
Efficient constraint multi-objective optimization with
applications in ship design
Winter, R. de

Citation
Winter, R. de. (2024, October 8). Efficient constraint multi-objective
optimization with applications in ship design. Retrieved from
https://hdl.handle.net/1887/4094606

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4094606

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4094606

Chapter 2

Preliminaries

This chapter introduces the most important acronyms, the problem notations, the

basics of expensive black-box optimization, the benchmark functions used to test the

performance of the proposed constraint multi-objective algorithms, and the relevant

performance metrics for multi-objective optimization.

2.1 Acronyms

Two separate lists of the most important acronyms of this dissertation are made.

One list consists of acronyms that are frequently used when discussing optimization

algorithms. The second acronym list consists of acronyms used in the ship design

domain.

2.1.1 Optimization Acronyms

COBYLA Constraint Optimization BY Linear Approximation algorithm

DoE Design of Experiments

EAF Empirical Attainment difference Functions

ECDF Empirical Cumulative Distribution Function

HV Hypervolume

IGD+ Inverted Generational Distance+ metric

LHS Latin Hypercube Sample

NSGA-II Non-dominated Sorting Genetic Algorithm II

PF Pareto Frontier

7

2.2. Problem Notations

RBF Radial Basis Function

SAMO-COBRA Self-Adaptive Multi-Objective Constrained Optimization by using

Radial Basis Function Approximations algorithm

2.1.2 Ship Design Acronyms

ρ Water Density

ACD Accelerated Concept Design

B Breadth

Boa Breadth Overall

Cb Block Coefficient

DWT Dead Weight Tonnage

FFD Free Form Deformation

KPI Key Performance Indicators

L Length

LBP Length Between Perpendiculars

LSW Light Ship Weight

MCR Maximum Continuous Rating

RANSE Reynolds Averaged Navier-Stokes Equation

T Draft

TEU Twenty-Foot Equivalent Unit

TSHD Trailing Suction Hopper Dredger

V Service Speed

2.2 Problem Notations

In this work, the following notations are used to define optimization problems. The

focus of this work is mainly on optimization problems with two or more objectives,

one or more constraints, and continuous decision variables. These problems can math-

ematically be formulated as follows:

minimize: f : Ω→ Rk , f(x) = (f1(x), . . . , fk(x))>

subject to: gi(x) ≤ 0 ∀i ∈ {1, . . . ,m}

x ∈ Ω ⊂ Rd.

(2.1)

In the following list, the elements and notations are explained in more detail.

8

Chapter 2. Preliminaries

• A solution with d design variables in the continuous domain is defined as

(x1, . . . , xd) = x ⊂ Rd, here d is called dimensionality.

• Multiple decision vectors x1, . . . ,xn are denoted as a matrix X ∈ Rd×n.

• The design space that consists of all solutions is denoted by Ω ⊂ Rd. The

Design space in this work is bounded by a lower bound and an upper bound

xlb ≤ Ω ≤ xub. Here xlb ∈ Rd, and xub ∈ Rd.

• An objective function that evaluates a solution and returns a continuous objec-

tive function value is formulated as f : Ω→ R.

• Unless otherwise specified all objectives are to be minimized: min
x∈Rd

(f(x)).

• Objectives to be maximized are without loss of generality transformed into ob-

jectives to be minimized: min
x∈Rd

(f(x)) = −1 · max
x∈Rd

(f(x)).

• In multi-objective problems, k denotes the number of objectives, and the set of k

objectives that evaluate a solution is combined into a vector f : Ω→ Rk, f(x) =

(f1(x), . . . , fk(x))>.

• A constraint function that evaluates a solution and returns the constraint viola-

tion score is formulated as g : Ω→ R.

• Unless otherwise specified, the constraint feasibility boundary is 0. Constraint

values g(x) ≤ 0 are defined as feasible while constraint values g(x) > 0 are

infeasible. The output of the constraint function g(x) is therefore a value that

represents the constraint violation.

• Constraints with a constraint boundary g(x) ≤ c can be rewritten as g(x)−c ≤ 0.

• Constraints where g(x) ≥ 0 is defined feasible are refactored to g(x) ≥ 0 →
−1 · g(x) ≤ 0.

• An equality constraint h(x) = 0 can be replaced with two inequality constraints.

A good practice is to add a small margin ε around the constraint boundary so

that in case there are tiny numerical instabilities this does not influence the

feasibility of the solutions. h(x) = 0 → g(x)− 0.5ε ≤ 0, and g(x) + 0.5ε ≥ 0.

• In optimization problems m denotes the number of constraints. The set of m con-

straints can be combined into a vector g : Ω→ Rm, g(x) = (g1(x), . . . , gm(x))>.

