases achieves the best or statistically indistinguishable

results after the number of function evaluations is exhausted for both the HV and

IGD+ metric. On 14 out of 22 test problems, IOC-SAMO-COBRA outperforms the

other algorithms when the performance is aggregated on data for all values of p that

were tested. On 4 out of 22 test problems, SAMO-COBRA achieves a larger HV

compared to IOC-SAMO-COBRA, however, these results are often not significant and

differences are too small to be captured in the table with only two numbers after the

decimal point. On the remaining 4 out of 22 test problems, the IC-SA-NSGA-II algo-

rithm performs better compared to IOC-SAMO-COBRA, especially on BICOP1 and

MW2. The mean Friedman rank test confirmed (with p = 1 · 10−16) the alternative

hypothesis which states that there is a significant difference in the mean ranks of the

algorithms. In the last rows of Table 5.9 and Table 5.10, respectively, the mean ranks

of the algorithms are reported (a low rank indicates a better rank for both performance

metrics).

Empirical Cumulative Distribution Function Results

Table 5.9 and Table 5.10 do not tell us anything about the convergence rate or how

fast the different algorithms are able to find Pareto efficient solutions. Empirical Cu-

mulative Distribution Functions (ECDF) from Section 2.5.2 visualize the convergence

of the different algorithms. The aggregated results of the HV and IGD+ metric of the

four different algorithm variants are visualized in Figure 5.7 and figure 5.8 by means

of their ECDF, based on a fixed-target perspective. For each algorithm, the corre-

sponding ECDF curve is aggregated over all functions and the number of candidate

solutions per iteration. The four curves illustrate the advantage of the Inexpensive

Constraint approach, independently of the base algorithm. This finding highlights

the importance of using as accurate as possible models (by IOC-SAMO-COBRA’s

approach to evaluate and compare all RBF configurations in the configuration space

Φ) and shows the relevance of using the constraint and objective functions directly if
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Table 5.9: Hypervolume score ± standard deviation of hypervolume, Wilcoxon rank sum
test with probability value = 0.05 (reference algorithm: IOC-SAMO-COBRA), per test func-
tion and candidate solutions size p. The highest HV per row is reported in bold, best scoring
algorithm per test function is highlighted .

Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
BNH 1 4.89 · 103 ± 3.06 · 101 (−) 4.85 · 103 ± 3.85 · 101 (−) 5.07 · 103 ± 4.10 · 10−2 (≈) 5.07 · 103 ± 2.44 · 10−2

2 4.86 · 103 ± 1.54 · 101 (−) 4.83 · 103 ± 3.36 · 101 (−) 5.07 · 103 ± 3.47 · 10−2 (≈) 5.07 · 103 ± 3.85 · 10−2

3 4.88 · 103 ± 3.12 · 101 (−) 4.85 · 103 ± 3.04 · 101 (−) 5.07 · 103 ± 5.44 · 10−2 (≈) 5.07 · 103 ± 2.86 · 10−2

4 4.89 · 103 ± 1.99 · 101 (−) 4.84 · 103 ± 2.61 · 101 (−) 5.07 · 103 ± 1.57 · 10−1 (+) 5.07 · 103 ± 9.29 · 10−2

5 4.86 · 103 ± 2.52 · 101 (−) 4.85 · 103 ± 2.46 · 101 (−) 5.07 · 103 ± 1.83 · 10−1 (≈) 5.07 · 103 ± 2.24 · 10−1

6 4.88 · 103 ± 1.37 · 101 (−) 4.88 · 103 ± 3.05 · 101 (−) 5.07 · 103 ± 1.25 · 10−1 (≈) 5.07 · 103 ± 1.94 · 10−1

10 4.87 · 103 ± 1.92 · 101 (−) 4.86 · 103 ± 2.68 · 101 (−) 5.07 · 103 ± 2.71 · 10−1 (≈) 5.07 · 103 ± 1.53 · 10−1

20 4.90 · 103 ± 3.03 · 101 (−) 4.87 · 103 ± 2.54 · 101 (−) 5.06 · 103 ± 4.25 · 10−1 (≈) 5.06 · 103 ± 3.94 · 10−1

CEXP 1 3.65 · 100 ± 2.23 · 10−2 (−) 3.64 · 100 ± 6.21 · 10−2 (−) 3.80 · 100 ± 4.36 · 10−4 (−) 3.80 · 100 ± 8.37 · 10−5

2 3.58 · 100 ± 4.48 · 10−2 (−) 3.57 · 100 ± 5.72 · 10−2 (−) 3.80 · 100 ± 1.16 · 10−3 (−) 3.80 · 100 ± 3.89 · 10−4

3 3.58 · 100 ± 3.02 · 10−2 (−) 3.57 · 100 ± 3.76 · 10−2 (−) 3.80 · 100 ± 1.73 · 10−4 (≈) 3.80 · 100 ± 5.62 · 10−5

4 3.57 · 100 ± 3.56 · 10−2 (−) 3.56 · 100 ± 3.62 · 10−2 (−) 3.80 · 100 ± 3.68 · 10−5 (−) 3.80 · 100 ± 2.65 · 10−4

5 3.58 · 100 ± 3.18 · 10−2 (−) 3.56 · 100 ± 4.78 · 10−2 (−) 3.80 · 100 ± 2.35 · 10−4 (≈) 3.80 · 100 ± 1.09 · 10−4

6 3.58 · 100 ± 2.40 · 10−2 (−) 3.58 · 100 ± 3.35 · 10−2 (−) 3.80 · 100 ± 2.67 · 10−4 (≈) 3.80 · 100 ± 1.54 · 10−4

10 3.56 · 100 ± 4.87 · 10−2 (−) 3.60 · 100 ± 2.43 · 10−2 (−) 3.79 · 100 ± 6.69 · 10−4 (≈) 3.79 · 100 ± 7.53 · 10−4

20 3.55 · 100 ± 2.89 · 10−2 (−) 3.59 · 100 ± 3.41 · 10−2 (−) 3.77 · 100 ± 3.43 · 10−3 (≈) 3.77 · 100 ± 4.06 · 10−3

SRN 1 2.38 · 104 ± 1.14 · 102 (−) 2.40 · 104 ± 1.53 · 102 (−) 2.50 · 104 ± 3.86 · 100 (≈) 2.50 · 104 ± 2.28 · 100

2 2.29 · 104 ± 2.99 · 102 (−) 2.34 · 104 ± 1.97 · 102 (−) 2.50 · 104 ± 1.13 · 101 (−) 2.50 · 104 ± 3.96 · 100

3 2.34 · 104 ± 2.55 · 102 (−) 2.35 · 104 ± 2.62 · 102 (−) 2.50 · 104 ± 6.39 · 100 (−) 2.50 · 104 ± 2.56 · 100

4 2.30 · 104 ± 2.84 · 102 (−) 2.33 · 104 ± 2.10 · 102 (−) 2.50 · 104 ± 2.80 · 100 (+) 2.50 · 104 ± 2.14 · 100

5 2.33 · 104 ± 2.32 · 102 (−) 2.35 · 104 ± 2.89 · 102 (−) 2.50 · 104 ± 2.62 · 100 (≈) 2.50 · 104 ± 2.78 · 100

6 2.33 · 104 ± 1.64 · 102 (−) 2.36 · 104 ± 1.43 · 102 (−) 2.50 · 104 ± 7.42 · 100 (≈) 2.50 · 104 ± 3.92 · 100

10 2.33 · 104 ± 2.03 · 102 (−) 2.37 · 104 ± 2.46 · 102 (−) 2.49 · 104 ± 3.07 · 101 (≈) 2.49 · 104 ± 2.99 · 101

20 2.31 · 104 ± 3.95 · 102 (−) 2.37 · 104 ± 1.39 · 102 (−) 2.48 · 104 ± 1.18 · 101 (≈) 2.48 · 104 ± 2.05 · 101

TNK 1 2.05 · 10−1 ± 1.38 · 10−2 (−) 2.87 · 10−1 ± 3.37 · 10−3 (−) 2.96 · 10−1 ± 1.65 · 10−3 (−) 3.03 · 10−1 ± 5.49 · 10−4

2 2.31 · 10−1 ± 1.75 · 10−2 (−) 2.75 · 10−1 ± 5.24 · 10−3 (−) 2.96 · 10−1 ± 1.99 · 10−3 (−) 3.05 · 10−1 ± 4.94 · 10−4

3 2.49 · 10−1 ± 1.70 · 10−2 (−) 2.84 · 10−1 ± 3.80 · 10−3 (−) 2.95 · 10−1 ± 3.09 · 10−3 (−) 3.06 · 10−1 ± 2.40 · 10−4

4 2.47 · 10−1 ± 1.34 · 10−2 (−) 2.71 · 10−1 ± 8.31 · 10−3 (−) 2.97 · 10−1 ± 1.80 · 10−3 (−) 3.06 · 10−1 ± 2.68 · 10−4

5 2.48 · 10−1 ± 1.13 · 10−2 (−) 2.77 · 10−1 ± 7.15 · 10−3 (−) 2.95 · 10−1 ± 2.26 · 10−3 (−) 3.06 · 10−1 ± 1.34 · 10−4

6 2.48 · 10−1 ± 1.47 · 10−2 (−) 2.81 · 10−1 ± 2.97 · 10−3 (−) 2.94 · 10−1 ± 1.25 · 10−3 (−) 3.06 · 10−1 ± 2.19 · 10−4

10 2.35 · 10−1 ± 1.21 · 10−2 (−) 2.73 · 10−1 ± 5.91 · 10−3 (−) 2.93 · 10−1 ± 2.56 · 10−3 (−) 3.06 · 10−1 ± 1.49 · 10−4

20 2.16 · 10−1 ± 1.11 · 10−2 (−) 2.72 · 10−1 ± 7.76 · 10−3 (−) 2.83 · 10−1 ± 3.23 · 10−3 (−) 3.01 · 10−1 ± 8.46 · 10−4

CTP1 1 2.86 · 10−1 ± 4.12 · 10−3 (−) 2.89 · 10−1 ± 2.64 · 10−3 (−) 3.02 · 10−1 ± 1.29 · 10−4 (≈) 3.02 · 10−1 ± 2.34 · 10−4

2 2.76 · 10−1 ± 2.99 · 10−3 (−) 2.74 · 10−1 ± 7.15 · 10−3 (−) 3.00 · 10−1 ± 1.63 · 10−3 (≈) 3.01 · 10−1 ± 1.45 · 10−3

3 2.78 · 10−1 ± 5.88 · 10−3 (−) 2.81 · 10−1 ± 6.28 · 10−3 (−) 3.02 · 10−1 ± 4.18 · 10−4 (≈) 3.02 · 10−1 ± 8.68 · 10−4

4 2.80 · 10−1 ± 2.48 · 10−3 (−) 2.77 · 10−1 ± 4.06 · 10−3 (−) 3.02 · 10−1 ± 4.10 · 10−4 (≈) 3.02 · 10−1 ± 3.57 · 10−4

5 2.74 · 10−1 ± 6.52 · 10−3 (−) 2.76 · 10−1 ± 4.81 · 10−3 (−) 3.02 · 10−1 ± 3.58 · 10−4 (≈) 3.02 · 10−1 ± 3.58 · 10−4

6 2.78 · 10−1 ± 4.94 · 10−3 (−) 2.79 · 10−1 ± 2.59 · 10−3 (−) 3.02 · 10−1 ± 3.14 · 10−4 (≈) 3.02 · 10−1 ± 3.14 · 10−4

10 2.76 · 10−1 ± 5.45 · 10−3 (−) 2.81 · 10−1 ± 3.46 · 10−3 (−) 3.01 · 10−1 ± 2.53 · 10−4 (≈) 3.01 · 10−1 ± 2.82 · 10−4

20 2.74 · 10−1 ± 4.44 · 10−3 (−) 2.81 · 10−1 ± 4.28 · 10−3 (−) 2.99 · 10−1 ± 8.59 · 10−4 (≈) 2.99 · 10−1 ± 1.05 · 10−3

C3DTLZ4 1 1.54 · 100 ± 9.41 · 10−2 (−) 1.23 · 100 ± 2.01 · 10−1 (−) 1.44 · 100 ± 5.31 · 10−2 (−) 1.74 · 100 ± 5.19 · 10−3

