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Chapter 1

Introduction

Multi-objective optimization involves the concurrent optimization of conflicting ob-

jectives, aiming to identify a group of solutions that reveal a trade-off among optimal

solutions instead of a single optimal solution. Finding these trade-offs is particu-

larly challenging when the evaluation methods of the solutions are computationally

expensive. The complexity further increases when constraints are present in the op-

timization problem. Examples of such constraint multi-objective problems can be

found in various engineering design problem domains, including aerospace [33, 34],

automotive [116, 157], civil [1, 42], marine [115, 149], and others.

This work shows how feasible optimal solutions in the constraint multi-objective

optimization problem domains can be found with optimization algorithms. The pri-

mary focus of this work is the development of constraint multi-objective optimization

algorithms, with a secondary objective to apply the newly developed algorithms to

ship design optimization problems. Before multi-objective algorithms were used, the

classical way to optimize multi-objective problems in the maritime industry was to

optimize one objective at a time or use traditional mathematical optimization tech-

niques such as the weighted sum method. The pragmatic weighted sum approach

combines objectives by multiplying them with predefined weights into one objective.

The weighted sum of the objectives is then optimized until an optimal feasible solution

is found. However, the weighted sum method has some disadvantages, since a priori

weight selection can be difficult, the outcome is sensitive to the weight selection, and if

only one weight combination is selected only one solution will be discovered instead of

the entire Pareto frontier [99]. Advantages in multi-objective evolutionary algorithms

have made multi-objective optimization more common and accessible in the past 30
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1.0.

years [10] and thereby also more usable for the maritime industry.

In ship design, multi-objective optimization can be applied in different design

phases. Ship design typically consists of three phases, the preliminary design stage,

the contract design stage, and the detailed design stage. According to Taggart [139],

early design stages occupy the smallest amount of time. In the first design phases,

the operational requirements are translated into phyisical and technical characteris-

tics [89]. This is done by finding the balance between the need of the customer and

the available budget, resulting in one or more possible design solutions [54]. Despite

the limited amount of time spent in the early design stages, it is estimated that 60 to

80 percent of the total life cycle cost is already locked in after the preliminary design

stage [127]. Depending on the experience of the involved Naval Architects, this can

be quite risky. The design decisions are typically hard to reverse and are also often

made with limited design problem knowledge. It is because of the large room for im-

provement and the relatively large decision freedom in the early design stage that this

work focuses on applying multi-objective algorithms in the preliminary design stage.

This is done by investigating what optimization algorithms are needed when using two

different design methods:

1. In the empirical design method the main dimensions and ship characteristics are

determined by investigating and learning from similar-built vessels.

2. The simulated design method uses 3-D models connected to simulation software

that evaluate the ship designs created by naval architects.

The constraint multi-objective problems arising from these two design methodologies

exhibit significant differences, particularly when accounting for the required computa-

tional effort. Where the empirical design method is computationally inexpensive and

relatively simplistic, the simulated design method is computationally more demand-

ing and can lead to really challenging conditions for identifying promising feasible

Pareto efficient solutions. More details about the design methodologies are described

in Chapter 3.

The availability of design data and more exact and computationally demanding

simulation software has led to the need for more advanced optimization algorithms and

techniques. The constraint multi-objective optimization algorithms developed in this

doctoral dissertation aim to fill this gap. The main scientific contribution therefore is

also the newly developed algorithms and methodologies for constraint multi-objective

optimization. The proposed methodologies are thoroughly described, tested, and com-

pared to state-of-the-art constraint multi-objective optimization algorithms. The new
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Chapter 1. Introduction

algorithms have extended the horizons of knowledge in the field of multi-objective

optimization and now give engineers from different domains the tools needed to more

efficiently deal with computationally demanding constraint multi-objective optimiza-

tion problems.

1.1 Research Questions

Finding feasible Pareto efficient solutions for computationally demanding optimization

problems is not a straightforward task. The primary research question is therefore as

follows:

How to identify the Pareto frontier of constraint multi-objective

optimization problems with only a few function evaluations?

The secondary objective is to apply the new algorithms to ship design optimization

problems. The research question is therefore separated into the following sub-research

questions:

RQ1: What are typical ship design optimization problem characteristics?

RQ2: How can data be used to find feasible Pareto efficient ship design solutions?

RQ3: How to find the Pareto frontier of computationally expensive problems?

RQ3.1: How to deal with expensive multi-objective problems?

RQ3.2: How to efficiently satisfy constraints in multi-objective optimization?

RQ3.3: How to propose multiple solutions for evaluation in parallel?

RQ3.4: How to deal with a mix of expensive and inexpensive functions?

RQ3.5: How do the proposed algorithms compare to state-of-the-art algorithms?

RQ4: What is the performance of the proposed algorithms in real-world scenarios?

1.2 Outline

The research questions are answered in different chapters of this dissertation. The re-

mainder of this thesis is organized as follows: In Chapter 2 the problem notations and

relevant preliminaries are given for efficient constraint multi-objective optimization.
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1.3. Publications of this thesis

Chapter 3 describes ship design optimization problem characteristics and answers re-

search question 1. In Chapter 4 research question 2 is answered and it is shown how

multi-objective optimization algorithms are used in combination with machine learning

in an empirical ship design method. The largest scientific contribution of this research

is described in Chapter 5. In this chapter, the main research question is answered, and

multi-objective optimization algorithm configurations are proposed for solving parallel

simulation-based optimization problems with mixed expensive constraints and objec-

tives. In Chapter 6 research question 4 is answered and the algorithms from the

previous chapter are used to optimize real-world ship design optimization problems.

Finally, conclusions are drawn in Chapter 7.

1.3 Publications of this thesis

The majority of the work in this thesis has been published before in academic journals

and conference proceedings. The contents of this thesis consist of the following papers.

[146] Roy de Winter. Parallel constrained multi-objective optimization for ship
design damage stability problem with (in)expensive function evaluations. In
Marine 2023, page 1. Marine 2023, Scipedia, 2023.

[147] Roy de Winter, Thomas Bäck, and Niki van Stein. Modular optimization
framework for mixed expensive and inexpensive real-world problems. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO),
2024.

[148] Roy de Winter, Philip Bronkhorst, Bas van Stein, and Thomas Bäck. Con-
strained multi-objective optimization with a limited budget of function evalua-
tions. Memetic Computing, 14:151–164, 2022.

[149] Roy de Winter, Jan Furustam, Thomas Bäck, and Thijs Muller. Optimiz-
ing ships using the holistic accelerated concept design methodology. In Tetsuo
Okada, Katsuyuki Suzuki, and Yasumi Kawamura, editors, Practical Design of
Ships and Other Floating Structures (PRADS), pages 38–50, Singapore, 2021.
Springer.

[152] Roy de Winter, Bas Milatz, Julian Blank, Niki van Stein, Thomas Bäck, and
Kalyanmoy Deb. Parallel multi-objective optimization for expensive and in-
expensive objectives and constraints. Swarm and Evolutionary Computation,
86:101508, 2024.

[153] Roy de Winter, Bas van Stein, and Thomas Bäck. SAMO-COBRA: A fast
surrogate assisted constrained multi-objective optimization algorithm. In Hisao
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Chapter 1. Introduction

Ishibuchi, Qingfu Zhang, Ran Cheng, Ke Li, Hui Li, Handing Wang, and Aimin
Zhou, editors, International Conference on Evolutionary Multi-Criterion Opti-
mization (EMO), pages 270–282. Springer, 2021.

[154] Roy de Winter, Bas van Stein, Matthys Dijkman, and Thomas Bäck. Designing
ships using constrained multi-objective efficient global optimization. In Giuseppe
Nicosia, Panos Pardalos, Giovanni Giuffrida, Renato Umeton, and Vincenzo Sci-
acca, editors, International Conference on Machine Learning, Optimization, and
Data Science, pages 191–203. Springer, 2018.

[156] Roy de Winter, Bas van Stein, and Thomas Bäck. Multi-point acquisition
function for constraint parallel efficient multi-objective optimization. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pages 511–519, 2022.

[155] Roy de Winter, Bas van Stein, and Thomas Bäck. Ship design performance and
cost optimization with machine learning. In 20st Conference on Computer and
IT Applications in the Maritime Industries (COMPIT), pages 185–196. Hamburg
University of Technology, 2020.

1.4 Other Work by the Author

Besides the papers that form the content of this thesis, the author has also been
involved in the conceptualization, writing, and review process of the following papers:

[10] Thomas Bäck, Anna V Kononova, Bas van Stein, Hao Wang, Kirill Antonov,
Roman Kalkreuth, Jacob de Nobel, Diederick Vermetten, Roy de Winter, and
Furong Ye. Evolutionary algorithms for parameter optimization—thirty years
later. Evolutionary Computation, 31(2):81–122, 2023.

[27] Philip Bronkhorst, Roy de Winter, Thijs Velner, and Austin A Kana. Enhanc-
ing offshore service vessel concept design by involving seakeeping-developing a
framework to efficiently design high-performance offshore service vessel concepts.
In Volker Bertram, editor, 22nd Conference on Computer and IT Applications
in the Maritime Industries (COMPIT), pages 273–287. Hamburg University of
Technology, Schriftenreihe Schiffbau, 2022.

[75] Gideon Hanse, Roy de Winter, Bas van Stein, and Thomas Bäck. Optimally
weighted ensembles for efficient multi-objective optimization. In International
Conference on Machine Learning, Optimization, and Data Science, pages 144–
156. Springer, 2021.

[80] Qi Huang, Roy de Winter, Bas van Stein, Thomas Bäck, and Anna V Kononova.
Multi-surrogate assisted efficient global optimization for discrete problems. In
2022 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1650–
1658. IEEE, 2022.
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1.4. Other Work by the Author

[103] Bas Milatz, Roy de Winter, Jelle DJ van de Ridder, Martijn van Engeland,
Francesco Mauro, and Austin A Kana. Parameter space exploration for the
probabilistic damage stability method for dry cargo ships. International Journal
of Naval Architecture and Ocean Engineering, page 100549, 2023.

[150] Roy de Winter, Fu Xing Long, Andre Thomaser, Niki van Stein, de, Thomas
Bäck, and Anna V Kononova. Landscape analysis based vs. domain-specific
optimization algorithm selection for engineering design applications: A clear case.
In 2024 IEEE Conference on Artificial Intelligence (CAI). IEEE, 2023.

[151] Roy de Winter, Bas Milatz, Julian Blank, Niki van Stein, Thomas Bäck, and
Kalyanmoy Deb. Hot off the press: Parallel multi-objective optimization for ex-
pensive and inexpensive objectives and constraints. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), 2024.

[162] Lucas Van Rooij, Roy de Winter, Anna V Kononova, and Bas van Stein.
Explainable AI for ship design analysis with AIS and static ship data. In 15th
International Symposium on Practical Design of Ships and Other Floating Struc-
tures (PRADS), pages 1521–1535, 2022.

[163] Niki van Stein, de Roy de Winter, Thomas Bäck, and Anna V Kononova. AI
for Expensive Optimization Problems in Industry. In 2023 IEEE Conference on
Artificial Intelligence (CAI), pages 251–254. IEEE, 2023.
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Chapter 2

Preliminaries

This chapter introduces the most important acronyms, the problem notations, the

basics of expensive black-box optimization, the benchmark functions used to test the

performance of the proposed constraint multi-objective algorithms, and the relevant

performance metrics for multi-objective optimization.

2.1 Acronyms

Two separate lists of the most important acronyms of this dissertation are made.

One list consists of acronyms that are frequently used when discussing optimization

algorithms. The second acronym list consists of acronyms used in the ship design

domain.

2.1.1 Optimization Acronyms

COBYLA Constraint Optimization BY Linear Approximation algorithm

DoE Design of Experiments

EAF Empirical Attainment difference Functions

ECDF Empirical Cumulative Distribution Function

HV Hypervolume

IGD+ Inverted Generational Distance+ metric

LHS Latin Hypercube Sample

NSGA-II Non-dominated Sorting Genetic Algorithm II

PF Pareto Frontier

7



2.2. Problem Notations

RBF Radial Basis Function

SAMO-COBRA Self-Adaptive Multi-Objective Constrained Optimization by using

Radial Basis Function Approximations algorithm

2.1.2 Ship Design Acronyms

ρ Water Density

ACD Accelerated Concept Design

B Breadth

Boa Breadth Overall

Cb Block Coefficient

DWT Dead Weight Tonnage

FFD Free Form Deformation

KPI Key Performance Indicators

L Length

LBP Length Between Perpendiculars

LSW Light Ship Weight

MCR Maximum Continuous Rating

RANSE Reynolds Averaged Navier-Stokes Equation

T Draft

TEU Twenty-Foot Equivalent Unit

TSHD Trailing Suction Hopper Dredger

V Service Speed

2.2 Problem Notations

In this work, the following notations are used to define optimization problems. The

focus of this work is mainly on optimization problems with two or more objectives,

one or more constraints, and continuous decision variables. These problems can math-

ematically be formulated as follows:

minimize: f : Ω→ Rk , f(x) = (f1(x), . . . , fk(x))>

subject to: gi(x) ≤ 0 ∀i ∈ {1, . . . ,m}

x ∈ Ω ⊂ Rd.

(2.1)

In the following list, the elements and notations are explained in more detail.
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Chapter 2. Preliminaries

• A solution with d design variables in the continuous domain is defined as

(x1, . . . , xd) = x ⊂ Rd, here d is called dimensionality.

• Multiple decision vectors x1, . . . ,xn are denoted as a matrix X ∈ Rd×n.

• The design space that consists of all solutions is denoted by Ω ⊂ Rd. The

Design space in this work is bounded by a lower bound and an upper bound

xlb ≤ Ω ≤ xub. Here xlb ∈ Rd, and xub ∈ Rd.

• An objective function that evaluates a solution and returns a continuous objec-

tive function value is formulated as f : Ω→ R.

• Unless otherwise specified all objectives are to be minimized: min
x∈Rd

(f(x)).

• Objectives to be maximized are without loss of generality transformed into ob-

jectives to be minimized: min
x∈Rd

(f(x)) = −1 · max
x∈Rd

(f(x)).

• In multi-objective problems, k denotes the number of objectives, and the set of k

objectives that evaluate a solution is combined into a vector f : Ω→ Rk, f(x) =

(f1(x), . . . , fk(x))>.

• A constraint function that evaluates a solution and returns the constraint viola-

tion score is formulated as g : Ω→ R.

