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Chapter 4

Empirical Design

Optimization Approach

As described in the problem characteristics of Chapter 3, the quickest and most coarse

way to estimate the main particulars of a new design is by using and learning from

data of reference vessels. This already is part of the answer to research question 3:

How can data be used to find feasible Pareto efficient ship design solutions? In the

current chapter, a new method is introduced that uses reference data, machine learning

algorithms, and an optimization algorithm to find suggestions for the main particulars

and KPIs of new ship designs. With this new method, designers can make more

informed decisions in the preliminary design phase where very limited information is

available and decisions need to be made in a short amount of time. However, it is in

the preliminary design phase where the most influential decisions are made regarding

the global dimensions, the machinery, and therefore the performance and costs. In this

chapter, it is shown that a machine learning algorithm trained with data from reference

vessels is more accurate when estimating key performance indicators compared to

existing empirical design formulas. Finally, the combination of the trained models

with optimization algorithms proves to be a powerful tool for finding Pareto-optimal

design solutions from which the naval architect can learn. Although the application

domain of this chapter is ship design, the approach can also be transferred to other

application domains.
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4.2. Introduction

4.1 Introduction

In the preliminary design stage, more knowledge should be used when making deci-

sions. With the method described in this chapter, naval architects are better supported

by data to make design decisions instead of relying only on instincts, knowledge, and

experience. The decision support is in the form of machine learning models which

can be used to validate ideas, assumptions, and design variations. This helps the

naval architect avoid innovation risks and to find better design variations. On top of

this, without much additional effort, the naval architect can use the trained machine-

learning models in combination with an optimization algorithm. This optimization

algorithm can then be deployed for searching advantageous and competitive design

variations. The only requirement for the reference optimizer that is proposed in this

chapter to work adequately is enough relevant ship data and a good design problem

setup.

4.2 Data Description for Reference Studies

The solution proposed in this chapter utilizes the power of empirical design methods

in combination with parametric optimization. However, for empirical design method

to work properly, data is needed. Fortunately, a lot of data services have become

available for the maritime industry. The most prominent ones are:

World Fleet Register is a ship data and intelligence platform from Clarksons Re-

search with data about ship earnings, vessel parameters, and new-build data [40].

Sea-web collects static ship data of existing and even scrapped ships and tracks

vessels worldwide [136].

BRL shipping consultants has a subscribers area where reports are available about

the active fleet and about newly built vessels [26].

Marine Traffic is a platform that allows even without logging in to obtain the

location of vessels plus general static ship data [98].

AISHub is an AIS data sharing platform where you can get access to global AIS radar

stations when you join with your own AIS antenna [2].

All this static and operational data has been collected and aggregated into more

than 100 particular data fields per vessel and a large database with historical loca-

tions of ships. Examples of collected data fields are: Length, breadth, draft, block
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coefficient, light ship weight, dead-weight, maximum continuous rating of the engines,

maximum speed, but also more ship specific data fields for specific ship types such

as: Bollard pull, passenger capacity of urban transportation vessels, number of car

lanes, crane capacity for offshore vessels, hopper volume of dredgers, and ice class

qualification.

This data can be used in a reference study in the preliminary ship design process

since design trends can be visualized, design trends can be learned, and gaps and

competitive advantages in the market can be found.

4.2.1 Visualizations

After the relevant parameters for a vessel type have been selected, the parameters can

be summarized and plotted. When three parameters are relevant it is still possible

to visualize them in two dimensions. As an example, the dead-weight and moulded

breadth together with the Twenty-foot equivalent Unit (TEU) capacity is given for a

set of container vessels in Figure 4.1.

However, it is often the case that more than three parameters are relevant in

the preliminary ship design stage, which makes it challenging to visualize. To still

be able to investigate a selection of ships or design variations with more than three

parameters, parallel coordinate plots can be used from Section 2.5.2. In Figure 4.2,

a parallel coordinate plot is made for several hundred container vessels with a length

between perpendiculars between 175 and 200 meters.