2 1.54 · 100 ± 9.22 · 10−2 (−) 1.54 · 100 ± 1.07 · 10−1 (−) 1.27 · 100 ± 5.91 · 10−2 (−) 1.75 · 100 ± 8.81 · 10−3

3 1.64 · 100 ± 2.19 · 10−2 (−) 1.65 · 100 ± 3.30 · 10−2 (−) 1.40 · 100 ± 5.46 · 10−2 (−) 1.76 · 100 ± 1.01 · 10−3

4 1.66 · 100 ± 1.50 · 10−2 (−) 1.69 · 100 ± 1.12 · 10−2 (−) 1.39 · 100 ± 3.50 · 10−2 (−) 1.77 · 100 ± 1.37 · 10−3

5 1.66 · 100 ± 2.01 · 10−2 (−) 1.69 · 100 ± 1.20 · 10−2 (−) 1.43 · 100 ± 4.12 · 10−2 (−) 1.77 · 100 ± 8.47 · 10−4

6 1.67 · 100 ± 1.57 · 10−2 (−) 1.71 · 100 ± 7.88 · 10−3 (−) 1.44 · 100 ± 5.84 · 10−2 (−) 1.77 · 100 ± 5.92 · 10−4

10 1.66 · 100 ± 1.84 · 10−2 (−) 1.72 · 100 ± 4.84 · 10−3 (−) 1.46 · 100 ± 6.98 · 10−2 (−) 1.77 · 100 ± 1.42 · 10−3

20 1.64 · 100 ± 2.17 · 10−2 (−) 1.72 · 100 ± 3.89 · 10−3 (−) 1.52 · 100 ± 3.39 · 10−2 (−) 1.76 · 100 ± 1.46 · 10−3

OSY 1 9.62 · 103 ± 1.98 · 103 (−) 1.13 · 104 ± 4.75 · 102 (−) 1.26 · 104 ± 4.21 · 100 (≈) 1.26 · 104 ± 2.78 · 100

2 1.18 · 104 ± 3.45 · 102 (−) 1.18 · 104 ± 2.70 · 102 (−) 1.26 · 104 ± 3.34 · 100 (−) 1.26 · 104 ± 3.66 · 100

3 1.21 · 104 ± 2.35 · 102 (−) 1.23 · 104 ± 6.57 · 101 (−) 1.26 · 104 ± 3.02 · 100 (≈) 1.26 · 104 ± 2.63 · 100

4 1.22 · 104 ± 1.36 · 102 (−) 1.23 · 104 ± 8.03 · 101 (−) 1.26 · 104 ± 2.79 · 100 (≈) 1.26 · 104 ± 5.11 · 100

5 1.23 · 104 ± 6.76 · 101 (−) 1.23 · 104 ± 7.50 · 101 (−) 1.26 · 104 ± 4.56 · 100 (≈) 1.26 · 104 ± 3.79 · 100

6 1.23 · 104 ± 4.06 · 101 (−) 1.24 · 104 ± 4.16 · 101 (−) 1.26 · 104 ± 6.01 · 100 (≈) 1.26 · 104 ± 6.76 · 100

10 1.24 · 104 ± 1.06 · 102 (−) 1.24 · 104 ± 5.34 · 101 (−) 1.24 · 104 ± 3.24 · 101 (≈) 1.24 · 104 ± 2.87 · 101

20 1.23 · 104 ± 1.40 · 102 (+) 1.23 · 104 ± 1.92 · 102 (+) 1.13 · 104 ± 3.43 · 102 (−) 1.16 · 104 ± 1.67 · 102

TBTD 1 3.46 · 102 ± 9.91 · 101 (−) 3.92 · 102 ± 4.59 · 101 (−) 4.95 · 102 ± 3.40 · 100 (≈) 4.96 · 102 ± 9.50 · 100

2 4.00 · 102 ± 3.40 · 101 (−) 4.37 · 102 ± 1.41 · 101 (−) 4.88 · 102 ± 6.06 · 100 (≈) 4.89 · 102 ± 8.70 · 100

3 4.18 · 102 ± 1.40 · 101 (−) 4.44 · 102 ± 1.56 · 101 (−) 4.73 · 102 ± 9.80 · 100 (−) 4.90 · 102 ± 6.64 · 100

4 4.17 · 102 ± 1.91 · 101 (−) 4.42 · 102 ± 2.26 · 101 (−) 4.70 · 102 ± 9.65 · 100 (−) 4.86 · 102 ± 8.77 · 100

5 4.16 · 102 ± 1.47 · 101 (−) 4.38 · 102 ± 1.54 · 101 (−) 4.77 · 102 ± 7.71 · 100 (−) 4.86 · 102 ± 5.72 · 100

6 4.25 · 102 ± 1.80 · 101 (−) 4.43 · 102 ± 1.44 · 101 (−) 4.72 · 102 ± 1.09 · 101 (≈) 4.76 · 102 ± 1.03 · 101

10 4.15 · 102 ± 2.92 · 101 (−) 4.46 · 102 ± 1.34 · 101 (−) 4.71 · 102 ± 6.75 · 100 (≈) 4.76 · 102 ± 5.01 · 100

20 4.26 · 102 ± 1.70 · 101 (−) 4.50 · 102 ± 1.19 · 101 (≈) 4.68 · 102 ± 4.84 · 100 (≈) 4.61 · 102 ± 9.27 · 100

NBP 1 7.71 · 105 ± 4.45 · 103 (−) 7.72 · 105 ± 8.82 · 103 (−) 7.98 · 105 ± 4.53 · 102 (−) 8.01 · 105 ± 8.88 · 100

2 7.62 · 105 ± 7.06 · 103 (−) 7.63 · 105 ± 5.29 · 103 (−) 7.99 · 105 ± 8.82 · 102 (−) 8.01 · 105 ± 6.72 · 101

3 7.67 · 105 ± 6.99 · 103 (−) 7.69 · 105 ± 3.09 · 103 (−) 7.99 · 105 ± 3.30 · 102 (−) 8.01 · 105 ± 1.03 · 101

4 7.56 · 105 ± 7.57 · 103 (−) 7.65 · 105 ± 7.17 · 103 (−) 7.98 · 105 ± 5.00 · 102 (−) 8.01 · 105 ± 3.08 · 101

5 7.63 · 105 ± 5.21 · 103 (−) 7.69 · 105 ± 3.60 · 103 (−) 7.97 · 105 ± 8.66 · 102 (−) 8.00 · 105 ± 1.36 · 102

6 7.66 · 105 ± 4.83 · 103 (−) 7.68 · 105 ± 6.03 · 103 (−) 7.98 · 105 ± 6.20 · 102 (−) 8.00 · 105 ± 1.48 · 102

10 7.66 · 105 ± 5.68 · 103 (−) 7.72 · 105 ± 3.84 · 103 (−) 7.96 · 105 ± 1.01 · 103 (−) 7.99 · 105 ± 5.26 · 102

20 7.61 · 105 ± 6.10 · 103 (−) 7.68 · 105 ± 4.32 · 103 (−) 7.78 · 105 ± 6.92 · 103 (−) 7.95 · 105 ± 5.81 · 102

DBD 1 3.38 · 101 ± 2.84 · 10−1 (−) 3.29 · 101 ± 1.12 · 100 (−) 3.46 · 101 ± 2.66 · 10−2 (+) 3.46 · 101 ± 1.06 · 10−1

2 3.37 · 101 ± 2.18 · 10−1 (−) 3.32 · 101 ± 3.25 · 10−1 (−) 3.46 · 101 ± 2.00 · 10−2 (+) 3.44 · 101 ± 1.15 · 10−1

3 3.40 · 101 ± 1.14 · 10−1 (−) 3.32 · 101 ± 4.90 · 10−1 (−) 3.46 · 101 ± 2.35 · 10−2 (−) 3.47 · 101 ± 2.46 · 10−3

4 3.37 · 101 ± 2.15 · 10−1 (−) 3.34 · 101 ± 2.14 · 10−1 (−) 3.45 · 101 ± 1.17 · 10−1 (−) 3.47 · 101 ± 4.22 · 10−3

5 3.37 · 101 ± 3.16 · 10−1 (−) 3.34 · 101 ± 2.82 · 10−1 (−) 3.46 · 101 ± 8.13 · 10−2 (≈) 3.46 · 101 ± 5.64 · 10−3

6 3.39 · 101 ± 9.60 · 10−2 (−) 3.31 · 101 ± 6.13 · 10−1 (−) 3.46 · 101 ± 5.80 · 10−2 (≈) 3.46 · 101 ± 5.86 · 10−2

10 3.38 · 101 ± 1.96 · 10−1 (−) 3.34 · 101 ± 3.22 · 10−1 (−) 3.45 · 101 ± 4.46 · 10−2 (≈) 3.46 · 101 ± 1.62 · 10−2

20 3.37 · 101 ± 2.51 · 10−1 (−) 3.31 · 101 ± 3.73 · 10−1 (−) 3.45 · 101 ± 1.72 · 10−2 (+) 3.44 · 101 ± 2.75 · 10−2

SRD 1 3.04 · 106 ± 1.91 · 104 (≈) 2.96 · 106 ± 5.49 · 104 (−) 3.07 · 106 ± 5.91 · 102 (+) 3.06 · 106 ± 6.25 · 103

2 3.06 · 106 ± 8.30 · 103 (≈) 3.06 · 106 ± 4.81 · 103 (−) 3.06 · 106 ± 7.83 · 102 (≈) 3.06 · 106 ± 1.02 · 103

3 3.06 · 106 ± 2.73 · 103 (+) 3.07 · 106 ± 1.45 · 103 (+) 3.06 · 106 ± 8.53 · 102 (−) 3.06 · 106 ± 7.05 · 102

4 3.06 · 106 ± 9.27 · 102 (+) 3.06 · 106 ± 9.80 · 102 (+) 3.06 · 106 ± 1.90 · 103 (−) 3.06 · 106 ± 8.32 · 102

5 3.06 · 106 ± 9.63 · 102 (+) 3.07 · 106 ± 5.04 · 102 (+) 3.06 · 106 ± 2.08 · 103 (−) 3.06 · 106 ± 6.44 · 102

6 3.06 · 106 ± 1.18 · 103 (+) 3.07 · 106 ± 6.02 · 102 (+) 3.06 · 106 ± 1.90 · 103 (−) 3.06 · 106 ± 7.64 · 102

10 3.06 · 106 ± 8.15 · 102 (+) 3.07 · 106 ± 5.43 · 102 (+) 3.05 · 106 ± 1.71 · 103 (−) 3.06 · 106 ± 1.25 · 103

20 3.06 · 106 ± 9.27 · 102 (+) 3.06 · 106 ± 7.54 · 102 (+) 3.04 · 106 ± 2.83 · 103 (−) 3.05 · 106 ± 1.61 · 103

Table continues on next page.
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5.3. Expensive and Inexpensive Function Optimization

Continuation of Table 5.9.
Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
WB 1 2.46 · 10−1 ± 5.47 · 10−2 (−) 4.19·10−1 ± 2.11·10−2 (+) 3.77 · 10−1 ± 1.01 · 10−2 (−) 4.15 · 10−1 ± 1.43 · 10−3

2 3.46 · 10−1 ± 4.48 · 10−2 (−) 4.20·10−1 ± 3.02·10−3 (≈) 3.87 · 10−1 ± 1.70 · 10−2 (−) 4.15 · 10−1 ± 8.41 · 10−3

3 3.73 · 10−1 ± 3.96 · 10−2 (−) 4.23·10−1 ± 3.73·10−3 (+) 4.06 · 10−1 ± 1.32 · 10−2 (≈) 4.14 · 10−1 ± 5.39 · 10−3

4 3.96 · 10−1 ± 1.95 · 10−2 (−) 4.23·10−1 ± 1.86·10−3 (+) 3.86 · 10−1 ± 1.39 · 10−2 (−) 4.11 · 10−1 ± 7.66 · 10−3

5 3.72 · 10−1 ± 6.19 · 10−2 (−) 4.22·10−1 ± 2.55·10−3 (+) 3.84 · 10−1 ± 2.23 · 10−2 (−) 4.14 · 10−1 ± 1.11 · 10−2