9

2.3. Problem Notations

2.2.1 Pareto Optimal Solutions

Now that the notations are clear, a definition can be given for optimal solutions. First,

the definitions are given for a local and a global optimum and later the definition of

Pareto optimal and Pareto dominance is given to define which solutions are preferred

over other solutions for constraint multi-objective problems.

Definition 2.1 (Local Optimal Solution). A local optimal solution is a solution that

is the best in its local surroundings. This solution can be improved by inspecting other

regions of the design space.

Definition 2.2 (Global Optimal Solution). A global optimum is the best possible

solution for the entire design space. Unlike a local solution, this solution is the absolute

best solution and it can not be improved anymore.

Definition 2.3 (Feasible solution). A solution x ∈ Ω is feasible if and only if gi(x) ≤
0 ∀i ∈ {1, . . . ,m}.

Definition 2.4 (Dominance). Solution y = f(x) dominates solution y′ = f(x′) if and

only if ∀i∈{1,...,k} : yi ≤ y′i and ∃i∈{1,...,k} : yi < y′i, in symbols y ≺ y′.

Definition 2.5 (Incomparability). Solution y = f(x) is incomparable to solution

y′ = f(x′) if and only if ∃i∈{1,...,k} : yi < y′i and ∃i∈{1,...,k} : yi > y′i, in symbols y‖y′.

Definition 2.6 (Indifference). Solution y = f(x) is indifferent to solution y′ = f(x′) if

and only if ∀i∈{1,...,k} : yi = y′i, in symbols y ∼ y′. Note that indifference is equivalent

to equality in the objective space. It is not guaranteed to also be equivalent in the

design space: f(x) ∼ f(x′) 6=⇒ x = x′

Definition 2.7 (Pareto-optimal solution). Solution x ∈ Ω is Pareto-optimal if and

only if there is no solution x′ ∈ Ω for which f(x′) = y′ ≺ y = f(x).

Definition 2.8 (Feasible Pareto-optimal solution). Solution x ∈ Ω is feasible Pareto-

optimal if and only if there is no solution x′ ∈ Ω for which f(x′) = y′ ≺ y = f(x)

where gi(x) ≤ 0 and gi(x
′) ≤ 0 ∀i ∈ {1, . . . ,m}.

Definition 2.9 (Pareto optimal set). The set of solutions X that form the Pareto

optimal set is the set of feasible incomparable and indifferent solutions that are not

dominated by any other solutions X = {x′ ∈ X | @x ∈ Ω : f(x) ≺ f(x′)}.

10

Chapter 2. Preliminaries

2.3 Expensive Black Box Optimization

When solving expensive black-box optimization problems, often Bayesian optimization

is chosen as the method to find the optimal solutions. An argument for using Bayesian

optimization algorithms is that these algorithms typically require a small evaluation

budget to find (a set of) optimal solutions. This makes Bayesian optimization a good

choice when the evaluation functions are computationally expensive [53, 90].

Bayesian optimization consists of 4 steps:

1. Bayesian optimization starts with a Design of Experiments (DoE). The solutions

from the DoE are evaluated with the objective and constraint functions and put

in an archive of evaluated solutions.

2. Surrogate models are fitted with all data from the archive.

3. With an infill criterion the promising solution(s) are selected based on the sur-

rogate(s) predictions. The infill criterion is optimized with an optimization al-

gorithm.

4. The new solutions are evaluated with the objective and constraint functions and

added to the archive.

Finally, the algorithm terminates if a stopping criterion is met, otherwise the algorithm

goes back to step 2. See Figure 2.1 for a graphical representation.

Figure 2.1: Flowchart of Bayesian optimization.

Choosing the optimal DoE strategy, surrogate models, and a local search method

to find promising solutions on the surrogates is still a challenge. In the following

subsections, a few DoE strategies, surrogate models, and local search methodologies

are discussed that are used and referred to in this work.

2.3.1 Design of Experiments

In a design of experiments, the first set of solutions is generated and evaluated. The

location in the domain where these first solutions are placed (also sometimes referred

11

2.3. Expensive Black Box Optimization

to as initial sampling) is dependent on the DoE strategy. Several possible choices

for a DoE exist, including uniform random sampling, full factorial design [17], Latin

Hypercube Sampling [138], Halton sampling [73], and Sobol sampling [134]. Each

of these methods has its own strengths, however, a large empirical comparison was

presented by Bossek et. al. [23]. This empirical study concludes that spending as few

evaluations on the DoE as possible is often beneficial because this leaves more room

for evaluations proposed by the optimization algorithm [23]. This empirical finding

also works best for most constraint multi-objective problems [148].

A recently proposed new sampling method is the Riesz s-energy-based sampling

method [77]. The Riesz s-energy-based sampling method iteratively improves and

proposes an arbitrary number of well-spaced points in the design space [21]. This

method has been modified for constraint search spaces [19] so that it samples solutions

only in the feasible area of the design space. This however is only practically applicable

if the constraint functions are inexpensive to evaluate.