• Unless otherwise specified, the constraint feasibility boundary is 0. Constraint

values g(x) ≤ 0 are defined as feasible while constraint values g(x) > 0 are

infeasible. The output of the constraint function g(x) is therefore a value that

represents the constraint violation.

• Constraints with a constraint boundary g(x) ≤ c can be rewritten as g(x)−c ≤ 0.

• Constraints where g(x) ≥ 0 is defined feasible are refactored to g(x) ≥ 0 →
−1 · g(x) ≤ 0.

• An equality constraint h(x) = 0 can be replaced with two inequality constraints.

A good practice is to add a small margin ε around the constraint boundary so

that in case there are tiny numerical instabilities this does not influence the

feasibility of the solutions. h(x) = 0 → g(x)− 0.5ε ≤ 0, and g(x) + 0.5ε ≥ 0.

• In optimization problems m denotes the number of constraints. The set of m con-

straints can be combined into a vector g : Ω→ Rm, g(x) = (g1(x), . . . , gm(x))>.
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2.3. Problem Notations

2.2.1 Pareto Optimal Solutions

Now that the notations are clear, a definition can be given for optimal solutions. First,

the definitions are given for a local and a global optimum and later the definition of

Pareto optimal and Pareto dominance is given to define which solutions are preferred

over other solutions for constraint multi-objective problems.

Definition 2.1 (Local Optimal Solution). A local optimal solution is a solution that

is the best in its local surroundings. This solution can be improved by inspecting other

regions of the design space.

Definition 2.2 (Global Optimal Solution). A global optimum is the best possible

solution for the entire design space. Unlike a local solution, this solution is the absolute

best solution and it can not be improved anymore.

Definition 2.3 (Feasible solution). A solution x ∈ Ω is feasible if and only if gi(x) ≤
0 ∀i ∈ {1, . . . ,m}.

Definition 2.4 (Dominance). Solution y = f(x) dominates solution y′ = f(x′) if and

only if ∀i∈{1,...,k} : yi ≤ y′i and ∃i∈{1,...,k} : yi < y′i, in symbols y ≺ y′.

Definition 2.5 (Incomparability). Solution y = f(x) is incomparable to solution

y′ = f(x′) if and only if ∃i∈{1,...,k} : yi < y′i and ∃i∈{1,...,k} : yi > y′i, in symbols y‖y′.

Definition 2.6 (Indifference). Solution y = f(x) is indifferent to solution y′ = f(x′) if

and only if ∀i∈{1,...,k} : yi = y′i, in symbols y ∼ y′. Note that indifference is equivalent

to equality in the objective space. It is not guaranteed to also be equivalent in the

design space: f(x) ∼ f(x′) 6=⇒ x = x′

Definition 2.7 (Pareto-optimal solution). Solution x ∈ Ω is Pareto-optimal if and

only if there is no solution x′ ∈ Ω for which f(x′) = y′ ≺ y = f(x).

Definition 2.8 (Feasible Pareto-optimal solution). Solution x ∈ Ω is feasible Pareto-

optimal if and only if there is no solution x′ ∈ Ω for which f(x′) = y′ ≺ y = f(x)

where gi(x) ≤ 0 and gi(x
′) ≤ 0 ∀i ∈ {1, . . . ,m}.

Definition 2.9 (Pareto optimal set). The set of solutions X that form the Pareto

optimal set is the set of feasible incomparable and indifferent solutions that are not

dominated by any other solutions X = {x′ ∈ X | @x ∈ Ω : f(x) ≺ f(x′)}.

10
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2.3 Expensive Black Box Optimization

When solving expensive black-box optimization problems, often Bayesian optimization

is chosen as the method to find the optimal solutions. An argument for using Bayesian

optimization algorithms is that these algorithms typically require a small evaluation

budget to find (a set of) optimal solutions. This makes Bayesian optimization a good

choice when the evaluation functions are computationally expensive [53, 90].

Bayesian optimization consists of 4 steps:

1. Bayesian optimization starts with a Design of Experiments (DoE). The solutions

from the DoE are evaluated with the objective and constraint functions and put

in an archive of evaluated solutions.

2. Surrogate models are fitted with all data from the archive.

3. With an infill criterion the promising solution(s) are selected based on the sur-

rogate(s) predictions. The infill criterion is optimized with an optimization al-

gorithm.

4. The new solutions are evaluated with the objective and constraint functions and

added to the archive.

Finally, the algorithm terminates if a stopping criterion is met, otherwise the algorithm

goes back to step 2. See Figure 2.1 for a graphical representation.

Figure 2.1: Flowchart of Bayesian optimization.

Choosing the optimal DoE strategy, surrogate models, and a local search method

to find promising solutions on the surrogates is still a challenge. In the following

subsections, a few DoE strategies, surrogate models, and local search methodologies

are discussed that are used and referred to in this work.

2.3.1 Design of Experiments

In a design of experiments, the first set of solutions is generated and evaluated. The

location in the domain where these first solutions are placed (also sometimes referred
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2.3. Expensive Black Box Optimization

to as initial sampling) is dependent on the DoE strategy. Several possible choices

for a DoE exist, including uniform random sampling, full factorial design [17], Latin

Hypercube Sampling [138], Halton sampling [73], and Sobol sampling [134]. Each

of these methods has its own strengths, however, a large empirical comparison was

presented by Bossek et. al. [23]. This empirical study concludes that spending as few

evaluations on the DoE as possible is often beneficial because this leaves more room

for evaluations proposed by the optimization algorithm [23]. This empirical finding

also works best for most constraint multi-objective problems [148].

A recently proposed new sampling method is the Riesz s-energy-based sampling

method [77]. The Riesz s-energy-based sampling method iteratively improves and

proposes an arbitrary number of well-spaced points in the design space [21]. This

method has been modified for constraint search spaces [19] so that it samples solutions

only in the feasible area of the design space. This however is only practically applicable

if the constraint functions are inexpensive to evaluate.

In industrial settings, solutions can often be evaluated in parallel. The number of

solutions that can be evaluated in parallel are denoted with a p in this work. The

number of solutions that can be evaluated in parallel is often dependent on the avail-

able computational resources and, if applicable, the number of commercial simulator

licenses. The resources for parallel evaluations can be used to evaluate the initial DoE.

The size of the DoE however now should be chosen based on the size of p. It is advised

to choose a DoE size of dDoEmin/pe · p, where p is the maximum possible number

of simultaneous parallel evaluations and DoEmin the smallest DoE size required for

training the first surrogate models. This way, no wall clock time is wasted, and the

maximum amount of information from the objectives and constraints is gathered.

2.3.2 Surrogate Models

For the algorithm proposed in this research Radial Basis Functions (RBFs) and Krig-

ing (also known as Gaussian process regression) are considered surrogate models. RBF

and Kriging surrogates are fundamentally very similar, however, RBFs have many ad-

vantages: 1) RBFs require smaller sample sizes to fit a surrogate, 2) they are generally

faster (also for larger input spaces), 3) have fewer assumptions on the underlying data,

4) deliver in many cases equal or better accuracy, 5) and with a newly developed uncer-

tainty quantification method RBFs can now also be used in infill criteria that require

this [12, 57]. Besides these fundamental arguments, an empirical comparison showed

faster convergence and better results for algorithms with RBF surrogates compared to
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the algorithm with Kriging surrogates [148]. For these reasons, the algorithm proposed

in this work uses RBFs as surrogate models.

Radial Basis Function Interpolation

Radial Basis Functions (RBFs) are a type of mathematical function used for approxi-

mating the relationship between input and output variables [29]. The input variables

are often the decision variables (x), and the output variables are the objective (f)

or constraint (g) value of the evaluated solutions. RBF interpolation approximates a

function by fitting a linear weighted combination of RBFs [13]. The challenge is to

find correct weights (θ) and a good RBF kernel ϕ(‖x− c‖). An RBF is only depen-

dent on the distance between the input point x to the center c. The RBFs used in

this work take each evaluated point as the centroid of the function, and the weighted

linear combination of RBFs always produces a perfect fit through the training points.

Besides the perfect fit on the training points, the linear combination of the RBFs can

also give a reasonable approximation of the unknown area.

Any function which is only dependent on the distance from a specific point to

another point belongs to the group of RBFs. The RBF kernels (ϕ) considered in this

work are the cubic with ϕ(r) = r3, Gaussian with ϕ(r) = exp (−(ε · r)2), multiquadric

with ϕ(r) =
√

1 + (ε · r)2, inverse quadratic with ϕ(r) = (1 + (ε · r)2)−1, inverse

multiquadric with ϕ(r) = (
√

1 + (ε · r)2)−1, and thin plate spline with ϕ(r) = r2 log r.

Note that the shape/width parameter ε for every individual RBF is kept constant as

proposed by Urquhart et al. [159]. Moreover, all shape parameters are fixed to ε = 1.

Finding suitable linear weighted combinations θ of the RBFs can be done by in-

verting Φ ∈ Rn×n where Φi,j = ϕ(‖xi − xj‖):

θ = Φ−1 · f (2.2)

Here f is a vector of length n with the function values of one of the objectives or

constraints. Because Φ is not always invertible, Micchelli introduced RBFs with a

polynomial tail, better known as augmented RBFs [101]. In this work, augmented

RBFs are used with a second-order polynomial tail. The polynomial tail is created by

extending the original matrix Φ with P = (1, xi1, . . . , xid, x
2
i,1, . . . , x

2
id), in its ith row,

where xij is the j-th component of vector xi, for i = 1, . . . , n and j = 1, . . . , d, P>,
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and zeros 0(2d+1)×(2d+1), leading to 1 + 2d more weights µ to learn.[
Φ P

P> 0(2d+1)×(2d+1)

][
θ

µ

]
=

[
f

02d+1

]
(2.3)

Now that the weights θ and µ can be computed with Eq. 2.2, for each unseen input x′

the function value (f ′) can be interpolated/predicted by using Eq. (2.4).

f ′ = Φ′ ·
[
θµ
]

f ′ =

n∑
i=1

θiϕ(‖x′ − xi‖) + µ0 +

d∑
l=1

µlx
′
l +

d∑
l=1

µlx
′2
l ,

x ∈ Rd

(2.4)

Bagheri et al. also exploited similarities between RBF and Kriging surrogates to

come up with an uncertainty quantification method for RBFs [12]. The formula for

this uncertainty quantification method is given in Eq. (2.5).

ÛRBF = ϕ(‖x′ − x′‖)−Φ′>Φ−1Φ′ (2.5)

where ϕ(‖x′ − x′‖) = ϕ(0) is a scalar value.

The uncertainty (ÛRBF ) of solutions far away from earlier evaluated solutions is

higher compared to solutions close to earlier evaluated solutions. This uncertainty

quantification method can therefore be used in infill criteria that require uncertainty

quantification method to avoid getting stuck in a local optimal solution. However, as

can be derived from Eq. (2.5), the uncertainty quantification method is only dependent

on the input space and not on the scale of the objective and/or weights of the RBF

models. It is therefore needed to use a consistent scale for both the input and the

output space.

Scaling Techniques

For surrogate approximations, various scaling and transformation functions can be

used to improve the surrogate fit. Four scaling and transformation techniques used in

this work are described below.

Scale: The input space/decision variables are scaled into the range [−1, 1] with

x = 2 · (x − xlb)/(xub − xlb) − 1. By scaling large values in the input space,

computationally singular (ill-conditioned) coefficient matrices in Eq. (2.2) can
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be prevented. In case the large values in the input space are kept, the linear

equation solver will terminate with an error, or it will result in a large root mean

square error [13]. Additionally, when fitting the RBFs, a change in one of the

variables, is relatively the same change in all the other variables, making each

variable in the basis equally important and equally sensitive.

Standardize: The relationship between the input space and the objective function

values is modeled with the surrogates. To keep a consistent scale between the

input and output scale, the output function values are standardized by using

y′ = (y − ȳ)/σ. Here σ is the standard deviation of y, and ȳ the mean of y. By

using this standardization method, the uncertainty quantification from Eq. (2.5)

can be used.

Scale Constraint: The constraint evaluation function should return a continuous

value, namely the amount by which the constraint is violated. Since it is possible

to have multiple constraints, and each constraint is equally important, every

constraint output is scaled with c′ = c/(max(c) −min(c)), where max(c) is the

maximum constraint violation encountered so far, and min(c) is the smallest

constraint value seen so far. After scaling, the difference between min(c) and

max(c) becomes 1 for all constraints, making every constraint equally important

while 0 remains the feasibility boundary.

Plog: In cases where there are very steep slopes, a logarithmic transformation of

the objective and/or constraint scores can be beneficial for the predictive accu-

racy [125]. Therefore, the scores are transformed with the Plog transformation

function. The extension to a matrix argument Y is defined component-wise, i.e.,

each matrix element yij is subject to Plog.

Plog(y) =

+ ln(1 + y), if y ≥ 0

− ln(1− y), if y < 0
(2.6)

Radial Basis Functions Illustrative Examples

A visual representation (adapted from [142]) of how a Cubic RBF surrogate model is

used to model a 1-dimension constraint function and how they become more accurate

when more training points are added is presented in Figure 2.2. In the figures, the

dashed blue line is the constraint function that the RBFs have to approximate, the red

dots are the training points that have been evaluated and used to train the cubic RBF
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2.3. Expensive Black Box Optimization

model, the solid orange line is the RBF prediction, the red shaded area is the predicted

infeasible area where the RBF prediction is larger than 0 (g(x) > 0). Evident from the

figures is that the surrogate’s accuracy improves with the addition of more training

points.
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(a) RBF fit with 2 training points.
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(b) RBF fit with 3 training points.
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(c) RBF fit with 4 training points.
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(d) RBF fit with 5 training points.

Figure 2.2: The dashed blue line is the constraint function that the Cubic RBFs have to
mimic, the red dots are the training points that have been evaluated and used to train the
cubic RBF model, the solid orange line is the RBF prediction given x, the red shaded area
is the predicted infeasible area where the surrogate prediction is larger than 0 g(x) > 0.

Drawbacks of using Surrogates

There are a few scenarios for which surrogates are not ideal to use. If for example

the constraint or objective is computationally cheaper than evaluating a solution on a

surrogate, it is better to directly use the original constraint and or objective function.