6 3.83 · 10−1 ± 3.70 · 10−2 (≈) 4.24·10−1 ± 1.84·10−3 (+) 3.79 · 10−1 ± 1.73 · 10−2 (−) 4.02 · 10−1 ± 1.64 · 10−2

10 3.92 · 10−1 ± 9.35 · 10−3 (≈) 4.25·10−1 ± 2.64·10−3 (+) 3.76 · 10−1 ± 1.69 · 10−2 (−) 3.96 · 10−1 ± 5.10 · 10−3

20 3.67 · 10−1 ± 7.21 · 10−2 (≈) 4.24·10−1 ± 2.30·10−3 (+) 3.72 · 10−1 ± 1.20 · 10−2 (≈) 3.78 · 10−1 ± 1.24 · 10−2

BICOP1 1 6.38 · 10−2 ± 9.98 · 10−2 (≈) 9.60 · 10−2 ± 1.05 · 10−1 (≈) 1.23·10−1 ± 1.62·10−1 (≈) 7.91 · 10−2 ± 1.16 · 10−1

2 5.98 · 10−1 ± 1.92 · 10−2 (+) 6.07·10−1 ± 1.34·10−2 (+) 3.17 · 10−1 ± 2.60 · 10−1 (≈) 4.16 · 10−1 ± 2.11 · 10−1

3 6.29 · 10−1 ± 1.03 · 10−2 (≈) 6.36·10−1 ± 4.84·10−3 (≈) 5.06 · 10−1 ± 2.54 · 10−1 (≈) 5.79 · 10−1 ± 8.34 · 10−2

4 6.41 · 10−1 ± 6.41 · 10−3 (≈) 6.43·10−1 ± 6.09·10−3 (≈) 6.34 · 10−1 ± 1.06 · 10−2 (≈) 6.09 · 10−1 ± 7.65 · 10−2

5 6.49 · 10−1 ± 4.38 · 10−3 (+) 6.50·10−1 ± 5.78·10−3 (+) 6.25 · 10−1 ± 1.39 · 10−2 (≈) 6.20 · 10−1 ± 1.31 · 10−2

6 6.53 · 10−1 ± 4.50 · 10−3 (+) 6.53·10−1 ± 3.46·10−3 (+) 5.89 · 10−1 ± 1.88 · 10−2 (≈) 5.99 · 10−1 ± 1.37 · 10−2

10 6.60·10−1 ± 1.08·10−3 (+) 6.59 · 10−1 ± 1.88 · 10−3 (+) 4.91 · 10−1 ± 4.87 · 10−2 (≈) 5.08 · 10−1 ± 3.28 · 10−2

20 6.60 · 10−1 ± 8.35 · 10−4 (+) 6.60·10−1 ± 7.77·10−4 (+) 2.98 · 10−1 ± 9.13 · 10−2 (≈) 2.68 · 10−1 ± 7.79 · 10−2

BICOP2 1 1.04 · 10−1 ± 2.31 · 10−2 (−) 1.17 · 10−1 ± 2.88 · 10−2 (−) 2.16 · 10−1 ± 4.01 · 10−2 (−) 2.82 · 10−1 ± 1.79 · 10−2

2 1.06 · 10−1 ± 3.53 · 10−2 (−) 1.76 · 10−1 ± 3.44 · 10−2 (−) 2.15 · 10−1 ± 4.28 · 10−2 (−) 3.11 · 10−1 ± 3.03 · 10−2

3 1.22 · 10−1 ± 3.01 · 10−2 (−) 1.53 · 10−1 ± 4.97 · 10−2 (−) 2.23 · 10−1 ± 4.93 · 10−2 (−) 3.01 · 10−1 ± 5.25 · 10−2

4 1.21 · 10−1 ± 3.67 · 10−2 (−) 1.67 · 10−1 ± 5.22 · 10−2 (≈) 2.34 · 10−1 ± 5.56 · 10−2 (≈) 2.50 · 10−1 ± 7.37 · 10−2

5 1.27 · 10−1 ± 4.19 · 10−2 (−) 1.77 · 10−1 ± 4.21 · 10−2 (≈) 2.53·10−1 ± 3.15·10−2 (≈) 2.24 · 10−1 ± 6.76 · 10−2

6 1.26 · 10−1 ± 3.79 · 10−2 (−) 1.55 · 10−1 ± 4.65 · 10−2 (≈) 2.65·10−1 ± 1.68·10−2 (≈) 2.13 · 10−1 ± 6.50 · 10−2

10 1.53 · 10−1 ± 3.98 · 10−2 (−) 1.45 · 10−1 ± 3.91 · 10−2 (−) 2.38 · 10−1 ± 2.77 · 10−2 (≈) 2.44 · 10−1 ± 4.47 · 10−2

20 1.54 · 10−1 ± 4.41 · 10−2 (−) 1.50 · 10−1 ± 4.22 · 10−2 (−) 2.25 · 10−1 ± 2.07 · 10−2 (−) 2.72 · 10−1 ± 1.60 · 10−2

MW1 1 0.00 · 100 ± 0.00 · 100 (−) 2.73 · 10−1 ± 4.54 · 10−2 (−) 1.66 · 10−2 ± 3.27 · 10−2 (−) 3.99 · 10−1 ± 5.85 · 10−5

2 2.40 · 10−1 ± 6.35 · 10−2 (−) 3.37 · 10−1 ± 5.49 · 10−3 (−) 1.92 · 10−1 ± 1.13 · 10−1 (−) 3.98 · 10−1 ± 8.02 · 10−5

3 2.82 · 10−1 ± 4.11 · 10−2 (−) 3.40 · 10−1 ± 1.00 · 10−2 (−) 3.10 · 10−1 ± 7.11 · 10−2 (−) 3.98 · 10−1 ± 1.55 · 10−4

4 3.24 · 10−1 ± 3.86 · 10−2 (−) 3.51 · 10−1 ± 1.15 · 10−2 (−) 2.20 · 10−1 ± 1.61 · 10−1 (−) 3.98 · 10−1 ± 1.56 · 10−4

5 3.49 · 10−1 ± 1.34 · 10−2 (−) 3.66 · 10−1 ± 6.28 · 10−3 (−) 2.09 · 10−1 ± 1.73 · 10−1 (−) 3.98 · 10−1 ± 1.70 · 10−4

6 3.56 · 10−1 ± 1.61 · 10−2 (−) 3.80 · 10−1 ± 5.43 · 10−3 (−) 2.55 · 10−1 ± 1.25 · 10−1 (−) 3.98 · 10−1 ± 5.34 · 10−4

10 3.56 · 10−1 ± 2.92 · 10−2 (−) 3.90 · 10−1 ± 1.81 · 10−3 (−) 1.63 · 10−1 ± 1.23 · 10−1 (−) 3.97 · 10−1 ± 1.10 · 10−3

20 3.72 · 10−1 ± 1.15 · 10−2 (≈) 3.93·10−1 ± 1.16·10−3 (+) 2.09 · 10−1 ± 1.15 · 10−1 (≈) 2.73 · 10−1 ± 1.46 · 10−1

MW2 1 2.86 · 10−2 ± 5.73 · 10−2 (−) 4.24·10−1 ± 1.51·10−2 (+) 1.60 · 10−1 ± 6.38 · 10−2 (−) 3.85 · 10−1 ± 2.32 · 10−2

2 2.63 · 10−1 ± 6.16 · 10−2 (−) 4.33·10−1 ± 6.25·10−3 (≈) 1.82 · 10−1 ± 1.22 · 10−1 (−) 4.19 · 10−1 ± 2.06 · 10−2

3 2.93 · 10−1 ± 8.71 · 10−2 (−) 4.41·10−1 ± 8.60·10−3 (≈) 1.98 · 10−1 ± 1.12 · 10−1 (−) 4.00 · 10−1 ± 6.68 · 10−2

4 3.42 · 10−1 ± 8.05 · 10−2 (≈) 4.40·10−1 ± 8.97·10−3 (+) 1.66 · 10−1 ± 1.03 · 10−1 (−) 3.47 · 10−1 ± 7.45 · 10−2

5 3.38 · 10−1 ± 7.90 · 10−2 (−) 4.42·10−1 ± 8.72·10−3 (+) 1.35 · 10−1 ± 7.24 · 10−2 (−) 3.96 · 10−1 ± 5.05 · 10−2

6 3.40 · 10−1 ± 7.84 · 10−2 (−) 4.42·10−1 ± 7.95·10−3 (+) 1.43 · 10−1 ± 9.95 · 10−2 (−) 4.11 · 10−1 ± 2.91 · 10−2

10 3.20 · 10−1 ± 1.07 · 10−1 (≈) 4.45·10−1 ± 1.08·10−2 (+) 1.04 · 10−1 ± 8.28 · 10−2 (−) 3.78 · 10−1 ± 3.47 · 10−2

20 3.33 · 10−1 ± 9.66 · 10−2 (≈) 4.49·10−1 ± 9.99·10−3 (+) 1.31 · 10−1 ± 1.09 · 10−1 (−) 3.10 · 10−1 ± 4.45 · 10−2

MW3 1 1.04 · 10−1 ± 1.48 · 10−1 (−) 4.10 · 10−1 ± 9.41 · 10−3 (−) 3.72 · 10−1 ± 2.46 · 10−2 (−) 4.50 · 10−1 ± 9.80 · 10−4

2 4.06 · 10−1 ± 1.30 · 10−2 (−) 4.22 · 10−1 ± 3.38 · 10−3 (−) 4.07 · 10−1 ± 8.56 · 10−3 (−) 4.51 · 10−1 ± 1.70 · 10−3

3 4.22 · 10−1 ± 6.32 · 10−3 (−) 4.29 · 10−1 ± 3.08 · 10−3 (−) 4.29 · 10−1 ± 1.08 · 10−2 (−) 4.52 · 10−1 ± 4.92 · 10−4

4 4.22 · 10−1 ± 2.48 · 10−3 (−) 4.32 · 10−1 ± 3.15 · 10−3 (−) 4.43 · 10−1 ± 5.59 · 10−3 (−) 4.52 · 10−1 ± 2.32 · 10−4

5 4.26 · 10−1 ± 4.97 · 10−3 (−) 4.36 · 10−1 ± 2.39 · 10−3 (−) 4.43 · 10−1 ± 3.76 · 10−3 (−) 4.51 · 10−1 ± 1.01 · 10−3

6 4.25 · 10−1 ± 2.38 · 10−3 (−) 4.37 · 10−1 ± 3.88 · 10−3 (−) 4.42 · 10−1 ± 3.55 · 10−3 (−) 4.50 · 10−1 ± 7.45 · 10−4

10 4.29 · 10−1 ± 3.28 · 10−3 (−) 4.41 · 10−1 ± 1.21 · 10−3 (−) 4.36 · 10−1 ± 1.97 · 10−3 (−) 4.48 · 10−1 ± 6.46 · 10−4

20 4.28 · 10−1 ± 4.92 · 10−3 (−) 4.40 · 10−1 ± 1.41 · 10−3 (−) 4.29 · 10−1 ± 2.55 · 10−3 (−) 4.44 · 10−1 ± 7.06 · 10−4

MW11 1 6.65 · 10−1 ± 2.63 · 10−1 (−) 1.36 ·100 ± 4.41 ·10−2 (+) 9.80 · 10−1 ± 3.80 · 10−1 (≈) 1.10 · 100 ± 1.99 · 10−1

2 1.17 · 100 ± 1.75 · 10−1 (≈) 1.42 ·100 ± 2.43 ·10−2 (+) 9.82 · 10−1 ± 1.74 · 10−1 (−) 1.17 · 100 ± 1.55 · 10−1

3 1.09 · 100 ± 2.30 · 10−1 (−) 1.44 · 100 ± 1.83 · 10−2 (−) 9.92 · 10−1 ± 1.97 · 10−1 (−) 1.49 · 100 ± 4.23 · 10−2

4 1.03 · 100 ± 2.44 · 10−1 (−) 1.46 · 100 ± 1.81 · 10−2 (−) 9.99 · 10−1 ± 1.23 · 10−1 (−) 1.51 · 100 ± 1.40 · 10−2

5 1.04 · 100 ± 2.41 · 10−1 (−) 1.46 · 100 ± 9.42 · 10−3 (−) 1.06 · 100 ± 1.80 · 10−1 (−) 1.52 · 100 ± 8.07 · 10−3