In industrial settings, solutions can often be evaluated in parallel. The number of

solutions that can be evaluated in parallel are denoted with a p in this work. The

number of solutions that can be evaluated in parallel is often dependent on the avail-

able computational resources and, if applicable, the number of commercial simulator

licenses. The resources for parallel evaluations can be used to evaluate the initial DoE.

The size of the DoE however now should be chosen based on the size of p. It is advised

to choose a DoE size of dDoEmin/pe · p, where p is the maximum possible number

of simultaneous parallel evaluations and DoEmin the smallest DoE size required for

training the first surrogate models. This way, no wall clock time is wasted, and the

maximum amount of information from the objectives and constraints is gathered.

2.3.2 Surrogate Models

For the algorithm proposed in this research Radial Basis Functions (RBFs) and Krig-

ing (also known as Gaussian process regression) are considered surrogate models. RBF

and Kriging surrogates are fundamentally very similar, however, RBFs have many ad-

vantages: 1) RBFs require smaller sample sizes to fit a surrogate, 2) they are generally

faster (also for larger input spaces), 3) have fewer assumptions on the underlying data,

4) deliver in many cases equal or better accuracy, 5) and with a newly developed uncer-

tainty quantification method RBFs can now also be used in infill criteria that require

this [12, 57]. Besides these fundamental arguments, an empirical comparison showed

faster convergence and better results for algorithms with RBF surrogates compared to

12

Chapter 2. Preliminaries

the algorithm with Kriging surrogates [148]. For these reasons, the algorithm proposed

in this work uses RBFs as surrogate models.

Radial Basis Function Interpolation

Radial Basis Functions (RBFs) are a type of mathematical function used for approxi-

mating the relationship between input and output variables [29]. The input variables

are often the decision variables (x), and the output variables are the objective (f)

or constraint (g) value of the evaluated solutions. RBF interpolation approximates a

function by fitting a linear weighted combination of RBFs [13]. The challenge is to

find correct weights (θ) and a good RBF kernel ϕ(‖x− c‖). An RBF is only depen-

dent on the distance between the input point x to the center c. The RBFs used in

this work take each evaluated point as the centroid of the function, and the weighted

linear combination of RBFs always produces a perfect fit through the training points.

Besides the perfect fit on the training points, the linear combination of the RBFs can

also give a reasonable approximation of the unknown area.

Any function which is only dependent on the distance from a specific point to

another point belongs to the group of RBFs. The RBF kernels (ϕ) considered in this

work are the cubic with ϕ(r) = r3, Gaussian with ϕ(r) = exp (−(ε · r)2), multiquadric

with ϕ(r) =
√

1 + (ε · r)2, inverse quadratic with ϕ(r) = (1 + (ε · r)2)−1, inverse

multiquadric with ϕ(r) = (
√

1 + (ε · r)2)−1, and thin plate spline with ϕ(r) = r2 log r.

Note that the shape/width parameter ε for every individual RBF is kept constant as

proposed by Urquhart et al. [159]. Moreover, all shape parameters are fixed to ε = 1.

Finding suitable linear weighted combinations θ of the RBFs can be done by in-

verting Φ ∈ Rn×n where Φi,j = ϕ(‖xi − xj‖):

θ = Φ−1 · f (2.2)

Here f is a vector of length n with the function values of one of the objectives or

constraints. Because Φ is not always invertible, Micchelli introduced RBFs with a

polynomial tail, better known as augmented RBFs [101]. In this work, augmented

RBFs are used with a second-order polynomial tail. The polynomial tail is created by

extending the original matrix Φ with P = (1, xi1, . . . , xid, x
2
i,1, . . . , x

2
id), in its ith row,

where xij is the j-th component of vector xi, for i = 1, . . . , n and j = 1, . . . , d, P>,

13

2.3. Expensive Black Box Optimization

and zeros 0(2d+1)×(2d+1), leading to 1 + 2d more weights µ to learn.[
Φ P

P> 0(2d+1)×(2d+1)

][
θ

µ

]
=

[
f

02d+1

]
(2.3)

Now that the weights θ and µ can be computed with Eq. 2.2, for each unseen input x′

the function value (f ′) can be interpolated/predicted by using Eq. (2.4).

f ′ = Φ′ ·
[
θµ
]

f ′ =

n∑
i=1

θiϕ(‖x′ − xi‖) + µ0 +

d∑
l=1

µlx
′
l +

d∑
l=1

µlx
′2
l ,

x ∈ Rd

(2.4)

Bagheri et al. also exploited similarities between RBF and Kriging surrogates to

come up with an uncertainty quantification method for RBFs [12]. The formula for

this uncertainty quantification method is given in Eq. (2.5).