Another reason to not use surrogate-assisted algorithms is in the scenario where the
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objective and or constraint function is highly multi-modal. If the global structure

of the objective function is weak, and there are many local structures consisting of

hills, finding an accurate fit of the to-be-modeled function with a surrogate is very

difficult. This is difficult because many training points would be required to get an

accurate fit of all the hills and alleys. It is for this reason that highly multi-modal

problem landscapes are difficult to model with surrogates. Decision makers should

therefore take the multi-modality, and expensiveness of the functions into account

when selecting surrogate-assisted optimization algorithms.

2.3.3 Local Search Methodologies For Surrogate Exploration

Finding good solutions on surrogates is done by optimizing an acquisition function

(also sometimes refereed to as infill criterion). The acquisition functions in this work

are optimized with the so-called Constraint Optimization BY Linear Approximations

algorithm (COBYLA) [120].

COBYLA linearly approximates the constraints and the acquisition function in a

small trust region. In this trust region, COBYLA maximizes the acquisition function

subject to the constraints by maximizing the following function:

Ψ(x) = F̂ (x) + µ (−max(ci(x) : i = 1, . . . ,m))+ , x ∈ Rd (2.7)

Here, x is a solution in the input space, F̂ is in our case the linear approximation

of the acquisition function, ci is the i-th linear approximation from the m constraint

functions, the subscript + means that the expression in the brackets becomes 0 if

none of the constraints are violated, and µ is a self-adaptive penalty parameter that

makes sure that the approximation of a new solution Ψ(x∗) with a smaller constraint

violation and better acquisition function score is preferred over the starting solution

approximation Ψ(x0). After the best solution in the trust region on the linear approx-

imations is found, it is evaluated on the constraint surrogate and acquisition function.

When the linear approximation of COBYLA in the trust region underestimates the

acquisition function, the trust region increases in size, while if it overestimates, the

trust region becomes smaller. This way, when nearing the solutions that have the

optimal acquisition score, the trust region becomes smaller and smaller until it falls

below an ε > 0 value and COBYLA terminates.

Since COBYLA is a local optimizer, it can get stuck in a local optimum [169]. To

overcome this problem, multiple instances of COBYLA are run in parallel. Searching

for optimal solutions in multiple locations simultaneously is also a well-known strategy
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in the Island model for parallel optimization [70], in parallel simulated annealing [91],

and in ant colony optimization [51]. After all COBYLA instances have converged,

all solutions are found. The solution with the best acquisition score is selected for

evaluation on the expensive objective and constraint functions.

2.4 Benchmark Test Functions

For assessing the performance of various constraint multi-objective optimization al-

gorithms a set of benchmark test functions are collected. An overview of the test

functions is given in Table 2.1. In this table, the reference point (the worst possible

value for each objective), the approximated Nadir point (the worst possible value for

each objective among all solutions on the Pareto frontier), the number of objectives

k, the number of dimensions d, the number of constraints m, and the feasibility ratio

(P%) after one million random samples are given.

Table 2.1: Test function name, reference point used during optimization, Nadir point
approximation based on all experiments in this work, number of objectives k, number of
decision variables d, number of constraints m, percentage of feasible solutions P (%) after one
million random samples.

Function Reference point Nadir point k d m P (%)

BNH (140, 50) (136.00, 50.00) 2 2 2 96.92
CEXP (1, 9) (1.00, 9.00) 2 2 2 57.14
SRN (301, 72) (222.99, 2.62) 2 2 2 16.18
TNK (2, 2) (1.04, 1.04) 2 2 2 5.05
CTP1 (1, 2) (1.00, 1.00) 2 2 2 92.67
C3DTLZ4 (3, 3) (2.00, 2.00) 2 6 2 22.22
OSY (0, 386) (-41.81, 76.00) 2 6 6 2.78
TBTD (0.1, 50000) (0.1, 10000) 2 3 2 19.46
NBP (11150, 12500) (12500, 114.09) 2 2 5 41.34
DBD (5,50) (2.79, 16.86) 2 4 5 28.55
SRD (7000, 1700) (5879.98, 1696.46) 2 7 11 96.92
WB (350, 0.1) (35.31, 0.0145) 2 4 5 35.28
BICOP1 (9, 9) (1.00, 1.00) 2 10 1 100
BICOP2 (70, 70) (1.10, 1.11) 2 10 2 10.55
MW1 (1,7) (1.00, 1.00) 2 8 1 0.007
MW2 (1,7) (1.00, 1.00) 2 6 1 0.55
MW3 (1,7) (1.00, 1.00) 2 6 2 1.32
MW11 (30,30) (2.06, 2.04) 2 6 4 1.38
TRIPCOP (34, -4, 90) (7.67, -11.77, 25.91) 3 2 3 15.85
SPD (16, 19000, -260000) (11.16, 12435.27, -259148.04) 3 6 9 3.27
CSI (42, 4.5, 13) (42.77, 4.00, 12.52) 3 7 10 18.17
WP (83000, 1350, 2.85, (74573, 1350, 2.85, 5 3 7 92.06

15989825, 25000) 7874925, 25000)

The following functions are artificially created test functions: BNH [41], CEXP [46],

SRN [50], TNK [50], CTP1 [46], C3DTLZ4 [141], OSY [41, 50], NBP [62], BICOP1 [44],

BICOP2 [44], TRICOP [44], MW1 [97], MW2 [97], MW3 [97], MW11 [97].

The following functions are coming from real-world problems: Two-Bar Truss De-

sign (TBTD) [66], Disk Brake Design (DBD) [66], Ship Parametric Design (SPD) [117],
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Car-Side Impact (CSI) [83], speed Reducer Design (SRD) [105], Welded Beam (WB) [66],

Water resource management Problem (WP) [83].

The test functions are selected because they are diverse, well known, and some

mimic industrial problems. The Pareto frontiers of the functions vary between 2 and 5

objectives and the shapes can be classified as concave, convex, connected, disconnected,

or even mixes of these characteristics [6]. The constraints of the selected test problems

are also diverse since for some problems they are very strict, while for other problems

(almost) the entire search space is feasible. Next to the feasibility of the problems, on

some Pareto frontiers, the constraints are active, while on other problems they are not,

or partially active. Next to the artificially created test functions, a set of real-world-

inspired problems is selected to assess how well the optimization algorithms operate

in situations resembling industrial optimization scenarios.

2.5 Algorithm Performance Metrics

The performance of algorithms can be determined with performance metrics. These

metrics help to determine which algorithm perform well on benchmark problems and

visualizing the evolution of the performance metric gives insight in how fast the al-

gorithms converge. Since the focus of this work is multi-objective optimization algo-

rithms the most used multi-objective metrics are presented and visualized.

2.5.1 Multi-Objective Performance Metrics

The two commonly used multi-objective performance metrics used in this work are

the HyperVolume (HV), and the Inverted Generational Distance+ (IGD+) metric.

Hypervolume

The hypervolume (also known as the Lebesgue measure) translates the multi-objective

problem into a unary performance score that represents the volume of the region in the

objective space that is dominated by a given set of solutions [18, 175]. It is the most

widely used performance metric in multi-objective optimization [128] and measures

and captures the overall convergence and diversity of the set of solutions forming the

Pareto front. The HV is calculated by determining the volume of the region in the

objective space between the solutions on the obtained Pareto front and a pre-defined

reference point (also sometimes referred to as the anti-optimal point [158]). For a

single solution on two objective problem, this is easy to compute as it is the surface
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between the solution and the reference point. If more solutions are on the Pareto

front, the overlapping region is only counted once, this is done by calculating the

union of the overlapping regions. The formal definition of the hypervolume is given in

Definition 2.10.

Definition 2.10 (Hypervolume Indicator).

HV (Y, fref ) = Λk(∪yi∈Y[y, fref ]) (2.8)

here Λk denotes the Lebesgue measure on Rk, with k being the number of objective

functions, yi the i-th Pareto optimal solution, Y all Pareto optimal solutions, and

fref the reference point in k dimensions.

The HV is a useful measure for comparing the performance of different optimization

algorithms, as well as for comparing different solution sets with each other. Solution

sets with higher HV are considered better compared to solutions with lower HV. The

HV of three solutions is visualized in Figure 2.3, where the triangles represent the

evaluated non-dominated solutions, and the reference point is indicated by a star.

The surface of the shaded area is the HV of this particular Pareto front.

Inverted Generational Distance +

Another performance metric often used in multi-objective optimization is the inverted

generational distance+ metric (IGD+) [82]. It is used as a measure to check how

close the known Pareto frontier is to the obtained dominated area. The IGD+ metric

evaluates diversity and convergence as follows:

IGD+(A,S) =
1

| S |

 |S|∑
i=1

(d+
i )2

 1
2

(2.9)

Here S is the known Pareto front, A is the dominated area by a Pareto front Y

obtained by an algorithm, and d+
i is the smallest Euclidean distance from a solution

on the known Pareto front si to the dominated area of A. This way, if the obtained

dominated area of the solutions found by the algorithm is far away from the known

Pareto front, the IGD+ value increases. A smaller IGD+ value is therefore preferred

over a larger IGD+ value. The IGD+ metric and the distances of 8 known solutions

are visualized in Figure 2.4.

The IGD+ metric can only be used on test instances where the Pareto front is
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Figure 2.3: Visual representation of hypervolume. Total hypervolume between the 3
solutions and the reference point is 0.3× 0.8 + 0.3× 0.5 + 0.3× 0.3 = 0.48.

known. In this work, the Pareto front used for the IGD+ metric is approximated

by combining all obtained feasible Pareto efficient points of all experiments, then

normalizing the objective scores, and finally selecting a well-spread set of solutions.

The true Pareto front of computationally expensive engineering problems are often

impossible to determine, therefore this revised metric is only used on test problems.

2.5.2 Optimization Result Visualizations

One of the key goals of Bayesian optimization is finding the global optimal (set of)

solutions in as few evaluations as possible. Visualizing the set of optimal solutions

in multi-objective optimization is usually done on a 2-dimensional or 3-dimensional

Pareto frontier. When more than 3 objectives are to be visualized, or the objectives

should be visualized together with the constraints and decision variables, then a par-

allel coordinate plot can be used. To visually compare the obtained Pareto frontiers of

more than one algorithm run Empirical Attainment Function (EAF) difference plots
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Figure 2.4: IGD+ score visualized on a two objective problem. IGD+ is the average length
of the arrows from the well-spread known solutions to the closest point of the dominated area.

can be used for two-dimensional Pareto frontiers. The downside of visualizing only

the final result is that information about how fast the results are found is missing.

Convergence plots fortunately can give answer to this issue. On convergence plots, a

performance score is plotted after every function evaluation from a run of an optimiza-

tion algorithm on a specific test function. However, when comparing the convergence

of algorithms on a set of different function evaluations Empirical Cumulative Dis-

tribution Function (ECDF) plots can be used. In the following subsections, all the

visualization techniques are explained in more detail.

Pareto Frontier Plot

The Pareto frontier plot is a visual representation of the objective scores from Pareto-

optimal solutions. The objective score of each Pareto efficient solution is plotted on

the Pareto frontier. The Pareto frontier this way shows the trade-off between the

objectives. Improvements of a solution in one objective on the Pareto frontier can

only be made by sacrificing any of the other objectives. An example Pareto frontier

22



Chapter 2. Preliminaries

on the Two-bar Truss Design (TBTD) problem [66] obtained with the SAMO-COBRA

algorithm (the SAMO-COBRA algorithm will be introduced in Chapter 5) is given in

Figure 2.5.
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Figure 2.5: Pareto Frontier of TBTD Problem obtained with SAMO-COBRA algorithm
after 120 function evaluations.

By plotting the Pareto frontiers of different algorithms, the objective space can be

inspected. Inspection of the objective space shows in which regions which algorithm

performs better. An illustrative example of the SAMO-COBRA algorithm and the

SA-NSGA-II algorithm (The SA-NSGA-II algorithm will be introduced in Chapter 5)

of the TBTD problem is presented in Figure 2.6.

From this figure it can be concluded that SAMO-COBRA has obtained slightly

better and many more good solutions for objective 2, while the SA-NSGA-II algorithm

has achieved better results in objective 1 since it found very small values for this

objective.

Parallel Coordinate Plots

Two dimensions can be plotted on a regular Pareto frontier with two axes. In higher

dimensions, parallel coordinate plots can be used [78]. In a parallel coordinate plot,
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Figure 2.6: Pareto Frontiers on TBTD problem obtained with the SAMO-COBRA and
SA-NSGA-II algorithm after 120 function evaluations.

each vertical axis represents a parameter, objective, and/or constraint while the hor-

izontal axis has no meaning except for that it is the minimum and maximum value

that has been found for the objective. Each solution in the parallel coordinate plot

is represented by a line that connects the vertical axes. An example of a parallel

coordinate plot of the Water resource management Problem (WP) [83] is presented in

Figure 2.7.

The first thing that can be concluded from this parallel coordinate plot is that the

solutions on each axis are very well spread since there are no large gaps between the

solutions. The second thing that can be concluded is that there is a very clear inverse

correlation between objective 3 and objective 4.

Empirical Attainment Difference Function

Comparing the obtained Pareto frontiers of different algorithms of one run per algo-

rithm can still be done with a regular Pareto frontier plot as in Figure 2.6. However,

when the algorithms have been used to optimize the benchmark problem more than

once and the results are each time a bit different due to the stochastic nature of the
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Figure 2.7: Parallel coordinate plot of objective scores from the 5 objective water resource
management problem.

algorithms then comparing them becomes more challenging. For this reason, Empir-

ical Attainment Difference Functions (EAF) have been developed [96]. In the EAF

difference plots the dark areas mark where the two algorithms have obtained different

results. The more frequent a certain area is dominated by an algorithm the darker

the grayscale is. An example of an EAF difference plot on the TBTD problem is

given in Figure 2.8. The EAF difference plot again confirms what was shown earlier

in Figure 2.6, the SAMO-COBRA algorithm manages to find the minimum values of

objective 2 on the Pareto frontier, while SA-NSGA-II found smaller values for objec-

tive 1.

Convergence Plots

On convergence plots, the x-axis typically shows the number of function evaluations

required to achieve a performance score that is on the y-axis. By analyzing the con-

vergence plots it can be identified after how many evaluations the algorithm has found

a good (set of) optimal solution(s) and has converged. If multiple algorithms (or al-

gorithm configurations) are plotted together, the convergence can be compared. An
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Figure 2.8: Empirical Attainment Difference Function plot on TBTD problem for com-
paring 10 independent SA-NSGA-II and 10 SAMO-COBRA runs.

illustrative example for a convergence plot on the TBTD problem is given in Figure 2.9.