6 9.08 · 10−1 ± 1.57 · 10−1 (−) 1.48 · 100 ± 8.50 · 10−3 (−) 9.75 · 10−1 ± 2.81 · 10−1 (−) 1.52 · 100 ± 1.26 · 10−2

10 9.52 · 10−1 ± 2.21 · 10−1 (−) 1.49 · 100 ± 8.09 · 10−3 (−) 8.27 · 10−1 ± 1.73 · 10−1 (−) 1.52 · 100 ± 5.60 · 10−3

20 8.02 · 10−1 ± 1.80 · 10−1 (−) 1.49 · 100 ± 1.53 · 10−2 (−) 8.78 · 10−1 ± 5.96 · 10−2 (−) 1.50 · 100 ± 6.86 · 10−3

TRICOP 1 4.47 · 101 ± 2.03 · 100 (−) 4.57 · 101 ± 1.19 · 100 (−) 4.97 ·101 ± 6.30 ·10−3 (≈) 4.97 · 101 ± 3.81 · 10−2

2 4.19 · 101 ± 1.56 · 100 (−) 4.55 · 101 ± 7.37 · 10−1 (−) 4.96 · 101 ± 2.76 · 10−2 (≈) 4.97 · 101 ± 3.93 · 10−2

3 4.31 · 101 ± 1.75 · 100 (−) 4.63 · 101 ± 5.46 · 10−1 (−) 4.97 ·101 ± 1.93 ·10−2 (+) 4.96 · 101 ± 3.41 · 10−2

4 4.31 · 101 ± 1.50 · 100 (−) 4.63 · 101 ± 6.92 · 10−1 (−) 4.96 ·101 ± 4.30 ·10−2 (≈) 4.96 · 101 ± 3.22 · 10−2

5 4.26 · 101 ± 1.45 · 100 (−) 4.66 · 101 ± 3.57 · 10−1 (−) 4.97 ·101 ± 2.46 ·10−2 (≈) 4.97 · 101 ± 2.45 · 10−2

6 4.36 · 101 ± 1.48 · 100 (−) 4.63 · 101 ± 5.04 · 10−1 (−) 4.97 ·101 ± 3.34 ·10−2 (≈) 4.97 · 101 ± 5.05 · 10−2

10 4.40 · 101 ± 1.43 · 100 (−) 4.71 · 101 ± 3.92 · 10−1 (−) 4.97 ·101 ± 3.00 ·10−2 (≈) 4.97 · 101 ± 1.95 · 10−2

20 4.55 · 101 ± 8.60 · 10−1 (−) 4.76 · 101 ± 3.49 · 10−1 (−) 4.95 · 101 ± 4.39 · 10−2 (≈) 4.95 · 101 ± 2.77 · 10−2

SPD 1 5.04 · 109 ± 8.11 · 107 (−) 4.95 · 109 ± 1.07 · 108 (−) 5.87 · 109 ± 1.68 · 107 (−) 6.01 · 109 ± 1.95 · 106

2 4.88 · 109 ± 1.58 · 108 (−) 5.05 · 109 ± 6.73 · 107 (−) 5.91 · 109 ± 2.36 · 107 (−) 6.02 · 109 ± 3.06 · 106

3 5.02 · 109 ± 7.48 · 107 (−) 5.08 · 109 ± 8.10 · 107 (−) 5.93 · 109 ± 9.35 · 106 (−) 6.01 · 109 ± 2.47 · 106

4 4.97 · 109 ± 1.19 · 108 (−) 5.02 · 109 ± 7.63 · 107 (−) 5.93 · 109 ± 6.67 · 106 (−) 6.01 · 109 ± 3.71 · 106

5 5.06 · 109 ± 8.50 · 107 (−) 5.03 · 109 ± 1.44 · 108 (−) 5.91 · 109 ± 1.68 · 107 (−) 6.01 · 109 ± 3.20 · 106

6 5.07 · 109 ± 5.48 · 107 (−) 5.05 · 109 ± 5.88 · 107 (−) 5.91 · 109 ± 1.17 · 107 (−) 6.00 · 109 ± 5.75 · 106

10 5.08 · 109 ± 6.05 · 107 (−) 5.06 · 109 ± 9.73 · 107 (−) 5.86 · 109 ± 2.25 · 107 (−) 5.99 · 109 ± 3.85 · 106

20 5.08 · 109 ± 1.15 · 108 (−) 5.04 · 109 ± 8.77 · 107 (−) 5.80 · 109 ± 2.77 · 107 (−) 5.93 · 109 ± 1.02 · 107

CSI 1 7.31 · 100 ± 9.10 · 10−2 (−) 6.06 · 100 ± 3.59 · 10−1 (−) 8.33 · 100 ± 6.84 · 10−2 (≈) 8.35 · 100 ± 9.34 · 10−2

2 7.11 · 100 ± 1.34 · 10−1 (−) 7.04 · 100 ± 7.90 · 10−2 (−) 8.45 · 100 ± 1.70 · 10−2 (≈) 8.46 · 100 ± 2.16 · 10−2

3 7.20 · 100 ± 1.01 · 10−1 (−) 7.12 · 100 ± 1.45 · 10−1 (−) 8.47 · 100 ± 1.32 · 10−2 (−) 8.49 · 100 ± 5.44 · 10−3

4 7.13 · 100 ± 6.49 · 10−2 (−) 7.14 · 100 ± 7.68 · 10−2 (−) 8.46 · 100 ± 1.36 · 10−2 (−) 8.48 · 100 ± 9.85 · 10−3

5 7.09 · 100 ± 6.13 · 10−2 (−) 7.10 · 100 ± 1.75 · 10−1 (−) 8.46 · 100 ± 1.11 · 10−2 (−) 8.48 · 100 ± 7.05 · 10−3

6 7.14 · 100 ± 1.04 · 10−1 (−) 7.17 · 100 ± 9.63 · 10−2 (−) 8.45 · 100 ± 1.00 · 10−2 (≈) 8.46 · 100 ± 1.21 · 10−2

10 7.21 · 100 ± 1.05 · 10−1 (−) 7.19 · 100 ± 6.00 · 10−2 (−) 8.33 · 100 ± 1.89 · 10−2 (−) 8.35 · 100 ± 1.28 · 10−2

20 7.10 · 100 ± 1.68 · 10−1 (−) 7.22 · 100 ± 1.10 · 10−1 (−) 7.90 ·100 ± 8.04 ·10−2 (≈) 7.86 · 100 ± 4.02 · 10−2

WP 1 1.03 · 1018 ± 3.31 · 1017 (−) 1.00 · 1018 ± 2.70 · 1017 (−) 3.42 · 1018 ± 8.57 · 1015 (≈) 3.42 · 1018 ± 7.12 · 1015

2 1.47 · 1018 ± 2.17 · 1017 (−) 1.36 · 1018 ± 4.05 · 1017 (−) 3.44·1018 ± 1.62·1015 (+) 3.42 · 1018 ± 5.17 · 1015

3 1.61 · 1018 ± 2.10 · 1017 (−) 1.47 · 1018 ± 2.37 · 1017 (−) 3.42 · 1018 ± 1.04 · 1016 (≈) 3.42 · 1018 ± 8.90 · 1015

4 1.70 · 1018 ± 1.89 · 1017 (−) 1.53 · 1018 ± 2.55 · 1017 (−) 3.42·1018 ± 7.99·1015 (≈) 3.42 · 1018 ± 5.15 · 1015

5 1.69 · 1018 ± 2.27 · 1017 (−) 1.57 · 1018 ± 3.08 · 1017 (−) 3.42·1018 ± 6.03·1015 (+) 3.41 · 1018 ± 1.46 · 1016

6 1.86 · 1018 ± 1.69 · 1017 (−) 1.58 · 1018 ± 3.50 · 1017 (−) 3.42·1018 ± 5.69·1015 (+) 3.40 · 1018 ± 1.47 · 1016

10 1.97 · 1018 ± 2.78 · 1017 (−) 1.70 · 1018 ± 2.86 · 1017 (−) 3.37 · 1018 ± 1.51 · 1016 (−) 3.40 · 1018 ± 6.14 · 1015

20 1.90 · 1018 ± 2.51 · 1017 (−) 1.79 · 1018 ± 2.84 · 1017 (−) 3.37·1018 ± 7.01·1015 (≈) 3.37 · 1018 ± 1.09 · 1016

Wilcoxon summary 151−, 13 ≈, 12+ 138−, 10 ≈, 28+ 95−, 71 ≈, 10+ reference algorithm
Mean Friedman rank 3.35 2.79 2.30 1.56
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Chapter 5. Multi Objective Simulation Based Optimization

Table 5.10: IGD+ score ± standard deviation of IGD+, Wilcoxon rank sum test with
probability value = 0.05 (reference algorithm: IOC-SAMO-COBRA), per test function and
candidate solutions size p. The lowest IGD+ per row is reported in bold, best scoring
algorithm per test function is highlighted .

Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
BNH 1 1.77 · 10−2 ± 2.89 · 10−3 (−) 2.15 · 10−2 ± 3.60 · 10−3 (−) 2.06 · 10−3 ± 1.44 · 10−5 (≈) 2.06 · 10−3 ± 1.08 · 10−5

2 1.95 · 10−2 ± 1.39 · 10−3 (−) 2.21 · 10−2 ± 2.89 · 10−3 (−) 2.12 · 10−3 ± 1.14 · 10−5 (≈) 2.12 · 10−3 ± 1.52 · 10−5

3 1.81 · 10−2 ± 2.50 · 10−3 (−) 2.03 · 10−2 ± 2.92 · 10−3 (−) 2.13 · 10−3 ± 3.93 · 10−5 (≈) 2.12 · 10−3 ± 2.83 · 10−5

4 1.75 · 10−2 ± 1.61 · 10−3 (−) 2.11 · 10−2 ± 1.95 · 10−3 (−) 2.12 · 10−3 ± 4.18 · 10−5 (≈) 2.15 · 10−3 ± 4.39 · 10−5

5 1.94 · 10−2 ± 2.28 · 10−3 (−) 2.05 · 10−2 ± 2.19 · 10−3 (−) 2.14 · 10−3 ± 2.59 · 10−5 (≈) 2.13 · 10−3 ± 3.13 · 10−5

6 1.84 · 10−2 ± 1.03 · 10−3 (−) 1.79 · 10−2 ± 2.52 · 10−3 (−) 2.09 · 10−3 ± 5.02 · 10−5 (≈) 2.09 · 10−3 ± 3.86 · 10−5

10 1.85 · 10−2 ± 1.72 · 10−3 (−) 1.97 · 10−2 ± 2.28 · 10−3 (−) 2.40 · 10−3 ± 5.77 · 10−5 (≈) 2.42 · 10−3 ± 5.79 · 10−5

20 1.67 · 10−2 ± 2.40 · 10−3 (−) 1.89 · 10−2 ± 2.32 · 10−3 (−) 3.03 · 10−3 ± 5.58 · 10−5 (≈) 3.06 · 10−3 ± 6.72 · 10−5

CEXP 1 1.79 · 10−2 ± 2.35 · 10−3 (−) 1.83 · 10−2 ± 6.60 · 10−3 (−) 2.54 · 10−3 ± 4.97 · 10−5 (−) 2.17 · 10−3 ± 1.17 · 10−5

2 2.50 · 10−2 ± 4.41 · 10−3 (−) 2.60 · 10−2 ± 6.07 · 10−3 (−) 2.43 · 10−3 ± 1.16 · 10−4 (−) 2.35 · 10−3 ± 4.84 · 10−5

3 2.50 · 10−2 ± 3.26 · 10−3 (−) 2.66 · 10−2 ± 3.94 · 10−3 (−) 2.17 · 10−3 ± 5.72 · 10−5 (≈) 2.15 · 10−3 ± 8.76 · 10−6

4 2.57 · 10−2 ± 3.90 · 10−3 (−) 2.69 · 10−2 ± 3.73 · 10−3 (−) 2.36 · 10−3 ± 1.49 · 10−5 (≈) 2.38 · 10−3 ± 4.91 · 10−5