Interpretation of Visualizations

As can be inspected from Figure 4.1, the moulded breadth has a maximum of 32.4

meters, a well-known maximum width for ships to still be able to pass through the

Panama Canal. This maximum moulded breadth can also be seen in Figure 4.2. More-

over, it is now also possible to simultaneously see all other relevant parameters of the

container vessels. For example, the limited draught for the majority of vessels in this

selection is smaller than or equal to 12 meters, also an important Panama Canal di-

mension. Besides this, one can simultaneously see the conflicting relationship between

block coefficient (Cb), and Maximum Continuous Rating (MCR) and their influence

on service speed. The vessels with a high block coefficient, and small maximum con-

tinuous rating, also have a slow service speed and vise-versa. When designing new

vessels, these plots can be very helpful for the designers.
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Figure 4.1: Container vessels color-coded by container capacity.

4.2.2 Data Pre-processing

Preliminary data analysis showed duplicate vessels and vessels which are very similar.

To make sure that specific vessels are not over-represented, but still enough data is

available, data pre-processing must be done. The pre-processing consist of three steps

and is done so that machine learning algorithms can be trained with cleaner data.

1. All except for one of the vessels with exact duplicates must be deleted. Ships are

considered to be duplicates if their gross tonnage, length between perpendiculars

(Lbp), breadth overall (Boa), draught (T), and MCR are equal.

2. All but one vessel out of a series of sister vessels are deleted. If the earlier
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Figure 4.2: Parallel coordinate plot of container vessels color-coded by block coefficient,
and a deadweight tonnage selection between 25000 and 35000 tonnes.

mentioned variables are all within 1 percent of each other, the vessels are marked

as too similar.

3. A second degree polynomial and interacting features are created. The two

degree polynomials and interacting features of the example [a, b] would be:

[a, b, ab, a2, b2].

Reasons for deletion of duplicates and very similar vessels are to prevent the po-

tential over-fitting of machine learning models. If a series of sister vessels would be

present, the machine learning model would automatically put more weight on the sis-

ter vessels compared to one unique vessel. A second argument to delete sister vessels

is, once a machine learning model has learned from a vessel, a second sister vessel does

not add much knowledge but will only add computation and training time.

The second degree polynomial and interacting features are created to generate more

potentially interesting features from the design parameters that are known. This way,

the machine learning models have more features to learn from which potentially leads

to more accurate results.
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4.3. New Empirical Design Methodology

4.3 New Empirical Design Methodology

This section describes how the new empirical design method is used in combination

with an optimization algorithm in the so called reference optimizer. As mentioned

in the related work section, it is often the case that the empirical design equations

are not available for a specific ship type or that the available equations are outdated.

This is unfortunate since designing ships with wrong or outdated design equations will

most likely not lead to optimal decisions. The empirical design equations are therefore

replaced with machine learning models. These machine learning models make sure

that it is no longer need to solely depend on predefined equations or the experience

and knowledge of naval architects.

Machine learning models are used to learn the relationships, similarities, and trends

between hundreds of data points. However, for machine learning models to work prop-

erly, the relationship between the dependent and independent variables need to be

learned. The dependent and independent variables are chosen by the naval architect.

The machine learning models learn the relation between the independent and depen-

dent variables in the training phase. After the training phase, the trained machine

learning models are coupled to an optimization algorithm that can exploit the trends

learned and search for optimal design configurations that outperform the existing de-

signs.

4.3.1 Setup Design Challenge

For the machine learning algorithm to work well a design challenge should be set up

by the user. The design challenge consists of three parts, the design variables, the

constraints, and finally the objectives as described earlier in Section 3.2.2.

Design Variables are set up by choosing the design parameters that have a signifi-

cant influence on the final design and which are allowed to vary. The allowed vari-

ations in the variables are controlled with a user-defined lower and upper limit.

However, the limit can not be smaller or larger than the smallest and largest

ship in the collection. Examples of a set of design variables are: Length between

perpendiculars (Lbp), draft (T), Breadth overall (Boa), block coefficient(Cb), and

service speed (V).

Constraints are also set by the user. The design constraints are typically hard

limitations or strong wishes for the to-be-designed ship. Examples of constraints
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are deadweight (DWT) capacity of 30, 000 tons, a cargo capacity of 2000 TEU, a

length overall smaller than 180 meters, or a draught of not more than 12 meters.

Objectives of a ship design are usually the key performance indicators that deal

with operational expenses and investments. Ideally, they are as low as possible,

however, they most often do not go hand in hand and are most of the time

conflicting. Examples of three objectives are: minimizing the light ship weight

(LSW), maximizing the deadweight (DWT) capacity, and minimizing the Maxi-

mum Continuous Rating (MCR) of the main engines.