ÛRBF = ϕ(‖x′ − x′‖)−Φ′>Φ−1Φ′ (2.5)

where ϕ(‖x′ − x′‖) = ϕ(0) is a scalar value.

The uncertainty (ÛRBF) of solutions far away from earlier evaluated solutions is

higher compared to solutions close to earlier evaluated solutions. This uncertainty

quantification method can therefore be used in infill criteria that require uncertainty

quantification method to avoid getting stuck in a local optimal solution. However, as

can be derived from Eq. (2.5), the uncertainty quantification method is only dependent

on the input space and not on the scale of the objective and/or weights of the RBF

models. It is therefore needed to use a consistent scale for both the input and the

output space.

Scaling Techniques

For surrogate approximations, various scaling and transformation functions can be

used to improve the surrogate fit. Four scaling and transformation techniques used in

this work are described below.

Scale: The input space/decision variables are scaled into the range [−1, 1] with

x = 2 · (x − xlb)/(xub − xlb) − 1. By scaling large values in the input space,

computationally singular (ill-conditioned) coefficient matrices in Eq. (2.2) can

14

Chapter 2. Preliminaries

be prevented. In case the large values in the input space are kept, the linear

equation solver will terminate with an error, or it will result in a large root mean

square error [13]. Additionally, when fitting the RBFs, a change in one of the

variables, is relatively the same change in all the other variables, making each

variable in the basis equally important and equally sensitive.

Standardize: The relationship between the input space and the objective function

values is modeled with the surrogates. To keep a consistent scale between the

input and output scale, the output function values are standardized by using

y′ = (y − ȳ)/σ. Here σ is the standard deviation of y, and ȳ the mean of y. By

using this standardization method, the uncertainty quantification from Eq. (2.5)

can be used.

Scale Constraint: The constraint evaluation function should return a continuous

value, namely the amount by which the constraint is violated. Since it is possible

to have multiple constraints, and each constraint is equally important, every

constraint output is scaled with c′ = c/(max(c) −min(c)), where max(c) is the

maximum constraint violation encountered so far, and min(c) is the smallest

constraint value seen so far. After scaling, the difference between min(c) and

max(c) becomes 1 for all constraints, making every constraint equally important

while 0 remains the feasibility boundary.

Plog: In cases where there are very steep slopes, a logarithmic transformation of

the objective and/or constraint scores can be beneficial for the predictive accu-

racy [125]. Therefore, the scores are transformed with the Plog transformation

function. The extension to a matrix argument Y is defined component-wise, i.e.,

each matrix element yij is subject to Plog.

Plog(y) =

+ ln(1 + y), if y ≥ 0

− ln(1− y), if y < 0
(2.6)

Radial Basis Functions Illustrative Examples

A visual representation (adapted from [142]) of how a Cubic RBF surrogate model is

used to model a 1-dimension constraint function and how they become more accurate

when more training points are added is presented in Figure 2.2. In the figures, the

dashed blue line is the constraint function that the RBFs have to approximate, the red

dots are the training points that have been evaluated and used to train the cubic RBF

15

2.3. Expensive Black Box Optimization

model, the solid orange line is the RBF prediction, the red shaded area is the predicted

infeasible area where the RBF prediction is larger than 0 (g(x) > 0). Evident from the

figures is that the surrogate’s accuracy improves with the addition of more training

points.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

g

CRBF approximation
training points
actual values
predicted values
Infeasible area

(a) RBF fit with 2 training points.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

g

CRBF approximation
training points
actual values
predicted values
Infeasible area

(b) RBF fit with 3 training points.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

g

CRBF approximation
training points
actual values
predicted values
Infeasible area

(c) RBF fit with 4 training points.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

g

CRBF approximation
training points
actual values
predicted values
Infeasible area

(d) RBF fit with 5 training points.

Figure 2.2: The dashed blue line is the constraint function that the Cubic RBFs have to
mimic, the red dots are the training points that have been evaluated and used to train the
cubic RBF model, the solid orange line is the RBF prediction given x, the red shaded area
is the predicted infeasible area where the surrogate prediction is larger than 0 g(x) > 0.

Drawbacks of using Surrogates

There are a few scenarios for which surrogates are not ideal to use. If for example

the constraint or objective is computationally cheaper than evaluating a solution on a

surrogate, it is better to directly use the original constraint and or objective function.

Another reason to not use surrogate-assisted algorithms is in the scenario where the

16

Chapter 2. Preliminaries

objective and or constraint function is highly multi-modal. If the global structure

of the objective function is weak, and there are many local structures consisting of

hills, finding an accurate fit of the to-be-modeled function with a surrogate is very

difficult. This is difficult because many training points would be required to get an

accurate fit of all the hills and alleys. It is for this reason that highly multi-modal

problem landscapes are difficult to model with surrogates. Decision makers should

therefore take the multi-modality, and expensiveness of the functions into account

when selecting surrogate-assisted optimization algorithms.