5 2.51 · 10−2 ± 3.15 · 10−3 (−) 2.73 · 10−2 ± 5.23 · 10−3 (−) 2.45 · 10−3 ± 3.29 · 10−5 (≈) 2.46 · 10−3 ± 3.09 · 10−5

6 2.52 · 10−2 ± 2.47 · 10−3 (−) 2.46 · 10−2 ± 3.33 · 10−3 (−) 2.34 · 10−3 ± 5.45 · 10−5 (≈) 2.33 · 10−3 ± 4.39 · 10−5

10 2.67 · 10−2 ± 5.05 · 10−3 (−) 2.31 · 10−2 ± 2.66 · 10−3 (−) 2.88 · 10−3 ± 8.27 · 10−5 (≈) 2.84 · 10−3 ± 6.72 · 10−5

20 2.81 · 10−2 ± 3.01 · 10−3 (−) 2.39 · 10−2 ± 3.53 · 10−3 (−) 5.00 · 10−3 ± 3.61 · 10−4 (≈) 4.99 · 10−3 ± 4.43 · 10−4

SRN 1 1.89 · 10−2 ± 1.70 · 10−3 (−) 1.54 · 10−2 ± 1.73 · 10−3 (−) 3.47 · 10−3 ± 4.37 · 10−5 (−) 3.39 · 10−3 ± 3.39 · 10−5

2 3.06 · 10−2 ± 6.16 · 10−3 (−) 2.23 · 10−2 ± 4.60 · 10−3 (−) 3.66 · 10−3 ± 1.52 · 10−4 (−) 3.32 · 10−3 ± 5.62 · 10−5

3 2.09 · 10−2 ± 2.54 · 10−3 (−) 2.02 · 10−2 ± 2.50 · 10−3 (−) 3.56 · 10−3 ± 5.90 · 10−5 (−) 3.31 · 10−3 ± 3.23 · 10−5

4 2.45 · 10−2 ± 3.00 · 10−3 (−) 2.25 · 10−2 ± 2.36 · 10−3 (−) 3.82 · 10−3 ± 5.09 · 10−5 (+) 4.02 · 10−3 ± 3.30 · 10−5

5 2.24 · 10−2 ± 2.40 · 10−3 (−) 1.98 · 10−2 ± 3.02 · 10−3 (−) 3.25 · 10−3 ± 3.31 · 10−5 (≈) 3.23 · 10−3 ± 4.57 · 10−5

6 2.17 · 10−2 ± 1.66 · 10−3 (−) 1.89 · 10−2 ± 1.60 · 10−3 (−) 3.25 · 10−3 ± 9.15 · 10−5 (≈) 3.20 · 10−3 ± 7.84 · 10−5

10 2.20 · 10−2 ± 2.10 · 10−3 (−) 1.82 · 10−2 ± 2.36 · 10−3 (−) 4.97 · 10−3 ± 3.33 · 10−4 (≈) 5.01 · 10−3 ± 2.88 · 10−4

20 2.37 · 10−2 ± 4.11 · 10−3 (−) 1.75 · 10−2 ± 1.39 · 10−3 (−) 5.58 · 10−3 ± 1.63 · 10−4 (≈) 5.68 · 10−3 ± 2.12 · 10−4

TNK 1 1.01 · 10−1 ± 2.12 · 10−2 (−) 1.42 · 10−2 ± 2.16 · 10−3 (−) 9.36 · 10−3 ± 1.10 · 10−3 (−) 3.81 · 10−3 ± 3.15 · 10−4

2 6.63 · 10−2 ± 2.19 · 10−2 (−) 2.13 · 10−2 ± 3.89 · 10−3 (−) 9.14 · 10−3 ± 1.52 · 10−3 (−) 2.68 · 10−3 ± 2.64 · 10−4

3 4.75 · 10−2 ± 1.65 · 10−2 (−) 1.97 · 10−2 ± 4.01 · 10−3 (−) 1.03 · 10−2 ± 2.01 · 10−3 (−) 2.34 · 10−3 ± 1.24 · 10−4

4 4.29 · 10−2 ± 8.54 · 10−3 (−) 2.12 · 10−2 ± 3.24 · 10−3 (−) 8.88 · 10−3 ± 1.46 · 10−3 (−) 2.26 · 10−3 ± 1.64 · 10−4

5 3.56 · 10−2 ± 6.84 · 10−3 (−) 1.99 · 10−2 ± 4.01 · 10−3 (−) 1.04 · 10−2 ± 1.77 · 10−3 (−) 2.31 · 10−3 ± 7.63 · 10−5

6 3.27 · 10−2 ± 7.32 · 10−3 (−) 1.72 · 10−2 ± 2.30 · 10−3 (−) 1.14 · 10−2 ± 1.07 · 10−3 (−) 2.33 · 10−3 ± 1.28 · 10−4

10 3.84 · 10−2 ± 5.80 · 10−3 (−) 2.14 · 10−2 ± 3.90 · 10−3 (−) 1.11 · 10−2 ± 1.54 · 10−3 (−) 2.84 · 10−3 ± 1.19 · 10−4

20 4.53 · 10−2 ± 6.25 · 10−3 (−) 2.08 · 10−2 ± 3.36 · 10−3 (−) 1.85 · 10−2 ± 1.75 · 10−3 (−) 5.97 · 10−3 ± 5.56 · 10−4

CTP1 1 2.29 · 10−2 ± 4.86 · 10−3 (−) 1.87 · 10−2 ± 2.91 · 10−3 (−) 4.39 · 10−3 ± 1.56 · 10−4 (≈) 4.48 · 10−3 ± 2.87 · 10−4

2 3.43 · 10−2 ± 3.52 · 10−3 (−) 3.62 · 10−2 ± 8.82 · 10−3 (−) 6.82 · 10−3 ± 1.72 · 10−3 (≈) 6.38 · 10−3 ± 1.41 · 10−3

3 3.13 · 10−2 ± 6.48 · 10−3 (−) 2.75 · 10−2 ± 6.81 · 10−3 (−) 4.93 · 10−3 ± 4.39 · 10−4 (≈) 5.00 · 10−3 ± 8.95 · 10−4

4 2.91 · 10−2 ± 2.52 · 10−3 (−) 3.26 · 10−2 ± 4.12 · 10−3 (−) 5.12 · 10−3 ± 4.82 · 10−4 (≈) 5.06 · 10−3 ± 4.51 · 10−4

5 3.56 · 10−2 ± 6.89 · 10−3 (−) 3.38 · 10−2 ± 5.08 · 10−3 (−) 5.24 · 10−3 ± 4.87 · 10−4 (≈) 5.24 · 10−3 ± 4.87 · 10−4

6 3.17 · 10−2 ± 5.38 · 10−3 (−) 2.98 · 10−2 ± 2.93 · 10−3 (−) 4.64 · 10−3 ± 2.99 · 10−4 (≈) 4.64 · 10−3 ± 2.99 · 10−4

10 3.43 · 10−2 ± 6.21 · 10−3 (−) 2.85 · 10−2 ± 3.84 · 10−3 (−) 5.59 · 10−3 ± 3.13 · 10−4 (≈) 5.71 · 10−3 ± 3.34 · 10−4

20 3.47 · 10−2 ± 4.60 · 10−3 (−) 2.91 · 10−2 ± 5.41 · 10−3 (−) 8.78 · 10−3 ± 1.04 · 10−3 (≈) 8.26 · 10−3 ± 1.26 · 10−3

C3DTLZ4 1 3.69 · 10−2 ± 1.18 · 10−2 (−) 7.80 · 10−2 ± 3.13 · 10−2 (−) 4.38 · 10−2 ± 6.68 · 10−3 (−) 5.71 · 10−3 ± 6.34 · 10−4

2 4.23 · 10−2 ± 1.83 · 10−2 (−) 3.22 · 10−2 ± 1.46 · 10−2 (−) 6.59 · 10−2 ± 7.44 · 10−3 (−) 4.63 · 10−3 ± 1.08 · 10−3

3 2.12 · 10−2 ± 3.48 · 10−3 (−) 1.77 · 10−2 ± 4.18 · 10−3 (−) 4.79 · 10−2 ± 6.48 · 10−3 (−) 2.48 · 10−3 ± 1.45 · 10−4

4 1.98 · 10−2 ± 1.49 · 10−3 (−) 1.33 · 10−2 ± 1.59 · 10−3 (−) 5.18 · 10−2 ± 4.42 · 10−3 (−) 2.42 · 10−3 ± 1.64 · 10−4

5 1.86 · 10−2 ± 1.81 · 10−3 (−) 1.20 · 10−2 ± 1.58 · 10−3 (−) 4.75 · 10−2 ± 5.26 · 10−3 (−) 2.23 · 10−3 ± 1.31 · 10−4

6 1.68 · 10−2 ± 1.94 · 10−3 (−) 1.00 · 10−2 ± 1.02 · 10−3 (−) 4.51 · 10−2 ± 8.05 · 10−3 (−) 2.15 · 10−3 ± 7.18 · 10−5

10 1.66 · 10−2 ± 2.44 · 10−3 (−) 8.14 · 10−3 ± 7.08 · 10−4 (−) 5.22 · 10−2 ± 1.80 · 10−2 (−) 2.33 · 10−3 ± 1.67 · 10−4

20 1.91 · 10−2 ± 2.98 · 10−3 (−) 8.04 · 10−3 ± 5.96 · 10−4 (−) 6.22 · 10−2 ± 1.54 · 10−2 (−) 2.71 · 10−3 ± 1.66 · 10−4

OSY 1 1.08 · 10−1 ± 7.19 · 10−2 (−) 4.87 · 10−2 ± 1.38 · 10−2 (−) 9.78 · 10−4 ± 1.23 · 10−4 (+) 1.07 · 10−3 ± 4.00 · 10−5

2 3.11 · 10−2 ± 1.13 · 10−2 (−) 3.23 · 10−2 ± 9.08 · 10−3 (−) 9.60 · 10−4 ± 4.80 · 10−5 (−) 8.35 · 10−4 ± 8.30 · 10−5

3 2.05 · 10−2 ± 6.24 · 10−3 (−) 1.61 · 10−2 ± 3.05 · 10−3 (−) 9.91 · 10−4 ± 6.88 · 10−5 (−) 9.38 · 10−4 ± 4.70 · 10−5

4 1.69 · 10−2 ± 4.00 · 10−3 (−) 1.54 · 10−2 ± 4.47 · 10−3 (−) 1.24 · 10−3 ± 7.74 · 10−5 (≈) 1.26 · 10−3 ± 1.30 · 10−4

5 1.35 · 10−2 ± 3.60 · 10−3 (−) 1.23 · 10−2 ± 2.71 · 10−3 (−) 1.54 · 10−3 ± 8.39 · 10−5 (≈) 1.54 · 10−3 ± 1.02 · 10−4

6 1.21 · 10−2 ± 2.18 · 10−3 (−) 1.17 · 10−2 ± 2.25 · 10−3 (−) 2.14 · 10−3 ± 1.76 · 10−4 (≈) 2.01 · 10−3 ± 1.61 · 10−4

10 1.14 · 10−2 ± 3.75 · 10−3 (−) 1.20 · 10−2 ± 3.15 · 10−3 (−) 7.60 · 10−3 ± 1.10 · 10−3 (≈) 7.26 · 10−3 ± 8.61 · 10−4

20 1.31 · 10−2 ± 7.56 · 10−3 (+) 1.31 · 10−2 ± 5.45 · 10−3 (+) 4.22 · 10−2 ± 1.06 · 10−2 (≈) 3.67 · 10−2 ± 5.01 · 10−3

TBTD 1 4.43 · 10−2 ± 3.30 · 10−2 (−) 2.20 · 10−2 ± 8.82 · 10−3 (−) 6.43 · 10−3 ± 9.72 · 10−4 (−) 4.27 · 10−3 ± 2.41 · 10−3

2 2.87 · 10−2 ± 6.48 · 10−3 (−) 1.46 · 10−2 ± 5.57 · 10−3 (−) 1.10 · 10−2 ± 2.68 · 10−3 (−) 5.94 · 10−3 ± 2.08 · 10−3

3 2.17 · 10−2 ± 3.41 · 10−3 (−) 1.40 · 10−2 ± 4.45 · 10−3 (−) 1.37 · 10−2 ± 5.00 · 10−3 (−) 5.24 · 10−3 ± 1.22 · 10−3