Once the design variables, constraints, and objectives have been set by the user, the

relationship between the variables and the constraints and objectives can be learned.

4.3.2 Random Forest Regression

A random forest regression model [25] can be used to learn the relationship between

the features and one target variable. A random forest regressor is chosen because it is

robust against outliers and overfitting and because it can deal with discrete parameters

which comes in handy as the data used for training comes from existing ships and might

not always be 100% reliable. In the new empirical design methodology the features

are the design variables plus the polynomial features and the target variable is one of

the constraints or one of the objectives. Therefore, for each constraint, and for each

objective a new unique random forest regression model is trained.

The random forest regression model learns the relation between the features and

the target by fitting a multitude of decision trees. One decision tree is fitted to learn

the relation between a set of random selected features with the corresponding target

values. The data with the random selected features is sequentially greedily split into

two sub-samples based on one of the features until the number of samples in the nodes

reaches a threshold value. Resulting in an upside-down tree with nodes, branches for

splits, and leaves with similar target scores.

Once e.g. 100 decision trees have been trained with the 100 randomly selected

feature sets, the random forest is done training. The trees in the forest can be traversed

which makes a prediction of the target variable for an unseen combination of feature

values possible for each tree. These 100 outcomes of the 100 decision trees are then

averaged into a final prediction. The process of making a prediction is visualized in

Figure 4.3. Because a multitude of trees are fitted, the random forest regression model

is robust against outliers in the training data. However, due to the fact that the final
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score depends on the average of all the trained trees, the random forest regression

model is not capable of extrapolation.

Figure 4.3: Random Forest Regression Model Illustration.

4.3.3 Isolation Forest

In the reference optimizer not only the user-defined constraints limit the search space.

The search space is also limited by an anomaly detection algorithm. The anomaly

detection algorithm used is named Isolation Forest [94]. Isolation forest is an unsu-

pervised machine learning algorithm that tests how easy it is to isolate certain data

points. It does so by recursively splitting the data by randomly selecting a variable

and a random split value between the lower and upper limits. If a sample is easy to

isolate by randomly splitting the data set, it is marked as an anomaly. A sample that

is hard to isolate versus a sample that is easy to isolate is visualized in Figure 4.4.

In practice, this means that in case a design variation is unique and lies outside

of the trend, or if the database contains a ship with length by accident reported in

feet instead of meters, it is marked as an anomaly. When searching for a new design

variation, design variations that are marked as anomalies by the isolation forest will

no longer be considered. This is the case because they do not follow the pattern and

therefore their prediction is probably incorrect. On top of this, the isolation forest will

make sure that the design variations will not exceed the limits, so that the random

forest regression model is not forced to extrapolate.
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Figure 4.4: Illustration of Isolation forest with easy to isolate sample on the left and a
hard to isolate sample on the right.

4.3.4 Design Problem Optimization

The reference optimizer searches for Pareto optimal designs that do not violate any

of the constraints. This can be done with any multi-objective optimization algo-

rithm that can deal with constraints but in the reference optimizer it is done with the

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [49]. NSGA-II optimizes the

design challenge by modifying the design variables. NSGA-II is allowed to vary the

design variables between the user-defined lower and the upper limit. The design varia-

tions that come out of NSGA-II are evaluated on the random forest regression models

to predict the constraint and objective scores. The objective and constraint scores are

then combined with the design variable values and tested to see if the combination

can be easily isolated by the Isolation Forest. Once the isolation score, the objective

score, and the constraint scores are evaluated they are given back to the NSGA-II

algorithm. The NSGA-II algorithm includes the evaluated design variations in the

population of previously evaluated solutions and then new solutions are generated

with the non-dominated genetic sorting strategy. After NSGA-II has converged, the

optimal designs are reported so that they can be inspected with a parallel coordinate

plot and the objectives can be visualized on a Pareto frontier.
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4.4 Empirical Design Experiments

To validate the models and the algorithms, different experiments are conducted. The

first experiment is set up to test the predictive capabilities of the random forest regres-

sion models. In the second experiment, a set of ships is intentionally modified to see

if the isolation forest is capable of identifying the newly created anomalies. Finally, in

the last experiment, everything is connected and novel container ship variations are

generated on a Pareto frontier.