In the convergence plot where the hypervolume is to be maximized, it is shown

that the SAMO-COBRA algorithm with batch size 1 achieves the highest hypervol-

ume after 120 function evaluations. Besides the final score the convergence plot also

shows the performance after fewer function evaluations. Inspection of this tells us

that the SAMO-COBRA with batch size 1 obtains the best results and converges

faster compared to the other configurations.

Empirical Cumulative Distribution Functions

Empirical Cumulative Distribution Functions (ECDF) [76, 166] are used to visualize

the convergence of the different algorithms on a set of test functions simultaneously

in one plot. An ECDF plot is based on a set of target values that are linearly dis-

tributed (sometimes also other distributions are chosen) between zero and the maxi-

mum achievable performance score per test function. The proportion of target values

attained by the algorithm is the score reported on the ECDF curve. To be able to

visualize the performance of an algorithm on multiple different benchmark functions,

the corresponding ECDF target score proportions are aggregated. This then results in

a curve that grows as more target values are reached. A formal description, adapted

from [166], is given in the following definition:
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Figure 2.9: Illustrative example of a convergence plot of SAMO-COBRA algorithm with
different batch sizes on TBTD problem.

Definition 2.11. An ECDF curve requires to select a set {v1, . . . , vn} of target values.

The ECDF shows for each budget t the fraction | {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ n} | /r · n
of the (run r, target value) pairs (i, vj) that satisfy that V (A, f, t, i) ≥ vj . Here

V (A, f, t, i) denotes the function value of the best among the first t evaluated solution

candidates in run i. So the ECDF is expressed as F̂ (t) = 1
nr

∑n
j=1

∑r
i=1 1V (A,f,t,i)≥vj ,

where 1C denotes the indicator variable, which is one where the condition C is satisfied.

Two ECDF curves with hypervolume as the performance metric, 10 independent

runs per benchmark problem from Section 2.4, are given in Figure 2.10. The ECDF

curve of the SAMO-COBRA algorithm is completely above the results from the SA-

NSGA-II algorithm. This shows that for each budget the SAMO-COBRA algorithm

achieves a larger portion of the target values compared to the SA-NSGA-II algorithm.

This means that on average the SAMO-COBRA algorithm finds a better hypervolume

and also on average converges faster.
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Figure 2.10: ECDF Curve that aggregates the results for the SA-NSGA-II and SAMO-
COBRA algorithm that have optimized all benchmark problems from section 2.4 10 times.
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Chapter 3

Ship Design Problem

Characteristics

Ships are design intensive and belong to the most complex engineering objects world-

wide [35, 106]. In this chapter, the aim is to detect patterns in this complex engineering

problems by answering research question 1: What are typical ship design optimization

problem characteristics? This chapter therefore describes ship design problem char-

acteristics, their evaluation methods, guidelines for holistic ship design optimization,

and an illustrative example.

3.1 Introduction

Traditionally, initial ship designs are generated by modifying existing designs by ex-

perienced architects [113]. The decisions made early in the design process are made

using limited time and budgets and are difficult and costly to reverse in later design

stages when these decisions turn out to be sub-optimal [68, 115]. In this traditional

way, ships are designed and optimized in an iterative design process illustrated by the

design spiral [58]. In the design spiral as presented in Figure 3.1 several sequential

decisions are made in such a manner that the objectives are optimized and constraints

imposed by physics and regulating authorities are met. However, this approach is

time-consuming and the design process likely leads to a so-called locally optimal so-

lution. The locally optimal solution is found due to the fact that it is impossible for

human experts to consider all the dependencies between the decision variables, the
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constraints, and the objectives [112].

Figure 3.1: Classic Design Spiral [58] where iteratively details are added and where itera-
tively the design is adjusted by checking all ship design aspects requirements and optimizing
the objectives one by one for various ship design stages.

In practice, this means that a ship is optimized not in one iteration but by de-

signing and building multiple ones. This is because in the first design phase, the

main dimensions of a ship are to be decided on. This brings many complex engineer-

ing questions which will have a very high impact on the final result. However, it is

these decisions that need to be made in the shortest amount of engineering time. The

more unique the ship is, the higher the challenge will be to answer the questions with

confidence. Answering these complex engineering questions is usually done based on

experience and heuristics. As the design progresses, these early choices are hard to

reverse without major delay. This pushes the designers towards risk mitigation instead
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of innovation [149]. Innovation is therefore often seen over several designs, each being

a small improvement over the other.

Decisions in the ship design process can be made using two different design philoso-

phies, the empirical and the simulated design method. The empirical design method

is based on reference data of similar built vessels. The simulated design method uses

estimations, calculations, and simulations to optimize the economical and physical

characteristics of the to-be-designed vessel.

3.1.1 Empirical Design Method

In the Empirical Design method, the main dimensions are based on similar-built ves-

sels. A similar vessel is marginally improved or the data from a set of similar vessels

is used to make a regression model, after which empirical design formulas can be de-

ducted. Examples of empirical design equations to estimate light ship weight have been

created by Watson [45], Schneekluth and Bertram [129], D’Almeida [55], Andrews [7],

Molland [108] and Papanikolaou [114]. With these equations, a naval architect can

easily estimate ship design parameters and their corresponding KPIs. The equations

are usually calibrated for different ship types. It is however important to handle the

relations carefully. It is the naval architects’ job to update the relationships whenever

possible [108]. In reality updating is often not frequently done and the equations are

only available for the most popular ship types. A second note to keep in mind is that

extrapolation of the regression models remains problematic [114].

3.1.2 Simulated Design Method

If no or very little data of similar ships is available, or if the ship type is uncommon so

there are no existing empirical formulas, it is challenging to use the empirical design

method. The naval architect in this case is forced to design a ship from scratch using

estimations, calculations, and simulations. An efficient way to do this is by utilizing

a parametric 3-D model connected to simulation software. General design knowledge

and design experience are used to set up this 3-D parametric model. Examples of the

parametric modeling approach can be found in e.g. [100, 121, 149]. Typically, after a

parametric model is set up, the designs are optimized for their economical and physical

characteristics with optimization algorithms [149].

A second, more automated, parametric design method has recently been proposed

by Charisi et al [37]. In this work, it is shown that knowledge-based engineering is

a good option when designing a ship when not enough similar ship data is available.
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With knowledge-based engineering, general multidisciplinary knowledge is translated

into individual product models/building blocks that represent a small part of a vessel.

These product models are then used, scaled, and combined into an entire ship design

in an object-oriented way.

3.1.3 Radical Design Choices

In order to make more radical design changes with the empirical or simulated design

method in a short time and to manage the involved risk, a holistic ship design method

is needed to assist the naval architect in making informed decisions. Ship designs can

be optimized much more efficiently in a holistic manner where all ship design aspects

are considered simultaneously. In recent years, parametric models have been used in

combination with optimization algorithms to explore the design space early in the

design process, enabling engineers to gain better insight into the design problem, re-

ducing the probability for design changes later, and increasing the chances for optimal

cost and operational performance [86, 149].

3.2 Holistic Ship Design Optimization

When optimizing a ship all disciplines should work together to come to an optimal

solution. This solution however is often hard to find since there are many choices to

be made. As mentioned earlier, in practice, they are made based on experience and

heuristics while they should be made based on estimated performance data. Fortu-

nately, holistic optimization is slowly being adopted in the design industry.

Holistic optimization has been applied in different fields of engineering. For exam-

ple, it has been studied before in ship design optimization by Papanikolau et al. [113].

It has also been used to optimize aircraft designs [5] and passenger cars [132]. Similar

techniques have also been used to optimize plant-wide production processes [36]. All

these optimization problems have in common that they are solved by taking a holistic,

integrated perspective while solving the problem with an optimization algorithm.

The holistic ship design approach from this work consists of several elements,

namely:

1. Different software packages in which the vessel’s Key Performance Indicators

(KPIs) are evaluated.

2. An optimization problem definition with a parameterized design, and objective

and constraint functions.
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3. An optimization framework where the optimization algorithm, the problem def-

inition, and the different software packages are coupled.

Formulating a ship design problem is however not always straightforward, therefore

several guidelines are defined.

3.2.1 Ship Design and Evaluation Software

There are various maritime software packages in which ship design aspects can be

defined and KPIs can be evaluated. The C-Job Design Circle [149] in Figure 3.2

illustrates this.

Figure 3.2: The Accelerated Concept Design Circle illustrates the method where all KPIs
are considered in every iteration. The level of accuracy of the design simulators can be picked
and mixed by the user. High-fidelity simulations that deliver highly accurate estimations re-
quire more computational effort compared to low-fidelity approximations which are therefore
way faster.

In the design circle, the following design aspects are highlighted: floating position,

intact stability, damage stability, strength, weight & cost, space reservation, resistance,

and motions. As can be seen in the design circle (Figure 3.2), there are multiple levels

of accuracy per design aspect. A high level (level 4) has a higher accuracy and requires

more computational effort compared to a low level (level 1) that is less accurate and
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is computationally cheaper. As an example, level 1 to level 4 are given for resistance

at service speed (also sometimes referred to as power requirement):

Level 1 Is based on empirical design methods, is very coarse, and typically consists

of a regression line that is used to estimate the resistance. This regression line

is fitted on a dataset from a set of existing vessels that have a similar desired

operational speed and main dimensions as the vessel to be designed. This regres-

sion line is then used to estimate the required power of the new to-be-designed

ship. Estimation with this method requires almost no computational effort but

is also very coarse since minor changes in the design (e.g. a change in bulb size)

do not reflect in any change in estimated resistance. This method can however

be a good guideline for helping to choose the main dimensions of the vessel.

This method for required power estimation in combination with verifying if the

selected set of vessels is really operating at the design speed can be accurate in

cases where the to-be-designed vessel is very similar to the existing vessels.

Level 2 The empirical Holtrop & Mennen method [79] is used to estimate the power

requirement. The Holtrop & Mennen method is a well-known resistance esti-

mation method. It considers factors like hull shape, dimensions, and speed to

calculate different resistance components, including residuary, wave-making, vis-

cous, and appendage resistance. Making estimations with this method however

requires a bit more effort compared to level 1 because the Holltrop & Mennen

method requires more information about the hull shape (Block Coefficient, Lon-

gitudinal center of buoyancy, Prismatic Coefficient, bulb size, U versus V shape

frames), dimensions and speed. The downside of this method is that it expects

the hull to be well-faired and hydrodynamically optimized, therefore the results

are for an optimized and well-faired hull. However, often in the initial design

stages where the Holtrop & Mennen estimation method is used, the hull is not

yet optimized and faired. The Holtrop & Mennen estimated resistance therefore

does not reflect the resistance of the current hull but what the resistance is after

the hull is optimized and faired. Furthermore, the method is not suited for ves-

sels that are operating at very high speeds, or have an odd length-over-breadth

ratio and are therefore very different than the vessels in the database used to

develop the Holtrop & Mennen method.

Level 3 A potential flow solver like the one from Tahara et al [140] or Rapid from

Raven [122] can be used for hull resistance and drag estimation. A typical poten-

tial flow solver is a computational tool used to analyse how water flows around
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a ship’s hull. It simplifies the Navier-strokes equations by omitting viscosity (it

does not take vortices, friction, or flow separation into account) and assuming

incompressible and irrational flow. The results from a potential flow calcula-

tion consist of the wave-making resistance, the dynamic trim and sinkage, the

wave pattern, pressure distribution, and the flow lines on the hull. Therefore,

potential flow solvers could be used to optimize the bow of the ship but are less

feasible for optimizing the aft ship where the thickness of the boundary layer is

significant and flow separation and viscous forces are important. Potential flow

solvers can often excellently be used in initial hull shape design stages. A simple

potential flow calculation typically requires a few minutes.

Level 4: A Reynolds Averaged Navier-Stokes Equation (RANSE) analysis, often

called Computational Fluid Dynamics (CFD) analysis, is used to analyze the

fluid flow behavior around the hull. This is the most accurate level of the design

circle and requires the most computational effort. Typically CFD analysis is

done with commercial software like STAR-CCM+ [135] or open source software

like OpenFOAM [168]. The results from a RANSE analysis are typically pres-

sure drag, friction drag, dynamic trim, and dynamic sinkage, the pressure on the

hull, the shear stress on the hull, wave pattern, and flow lines on the hull. The

same results (with similar accuracy) can be obtained by executing model tests

in a basin. It is typically used to optimize the hull in one of the final stages

of the design where the final details are to be sorted out about the fairing, and

the ideal appendage location and size. A simple resistance calculation in calm

water typically requires 20 minutes on a high-performance computer with 144

cores. Very detailed full-scale ship simulations of a complete model in realistic

operating conditions and turbulent flow would require much more computational

resources.

Besides the resistance and power requirement for ship design, the other design as-

pects such as stability, strength, weight, motions, floating positions, and space reser-

vations can also be defined and computed at different levels of accuracy. The speed

and consequently the level of accuracy at which the design variants are evaluated can

be picked and mixed by the user. This means that if resistance is considered very

important a RANSE calculation can be selected, while strength for example can be

calculated with a simple longitudinal bending moments check, and if for example the

space reservation is guaranteed to be feasible by the parametric model, then evaluation

for this KPI can be completely skipped. The level of accuracy and duration of the
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evaluation influences how many evaluations can be done in the often short available

time in the early design stages. A simple volume check of a cube shape tank can be

executed thousands of times in a very short amount of time while a RANSE analysis

is more expensive in terms of computational cost and can therefore be computed much

less often.

The diverse nature of ship design tasks leads to a wide variety of specialized soft-

ware packages. Noteworthy commercial software packages used in this work are:

Rhinoceros 3D or Rhino in short, is primarily used in ship design to create 3D

models of vessels. This allows designers to shape hulls, parameterize hulls, fair

hulls, and define tanks and rooms. The programming, import, and export func-

tionality of Rhino makes it convenient to integrate Rhino with other analysis

tools for structural and hydrodynamic assessments.

NAPA software is used to model, parameterize, and evaluate any type of vessel. The

NAPA software is mainly used to define the space reservation with room and

tank arrangements and evaluate the damage and intact stability criteria of vessel

designs. Other aspects that can be calculated with NAPA are seakeeping, float-

ing position, and structural aspects for weight calculations. The programming

capabilities in NAPA make the software modular, easy to adjust, and give users

the possibility to establish a connection to other software packages.