2.3.3 Local Search Methodologies For Surrogate Exploration

Finding good solutions on surrogates is done by optimizing an acquisition function

(also sometimes refereed to as infill criterion). The acquisition functions in this work

are optimized with the so-called Constraint Optimization BY Linear Approximations

algorithm (COBYLA) [120].

COBYLA linearly approximates the constraints and the acquisition function in a

small trust region. In this trust region, COBYLA maximizes the acquisition function

subject to the constraints by maximizing the following function:

Ψ(x) = F̂ (x) + µ (−max(ci(x) : i = 1, . . . ,m))+ , x ∈ Rd (2.7)

Here, x is a solution in the input space, F̂ is in our case the linear approximation

of the acquisition function, ci is the i-th linear approximation from the m constraint

functions, the subscript + means that the expression in the brackets becomes 0 if

none of the constraints are violated, and µ is a self-adaptive penalty parameter that

makes sure that the approximation of a new solution Ψ(x∗) with a smaller constraint

violation and better acquisition function score is preferred over the starting solution

approximation Ψ(x0). After the best solution in the trust region on the linear approx-

imations is found, it is evaluated on the constraint surrogate and acquisition function.

When the linear approximation of COBYLA in the trust region underestimates the

acquisition function, the trust region increases in size, while if it overestimates, the

trust region becomes smaller. This way, when nearing the solutions that have the

optimal acquisition score, the trust region becomes smaller and smaller until it falls

below an ε > 0 value and COBYLA terminates.

Since COBYLA is a local optimizer, it can get stuck in a local optimum [169]. To

overcome this problem, multiple instances of COBYLA are run in parallel. Searching

for optimal solutions in multiple locations simultaneously is also a well-known strategy

17

2.4. Benchmark Test Functions

in the Island model for parallel optimization [70], in parallel simulated annealing [91],

and in ant colony optimization [51]. After all COBYLA instances have converged,

all solutions are found. The solution with the best acquisition score is selected for

evaluation on the expensive objective and constraint functions.

2.4 Benchmark Test Functions

For assessing the performance of various constraint multi-objective optimization al-

gorithms a set of benchmark test functions are collected. An overview of the test

functions is given in Table 2.1. In this table, the reference point (the worst possible

value for each objective), the approximated Nadir point (the worst possible value for

each objective among all solutions on the Pareto frontier), the number of objectives

k, the number of dimensions d, the number of constraints m, and the feasibility ratio

(P%) after one million random samples are given.

Table 2.1: Test function name, reference point used during optimization, Nadir point
approximation based on all experiments in this work, number of objectives k, number of
decision variables d, number of constraints m, percentage of feasible solutions P (%) after one
million random samples.

Function Reference point Nadir point k d m P (%)

BNH (140, 50) (136.00, 50.00) 2 2 2 96.92
CEXP (1, 9) (1.00, 9.00) 2 2 2 57.14
SRN (301, 72) (222.99, 2.62) 2 2 2 16.18
TNK (2, 2) (1.04, 1.04) 2 2 2 5.05
CTP1 (1, 2) (1.00, 1.00) 2 2 2 92.67
C3DTLZ4 (3, 3) (2.00, 2.00) 2 6 2 22.22
OSY (0, 386) (-41.81, 76.00) 2 6 6 2.78
TBTD (0.1, 50000) (0.1, 10000) 2 3 2 19.46
NBP (11150, 12500) (12500, 114.09) 2 2 5 41.34
DBD (5,50) (2.79, 16.86) 2 4 5 28.55
SRD (7000, 1700) (5879.98, 1696.46) 2 7 11 96.92
WB (350, 0.1) (35.31, 0.0145) 2 4 5 35.28
BICOP1 (9, 9) (1.00, 1.00) 2 10 1 100
BICOP2 (70, 70) (1.10, 1.11) 2 10 2 10.55
MW1 (1,7) (1.00, 1.00) 2 8 1 0.007
MW2 (1,7) (1.00, 1.00) 2 6 1 0.55
MW3 (1,7) (1.00, 1.00) 2 6 2 1.32
MW11 (30,30) (2.06, 2.04) 2 6 4 1.38
TRIPCOP (34, -4, 90) (7.67, -11.77, 25.91) 3 2 3 15.85
SPD (16, 19000, -260000) (11.16, 12435.27, -259148.04) 3 6 9 3.27
CSI (42, 4.5, 13) (42.77, 4.00, 12.52) 3 7 10 18.17
WP (83000, 1350, 2.85, (74573, 1350, 2.85, 5 3 7 92.06

15989825, 25000) 7874925, 25000)

The following functions are artificially created test functions: BNH [41], CEXP [46],

SRN [50], TNK [50], CTP1 [46], C3DTLZ4 [141], OSY [41, 50], NBP [62], BICOP1 [44],

BICOP2 [44], TRICOP [44], MW1 [97], MW2 [97], MW3 [97], MW11 [97].