For all the experiments 2538 container ships are used. 1219 of these vessels have

the duplicate characteristics and are filtered out during the preprocessing phase as

described in Section 4.2.2.

4.4.1 Random Forest Regression Experiment

The random forest regression models are intended to predict the performance and

capital investment cost of the ships of the future. In this experiment, such a situation

is mimicked. Three different KPIs are learned by the random forest regression models

with data from 1019 ships built before 2005, and then the random forest regression

models are tested with data from 96 ships built after 2010. By comparing the pre-

dicted values with the actual values it can be determined if the trained random forest

regression model is good to use in practice.

The KPIs that are predicted in this experiment are LSW, MCR, and DWT. The

KPIs are estimated with the random forest regressor and with empirical design equa-

tions for the specific KPIs. The design variables used to predict LSW are [Lbp, Boa,

T, Cb, MCR]. The design variables used for MCR are [Lbp, Boa, T, Cb, V ]. The

design variables used to predict DWT are [Lbp, Boa, T, Cb].

Random Forest Regression Results

The accuracy of the random forest regression model is determined with the R2 mea-

sure [104]. This measure compares the real KPI values with the predicted values and

see how much variation of the dependent variable can be explained by the model.

With R2 scores of 0.93, 0.90, and 0.95 for LSW, MCR, and DWT, it can be confirmed

that the random forest regressor is capable of capturing a lot of variance.
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Empirical Design Equation Results

Light Ship Weight for container vessels can be predicted with the Empirical Design

Equation of D’almeida [55]. The prediction of D’almeida for LSW is dependent on

the steel weight (SW), outfitting & equipment weight (OEW), and machinery weight

(MW):

LSW = SW +OEW +MW

SW = 0.0293 · Lbp1.76 ·Boa0.712 · T 0.374

MW = 2.35 · (MCR/0.745699872)0.60

(4.1)

The D’almeida equations use the same independent variables as in the random for-

est regressor model to calculate the LSW. However, the estimate of this empirical

formulation only obtains an R2 score of 0.84.

Maximum Continuous Rating can be estimated with the empirical formula

named the Admirality constant [129]. The admirality constant C can be calculated

by using the maximum continuous rating (MCR) and displacement values (∆) from

reference vessels and then plugging it in the following formula:

MCR =
∆2/3 · V 3

C
(4.2)

The mean admirality constant (C ) of the reference vessels is then stored so that it

can be used in later approximations for MCR given different discplacements. In the

experiment, the Admirality constant itself (C ) is approximated with the reference

vessels from before 2005. The mean C from the vessels before 2005 is used to make

predictions for the container vessels after 2010. The R2 score for this formula is 0.87,

again a worse R2 score compared to the random forest regressor.

Dead Weigth Tonnage is dependent on the LSW of the vessel. The empirical

formula for DWT is:

DWT = ∆− LSW (4.3)

but since the empirical equation for light ship weight has a worse R2 score compared

to the random forest regressor, it is no surprise that also for DWT, the R2 score of

0.89 is lower compared to the R2 score of the random forest regressor.
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4.4.2 Isolation Forest Experiment

In the isolation forest experiments, the isolation forest is trained with the data from

the container vessels as described earlier. After this, two data fields per vessel are

modified to create impossible design parameter/KPI combinations. All vessels are

then evaluated by the trained isolation forest to see if they are marked as an anomaly

or not. The modified design parameters/KPI values and the percentage of anomalies

detected are presented in Table 4.1.

Modified Columns Anomaly Percentage
no modification 15%
Lbp/1.1, T × 1.1 36%
Lbp/1.25, T × 1.25 56%
Lbp/1.5, T × 1.5 88%
Lbp/1.75, T × 1.75 99%
Lbp/2, T × 2 100%
MCR/2, V × 2 95%
LSW/2, Cb× 2 97%
Lbp/2, DWT × 2 97%
Cb/2, Lbp× 2 100%
T/2, Cb× 2 100%
Cb/2, V × 2 100%

Table 4.1: Modified columns and classified anomaly percentage after this modification.

The experiments indicate that as the vessels undergo more significant modifica-

tions, the isolation forest identifies an increasing percentage of vessels as anomalies.

The experiments also show that there is a small percentage of vessels that have been

radically changed but have not been marked as an anomaly. This indicates that the

anomaly detection algorithm does not detect all anomalies and that the naval architect

should pay attention when analyzing the results and do a few integrity checks on the

results.