DELFTship maritime software, is a visual hull modeling and stability analysis pro-

gram that allows. If modeled correctly, all the data required for damage and

intact stability can be calculated together with the bending moments and shear

forces. Just like in other design software packages, it is possible to program

custom scripts in DELFTship so that it can be coupled to other packages.

STAR-CCM+ is powerful computation fluid dynamics (CFD) software package de-

veloped by Siemens. It is mainly used for hull hydrodynamics, to assess the

propulsion requirement for the vessels. These calculations are crucial when op-

timizing hull shapes for fuel consumption reduction.

All these software packages require commercial licenses and if multiple simulations

are to be run in parallel, multiple licenses are required during the entire evaluation

time. The commercial license requirement together with available computing resources

typically drastically limits the number of allowed evaluations during the optimization

process. Therefore, it is important to pay attention to how many evaluations are

possible in the available time and how the number of evaluations can be decreased.

36



Chapter 3. Ship Design Problem Characteristics

3.2.2 Optimization Problem Definition Guidelines

There are some guidelines to follow when setting up a ship design optimization problem

(or any optimization problem for that matter) in a holistic manner. The guidelines

deal with the parameterization of the solution, and how to formulate the constraint

and objective functions.

Parameterization Guidelines

In the parameterization stage of ship design, the naval architect can use imagination

and creativity to create an innovative and new design that should be optimized. Im-

portant to remember when parameterizing and later optimizing a ship design model

is that the best vessel that can be found by the optimization algorithm is dependent

on the parameterization of the vessel. So if the parameterization is bad, the results

will be bad. To give two illustrative examples:

1. If the goal is to make an as light as possible vessel, but the parameterization

doesn’t allow for vessels that are smaller than the design that is parameterized,

it is very unlikely that a lighter vessel can be found with this parameterization.

2. If one wants a design with as small as possible hull resistance at design speed,

parameterizing the interior will probably only help a tiny bit in reducing the

resistance because it has a marginal influence on the floating position. It would

be much better in this case to parameterize the hull.

Therefore, the ship should be parameterized in such a manner that the perfor-

mance of the vessel also depends on the decision parameters that are defined in the

parameterized model. Defining decision variables that only marginally influence the

constraint and/or the objective values will only have marginal influence so they can

better be neglected or be regarded as a constant throughout the whole process.

Secondly, it is important that after all the decision variables have been set, the

geometry is formed accordingly. After this, the geometry should not be changed any-

more (for example to meet a constraint) until a new combination of decision variables

is chosen. This way, the input truly corresponds with one unique geometry. After

the geometry has been evaluated, it will be these decision parameters that define the

geometry and the corresponding constraint and objective values. This approach can

sometimes result in infeasible solutions since some combinations of decision parame-

ters will result in a geometry that violates one or more of the constraints. This is not

a major problem since optimization algorithms directly learn the relationship between
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the decision parameters of the solutions and the constraint and objective scores and

therefore will learn to propose better combinations in the next iterations. Because

the relationship between the parameters and the constraint and objective functions

is learned by the optimization algorithms, the number of parameters can also have a

significant impact on how many function evaluations are required to find (a set of)

optimal solution(s).

Constraint Function Guidelines

A constraint function is there to check if the solutions comply with the hard bound-

ary conditions set by the stakeholders. A guideline to take into consideration when

defining constraint functions is to make sure that the output of the constraint function

is real-valued and preferably continuous. Bad practice is a simple Boolean constraint

value corresponding to the constraint being violated or met. A real-valued constraint

function is important since optimization algorithms can learn by how much the con-

straints are violated or met. This information can be learned by the optimization

algorithm and can be crucial since, more often than not, the optimal design config-

uration is located on the border of the feasible area. The constraints are defined as

function inequalities: gi(x) ≤ 0 where x are the decision parameters and gi() is one of

the evaluation functions used to evaluate one of the m constraints. Note that here 0 is

the feasibility boundary, exactly how it should be formulated according to our prob-

lem formulation in Equation 2.1. However, in reality, a typical constraint function

g′(x) consists of three parts: a continuous function g′ which takes input arguments x

that represent the decision variables that can modify the solutions, and a constraint

boundary c that represents a maximum or minimum value for the constraint. These

three parts taken together form for example the inequality constraint g′(x) − c ≤ 0.

This inequality constraint can then be rewritten to its general form: g(x) ≤ 0. When

constraints have a minimum value they can be rewritten without loss of generality to

a function with a maximum value by multiplying by −1. Note that the function g′(x)

does not need to be a function that can easily be written by mathematical formulas.

The function g′(x) can also be a software program that calculates any of the KPIs.

In some design cases, also contain hard equality constraints. Sometimes, they can

simply be avoided by adjusting the parameterization of the design, while in other

cases an equality constraint is inevitable. In these cases there is an equality constraint

h(x) = 0, it should be replaced with two inequality constraints. This way, there is

no need to resort to special equality constraint handling methods. Good practice is

however to add a small margin (ε) around the constraint boundary so that in case there
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are tiny numerical instabilities this does not influence the feasibility of the solutions.

h(x) =

g(x)− 0.5ε ≤ 0

g(x) + 0.5ε ≥ 0
(3.1)

Objective Function Guidelines

The objectives are measurable KPIs that the stakeholders look to improve as much

as possible, it can be anything as long as it is numerically measurable and dependent

on the decision parameters. When defining the objective functions, one should define

a real valued, and again preferably continuous, function that only represents one ob-

jective at a time. This is preferred above a weighted sum of all objectives. Similarly,

one should not add penalties to the objective score if the design violates any of the

constraints. This way, the objective function remains smooth and the true optimal

solution can be found more easily by optimization algorithms. Objectives are typi-

cally conflicting and non-commensurable. Therefore, often one objective can not be

improved without sacrificing another objective. As a consequence, there is not one

perfect solution but a set of non-dominated solutions that form the Pareto optimal

set. The definition of the Pareto optimal set is used as described in 2.9.

3.2.3 Optimization Framework

The different software packages, the formulation of the objectives, constraints, and

parameterization come together in the holistic Accelerated Concept Design (ACD)

framework [149]. Because every aspect of the ACD framework is fully automated,

the designs can easily be varied and optimized towards, for example, the total cost

of ownership. By using any of the surrogate-assisted multi-objective optimization

algorithms from Chapter 5, the whole design space can be considered which makes it

more likely that a globally optimal solution will be found.

3.3 Illustrative Ship Design Optimization Problem

In this section, a example ship design optimization case is presented for illustration

purposes. In practice, every ship design optimization problem is different but in theory,

it is nothing more than defining a ship design optimization problem and solve it. Note

that the design and parameterization stage is where the naval architect can use their

imagination and creativity to come up with new innovative designs.
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To illustrate this process of defining and optimizing a vessel, a Trailing Suction

Hopper Dredger (TSHD) designed by C-Job Naval Architects is described and opti-

mized. This TSHD will be optimized to reduce total cost of ownership. Total cost of

ownership consists of Captial Expenses (CapEx) and Operational Expenses (OpEx).

The original design with the annotated decision parameters is shown in Figure 3.3.

Figure 3.3: Trailing Suction Hopper Dredger with design parameters annotated.

3.3.1 Parametric Geometry

The first step is to generate a parametric geometry of a vessel. The geometry depends

on decision variables which are numerical quantities for which values can be varied

in the optimization process [41]. The decision variables are Free-Form Deformation

(FFD) [43] parameters to modify the hull and parameters that are used to rearrange

the bulkheads in the vessel.

Repositioning Bulkheads

The rooms inside the hull can easily be parameterized. This is very useful since it will

be the rooms and their loading that influences the floating position, intact stability,

damage stability, draft, heel, trim ect. Parameterizing rooms can be done by moving

locations of bulkhead along the x, y and z axis. As an example, the bulkheads that

define a hopper of a TSHD are moved along the x-axis in Figure 3.4. This way, the

hopper can be made smaller, larger, or the location of the hopper can completely be
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moved.

Figure 3.4: Bulkheads moved forward and backward to define different hopper lengths.
The bulkhead positions are marked in bright green.

Good practice is to make bulkheads dependent on each other. To illustrate this

the following example is given: if bulkhead 1 is located at frame 0, the room between

bulkhead 1 and bulkhead 2 is 7 frames long, then bulkhead 2 is located at frame 7.

The room between bulkhead 2 and bulkhead 3 is 10 frames long. Then bulkhead 3 is

located at frame 7 + 10 = 17. In case the length of room 1 is increased by x frames,

then move bulkhead 2 to 7 + x and move bulkhead 3 to 7 + x+ 10. In case the length

of room 1 is decreased by x frames, then move bulkhead 2 to 7−x and move bulkhead

3 to 7− x+ 10. This dependency is displayed in Figure 3.5.

Free-Form Deformation

When using automated optimization tools for altering the hull form of the vessel, a

challenge may arise with keeping the fairness (and other important characteristics) of

the hull surface. Using the Free-Form Deformation technique, the hull form change

undergo rather radical changes in a robust way. The optimization by FFD is done by

applying a lattice (box) around the surface or part of the surface which is to undergo

transformation. The lattice is then deformed by translating it’s vertices. The control

points of the circumscribed surface will consequently undergo transformation leading

to a new surface geometry. An example of a FFD applied on the fore- and aft-ship of

a hull is illustrated in Figure 3.6.
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Figure 3.5: Bulkheads moved forward to make rooms larger or smaller. The bulkhead
locations are marked in bright green and the red arrow lengths indicate the distance between
the bulkheads.

Trailing Suction Hopper Dredger Parameters

The TSHD design that is parameterized for this illustrative example is presented in

Figure 3.3. The model has the following six decision variables: ∆breadth ∈ [−1.6, 3.4],

∆length ∈ [−2.8, 9.8], foreship length ∈ [16, 22], hopper length extension ∈ [5, 9], hop-

per breadth ∈ [5, 9], hopper height ∈ [12, 16]. The ship length and ship breadth are

annotated with a ∆ because these variables are used to apply a FFD on the initial

hull. The other parameters are all bulkhead locations which can be moved and/or

extended along the x, y, and z direction.

3.3.2 Ship Design Constraints

For the TSHD some quite specific constraints have to be set in order to create sensible

design variations that meet the stakeholders’ demands and which do not violate any

of the regulations. These constraints mainly focus on the hopper volume, stability

criteria, space reservation, fuel capacity, water ballast requirement, and the dredging

area where the vessel will be dredging and dumping. The details of these constraints

are defined below:

Hopper volume: The hopper where the dredged soil is dumped in, should at least

be 8000 cubic meters to meet the client’s demand. The inequality constraint for

the hopper is therefore: 8000m3 − V OL(hopper) ≤ 0.
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Figure 3.6: Free Form Deformation applied to fore- and aft-hull.

Fuel capacity: The design variation has 9200 kW installed power, the fuel type

is Marine GasOil (MGO), and the design variation should at least be able to

sail for 21 days. Therefore a relatively conservative fuel capacity constraint is

defined: 820m3 − V OL(fueltanks) ≤ 0.

Propulsion Engine: The engine room should at least be large enough to accom-

modate the required space and volume of the propulsion engine. Therefore,

the propulsion engine and the engine room are modelled and intersected. The

volume of the intersection of the two rooms should be at least be equal to en-

gine volume, if this is not the case, the engine does not fit in the engine room.

V OL(Engine)− V OL(EngineRoom ∩ Engine) ≤ 0.
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Dredge Pump: The procedure for the dredge pump is the same as for the Propul-

sion Engine. Therefore the constraint for the dredge pump is the following:

V OL(Pump)− V OL(PumpRoom ∩ Pump) ≤ 0.

Accommodation Space: The accommodation on the design variation should host

29 crew members. For 29 persons an estimation of the required space is made,

this estimation resulted in a required 1100 cubic meters accommodation space.

Therefore the inequality constraint for the accommodation is the following:

1100m3 − V OL(Acc) ≤ 0.

Draft: The design variation should be able to sail in shallow waters, therefore the

draft T should not exceed 7 meters when fully loaded. The corresponding in-

equality constraint is therefore: T −7m ≤ 0 such that when the design variation

is fully loaded it is still capable of sailing in shallow waters.

Fore peak bulkhead: The fore peak bulkhead, also referred to as collision bulk-

head, should be positioned according to the International Convention for the

Safety Of Life At Sea (SOLAS) [110]. The constraint from SOLAS is as follows:

min(0.05L, 10m) ≤ d ≤ max(0.08L, 0.05L + 3), where L is ship length and d is

the collision bulkhead position. Rewritten and separated into two inequality con-

straints, this rule then gives the following inequalities: min(0.05L, 10m)−d ≥ 0,

and max(0.08L, 0.05L+ 3)− d ≤ 0.

Stability Criteria: The stability requirements are evaluated by expressing the ap-

plicable regulatory requirements as a meta-centric height value GMc. Given any

possible loading condition of the ship, the obtained meta-centric height GMo of

the design variation should at least be larger or equal to the prescribed metra-

centric height value to pass all the stability requirements. The stability function

inequality therefore is the following: GMo −GMc ≤ 0.

Trim: Given different loading conditions with the hopper empty and the hopper filled,

without using water ballast, the trim varies. Because the TSHD at hand is a

ballast-less design, it is necessary to keep the difference in trim within practical

limitations. The trim has therefore been limited to a maximum difference of

2.1 meter. The inequality constraint for trim is therefore described as follows:

(max(trimlc)−min(trimlc))− 2.1m ≤ 0.

Heel: The same procedure as for trim is followed for heel. The difference between the

maximum and minimum heel is not allowed to be larger than 0.2°. The function
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inequality is therefore the following: (max(heel)−min(heel))− 0.2° ≤ 0

Strength is also a critical constraint, but because the steel weight is also optimized,

it is made sure that only design variations are generated that comply with the strength

regulations, therefore a strength constraint is not added. All the constraints defined

in this section are evaluated with custom macros written in the NAPA basic software.

Evaluating one design for all constraints requires a couple of minutes.

To show the severity of the constraints, an experiment was conducted to check

how much of the design space was feasible. To get an indication 200 random design

variations are generated and evaluated. 24% of the 200 design variations were feasible.

3.3.3 Ship Design Objectives

The objective in this illustrative example is minimizing the total cost of ownership of

the dredger. The total cost of ownership of this particular dredger is calculated by

the client, the ship owners, and the operators of the dredger. The main cost drivers of

the dredger are therefore calculated to enable stakeholders to evaluate a given Pareto

optimal solution and come to a decision on which one of the Pareto optimal solutions

should be selected for consecutive design stages.