The following functions are coming from real-world problems: Two-Bar Truss De-

sign (TBTD) [66], Disk Brake Design (DBD) [66], Ship Parametric Design (SPD) [117],

18

Chapter 2. Preliminaries

Car-Side Impact (CSI) [83], speed Reducer Design (SRD) [105], Welded Beam (WB) [66],

Water resource management Problem (WP) [83].

The test functions are selected because they are diverse, well known, and some

mimic industrial problems. The Pareto frontiers of the functions vary between 2 and 5

objectives and the shapes can be classified as concave, convex, connected, disconnected,

or even mixes of these characteristics [6]. The constraints of the selected test problems

are also diverse since for some problems they are very strict, while for other problems

(almost) the entire search space is feasible. Next to the feasibility of the problems, on

some Pareto frontiers, the constraints are active, while on other problems they are not,

or partially active. Next to the artificially created test functions, a set of real-world-

inspired problems is selected to assess how well the optimization algorithms operate

in situations resembling industrial optimization scenarios.

2.5 Algorithm Performance Metrics

The performance of algorithms can be determined with performance metrics. These

metrics help to determine which algorithm perform well on benchmark problems and

visualizing the evolution of the performance metric gives insight in how fast the al-

gorithms converge. Since the focus of this work is multi-objective optimization algo-

rithms the most used multi-objective metrics are presented and visualized.

2.5.1 Multi-Objective Performance Metrics

The two commonly used multi-objective performance metrics used in this work are

the HyperVolume (HV), and the Inverted Generational Distance+ (IGD+) metric.

Hypervolume

The hypervolume (also known as the Lebesgue measure) translates the multi-objective

problem into a unary performance score that represents the volume of the region in the

objective space that is dominated by a given set of solutions [18, 175]. It is the most

widely used performance metric in multi-objective optimization [128] and measures

and captures the overall convergence and diversity of the set of solutions forming the

Pareto front. The HV is calculated by determining the volume of the region in the

objective space between the solutions on the obtained Pareto front and a pre-defined

reference point (also sometimes referred to as the anti-optimal point [158]). For a

single solution on two objective problem, this is easy to compute as it is the surface

19

2.5. Algorithm Performance Metrics

between the solution and the reference point. If more solutions are on the Pareto

front, the overlapping region is only counted once, this is done by calculating the

union of the overlapping regions. The formal definition of the hypervolume is given in

Definition 2.10.

Definition 2.10 (Hypervolume Indicator).

HV (Y, fref) = Λk(∪yi∈Y[y, fref]) (2.8)

here Λk denotes the Lebesgue measure on Rk, with k being the number of objective

functions, yi the i-th Pareto optimal solution, Y all Pareto optimal solutions, and

fref the reference point in k dimensions.

The HV is a useful measure for comparing the performance of different optimization

algorithms, as well as for comparing different solution sets with each other. Solution

sets with higher HV are considered better compared to solutions with lower HV. The

HV of three solutions is visualized in Figure 2.3, where the triangles represent the

evaluated non-dominated solutions, and the reference point is indicated by a star.

The surface of the shaded area is the HV of this particular Pareto front.

Inverted Generational Distance +

Another performance metric often used in multi-objective optimization is the inverted

generational distance+ metric (IGD+) [82]. It is used as a measure to check how

close the known Pareto frontier is to the obtained dominated area. The IGD+ metric

evaluates diversity and convergence as follows:

IGD+(A,S) =
1

| S |

 |S|∑
i=1

(d+
i)2

 1
2

(2.9)

Here S is the known Pareto front, A is the dominated area by a Pareto front Y

obtained by an algorithm, and d+
i is the smallest Euclidean distance from a solution

on the known Pareto front si to the dominated area of A. This way, if the obtained

dominated area of the solutions found by the algorithm is far away from the known

Pareto front, the IGD+ value increases. A smaller IGD+ value is therefore preferred

over a larger IGD+ value. The IGD+ metric and the distances of 8 known solutions

are visualized in Figure 2.4.

The IGD+ metric can only be used on test instances where the Pareto front is

20

Chapter 2. Preliminaries

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Objective 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ob
je

ct
iv

e
2

Hypervolume

Current hypervolume
Reference Point
Non Dominated Solutions

Figure 2.3: Visual representation of hypervolume. Total hypervolume between the 3
solutions and the reference point is 0.3× 0.8 + 0.3× 0.5 + 0.3× 0.3 = 0.48.

known. In this work, the Pareto front used for the IGD+ metric is approximated

by combining all obtained feasible Pareto efficient points of all experiments, then

normalizing the objective scores, and finally selecting a well-spread set of solutions.

The true Pareto front of computationally expensive engineering problems are often

impossible to determine, therefore this revised metric is only used on test problems.