4 1.56 · 10−2 ± 3.89 · 10−3 (−) 1.14 · 10−2 ± 2.67 · 10−3 (−) 1.46 · 10−2 ± 3.13 · 10−3 (−) 6.47 · 10−3 ± 1.29 · 10−3

5 1.72 · 10−2 ± 3.94 · 10−3 (−) 1.20 · 10−2 ± 2.80 · 10−3 (−) 1.19 · 10−2 ± 2.65 · 10−3 (−) 6.60 · 10−3 ± 1.12 · 10−3

6 1.38 · 10−2 ± 4.03 · 10−3 (−) 1.12 · 10−2 ± 2.78 · 10−3 (≈) 1.53 · 10−2 ± 4.81 · 10−3 (−) 8.85 · 10−3 ± 2.62 · 10−3

10 1.20 · 10−2 ± 3.09 · 10−3 (≈) 1.07 · 10−2 ± 3.27 · 10−3 (≈) 1.56 · 10−2 ± 6.24 · 10−3 (−) 1.02 · 10−2 ± 1.53 · 10−3

20 1.14 · 10−2 ± 1.54 · 10−3 (≈) 9.82 · 10−3 ± 2.00 · 10−3 (+) 1.55 · 10−2 ± 3.37 · 10−3 (≈) 1.36 · 10−2 ± 3.73 · 10−3

NBP 1 1.83 · 10−2 ± 2.50 · 10−3 (−) 1.82 · 10−2 ± 4.90 · 10−3 (−) 3.76 · 10−3 ± 1.78 · 10−4 (−) 2.33 · 10−3 ± 3.94 · 10−5

2 2.32 · 10−2 ± 4.35 · 10−3 (−) 2.27 · 10−2 ± 2.88 · 10−3 (−) 3.64 · 10−3 ± 4.00 · 10−4 (−) 2.32 · 10−3 ± 5.64 · 10−5

3 2.00 · 10−2 ± 3.63 · 10−3 (−) 1.91 · 10−2 ± 1.80 · 10−3 (−) 3.64 · 10−3 ± 1.72 · 10−4 (−) 2.46 · 10−3 ± 1.46 · 10−5

4 2.60 · 10−2 ± 4.15 · 10−3 (−) 2.13 · 10−2 ± 3.90 · 10−3 (−) 3.87 · 10−3 ± 2.37 · 10−4 (−) 2.45 · 10−3 ± 2.87 · 10−5

5 2.23 · 10−2 ± 2.68 · 10−3 (−) 1.88 · 10−2 ± 2.01 · 10−3 (−) 4.41 · 10−3 ± 4.01 · 10−4 (−) 2.88 · 10−3 ± 9.64 · 10−5

6 2.09 · 10−2 ± 2.49 · 10−3 (−) 1.98 · 10−2 ± 3.48 · 10−3 (−) 4.03 · 10−3 ± 3.02 · 10−4 (−) 3.03 · 10−3 ± 7.37 · 10−5

10 2.11 · 10−2 ± 2.92 · 10−3 (−) 1.77 · 10−2 ± 2.28 · 10−3 (−) 5.38 · 10−3 ± 4.40 · 10−4 (−) 3.58 · 10−3 ± 2.04 · 10−4

20 2.29 · 10−2 ± 3.26 · 10−3 (−) 1.94 · 10−2 ± 2.35 · 10−3 (−) 1.44 · 10−2 ± 3.86 · 10−3 (−) 6.09 · 10−3 ± 3.19 · 10−4

DBD 1 1.17 · 10−2 ± 3.63 · 10−3 (−) 2.43 · 10−2 ± 1.51 · 10−2 (−) 1.35 · 10−3 ± 3.36 · 10−4 (+) 2.26 · 10−3 ± 1.40 · 10−3

2 1.41 · 10−2 ± 2.84 · 10−3 (−) 2.06 · 10−2 ± 4.21 · 10−3 (−) 1.24 · 10−3 ± 2.49 · 10−4 (+) 4.29 · 10−3 ± 1.55 · 10−3

3 1.01 · 10−2 ± 1.49 · 10−3 (−) 2.01 · 10−2 ± 6.65 · 10−3 (−) 1.32 · 10−3 ± 3.12 · 10−4 (−) 9.60 · 10−4 ± 5.64 · 10−5

4 1.39 · 10−2 ± 2.75 · 10−3 (−) 1.69 · 10−2 ± 2.64 · 10−3 (−) 2.89 · 10−3 ± 1.54 · 10−3 (−) 1.18 · 10−3 ± 4.70 · 10−5

5 1.42 · 10−2 ± 4.50 · 10−3 (−) 1.75 · 10−2 ± 3.70 · 10−3 (−) 1.84 · 10−3 ± 1.04 · 10−3 (≈) 1.31 · 10−3 ± 8.45 · 10−5

6 1.07 · 10−2 ± 1.31 · 10−3 (−) 2.10 · 10−2 ± 8.34 · 10−3 (−) 2.08 · 10−3 ± 7.46 · 10−4 (≈) 2.21 · 10−3 ± 7.33 · 10−4

10 1.22 · 10−2 ± 2.49 · 10−3 (−) 1.72 · 10−2 ± 4.16 · 10−3 (−) 2.62 · 10−3 ± 5.78 · 10−4 (≈) 2.33 · 10−3 ± 2.25 · 10−4

20 1.30 · 10−2 ± 3.30 · 10−3 (−) 2.06 · 10−2 ± 5.11 · 10−3 (−) 3.74 · 10−3 ± 2.29 · 10−4 (+) 4.09 · 10−3 ± 3.45 · 10−4

SRD 1 4.42 · 10−3 ± 3.15 · 10−3 (≈) 1.86 · 10−2 ± 9.63 · 10−3 (−) 6.51 · 10−4 ± 9.70 · 10−5 (+) 2.45 · 10−3 ± 9.97 · 10−4

2 2.26 · 10−3 ± 1.37 · 10−3 (≈) 2.09 · 10−3 ± 7.84 · 10−4 (−) 1.24 · 10−3 ± 1.31 · 10−4 (+) 1.40 · 10−3 ± 1.77 · 10−4

3 1.22 · 10−3 ± 4.50 · 10−4 (≈) 1.03 · 10−3 ± 2.35 · 10−4 (+) 1.91 · 10−3 ± 1.38 · 10−4 (−) 1.50 · 10−3 ± 1.16 · 10−4

4 1.15 · 10−3 ± 1.29 · 10−4 (+) 1.09 · 10−3 ± 1.64 · 10−4 (+) 2.11 · 10−3 ± 3.10 · 10−4 (−) 1.58 · 10−3 ± 1.41 · 10−4

5 1.09 · 10−3 ± 1.41 · 10−4 (+) 9.05 · 10−4 ± 8.43 · 10−5 (+) 2.20 · 10−3 ± 3.38 · 10−4 (−) 1.56 · 10−3 ± 9.89 · 10−5

6 1.13 · 10−3 ± 1.61 · 10−4 (+) 9.45 · 10−4 ± 1.19 · 10−4 (+) 2.27 · 10−3 ± 3.09 · 10−4 (−) 1.70 · 10−3 ± 1.29 · 10−4

10 1.19 · 10−3 ± 1.44 · 10−4 (+) 9.06 · 10−4 ± 9.72 · 10−5 (+) 2.95 · 10−3 ± 2.89 · 10−4 (−) 2.26 · 10−3 ± 2.06 · 10−4

20 1.25 · 10−3 ± 1.61 · 10−4 (+) 1.09 · 10−3 ± 1.24 · 10−4 (+) 4.92 · 10−3 ± 4.88 · 10−4 (−) 3.20 · 10−3 ± 3.17 · 10−4

Table continues on next page.
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5.3. Expensive and Inexpensive Function Optimization

Continuation of Table 5.10.
Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
WB 1 2.57 · 10−1 ± 8.72 · 10−2 (−) 2.10·10−2 ± 2.89·10−2 (+) 7.51 · 10−2 ± 1.35 · 10−2 (−) 2.63 · 10−2 ± 2.92 · 10−3

2 1.10 · 10−1 ± 6.20 · 10−2 (−) 1.99·10−2 ± 4.07·10−3 (≈) 6.06 · 10−2 ± 2.23 · 10−2 (−) 2.65 · 10−2 ± 1.23 · 10−2

3 7.69 · 10−2 ± 5.10 · 10−2 (−) 1.47·10−2 ± 4.74·10−3 (+) 3.65 · 10−2 ± 1.71 · 10−2 (≈) 2.68 · 10−2 ± 7.70 · 10−3

4 4.66 · 10−2 ± 2.34 · 10−2 (≈) 1.48·10−2 ± 2.35·10−3 (+) 6.29 · 10−2 ± 2.13 · 10−2 (−) 2.92 · 10−2 ± 1.05 · 10−2

5 8.12 · 10−2 ± 8.78 · 10−2 (−) 1.59·10−2 ± 3.51·10−3 (+) 6.44 · 10−2 ± 3.21 · 10−2 (−) 2.74 · 10−2 ± 1.57 · 10−2

6 6.67 · 10−2 ± 4.83 · 10−2 (≈) 1.41·10−2 ± 2.51·10−3 (+) 7.32 · 10−2 ± 2.59 · 10−2 (−) 4.19 · 10−2 ± 2.31 · 10−2

10 5.06 · 10−2 ± 1.16 · 10−2 (≈) 1.33·10−2 ± 3.94·10−3 (+) 7.73 · 10−2 ± 2.58 · 10−2 (−) 4.89 · 10−2 ± 8.56 · 10−3

20 8.73 · 10−2 ± 1.03 · 10−1 (≈) 1.38·10−2 ± 2.70·10−3 (+) 7.29 · 10−2 ± 1.18 · 10−2 (≈) 6.47 · 10−2 ± 1.55 · 10−2

BICOP1 1 6.41 · 10−1 ± 2.12 · 10−1 (−) 6.35 · 10−1 ± 3.17 · 10−1 (−) 2.89·10−1 ± 9.21·10−2 (≈) 3.48 · 10−1 ± 7.81 · 10−2

2 3.58 · 10−2 ± 1.03 · 10−2 (+) 3.10·10−2 ± 6.98·10−3 (+) 2.45 · 10−1 ± 2.17 · 10−1 (≈) 1.23 · 10−1 ± 1.04 · 10−1

3 1.88 · 10−2 ± 5.26 · 10−3 (≈) 1.56·10−2 ± 2.56·10−3 (≈) 8.36 · 10−2 ± 1.34 · 10−1 (≈) 4.29 · 10−2 ± 4.04 · 10−2

4 1.26 · 10−2 ± 3.18 · 10−3 (≈) 1.15·10−2 ± 2.99·10−3 (+) 1.67 · 10−2 ± 5.16 · 10−3 (≈) 2.87 · 10−2 ± 3.66 · 10−2

5 8.76 · 10−3 ± 2.13 · 10−3 (+) 8.44·10−3 ± 2.83·10−3 (+) 2.13 · 10−2 ± 6.69 · 10−3 (≈) 2.44 · 10−2 ± 7.39 · 10−3

6 6.67 · 10−3 ± 2.16 · 10−3 (+) 6.62·10−3 ± 1.66·10−3 (+) 4.21 · 10−2 ± 1.06 · 10−2 (≈) 3.69 · 10−2 ± 8.02 · 10−3

10 3.38·10−3 ± 5.54·10−4 (+) 3.78 · 10−3 ± 9.19 · 10−4 (+) 1.03 · 10−1 ± 3.26 · 10−2 (≈) 9.08 · 10−2 ± 1.96 · 10−2

20 3.41 · 10−3 ± 4.23 · 10−4 (+) 3.36·10−3 ± 4.14·10−4 (+) 2.42 · 10−1 ± 6.91 · 10−2 (≈) 2.70 · 10−1 ± 5.84 · 10−2

BICOP2 1 1.83 · 10−1 ± 1.21 · 10−2 (−) 1.59 · 10−1 ± 2.57 · 10−2 (−) 7.70 · 10−2 ± 2.97 · 10−2 (−) 2.93 · 10−2 ± 9.30 · 10−3