In this particular case, the total cost of ownership can be separated into building

costs, operational gains, and operational expenses. Building costs are largely driven

by the material cost and consequently can be directly linked to the weight of the

vessel. Operational gains can be defined as ship speed and moved cargo, which are

both fixed for this optimization case, and operational cost is largely driven by fuel

consumption, maintenance, and crew costs. Minimizing the total cost of ownership can

thus be achieved by minimizing the steel weight while also minimizing the resistance at

service speed. These objectives are a classical example of conflicting ones, a long and

slender design variation will have a smaller resistance factor and a higher estimated

steel weight compared to a wider shorter variation of the same vessel.

The resistance of the different design variations is estimated with a potential flow

solver [140]. Because of the nature of a potential flow solver, the mesh describing the

hull shape has been idealized. The potential flow code cannot provide absolute resis-

tance values but is suitable for comparing the resistance of different design variations.

The steel weight is more complex since the lightship weight, maximum bending

moments, and loading conditions should be in balance with each other. Therefore, for

every design variation a minimum steel weight needs to be estimated that meets the

maximum bending moment requirement while keeping Equation 3.2 and Equation 3.3
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in balance line in Equation 3.4:

∆actual = L ·B · T · Cb · ρ (3.2)

∆required = DWT + LSW (3.3)

∆required = ∆actual (3.4)

where ∆ is the actual and required displacement, L is Length, B is Breadth, T is

Draft, Cb is Block-coefficient, and ρ is the water density, DWT is the Dead Weight,

and LSW is Light Ship Weight.

3.3.4 Optimization of Ship Design Problem

In the illustrative example, a potential solver is used to estimate the resistance, and

NAPA macros are used to compute the constraints and the steelweight objective. This

results in an optimization problem that requires 5 to 10 minutes per design evaluation.

In other cases where RANSE analysis are done for resistance calculations these 5 to 10

minutes however can quickly grow to hours. If the goal remains to find good solutions

on the Pareto frontier in a limited amount of wall clock time, special attention should

be given to the selection process of the optimization algorithm. How to limit the

number of required function evaluations, how to evaluate solutions in parallel, and

how to deal with expensive and inexpensive functions is described in more detail in

Chapter 5. The obtained results on this illustrative ship design problem are reported

in Chapter 6 together with other Real World Application results.

3.4 Conclusions and Future Work

In this chapter ship design methodologies, parameterization, and evaluation method-

ologies are described that together form a typical ship design optimization problem.

After identifying good parameterization practices, different evalulation methodologies,

and guidelines on how to set up the optimization problems the holistic Accelerated

Concept Design framework is set up. The parameterization of the design in the holistic

framework is the most important part of the ship design optimization process. This

is because the final designs are only as good as the parameterization allows. If there

46



Chapter 3. Ship Design Problem Characteristics

is enough flexibility in the parameterization that allows for improvements in the ob-

jectives and that effectively deals with the constraints, a new and better design can

be generated. Secondly, the level of accuracy of the evaluations of the constraints

and objectives is important. The accuracy (and evaluation software) significantly in-

fluences the required computational effort and determines together with the available

commercial licenses available the total evaluation budget. The evaluation budget is

critical since enough evaluations are required for optimization algorithms to converge.

A large required evaluation budget is often problematic since in the conceptual design

stage, the lead time is often limited.

For future work, more research is needed to find out what the best parameterization

setup is for which design case. This will however require the joint effort of optimization

experts, naval architects, and structural and hydrodynamic engineers.
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Chapter 4

Empirical Design

Optimization Approach

As described in the problem characteristics of Chapter 3, the quickest and most coarse

way to estimate the main particulars of a new design is by using and learning from

data of reference vessels. This already is part of the answer to research question 3:

How can data be used to find feasible Pareto efficient ship design solutions? In the

current chapter, a new method is introduced that uses reference data, machine learning

algorithms, and an optimization algorithm to find suggestions for the main particulars

and KPIs of new ship designs. With this new method, designers can make more

informed decisions in the preliminary design phase where very limited information is

available and decisions need to be made in a short amount of time. However, it is in

the preliminary design phase where the most influential decisions are made regarding

the global dimensions, the machinery, and therefore the performance and costs. In this

chapter, it is shown that a machine learning algorithm trained with data from reference

vessels is more accurate when estimating key performance indicators compared to

existing empirical design formulas. Finally, the combination of the trained models

with optimization algorithms proves to be a powerful tool for finding Pareto-optimal

design solutions from which the naval architect can learn. Although the application

domain of this chapter is ship design, the approach can also be transferred to other

application domains.
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4.1 Introduction

In the preliminary design stage, more knowledge should be used when making deci-

sions. With the method described in this chapter, naval architects are better supported

by data to make design decisions instead of relying only on instincts, knowledge, and

experience. The decision support is in the form of machine learning models which

can be used to validate ideas, assumptions, and design variations. This helps the

naval architect avoid innovation risks and to find better design variations. On top of

this, without much additional effort, the naval architect can use the trained machine-

learning models in combination with an optimization algorithm. This optimization

algorithm can then be deployed for searching advantageous and competitive design

variations. The only requirement for the reference optimizer that is proposed in this

chapter to work adequately is enough relevant ship data and a good design problem

setup.

4.2 Data Description for Reference Studies

The solution proposed in this chapter utilizes the power of empirical design methods

in combination with parametric optimization. However, for empirical design method

to work properly, data is needed. Fortunately, a lot of data services have become

available for the maritime industry. The most prominent ones are:

World Fleet Register is a ship data and intelligence platform from Clarksons Re-

search with data about ship earnings, vessel parameters, and new-build data [40].

Sea-web collects static ship data of existing and even scrapped ships and tracks

vessels worldwide [136].

BRL shipping consultants has a subscribers area where reports are available about

the active fleet and about newly built vessels [26].

Marine Traffic is a platform that allows even without logging in to obtain the

location of vessels plus general static ship data [98].

AISHub is an AIS data sharing platform where you can get access to global AIS radar

stations when you join with your own AIS antenna [2].

All this static and operational data has been collected and aggregated into more

than 100 particular data fields per vessel and a large database with historical loca-

tions of ships. Examples of collected data fields are: Length, breadth, draft, block
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coefficient, light ship weight, dead-weight, maximum continuous rating of the engines,

maximum speed, but also more ship specific data fields for specific ship types such

as: Bollard pull, passenger capacity of urban transportation vessels, number of car

lanes, crane capacity for offshore vessels, hopper volume of dredgers, and ice class

qualification.

This data can be used in a reference study in the preliminary ship design process

since design trends can be visualized, design trends can be learned, and gaps and

competitive advantages in the market can be found.

4.2.1 Visualizations

After the relevant parameters for a vessel type have been selected, the parameters can

be summarized and plotted. When three parameters are relevant it is still possible

to visualize them in two dimensions. As an example, the dead-weight and moulded

breadth together with the Twenty-foot equivalent Unit (TEU) capacity is given for a

set of container vessels in Figure 4.1.

However, it is often the case that more than three parameters are relevant in

the preliminary ship design stage, which makes it challenging to visualize. To still

be able to investigate a selection of ships or design variations with more than three

parameters, parallel coordinate plots can be used from Section 2.5.2. In Figure 4.2,

a parallel coordinate plot is made for several hundred container vessels with a length

between perpendiculars between 175 and 200 meters.

Interpretation of Visualizations

As can be inspected from Figure 4.1, the moulded breadth has a maximum of 32.4

meters, a well-known maximum width for ships to still be able to pass through the

Panama Canal. This maximum moulded breadth can also be seen in Figure 4.2. More-

over, it is now also possible to simultaneously see all other relevant parameters of the

container vessels. For example, the limited draught for the majority of vessels in this

selection is smaller than or equal to 12 meters, also an important Panama Canal di-

mension. Besides this, one can simultaneously see the conflicting relationship between

block coefficient (Cb), and Maximum Continuous Rating (MCR) and their influence

on service speed. The vessels with a high block coefficient, and small maximum con-

tinuous rating, also have a slow service speed and vise-versa. When designing new

vessels, these plots can be very helpful for the designers.
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Figure 4.1: Container vessels color-coded by container capacity.

4.2.2 Data Pre-processing

Preliminary data analysis showed duplicate vessels and vessels which are very similar.

To make sure that specific vessels are not over-represented, but still enough data is

available, data pre-processing must be done. The pre-processing consist of three steps

and is done so that machine learning algorithms can be trained with cleaner data.

1. All except for one of the vessels with exact duplicates must be deleted. Ships are

considered to be duplicates if their gross tonnage, length between perpendiculars

(Lbp), breadth overall (Boa), draught (T), and MCR are equal.

2. All but one vessel out of a series of sister vessels are deleted. If the earlier
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Figure 4.2: Parallel coordinate plot of container vessels color-coded by block coefficient,
and a deadweight tonnage selection between 25000 and 35000 tonnes.

mentioned variables are all within 1 percent of each other, the vessels are marked

as too similar.

3. A second degree polynomial and interacting features are created. The two

degree polynomials and interacting features of the example [a, b] would be:

[a, b, ab, a2, b2].

Reasons for deletion of duplicates and very similar vessels are to prevent the po-

tential over-fitting of machine learning models. If a series of sister vessels would be

present, the machine learning model would automatically put more weight on the sis-

ter vessels compared to one unique vessel. A second argument to delete sister vessels

is, once a machine learning model has learned from a vessel, a second sister vessel does

not add much knowledge but will only add computation and training time.

The second degree polynomial and interacting features are created to generate more

potentially interesting features from the design parameters that are known. This way,

the machine learning models have more features to learn from which potentially leads

to more accurate results.
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4.3 New Empirical Design Methodology

This section describes how the new empirical design method is used in combination

with an optimization algorithm in the so called reference optimizer. As mentioned

in the related work section, it is often the case that the empirical design equations

are not available for a specific ship type or that the available equations are outdated.

This is unfortunate since designing ships with wrong or outdated design equations will

most likely not lead to optimal decisions. The empirical design equations are therefore

replaced with machine learning models. These machine learning models make sure

that it is no longer need to solely depend on predefined equations or the experience

and knowledge of naval architects.

Machine learning models are used to learn the relationships, similarities, and trends

between hundreds of data points. However, for machine learning models to work prop-

erly, the relationship between the dependent and independent variables need to be

learned. The dependent and independent variables are chosen by the naval architect.

The machine learning models learn the relation between the independent and depen-

dent variables in the training phase. After the training phase, the trained machine

learning models are coupled to an optimization algorithm that can exploit the trends

learned and search for optimal design configurations that outperform the existing de-

signs.

4.3.1 Setup Design Challenge

For the machine learning algorithm to work well a design challenge should be set up

by the user. The design challenge consists of three parts, the design variables, the

constraints, and finally the objectives as described earlier in Section 3.2.2.

Design Variables are set up by choosing the design parameters that have a signifi-

cant influence on the final design and which are allowed to vary. The allowed vari-

ations in the variables are controlled with a user-defined lower and upper limit.

However, the limit can not be smaller or larger than the smallest and largest

ship in the collection. Examples of a set of design variables are: Length between

perpendiculars (Lbp), draft (T), Breadth overall (Boa), block coefficient(Cb), and

service speed (V).

Constraints are also set by the user. The design constraints are typically hard

limitations or strong wishes for the to-be-designed ship. Examples of constraints
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are deadweight (DWT) capacity of 30, 000 tons, a cargo capacity of 2000 TEU, a

length overall smaller than 180 meters, or a draught of not more than 12 meters.

Objectives of a ship design are usually the key performance indicators that deal

with operational expenses and investments. Ideally, they are as low as possible,

however, they most often do not go hand in hand and are most of the time

conflicting. Examples of three objectives are: minimizing the light ship weight

(LSW), maximizing the deadweight (DWT) capacity, and minimizing the Maxi-

mum Continuous Rating (MCR) of the main engines.

Once the design variables, constraints, and objectives have been set by the user, the

relationship between the variables and the constraints and objectives can be learned.

4.3.2 Random Forest Regression

A random forest regression model [25] can be used to learn the relationship between

the features and one target variable. A random forest regressor is chosen because it is

robust against outliers and overfitting and because it can deal with discrete parameters

which comes in handy as the data used for training comes from existing ships and might

not always be 100% reliable. In the new empirical design methodology the features

are the design variables plus the polynomial features and the target variable is one of

the constraints or one of the objectives. Therefore, for each constraint, and for each

objective a new unique random forest regression model is trained.

The random forest regression model learns the relation between the features and

the target by fitting a multitude of decision trees. One decision tree is fitted to learn

the relation between a set of random selected features with the corresponding target

values. The data with the random selected features is sequentially greedily split into

two sub-samples based on one of the features until the number of samples in the nodes

reaches a threshold value. Resulting in an upside-down tree with nodes, branches for

splits, and leaves with similar target scores.

Once e.g. 100 decision trees have been trained with the 100 randomly selected

feature sets, the random forest is done training. The trees in the forest can be traversed

which makes a prediction of the target variable for an unseen combination of feature

values possible for each tree. These 100 outcomes of the 100 decision trees are then

averaged into a final prediction. The process of making a prediction is visualized in

Figure 4.3. Because a multitude of trees are fitted, the random forest regression model

is robust against outliers in the training data. However, due to the fact that the final
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score depends on the average of all the trained trees, the random forest regression

model is not capable of extrapolation.

Figure 4.3: Random Forest Regression Model Illustration.

4.3.3 Isolation Forest

In the reference optimizer not only the user-defined constraints limit the search space.

The search space is also limited by an anomaly detection algorithm. The anomaly

detection algorithm used is named Isolation Forest [94]. Isolation forest is an unsu-

pervised machine learning algorithm that tests how easy it is to isolate certain data

points. It does so by recursively splitting the data by randomly selecting a variable

and a random split value between the lower and upper limits. If a sample is easy to

isolate by randomly splitting the data set, it is marked as an anomaly. A sample that

is hard to isolate versus a sample that is easy to isolate is visualized in Figure 4.4.

In practice, this means that in case a design variation is unique and lies outside

of the trend, or if the database contains a ship with length by accident reported in

feet instead of meters, it is marked as an anomaly. When searching for a new design

variation, design variations that are marked as anomalies by the isolation forest will

no longer be considered. This is the case because they do not follow the pattern and

therefore their prediction is probably incorrect. On top of this, the isolation forest will

make sure that the design variations will not exceed the limits, so that the random

forest regression model is not forced to extrapolate.
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Figure 4.4: Illustration of Isolation forest with easy to isolate sample on the left and a
hard to isolate sample on the right.