2.5.2 Optimization Result Visualizations

One of the key goals of Bayesian optimization is finding the global optimal (set of)

solutions in as few evaluations as possible. Visualizing the set of optimal solutions

in multi-objective optimization is usually done on a 2-dimensional or 3-dimensional

Pareto frontier. When more than 3 objectives are to be visualized, or the objectives

should be visualized together with the constraints and decision variables, then a par-

allel coordinate plot can be used. To visually compare the obtained Pareto frontiers of

more than one algorithm run Empirical Attainment Function (EAF) difference plots

21

2.5. Algorithm Performance Metrics

Figure 2.4: IGD+ score visualized on a two objective problem. IGD+ is the average length
of the arrows from the well-spread known solutions to the closest point of the dominated area.

can be used for two-dimensional Pareto frontiers. The downside of visualizing only

the final result is that information about how fast the results are found is missing.

Convergence plots fortunately can give answer to this issue. On convergence plots, a

performance score is plotted after every function evaluation from a run of an optimiza-

tion algorithm on a specific test function. However, when comparing the convergence

of algorithms on a set of different function evaluations Empirical Cumulative Dis-

tribution Function (ECDF) plots can be used. In the following subsections, all the

visualization techniques are explained in more detail.

Pareto Frontier Plot

The Pareto frontier plot is a visual representation of the objective scores from Pareto-

optimal solutions. The objective score of each Pareto efficient solution is plotted on

the Pareto frontier. The Pareto frontier this way shows the trade-off between the

objectives. Improvements of a solution in one objective on the Pareto frontier can

only be made by sacrificing any of the other objectives. An example Pareto frontier

22

Chapter 2. Preliminaries

on the Two-bar Truss Design (TBTD) problem [66] obtained with the SAMO-COBRA

algorithm (the SAMO-COBRA algorithm will be introduced in Chapter 5) is given in

Figure 2.5.

0.00 0.02 0.04 0.06 0.08 0.10
Objective 1

0

20000

40000

60000

80000

Ob
je

ct
iv

e
2

Obtained Pareto Frontier on Two Bar Truss Design problem

Figure 2.5: Pareto Frontier of TBTD Problem obtained with SAMO-COBRA algorithm
after 120 function evaluations.

By plotting the Pareto frontiers of different algorithms, the objective space can be

inspected. Inspection of the objective space shows in which regions which algorithm

performs better. An illustrative example of the SAMO-COBRA algorithm and the

SA-NSGA-II algorithm (The SA-NSGA-II algorithm will be introduced in Chapter 5)

of the TBTD problem is presented in Figure 2.6.

From this figure it can be concluded that SAMO-COBRA has obtained slightly

better and many more good solutions for objective 2, while the SA-NSGA-II algorithm

has achieved better results in objective 1 since it found very small values for this

objective.

Parallel Coordinate Plots

Two dimensions can be plotted on a regular Pareto frontier with two axes. In higher

dimensions, parallel coordinate plots can be used [78]. In a parallel coordinate plot,

23

2.5. Algorithm Performance Metrics

0.02 0.04 0.06 0.08 0.10
Objective 1

0

10000

20000

30000

40000

50000

60000

70000

80000

Ob
je

ct
iv

e
2

Obtained Pareto Frontier on Two Bar Truss Design problem
SAMO-COBRA
SA-NSGA-II

Figure 2.6: Pareto Frontiers on TBTD problem obtained with the SAMO-COBRA and
SA-NSGA-II algorithm after 120 function evaluations.

each vertical axis represents a parameter, objective, and/or constraint while the hor-

izontal axis has no meaning except for that it is the minimum and maximum value

that has been found for the objective. Each solution in the parallel coordinate plot

is represented by a line that connects the vertical axes. An example of a parallel

coordinate plot of the Water resource management Problem (WP) [83] is presented in

Figure 2.7.

The first thing that can be concluded from this parallel coordinate plot is that the

solutions on each axis are very well spread since there are no large gaps between the

solutions. The second thing that can be concluded is that there is a very clear inverse

correlation between objective 3 and objective 4.