2 1.73 · 10−1 ± 3.16 · 10−2 (−) 1.07 · 10−1 ± 2.61 · 10−2 (−) 7.41 · 10−2 ± 3.19 · 10−2 (−) 1.60 · 10−2 ± 1.77 · 10−2

3 1.58 · 10−1 ± 2.53 · 10−2 (−) 1.28 · 10−1 ± 4.18 · 10−2 (−) 7.19 · 10−2 ± 3.52 · 10−2 (−) 2.31 · 10−2 ± 3.25 · 10−2

4 1.63 · 10−1 ± 2.98 · 10−2 (−) 1.17 · 10−1 ± 4.08 · 10−2 (−) 7.00 · 10−2 ± 4.01 · 10−2 (≈) 5.61 · 10−2 ± 4.71 · 10−2

5 1.61 · 10−1 ± 2.69 · 10−2 (−) 1.08 · 10−1 ± 3.34 · 10−2 (≈) 4.78·10−2 ± 1.21·10−2 (≈) 7.25 · 10−2 ± 4.46 · 10−2

6 1.59 · 10−1 ± 2.69 · 10−2 (−) 1.26 · 10−1 ± 3.67 · 10−2 (−) 4.46·10−2 ± 8.25·10−3 (≈) 7.96 · 10−2 ± 4.29 · 10−2

10 1.30 · 10−1 ± 3.10 · 10−2 (−) 1.35 · 10−1 ± 3.17 · 10−2 (−) 5.90 · 10−2 ± 1.55 · 10−2 (≈) 5.68 · 10−2 ± 2.92 · 10−2

20 1.35 · 10−1 ± 3.16 · 10−2 (−) 1.29 · 10−1 ± 3.42 · 10−2 (−) 7.75 · 10−2 ± 1.54 · 10−2 (−) 3.76 · 10−2 ± 1.00 · 10−2

MW1 1 1.00 · 10+0 ± 0.00 · 10+0 (−) 1.05 · 10−1 ± 3.91 · 10−2 (−) 7.18 · 10−1 ± 3.04 · 10−1 (−) 6.09 · 10−4 ± 7.62 · 10−5

2 1.46 · 10−1 ± 7.65 · 10−2 (−) 4.35 · 10−2 ± 3.54 · 10−3 (−) 2.11 · 10−1 ± 1.19 · 10−1 (−) 6.40 · 10−4 ± 1.02 · 10−4

3 9.49 · 10−2 ± 4.32 · 10−2 (−) 4.30 · 10−2 ± 7.40 · 10−3 (−) 8.58 · 10−2 ± 7.18 · 10−2 (−) 7.57 · 10−4 ± 1.99 · 10−4

4 5.70 · 10−2 ± 3.73 · 10−2 (−) 3.46 · 10−2 ± 7.84 · 10−3 (−) 2.32 · 10−1 ± 2.49 · 10−1 (−) 9.87 · 10−4 ± 1.55 · 10−4

5 3.47 · 10−2 ± 1.34 · 10−2 (−) 2.42 · 10−2 ± 4.97 · 10−3 (−) 2.38 · 10−1 ± 2.47 · 10−1 (−) 1.07 · 10−3 ± 1.54 · 10−4

6 2.97 · 10−2 ± 1.20 · 10−2 (−) 1.47 · 10−2 ± 2.61 · 10−3 (−) 1.45 · 10−1 ± 1.31 · 10−1 (−) 1.42 · 10−3 ± 3.54 · 10−4

10 3.23 · 10−2 ± 2.70 · 10−2 (−) 9.65 · 10−3 ± 1.91 · 10−3 (−) 2.63 · 10−1 ± 1.70 · 10−1 (−) 2.31 · 10−3 ± 8.80 · 10−4

20 1.74 · 10−2 ± 1.23 · 10−2 (≈) 8.06·10−3 ± 2.14·10−3 (≈) 1.91 · 10−1 ± 1.24 · 10−1 (≈) 1.81 · 10−1 ± 2.22 · 10−1

MW2 1 7.92 · 10−1 ± 2.55 · 10−1 (−) 3.84·10−2 ± 9.30·10−3 (+) 3.14 · 10−1 ± 9.67 · 10−2 (−) 6.63 · 10−2 ± 1.40 · 10−2

2 1.87 · 10−1 ± 7.99 · 10−2 (−) 3.03·10−2 ± 3.62·10−3 (+) 3.06 · 10−1 ± 1.95 · 10−1 (−) 4.20 · 10−2 ± 1.15 · 10−2

3 1.39 · 10−1 ± 7.28 · 10−2 (−) 2.63·10−2 ± 5.49·10−3 (+) 2.74 · 10−1 ± 1.28 · 10−1 (−) 5.89 · 10−2 ± 4.97 · 10−2

4 9.77 · 10−2 ± 6.52 · 10−2 (≈) 2.59·10−2 ± 5.51·10−3 (+) 3.02 · 10−1 ± 1.31 · 10−1 (−) 1.00 · 10−1 ± 5.85 · 10−2

5 1.12 · 10−1 ± 7.36 · 10−2 (≈) 2.45·10−2 ± 5.14·10−3 (+) 3.25 · 10−1 ± 1.44 · 10−1 (−) 6.08 · 10−2 ± 3.79 · 10−2

6 1.08 · 10−1 ± 7.13 · 10−2 (−) 2.48·10−2 ± 5.52·10−3 (+) 3.52 · 10−1 ± 1.57 · 10−1 (−) 5.54 · 10−2 ± 3.19 · 10−2

10 1.21 · 10−1 ± 8.27 · 10−2 (≈) 2.34·10−2 ± 6.84·10−3 (+) 4.05 · 10−1 ± 1.08 · 10−1 (−) 7.55 · 10−2 ± 2.99 · 10−2

20 1.21 · 10−1 ± 7.84 · 10−2 (≈) 2.15·10−2 ± 5.98·10−3 (+) 3.82 · 10−1 ± 1.54 · 10−1 (−) 1.04 · 10−1 ± 3.26 · 10−2

MW3 1 6.07 · 10−1 ± 3.85 · 10−1 (−) 2.33 · 10−2 ± 4.57 · 10−3 (−) 4.14 · 10−2 ± 1.26 · 10−2 (−) 2.53 · 10−3 ± 5.11 · 10−4

2 2.70 · 10−2 ± 8.21 · 10−3 (−) 1.70 · 10−2 ± 1.75 · 10−3 (−) 2.40 · 10−2 ± 4.48 · 10−3 (−) 1.72 · 10−3 ± 8.36 · 10−4

3 1.78 · 10−2 ± 3.25 · 10−3 (−) 1.32 · 10−2 ± 1.40 · 10−3 (−) 1.32 · 10−2 ± 5.51 · 10−3 (−) 1.32 · 10−3 ± 2.29 · 10−4

4 1.73 · 10−2 ± 1.18 · 10−3 (−) 1.12 · 10−2 ± 1.58 · 10−3 (−) 6.28 · 10−3 ± 2.94 · 10−3 (−) 1.40 · 10−3 ± 1.12 · 10−4

5 1.55 · 10−2 ± 2.82 · 10−3 (−) 9.62 · 10−3 ± 1.17 · 10−3 (−) 6.39 · 10−3 ± 1.92 · 10−3 (−) 1.93 · 10−3 ± 4.53 · 10−4

6 1.67 · 10−2 ± 1.46 · 10−3 (−) 8.82 · 10−3 ± 1.96 · 10−3 (−) 7.27 · 10−3 ± 2.02 · 10−3 (−) 1.97 · 10−3 ± 3.23 · 10−4

10 1.38 · 10−2 ± 1.98 · 10−3 (−) 7.04 · 10−3 ± 5.85 · 10−4 (−) 1.03 · 10−2 ± 1.12 · 10−3 (−) 2.91 · 10−3 ± 3.10 · 10−4

20 1.41 · 10−2 ± 2.59 · 10−3 (−) 7.15 · 10−3 ± 5.79 · 10−4 (−) 1.43 · 10−2 ± 1.63 · 10−3 (−) 5.19 · 10−3 ± 3.65 · 10−4

MW11 1 3.79 · 10−1 ± 2.23 · 10−1 (−) 3.50·10−2 ± 8.38·10−3 (+) 1.75 · 10−1 ± 2.77 · 10−1 (≈) 7.91 · 10−2 ± 3.33 · 10−2

2 1.02 · 10−1 ± 9.49 · 10−2 (≈) 2.15·10−2 ± 4.27·10−3 (+) 1.65 · 10−1 ± 1.00 · 10−1 (−) 6.79 · 10−2 ± 2.65 · 10−2

3 1.59 · 10−1 ± 1.21 · 10−1 (−) 1.88 · 10−2 ± 3.75 · 10−3 (−) 1.30 · 10−1 ± 7.44 · 10−2 (−) 6.96 · 10−3 ± 4.95 · 10−3

4 1.99 · 10−1 ± 1.33 · 10−1 (−) 1.50 · 10−2 ± 2.65 · 10−3 (−) 1.44 · 10−1 ± 8.01 · 10−2 (−) 4.78 · 10−3 ± 1.31 · 10−3

5 1.93 · 10−1 ± 1.31 · 10−1 (−) 1.49 · 10−2 ± 2.39 · 10−3 (−) 1.33 · 10−1 ± 8.63 · 10−2 (−) 4.34 · 10−3 ± 6.51 · 10−4

6 2.62 · 10−1 ± 9.96 · 10−2 (−) 1.26 · 10−2 ± 2.12 · 10−3 (−) 1.53 · 10−1 ± 1.09 · 10−1 (−) 4.29 · 10−3 ± 1.14 · 10−3

10 2.31 · 10−1 ± 1.23 · 10−1 (−) 9.83 · 10−3 ± 1.40 · 10−3 (−) 2.50 · 10−1 ± 8.82 · 10−2 (−) 4.12 · 10−3 ± 1.00 · 10−3

20 3.02 · 10−1 ± 8.69 · 10−2 (−) 9.72 · 10−3 ± 1.20 · 10−3 (−) 2.28 · 10−1 ± 1.66 · 10−2 (−) 8.07 · 10−3 ± 1.31 · 10−3

TRICOP 1 6.21 · 10−2 ± 2.49 · 10−2 (−) 4.96 · 10−2 ± 1.36 · 10−2 (−) 1.04 · 10−2 ± 5.92 · 10−5 (≈) 1.03 · 10−2 ± 5.14 · 10−4

2 9.52 · 10−2 ± 1.90 · 10−2 (−) 4.90 · 10−2 ± 9.31 · 10−3 (−) 1.08 · 10−2 ± 2.23 · 10−4 (≈) 1.05 · 10−2 ± 5.52 · 10−4

3 8.17 · 10−2 ± 2.51 · 10−2 (−) 3.97 · 10−2 ± 5.04 · 10−3 (−) 9.88·10−3 ± 1.41·10−4 (+) 1.06 · 10−2 ± 4.73 · 10−4

4 7.72 · 10−2 ± 2.22 · 10−2 (−) 4.02 · 10−2 ± 6.24 · 10−3 (−) 1.02·10−2 ± 3.85·10−4 (+) 1.07 · 10−2 ± 4.01 · 10−4

5 8.22 · 10−2 ± 1.90 · 10−2 (−) 3.68 · 10−2 ± 2.98 · 10−3 (−) 9.75·10−3 ± 3.34·10−4 (≈) 9.99 · 10−3 ± 4.32 · 10−4

6 7.11 · 10−2 ± 2.22 · 10−2 (−) 3.76 · 10−2 ± 4.30 · 10−3 (−) 1.02·10−2 ± 4.04·10−4 (≈) 1.03 · 10−2 ± 6.96 · 10−4

10 6.58 · 10−2 ± 2.09 · 10−2 (−) 3.18 · 10−2 ± 4.24 · 10−3 (−) 9.87·10−3 ± 3.53·10−4 (≈) 9.98 · 10−3 ± 3.69 · 10−4

20 4.62 · 10−2 ± 1.10 · 10−2 (−) 2.63 · 10−2 ± 3.19 · 10−3 (−) 1.21 · 10−2 ± 6.52 · 10−4 (≈) 1.20 · 10−2 ± 5.02 · 10−4

SPD 1 5.95 · 10−2 ± 3.31 · 10−3 (−) 6.46 · 10−2 ± 5.16 · 10−3 (−) 1.55 · 10−2 ± 9.35 · 10−4 (−) 8.78 · 10−3 ± 1.68 · 10−4