4.3.4 Design Problem Optimization

The reference optimizer searches for Pareto optimal designs that do not violate any

of the constraints. This can be done with any multi-objective optimization algo-

rithm that can deal with constraints but in the reference optimizer it is done with the

Non-dominated Sorting Genetic Algorithm II (NSGA-II) [49]. NSGA-II optimizes the

design challenge by modifying the design variables. NSGA-II is allowed to vary the

design variables between the user-defined lower and the upper limit. The design varia-

tions that come out of NSGA-II are evaluated on the random forest regression models

to predict the constraint and objective scores. The objective and constraint scores are

then combined with the design variable values and tested to see if the combination

can be easily isolated by the Isolation Forest. Once the isolation score, the objective

score, and the constraint scores are evaluated they are given back to the NSGA-II

algorithm. The NSGA-II algorithm includes the evaluated design variations in the

population of previously evaluated solutions and then new solutions are generated

with the non-dominated genetic sorting strategy. After NSGA-II has converged, the

optimal designs are reported so that they can be inspected with a parallel coordinate

plot and the objectives can be visualized on a Pareto frontier.
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4.4 Empirical Design Experiments

To validate the models and the algorithms, different experiments are conducted. The

first experiment is set up to test the predictive capabilities of the random forest regres-

sion models. In the second experiment, a set of ships is intentionally modified to see

if the isolation forest is capable of identifying the newly created anomalies. Finally, in

the last experiment, everything is connected and novel container ship variations are

generated on a Pareto frontier.

For all the experiments 2538 container ships are used. 1219 of these vessels have

the duplicate characteristics and are filtered out during the preprocessing phase as

described in Section 4.2.2.

4.4.1 Random Forest Regression Experiment

The random forest regression models are intended to predict the performance and

capital investment cost of the ships of the future. In this experiment, such a situation

is mimicked. Three different KPIs are learned by the random forest regression models

with data from 1019 ships built before 2005, and then the random forest regression

models are tested with data from 96 ships built after 2010. By comparing the pre-

dicted values with the actual values it can be determined if the trained random forest

regression model is good to use in practice.

The KPIs that are predicted in this experiment are LSW, MCR, and DWT. The

KPIs are estimated with the random forest regressor and with empirical design equa-

tions for the specific KPIs. The design variables used to predict LSW are [Lbp, Boa,

T, Cb, MCR]. The design variables used for MCR are [Lbp, Boa, T, Cb, V ]. The

design variables used to predict DWT are [Lbp, Boa, T, Cb].

Random Forest Regression Results

The accuracy of the random forest regression model is determined with the R2 mea-

sure [104]. This measure compares the real KPI values with the predicted values and

see how much variation of the dependent variable can be explained by the model.

With R2 scores of 0.93, 0.90, and 0.95 for LSW, MCR, and DWT, it can be confirmed

that the random forest regressor is capable of capturing a lot of variance.
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Empirical Design Equation Results

Light Ship Weight for container vessels can be predicted with the Empirical Design

Equation of D’almeida [55]. The prediction of D’almeida for LSW is dependent on

the steel weight (SW), outfitting & equipment weight (OEW), and machinery weight

(MW):

LSW = SW +OEW +MW

SW = 0.0293 · Lbp1.76 ·Boa0.712 · T 0.374

MW = 2.35 · (MCR/0.745699872)0.60

(4.1)

The D’almeida equations use the same independent variables as in the random for-

est regressor model to calculate the LSW. However, the estimate of this empirical

formulation only obtains an R2 score of 0.84.

Maximum Continuous Rating can be estimated with the empirical formula

named the Admirality constant [129]. The admirality constant C can be calculated

by using the maximum continuous rating (MCR) and displacement values (∆) from

reference vessels and then plugging it in the following formula:

MCR =
∆2/3 · V 3

C
(4.2)

The mean admirality constant (C ) of the reference vessels is then stored so that it

can be used in later approximations for MCR given different discplacements. In the

experiment, the Admirality constant itself (C ) is approximated with the reference

vessels from before 2005. The mean C from the vessels before 2005 is used to make

predictions for the container vessels after 2010. The R2 score for this formula is 0.87,

again a worse R2 score compared to the random forest regressor.

Dead Weigth Tonnage is dependent on the LSW of the vessel. The empirical

formula for DWT is:

DWT = ∆− LSW (4.3)

but since the empirical equation for light ship weight has a worse R2 score compared

to the random forest regressor, it is no surprise that also for DWT, the R2 score of

0.89 is lower compared to the R2 score of the random forest regressor.
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4.4.2 Isolation Forest Experiment

In the isolation forest experiments, the isolation forest is trained with the data from

the container vessels as described earlier. After this, two data fields per vessel are

modified to create impossible design parameter/KPI combinations. All vessels are

then evaluated by the trained isolation forest to see if they are marked as an anomaly

or not. The modified design parameters/KPI values and the percentage of anomalies

detected are presented in Table 4.1.

Modified Columns Anomaly Percentage
no modification 15%
Lbp/1.1, T × 1.1 36%
Lbp/1.25, T × 1.25 56%
Lbp/1.5, T × 1.5 88%
Lbp/1.75, T × 1.75 99%
Lbp/2, T × 2 100%
MCR/2, V × 2 95%
LSW/2, Cb× 2 97%
Lbp/2, DWT × 2 97%
Cb/2, Lbp× 2 100%
T/2, Cb× 2 100%
Cb/2, V × 2 100%

Table 4.1: Modified columns and classified anomaly percentage after this modification.

The experiments indicate that as the vessels undergo more significant modifica-

tions, the isolation forest identifies an increasing percentage of vessels as anomalies.

The experiments also show that there is a small percentage of vessels that have been

radically changed but have not been marked as an anomaly. This indicates that the

anomaly detection algorithm does not detect all anomalies and that the naval architect

should pay attention when analyzing the results and do a few integrity checks on the

results.

4.4.3 NSGA-II Experiment

For this experiment, it is assumed that the random forest regression model and the

isolation forest perform as intended so that the NSGA-II algorithm can be tested. If

the NSGA-II algorithm can find feasible and realistic Pareto-optimal solutions it can

be confirmed that the reference optimizer works as intended.

The reference optimizer is tested again on a container ship case. In this experiment

NSGA-II was allowed to vary the main particulars of the vessel (LBP , Boa, T , Cb,
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V ). The LSW and MCR are minimized, while the DWT capacity should be larger

than or equal to 28000 tonnes. The results are visualized on the Pareto frontier in

Figure 4.5 and Figure 4.6.
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Figure 4.5: Obtained Pareto efficient solutions for test case. Blue solutions indicate existing
vessels that do not violate any of the constraints while green solutions are the proposed
solutions by NSGA-II.

NSGA-II in this experiment found 14 Pareto efficient solutions along the Pareto

front interposed by Pareto efficient existing vessels. As previously described the algo-

rithm only uses data and does not know any physics, it is the task of the naval architect

to double-check the feasibility of the proposed solutions. In this experiment, the phys-

ical integrity of the proposed solutions are checked with the DWT Equation 4.3.

The weight balance of the vessel i.e. the sum of the DWT and LSW need to be in

line with the corresponding displacement that can be calculated with: Lbp·Boa·T ·Cb·ρ.

Here ρ = 1.025 which is the water density of salt water. The found maximum deviation

for existing vessels is 7% with an average of 0.2%. This indicates that data from the

existing vessels is not always 100% accurate. The found maximum deviation for the

proposed vessels by the reference finder is 2.6% with an average of 1.8%.

To give more details of the obtained Pareto efficient solutions, a parallel coordinate
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Figure 4.6: Zoomed in on Pareto frontier for test case. Blue solutions indicate existing
vessels that do not violate any of the constraints while green solutions are the proposed
solutions by NSGA-II. Inspection of this figure reveals that the majority of the existing
solutions are dominated by the newly proposed solutions.

plot is made and presented in Figure 4.7. In the parallel coordinate plot, the main

dimensions and the resulting performance indicators can be inspected and compared

with the existing vessels.

4.5 Discussion

The reference optimizer as introduced and described in this chapter has two drawbacks

that hold for any optimization process. The first drawback of the reference optimizer

is that it needs a sufficient amount of good data for the random forest regressors to

make accurate predictions. Good data without mistakes is important since otherwise,

the random forest regressors will learn a wrong trend and the predictions will be off.

Accurate and 100% reliable data is difficult to gather (especially for the less common

vessel types) and sometimes only possible to obtain with expensive subscriptions.

A second drawback of the reference optimizer is that the design challenge should
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Figure 4.7: Parallel coordinate plot of the proposed solutions in red versus the existing
vessels in grey.

be set up properly. For this, a naval architect needs to learn the basics of machine

learning algorithms. During the training of naval architects at least the choice of what

to choose as independent and dependent variables should be addressed in combination

with different performance metrics.

4.6 Conclusion and Future Work

In this chapter, an alternative generic way is presented on how naval architects can

use data to make preliminary design decisions by visualizing the data, learning from

the data with machine learning algorithms, and finally finding optimal configurations

with optimization algorithms.

The experiments in this chapter show that random forest regressors can give better

estimations for light ship weight, dead weight, and maximum continuous rating com-

pared to empirical design equations often used by naval architects. Besides a better

estimation of key performance indicators, the random forest regressors are also capable

of predicting key performance indicators for which no empirical design equations are

readily available in the literature.

After training the random forest regressor and an anomaly detection algorithm,

the models are coupled to a multi-objective optimization algorithm. This setup is ca-

pable of automatically generating optimal design configurations for preliminary ship
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design problems. As a practical use case, a container vessel design challenge has been

executed. The setup proposed 14 new Pareto-efficient solutions. The preliminary

designs consisted of the main particulars of the vessels plus the key performance indi-

cators light ship weight, maximum continuous rating, and deadweight. After this, the

preliminary designs have been validated with integrity checks to verify their feasibility.

For future work, it is intended to improve the performance of the machine learning

models even further, train them with more accurate data, and integrate a more robust

anomaly detection algorithm to detect obvious mistakes better.
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Chapter 5

Multi Objective Simulation

Based Optimization

In simulated design optimization, a naval architect designs and optimizes a design

by using a 3D model (ideally according to the guidelines from Section 3.2) and cou-

ples this 3D model to a simulator that evaluates Key Performance Indicators (KPIs).

The simulators that evaluate the KPIs can be computationally very demanding. To

speed up the process, occasionally calculations can be run in parallel, while other

simulations require expensive licenses for each simulation in combination with specific

hardware and software. Simulations are in some cases used to evaluate constraints, but

more frequently to compute the objective scores. Where simulations can be costly to

evaluate, some objectives and constraints are also computationally inexpensive. Such

simple calculations can be called many times and in parallel. In this chapter research

question 3 is answered How to find the Pareto frontier of computationally expensive

problems? This chapter describes new optimization algorithms that can be used to

optimize design problems with continuous decision variables, multiple constraints, and

multiple objectives.

This chapter deals with the challenging design characteristics as efficiently as pos-

sible by splitting them up into separate research topics that answer the subquestions:

1. The first topic that is dealt with answers the following two subquestions: How

to deal with expensive multi-objective problems? How to efficiently satisfy con-

straints in multi-objective optimization? Answers to these questions will make

clear how to find the Pareto frontier of constraint multi-objective optimization
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problems in as few function evaluations as possible.

2. The second topic deals with the subquestion: How to propose multiple solutions

for evaluation in parallel? Answering this question helps us to reduce the total

wall clock time for the evaluation.

3. As mentioned in the introduction of this chapter, not all evaluation methods are

computationally expensive, therefore the last research question to addressed is

How to deal with a mix of expensive and inexpensive functions?

Finally, the research question How do the proposed algorithms compare to state-

of-the-art algorithms? is addressed throughout the entire chapter for every topic

separately so that it becomes clear how the proposed methodologies perform compared

to other algorithms.

5.1 Constraint Multi-Objective Optimization

Handling constraints in optimization problems can be done in several ways: using

penalty functions, by separating the constraints and objectives, treating constraints

as additional objectives, or hybrid methods [13, 59]. In this work, only separation

of constraints and objectives is considered because the main issue with penalty func-

tions is that the ideal penalty factors cannot be known in advance, and tuning the

parameters requires a lot of additional function evaluations. The issue with treating

constraints as additional objectives is that it makes the objective space unnecessarily

more complex with a too strong bias towards the constraints.

In this Section, the SAMO-COBRA algorithm is introduced that uses separation of

constraints and objectives in combination with surrogates. SAMO-COBRA, which is

an abbreviation for Self-Adaptive Multi-Objective Constraint Optimization by using

Radial Basis Function Approximations, owes its name to the very efficient constraint

handling algorithms: COBRA [123] and SACOBRA [13]. Besides constraint handling,

SAMO-COBRA has shown to be efficient in finding Pareto-optimal solutions, thereby

solving constraint multi-objective problems by using a limited number of function

evaluations. SAMO-COBRA is compared to two new state-of-the-art algorithms to

empirically show the efficiency.
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5.1.1 Related Work

Existing work on surrogate-assisted optimization is typically limited to a subset of

three relevant requirements: multi-objective, constraint, and speed. For example,

methods exist for quickly solving constraint single-objective problems (e.g. SACO-

BRA [13]), for multi-objective optimization without efficient constraint handling tech-

niques (e.g. SMS-EGO [118] and PAREGO [88]), or for constraint multi-objective op-

timization without using meta-models, leading to a large number of required function

evaluations (e.g. NSGA-II [49], NSGA-III [83], SPEA2 [174], and SMS-EMOA [18]).

The recently proposed CEGO [154] and ECMO [133] algorithms address all three re-

quirements, however, their computational cost grows very fast as they use Kriging

surrogates that have a higher computational complexity compared to Radial Basis

Functions [12, 60, 160].

Only very occasionally a surrogate-based algorithm is published that deals with

both constraints and multiple objectives in an effective manner without using a Kriging

surrogate (e.g., Datta’s and Regis’ SMES-RBF [44] and Blank and Deb’s SA-NSGA-

II [19].)

The algorithms used in the experiments of this section are described in more detail.