Empirical Attainment Difference Function

Comparing the obtained Pareto frontiers of different algorithms of one run per algo-

rithm can still be done with a regular Pareto frontier plot as in Figure 2.6. However,

when the algorithms have been used to optimize the benchmark problem more than

once and the results are each time a bit different due to the stochastic nature of the

24

Chapter 2. Preliminaries

Ob
j1

63840.28

65554.46

67268.64

68982.83

70697.01

72411.20

Ob
j2

 53.60

262.72

471.84

680.96

890.08

1099.20

Ob
j3

 0.29

 0.74

 1.20

 1.66

 2.12

 2.58

Ob
j4

Ob
j5

270553.79

1531503.66

2792453.52

4053403.39

5314353.26

6575303.13

631.98

5047.05

9462.11

13877.18

18292.24

22707.31

Prallel Coordinates Plot of Water Resource Management Problem

Figure 2.7: Parallel coordinate plot of objective scores from the 5 objective water resource
management problem.

algorithms then comparing them becomes more challenging. For this reason, Empir-

ical Attainment Difference Functions (EAF) have been developed [96]. In the EAF

difference plots the dark areas mark where the two algorithms have obtained different

results. The more frequent a certain area is dominated by an algorithm the darker

the grayscale is. An example of an EAF difference plot on the TBTD problem is

given in Figure 2.8. The EAF difference plot again confirms what was shown earlier

in Figure 2.6, the SAMO-COBRA algorithm manages to find the minimum values of

objective 2 on the Pareto frontier, while SA-NSGA-II found smaller values for objec-

tive 1.

Convergence Plots

On convergence plots, the x-axis typically shows the number of function evaluations

required to achieve a performance score that is on the y-axis. By analyzing the con-

vergence plots it can be identified after how many evaluations the algorithm has found

a good (set of) optimal solution(s) and has converged. If multiple algorithms (or al-

gorithm configurations) are plotted together, the convergence can be compared. An

25

2.5. Algorithm Performance Metrics

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
objective 1

0
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

ob
je

ct
iv

e
2

EAF Differences for SA−NSGAII on TBTD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
objective 1

0
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

ob
je

ct
iv

e
2

EAF Differences for SAMO−COBRA on TBTD

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

Figure 2.8: Empirical Attainment Difference Function plot on TBTD problem for com-
paring 10 independent SA-NSGA-II and 10 SAMO-COBRA runs.

illustrative example for a convergence plot on the TBTD problem is given in Figure 2.9.

In the convergence plot where the hypervolume is to be maximized, it is shown

that the SAMO-COBRA algorithm with batch size 1 achieves the highest hypervol-

ume after 120 function evaluations. Besides the final score the convergence plot also

shows the performance after fewer function evaluations. Inspection of this tells us

that the SAMO-COBRA with batch size 1 obtains the best results and converges

faster compared to the other configurations.

Empirical Cumulative Distribution Functions

Empirical Cumulative Distribution Functions (ECDF) [76, 166] are used to visualize

the convergence of the different algorithms on a set of test functions simultaneously

in one plot. An ECDF plot is based on a set of target values that are linearly dis-

tributed (sometimes also other distributions are chosen) between zero and the maxi-

mum achievable performance score per test function. The proportion of target values

attained by the algorithm is the score reported on the ECDF curve. To be able to

visualize the performance of an algorithm on multiple different benchmark functions,

the corresponding ECDF target score proportions are aggregated. This then results in

a curve that grows as more target values are reached. A formal description, adapted

from [166], is given in the following definition:

26

Chapter 2. Preliminaries

0 20 40 60 80 100 120
Function Evalations

0

500

1000

1500

2000

2500

3000

3500

4000

Hy
pe

rv
ol

um
e

Convergence Plot on Two-bar Truss Design problem

SAMO-COBRA with batchsize 1
SAMO-COBRA with batchsize 10
SAMO-COBRA with batchsize 20

Figure 2.9: Illustrative example of a convergence plot of SAMO-COBRA algorithm with
different batch sizes on TBTD problem.

Definition 2.11. An ECDF curve requires to select a set {v1, . . . , vn} of target values.

The ECDF shows for each budget t the fraction | {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ n} | /r · n
of the (run r, target value) pairs (i, vj) that satisfy that V (A, f, t, i) ≥ vj . Here

V (A, f, t, i) denotes the function value of the best among the first t evaluated solution

candidates in run i. So the ECDF is expressed as F̂ (t) = 1
nr

∑n
j=1

∑r
i=1 1V (A,f,t,i)≥vj ,

where 1C denotes the indicator variable, which is one where the condition C is satisfied.

Two ECDF curves with hypervolume as the performance metric, 10 independent

runs per benchmark problem from Section 2.4, are given in Figure 2.10. The ECDF

curve of the SAMO-COBRA algorithm is completely above the results from the SA-

NSGA-II algorithm. This shows that for each budget the SAMO-COBRA algorithm

achieves a larger portion of the target values compared to the SA-NSGA-II algorithm.

This means that on average the SAMO-COBRA algorithm finds a better hypervolume

and also on average converges faster.

27

2.5. Algorithm Performance Metrics

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

SA-NSGA-II

SAMO-COBRA

Function Evaluations

Pr
op
or
ti
on
 o
f
(r
un
,
ta
rg
et
,
..
.)
 p
ai
rs

Figure 2.10: ECDF Curve that aggregates the results for the SA-NSGA-II and SAMO-
COBRA algorithm that have optimized all benchmark problems from section 2.4 10 times.

28