2 6.75 · 10−2 ± 9.27 · 10−3 (−) 5.78 · 10−2 ± 3.81 · 10−3 (−) 1.33 · 10−2 ± 1.15 · 10−3 (−) 8.62 · 10−3 ± 2.00 · 10−4

3 6.02 · 10−2 ± 4.04 · 10−3 (−) 5.73 · 10−2 ± 5.38 · 10−3 (−) 1.22 · 10−2 ± 4.52 · 10−4 (−) 8.61 · 10−3 ± 2.55 · 10−4

4 6.37 · 10−2 ± 5.26 · 10−3 (−) 6.03 · 10−2 ± 4.45 · 10−3 (−) 1.21 · 10−2 ± 3.87 · 10−4 (−) 8.84 · 10−3 ± 1.78 · 10−4

5 5.96 · 10−2 ± 5.43 · 10−3 (−) 5.95 · 10−2 ± 7.26 · 10−3 (−) 1.29 · 10−2 ± 5.93 · 10−4 (−) 8.77 · 10−3 ± 1.54 · 10−4

6 5.78 · 10−2 ± 2.68 · 10−3 (−) 5.87 · 10−2 ± 3.80 · 10−3 (−) 1.28 · 10−2 ± 5.15 · 10−4 (−) 9.19 · 10−3 ± 1.91 · 10−4

10 5.90 · 10−2 ± 3.95 · 10−3 (−) 5.93 · 10−2 ± 5.02 · 10−3 (−) 1.51 · 10−2 ± 8.73 · 10−4 (−) 9.68 · 10−3 ± 2.19 · 10−4

20 5.89 · 10−2 ± 6.15 · 10−3 (−) 6.10 · 10−2 ± 4.56 · 10−3 (−) 1.84 · 10−2 ± 1.02 · 10−3 (−) 1.30 · 10−2 ± 3.34 · 10−4

CSI 1 6.04 · 10−2 ± 3.48 · 10−3 (−) 1.10 · 10−1 ± 1.53 · 10−2 (−) 1.91 · 10−2 ± 2.07 · 10−3 (≈) 1.82 · 10−2 ± 2.69 · 10−3

2 6.82 · 10−2 ± 5.25 · 10−3 (−) 7.00 · 10−2 ± 3.47 · 10−3 (−) 1.60 · 10−2 ± 5.08 · 10−4 (−) 1.55 · 10−2 ± 4.95 · 10−4

3 6.37 · 10−2 ± 4.53 · 10−3 (−) 6.82 · 10−2 ± 6.44 · 10−3 (−) 1.54 · 10−2 ± 5.45 · 10−4 (−) 1.48 · 10−2 ± 2.45 · 10−4

4 6.78 · 10−2 ± 3.57 · 10−3 (−) 6.84 · 10−2 ± 3.28 · 10−3 (−) 1.61 · 10−2 ± 4.98 · 10−4 (−) 1.54 · 10−2 ± 3.11 · 10−4

5 6.93 · 10−2 ± 3.22 · 10−3 (−) 6.81 · 10−2 ± 7.55 · 10−3 (−) 1.60 · 10−2 ± 4.18 · 10−4 (−) 1.55 · 10−2 ± 3.41 · 10−4

6 6.75 · 10−2 ± 3.50 · 10−3 (−) 6.59 · 10−2 ± 4.40 · 10−3 (−) 1.64 · 10−2 ± 3.98 · 10−4 (≈) 1.61 · 10−2 ± 5.18 · 10−4

10 6.45 · 10−2 ± 5.78 · 10−3 (−) 6.60 · 10−2 ± 2.35 · 10−3 (−) 2.03 · 10−2 ± 7.23 · 10−4 (≈) 2.00 · 10−2 ± 5.22 · 10−4

20 7.03 · 10−2 ± 7.85 · 10−3 (−) 6.45 · 10−2 ± 5.63 · 10−3 (−) 3.78·10−2 ± 3.68·10−3 (≈) 3.94 · 10−2 ± 1.83 · 10−3

WP 1 2.77 · 10−1 ± 6.16 · 10−2 (−) 2.82 · 10−1 ± 4.32 · 10−2 (−) 2.92·10−2 ± 9.66·10−4 (≈) 2.96 · 10−2 ± 1.52 · 10−3

2 2.11 · 10−1 ± 2.80 · 10−2 (−) 2.19 · 10−1 ± 5.69 · 10−2 (−) 2.85·10−2 ± 4.62·10−4 (+) 3.00 · 10−2 ± 9.23 · 10−4

3 1.92 · 10−1 ± 2.40 · 10−2 (−) 2.02 · 10−1 ± 3.50 · 10−2 (−) 3.03·10−2 ± 9.67·10−4 (≈) 3.07 · 10−2 ± 1.21 · 10−3

4 1.79 · 10−1 ± 2.15 · 10−2 (−) 1.99 · 10−1 ± 2.96 · 10−2 (−) 2.97 · 10−2 ± 1.43 · 10−3 (≈) 2.94 · 10−2 ± 9.56 · 10−4

5 1.82 · 10−1 ± 2.65 · 10−2 (−) 1.93 · 10−1 ± 3.50 · 10−2 (−) 2.97·10−2 ± 7.08·10−4 (≈) 3.08 · 10−2 ± 1.36 · 10−3

6 1.61 · 10−1 ± 1.77 · 10−2 (−) 1.94 · 10−1 ± 4.62 · 10−2 (−) 2.95·10−2 ± 4.75·10−4 (+) 3.15 · 10−2 ± 1.15 · 10−3

10 1.50 · 10−1 ± 3.08 · 10−2 (−) 1.76 · 10−1 ± 3.03 · 10−2 (−) 3.45 · 10−2 ± 1.80 · 10−3 (−) 3.09 · 10−2 ± 1.14 · 10−3

20 1.57 · 10−1 ± 2.86 · 10−2 (−) 1.70 · 10−1 ± 3.11 · 10−2 (−) 3.38 · 10−2 ± 9.03 · 10−4 (≈) 3.35 · 10−2 ± 1.01 · 10−3

Wilcoxon summary 148− 17 ≈ 11+ 139− 6 ≈ 31+ 99− 66 ≈ 11+ reference algorithm
Mean Friedman rank 3.33 2.77 2.33 1.56
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they are computationally inexpensive and available.
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Figure 5.7: Empirical Cumulative Distribution Functions of hypervolume performance
metric for SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA and IC-SAMO-COBRA. All ex-
periments with different numbers of candidate solutions per iteration and on different test
functions are aggregated.
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Figure 5.8: Empirical Cumulative Distribution Functions of IGD+ performance metric
for SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA and IC-SAMO-COBRA. All experiments
with different numbers of candidate solutions per iteration and on different test functions are
aggregated.
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5.3. Expensive and Inexpensive Function Optimization

Visual Comparison

The Pareto fronts obtained by the IC-SA-NSGA-II, and the IOC-SAMO-COBRA

algorithm can be visually compared with the Empirical Attainment Difference Func-

tions [96]. In Figure 5.9 the EAF difference plot on the TBTD test function is given as

an example, with all results per algorithm aggregated. The dark areas mark where the

two algorithms obtained different results. As can be seen, the IOC-SAMO-COBRA

algorithm manages to find the minimum values of objective 2 on the Pareto frontier,

while IC-SA-NSGA-II found smaller values for objective 1. The EAF plots of other

two objective test functions can be found in Appendix A.1.
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Figure 5.9: Visualization of the Empirical Attainment Function differences between IC-
SA-NSGA-II and the IOC-SAMO-COBRA algorithm on the TBTD problem. The solid,
dashed and solid lines from left to right represent the best, median and worst found Pareto
frontier of both algorithms combined. The grey level in the plots encodes the probability that
the corresponding algorithm outperforms the other algorithm in that region. In objective 1,
IC-SA-NSGA-II finds smaller values while in objective 2, IOC-SAMO-COBRA finds smaller
values. This can be seen in the plot at the bottom of the Pareto frontier at the right plot,
IOC-SAMO-COBRA has a higher probability of domination compared to the left side of the
Pareto frontier IC-SA-NSGA-II has a higher probability of domination.

5.3.5 Discussion of inexpensive function use

Table 5.9 and Table 5.10 show that IOC-SAMO-COBRA performs better in most cases

compared to the other algorithms. The ECDF plot (Figure 5.7) also shows that the

algorithm on average also finds good solutions faster since it is able to reach a higher

112



Chapter 5. Multi Objective Simulation Based Optimization

portion of the run target pairs. The EAF different plots from appendix A.1 also show

in most cases that the IOC-SAMO-COBRA finds solutions closer to the Pareto frontier

compared to the IC-SA-NSGA-II algorithm. However, two things become apparent

when all results are analyzed in more detail.

• IC-SA-NSGA-II significantly outperforms the IOC-SAMO-COBRA algorithm on

the BICOP1 and MW2 test problems. BICOP1 and MW2 do not have any active

constraints on the Pareto front and the difference between the performances of

the algorithms becomes even larger when the number of candidate solutions

per iteration increases. This indicates that IC-SA-NSGA-II has more difficulty

finding feasible solutions on the Pareto fronts with active constraints and IOC-

SAMO-COBRA is directed too much towards the constraint boundaries and has

more difficulty finding the Pareto front if the Pareto front is unconstraint.

• For test problems with a very low feasibility ratio (MW1, MW2, MW3, and

MW11) the IC-SA-NSGA-II and IOC-SAMO-COBRA significantly outperform

their original counterparts where the constraint functions are not directly used

in the algorithm. In a few algorithm runs on the MW test functions not a single

feasible solution was found. This indicates that the more strict and complex the

constraints are, the more beneficial it is to directly use the constraints instead

of attempting to learn them with surrogates.

5.3.6 Conclusion and Future Work on Inexpensive Function

Exploitation

Measured in terms of HV and IGD+, the IOC-SAMO-COBRA algorithm outperforms

the only real competitor IC-SA-NSGA-II in 78% of the benchmark problems. The key

algorithmic components that are expected to be responsible for this advantage include:

1. It is beneficial to compute 12 RBF configurations for each expensive objec-

tive/constraint and pick the best as a surrogate model for the respective ob-

jective/constraint.

2. The use of COBYLA repeatedly and in parallel to find p solution candidates

that maximize their joint HV contribution.

For two test functions (BICOP1 and MW2) that do not have any active constraints

on the Pareto front, IC-SA-NSGA-II has outperformed IOC-SAMO-COBRA.
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5.4. Overall Conclusions and Future Work

Further research is required to improve the IOC-SAMO-COBRA algorithm to be

able to quickly find Pareto fronts not subject to active constraints. A crossover of the

IOC-SAMO-COBRA algorithm and the IC-SA-NSGA-II algorithm could also poten-

tially lead to even better results.

5.4 Overall Conclusions and Future Work

In this chapter, the following research question is answered: How to find the Pareto

frontier of computationally expensive problems? Feasible Pareto efficient solutions can

be found with the multi-objective SAMO-COBRA algorithm. Two extensions have

been made to make the algorithm even more time-efficient. This is done by integrating

a multi-point infill criterion, and an extension is made so that it can deal with a mix of

expensive and inexpensive objectives and constraints. The resulting new IOC-SAMO-

COBRA algorithm has been compared to other state-of-the-art algorithms. By testing

on a diverse set of test functions, it has been shown that SAMO-COBRA by itself is

fast, very efficient in terms of required function evaluations, and can find well-spread

solutions along the Pareto frontier. Integration of the Multi-point infill criteria showed

that more evaluations are required to find similar Pareto frontiers. However, a lot of

iterations (and therefore in real-world scenarios with expensive function evaluations

wall clock time) can be saved. Finally, exploiting the inexpensiveness of constraint

functions was shown to be very beneficial since this will, in the majority of cases, lead

to better Pareto front approximations.

A final open issue is handling mixed-integer decision parameters, as the extension

to such design spaces is crucial for some real-world applications. Extending the IOC-

SAMO-COBRA with the mixed-integer decision parameters is possible by introducing

different surrogate modeling techniques and by replacing the COBYLA algorithm with

a different optimization algorithm that can deal with mixed-integer decision parame-

ters.
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