4.4.3 NSGA-II Experiment

For this experiment, it is assumed that the random forest regression model and the

isolation forest perform as intended so that the NSGA-II algorithm can be tested. If

the NSGA-II algorithm can find feasible and realistic Pareto-optimal solutions it can

be confirmed that the reference optimizer works as intended.

The reference optimizer is tested again on a container ship case. In this experiment

NSGA-II was allowed to vary the main particulars of the vessel (LBP , Boa, T , Cb,
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V ). The LSW and MCR are minimized, while the DWT capacity should be larger

than or equal to 28000 tonnes. The results are visualized on the Pareto frontier in

Figure 4.5 and Figure 4.6.
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Figure 4.5: Obtained Pareto efficient solutions for test case. Blue solutions indicate existing
vessels that do not violate any of the constraints while green solutions are the proposed
solutions by NSGA-II.

NSGA-II in this experiment found 14 Pareto efficient solutions along the Pareto

front interposed by Pareto efficient existing vessels. As previously described the algo-

rithm only uses data and does not know any physics, it is the task of the naval architect

to double-check the feasibility of the proposed solutions. In this experiment, the phys-

ical integrity of the proposed solutions are checked with the DWT Equation 4.3.

The weight balance of the vessel i.e. the sum of the DWT and LSW need to be in

line with the corresponding displacement that can be calculated with: Lbp·Boa·T ·Cb·ρ.

Here ρ = 1.025 which is the water density of salt water. The found maximum deviation

for existing vessels is 7% with an average of 0.2%. This indicates that data from the

existing vessels is not always 100% accurate. The found maximum deviation for the

proposed vessels by the reference finder is 2.6% with an average of 1.8%.

To give more details of the obtained Pareto efficient solutions, a parallel coordinate
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Figure 4.6: Zoomed in on Pareto frontier for test case. Blue solutions indicate existing
vessels that do not violate any of the constraints while green solutions are the proposed
solutions by NSGA-II. Inspection of this figure reveals that the majority of the existing
solutions are dominated by the newly proposed solutions.

plot is made and presented in Figure 4.7. In the parallel coordinate plot, the main

dimensions and the resulting performance indicators can be inspected and compared

with the existing vessels.

4.5 Discussion

The reference optimizer as introduced and described in this chapter has two drawbacks

that hold for any optimization process. The first drawback of the reference optimizer

is that it needs a sufficient amount of good data for the random forest regressors to

make accurate predictions. Good data without mistakes is important since otherwise,

the random forest regressors will learn a wrong trend and the predictions will be off.

Accurate and 100% reliable data is difficult to gather (especially for the less common

vessel types) and sometimes only possible to obtain with expensive subscriptions.

A second drawback of the reference optimizer is that the design challenge should
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Figure 4.7: Parallel coordinate plot of the proposed solutions in red versus the existing
vessels in grey.

be set up properly. For this, a naval architect needs to learn the basics of machine

learning algorithms. During the training of naval architects at least the choice of what

to choose as independent and dependent variables should be addressed in combination

with different performance metrics.

4.6 Conclusion and Future Work

In this chapter, an alternative generic way is presented on how naval architects can

use data to make preliminary design decisions by visualizing the data, learning from

the data with machine learning algorithms, and finally finding optimal configurations

with optimization algorithms.

The experiments in this chapter show that random forest regressors can give better

estimations for light ship weight, dead weight, and maximum continuous rating com-

pared to empirical design equations often used by naval architects. Besides a better

estimation of key performance indicators, the random forest regressors are also capable

of predicting key performance indicators for which no empirical design equations are

readily available in the literature.

After training the random forest regressor and an anomaly detection algorithm,

the models are coupled to a multi-objective optimization algorithm. This setup is ca-

pable of automatically generating optimal design configurations for preliminary ship
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design problems. As a practical use case, a container vessel design challenge has been

executed. The setup proposed 14 new Pareto-efficient solutions. The preliminary

designs consisted of the main particulars of the vessels plus the key performance indi-

cators light ship weight, maximum continuous rating, and deadweight. After this, the

preliminary designs have been validated with integrity checks to verify their feasibility.

For future work, it is intended to improve the performance of the machine learning

models even further, train them with more accurate data, and integrate a more robust

anomaly detection algorithm to detect obvious mistakes better.
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