NSGA-II

The Non-dominated Sorting Genetic Algorithm, version II [49] is a classic multi-

objective optimization algorithm. NSGA-II starts with a random design of experi-

ments that is evaluated on all objectives. After the initial sample, all the solutions

are ranked with a non-dominated sorting algorithm that defines multiple Pareto fron-

tiers on different dominance levels. The crowding distance (density of the solutions

in the objective space) is then computed for all solutions per dominance level. The

crowding distance and the Pareto frontier rank are used to determine which solutions

are selected to create an offspring population. The solutions with a higher crowding

distance score and better dominance score have a higher chance of getting selected.

The offspring population is then created with a crossover and mutation operator to

introduce new combinations of decision parameters. For the offspring population and

the parent population, the crowding distance and non-dominated sorting algorithm

again define which p solutions from the parent and offspring population combined

survive to the next iteration. The algorithm terminates until the evaluation budget is

exhausted.
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NSGA-III

The adaptive NSGA-III algorithm [83] is a many-objective optimization algorithm

based on NSGA-II [49] and the original NSGA-III algorithm [48]. the adaptive NSGA-

III algorithm starts with a random initial sample. Then in every iteration it emphasizes

certain individuals in the population who are both non-dominant and close to a set

of reference points are well distributed and are generated in desirable locations for

solutions. The algorithm can both be used for constraint and unconstraint problems

since in every iteration the non-useful reference points are re-allocated around the

useful feasible reference points [83]. For each solution in the population, the degree

of constraint violation is measured which influences together with the closeness to the

reference points if it is selected for recombination.

CEGO

The CEGO optimization algorithm [154] by default uses a Latin Hypercube Sample

of size 3 · d. After the initial sample Kriging models (also sometimes referred to

as Gaussian Process Regression models) are trained for the objectives, while RBFs

are used for the constraints. The CEGO algorithm then combines the S-Metric-

Selection-based Efficient Global Optimization (SMS-EGO [118]) algorithm with the

constraint handling techniques from the Self-Adjusting Constraint Optimization by

Radial Basis Function Approximation (SACOBRA [13]) to propose feasible Pareto

efficient solutions. After a user-defined number of function evaluations, the algorithm

terminates the evaluated solutions and the corresponding objective and constraint

solutions are returned.

SMES-RBF

SMES-RBF [44] is a surrogate-assisted evolutionary strategy that uses cubic Radial

Basis Functions as a surrogate for the objectives and constraints to estimate the actual

function values. In every iteration, a large number of offspring solutions are generated

by using a mutation operator on the parent population. The number of offspring so-

lutions that are generated from the parent population is chosen rather large however,

not all offspring solutions are evaluated on the real objective and constraint functions.

Instead, the RBFs that are updated every iteration are used to determine the off-

spring solutions feasibility and objective scores. Only the most promising solutions

according to a non-dominated sorting procedure are evaluated on the real objective
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and constraint function. This process continues until the evaluation budget limit has

been reached.

SA-NSGA-II

A variant of NSGA-II [49], called Surrogate-Assisted NSGA-II (SA-NSGA-II)1, in-

tegrates surrogate assistance into the optimization cycle for the optimization of un-

constraint and constraint multi-objective optimization problems. The surrogates em-

ployed in the SA-NSGA-II algorithm are RBFs with a cubic kernel and a linear tail.

The idea is based on executing the optimization algorithm for multiple generations

only on surrogate models (one for each objective and constraint) before calling the

expensive optimization function. This embedded surrogate-based optimization loop

provides a set of candidate solutions, from which a subset is selected. Assuming p

solutions shall be evaluated using the expensive simulation in each optimization cycle,

the candidates are first separated into p clusters in m-dimensional objective space be-

fore determining the selected solution for each cluster by performing a roulette wheel

selection based on their crowding distances. After evaluating these p solutions on the

expensive function, all surrogate models are updated and the new optimization cycle

is started if the solution evaluation budget is not exhausted yet. SA-NSGA-II can also

optimize constraint optimization problems by using the parameter-less domination

approach [47] used in NSGA-II’s selection operators.

5.1.2 SAMO-COBRA

The new SAMO-COBRA algorithm is designed to deal with continuous decision vari-

ables, multiple objectives, multiple complex constraints, and expensive objective func-

tion evaluations in an efficient manner. The idea behind the algorithm is that in every

iteration, for each objective and for each constraint independently, the best transfor-

mation and the best RBF kernel are sought. In each iteration, the best fit is used to

search for a new unseen feasible Pareto efficient point that contributes the most to

the hypervolume between a user-defined reference point and the Pareto frontier. The

pseudocode of SAMO-COBRA can be found in Algorithm 1. The Python implemen-

tation can be found on the Github page [143]. More details about the algorithm are

given in the subsections below.

1Availabe on pysamoo as SSA-NSGA-II [20].
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Algorithm 1: SAMO-COBRA. Input: Objective functions f(x), constraint
function(s) g(x), decision parameters’ lower and upper bounds [xlb,xub] ⊂
Rd, reference point ref ∈ Rk, number of initial samples N , maximum eval-
uation budget Nmax, RBFkernels (ϕ) = {cubic, gaussian, multiquadric,
invquadric, invmultiquadric, thinplatespline} Output: Evaluated feasible
Pareto efficient solutions.
1 Function SAMO-COBRA(f , g, [xlb,xub], ref , N , Nmax, RBFkernels):
2 X← {x1, · · · ,xN } . Generate initial design, X ∈ Rd×N

3 F← f(X) . Obtain objective scores, F ∈ Rk×N

4 G← g(X) . Obtain constraint scores, G ∈ Rm×N

5 RBF ∗ ← {(Cubic, standardized)|∀f ∈ {F ∪G}} . initialize best RBF

6 while N < Nmax do

7 X̂← Scale(X, [−1, 1]d) . Scale input space to [−1, 1]d

8 F̃← Plog(F) . See function plog in Eq. (2.6)

9 G̃← Plog(G) . See function plog in Eq. (2.6)

10 F̂← Standardize(F) . Standardize objective space

11 Ĝ← Scale Constraint(G) . 0 remains feasibility boundary

12 for ϕ ∈ RBFkernels do . For each kernel

13 for i← 1 to k do . For each objective

14 Ŝϕ
i ← FitRBF(X̂, F̂(i,·),ϕ) . Fit with std(F) values

15 S̃ϕ
i ← FitRBF(X̂, F̃(i,·),ϕ) . Fit with Plog(F) values

16 end
17 for j ← 1 to m do . For each constraint

18 Ŝϕ
k+j ← FitRBF(X̂, Ĝ(j,·),ϕ) . Fit with scaled(G) values

19 S̃ϕ
k+j ← FitRBF(X̂, G̃(j,·),ϕ) . Fit with Plog(G) values

20 end

21 end

22 S∗ ←
{
S

(RBF∗i )
i | ∀i = 1, . . . , (k +m)

}
. Apply best RBF conf.

23 PF←Pareto(X,F,G) . PF indicator PF ∈ {0, 1}N
24 x∗ ← Max(HV, PF, ref , S∗) . Get solution with largest HV

25 xnew ← Scale(x∗, [xlb,xub]) . Scale to original scale

26 N ← N + 1 . Increase iteration counter to new matrix sizes

27 X← [X xnew] . Add new solution, X ∈ Rd×N

28 F← [F f(xnew)] . Add evaluated objectives, F ∈ Rk×N

29 G← [G g(xnew)] . Add evaluated constraints, G ∈ Rm×N

30 RBF ∗,SE←SelectBestRBF(SE, S,x∗,F,G,PF, N)

31 end

32 return (F(·,PF), G(·,PF), X(·,PF))
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Initial Design of Experiments

Bossek et al. showed empirically that, when dealing with sequential model-based

optimization, in most cases it is best to use the Halton sampling strategy [73] with an

initial sample that is as small as possible [23]. The smallest initial sample for RBF

surrogate-assisted optimization algorithms is d + 1 since that many evaluations are

required to train the first RBF. A few experiments where 2 alternative initial sampling

strategies are compared to the d+1 initial Halton sample strategy proposed by Bossek

et al. confirmed that a small initial sample size and Halton sampling also lead to the

best results when applied to the BNH, CEXP, SRN, TNK, CTP1, and TRICOP

constraint multi-objective problems from Section 2.4. In the small experiments, the

SAMO-COBRA algorithm was run 10 times and the hypervolume performance metric

was checked after 40 · d function evaluations

Table 5.1: Hypervolume after 40 ·d function evaluations for SAMO-COBRA with different
initial sampling sizes and strategies. Bold indicates significantly better or indifferent results
according to a Wilcoxon rank-sum test with p ≤ 0.05.

Function Halton d + 1 Halton 3 · d LHS d + 1
BNH 5256.4 5255.7 5256.3
CEXP 3.7973 3.7976 3.7979
SRN 62391 62375 62387
TNK 8.0505 8.0487 8.0442
CTP1 1.3030 1.3030 1.3029
TRICOP1 20611 20611 20610

As can be seen from the results in Table 5.1, the Halton sampling strategy with

d + 1 initial samples in most cases leads to better or similar results compared to the

other two initial sampling strategies. Therefore, it is advised to create an initial Halton

sample of size d + 1 before the sequential optimization procedure starts, when using

SAMO-COBRA.

Every sample in the initial design is then evaluated (lines 2-4 of Algorithm 1) so

that all samples have their corresponding constraint and objective scores.

Radial basis Function Surrogates

The SAMO-COBRA algorithm employs Radial Basis Functions with a polynomial tail

as a surrogate. Details on how his surrogate can be fitted and how it can be used to

predict values for unseen data points are described in Section 2.3.2. Because upfront

it can not be known if a Plog transformation is beneficial, and which kernel is ideal,
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all different kernels and transformations are applied. This results in 6× 2 = 12 RBF

options to choose from: Φ = {Cubic, Gaussian, Multiquadric, InverseQuadratic,

InverseMultiquadric, ThinP lateSpline}×{Plog, standardized}. Initially, the RBF

configuration with a Cubic kernel with standardized objective scores is selected (line 5

from Algorithm 1. This surrogate configuration is then used in the search for a feasible

Pareto-Efficient solution by maximizing the hypervolume contribution.

Maximize Hypervolume Contribution

After modeling the relationship between the input space and the response variables

with the RBFs, the RBFs are used as cheap surrogates. By using Eq. (2.4) for each

unseen input x′, every corresponding constraint and objective prediction can be calcu-

lated. Given the RBF approximations for a solution x′, the constraint predictions can

be used to check if the solution is predicted to satisfy all the constraints. Besides the

constraint predictions, the objective predictions can be used to see if the solution is

a preferred solution or not. Whether one solution is preferred above another solution

can be computed with an infill criteria, also known as acquisition function. There are

two infill criteria considered in this work, the S-Metric Selection criterion (S-metric),

and the Predicted HyperVolume criterion (Phv). Computation of the two infill criteria

is done as follows:

1. Compute all objective values for a given solution x′ with Eq. (2.4). With the

interpolated objective values, compute the additional predicted hypervolume

(Phv) score this solution adds to the Pareto frontier. This is a purely exploitative

infill criterion without any uncertainty quantification method.

2. Compute all objective scores for a given solution x′ with Eq. (2.4) and subtract

the uncertainty of each objective given x′ and Eq. (2.5). With the interpolated

objective score minus the uncertainty, the potential HV that this solution could

add to the Pareto frontier is calculated. This infill criterion is similar to the

Kriging S-metric Selection (S-metric) criterion from Emmerich et al. [18]. Be-

cause of the subtracted uncertainty, it will be more exploratory compared to the

Phv criterion.

How much a solution adds to the Pareto frontier is based on how much HV the

solution adds between the already evaluated non-dominated solutions and a predefined

reference point. A visual representation of the HV scores of two different solutions is

displayed in Figure 5.1. By using any of the two infill criteria, the constraint multi-

objective problem has been translated into a constraint single-objective problem.
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Figure 5.1: Visual representation of hypervolume contribution of two solutions. The hyper-
volume contribution of solution F1 is equal to 0.2 · 0.4 = 0.08, the hypervolume contribution
of solution F2 is equal to 0.1 · 0.1 = 0.01. This makes solution F1 more desirable compared
to solution F2.

The single point acquisition function optimization problem can be mathematically

defined as follows:

x∗ ∈ argmax
x∈Ω⊂Rd

Phv(f ′(x))

subject to g′(x) ≤ 0

(5.1)

After an infill criterion is chosen by the user, the constraint single-objective problem

can be optimized. The COBYLA (Constraint Optimization BY Linear Approxima-

tions) algorithm [120] is used to maximize the infill criterion (line 24 of Algorithm 1).

COBYLA is allowed to vary x′ between the lower and the upper bound of the design

space x′ ∈ [xlb,xub]. This way, COBYLA searches for a Pareto-optimal solution that

does not violate any of the constraints and has the highest possible infill criterion

score.

If no feasible solution can be found, the solution with the smallest constraint vio-

lation is selected for evaluation. Note that COBYLA does not use the real objective

and constraint function evaluations during the search for the next best solution. In-

stead, COBYLA uses the cheap RBF surrogates as surrogates for the real objective

and constraint functions. The chances of finding the best feasible Pareto-optimal solu-
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tion can be increased by starting the surrogate search not from one solution but from

multiple randomly generated solutions independently. Therefore COBYLA starts 16

times from a randomly generated solution. Each independent local search done by

COBYLA gets an allocated search budget.

Only after the next best solution on the surrogates is found, it is evaluated on the

real objective and constraint functions (lines 25-29 of Algorithm 1).

Surrogate Exploration and RBF adaptation

Because in the first iterations the RBFs do not model the constraints very well yet, an

allowed error (ε) of 1% for each constraint is built in. If the solution evaluated on the

real constraint function is feasible, the error margin of this constraint approximation

is reduced by 10%. If a solution is infeasible, the RBFs surrogate approximation is

clearly still wrong. Therefore, the error margin of the corresponding constraint is

increased by 10%.

Besides the error margin, in every iteration, also the best RBF kernel and trans-

formation strategy is chosen (line 30 of Algorithm 1). The pseudocode of this function

can be found in Algorithm 2. Finding the best RBF kernel and transformation strat-

egy is done by computing the difference between the RBF interpolated solution and

the solution computed with the real constraint and objective functions. This difference

is computed every iteration, resulting in a list of historical RBF approximation errors

for each constraint and objective function, for each kernel, with and without the Plog

transformation.

Based on the RBF approximation errors, the best RBF kernel and transformation

are chosen. Bagheri et al. show empirically, that if only the last approximation error

is considered in the single objective case, the algorithm converges to the best solution

faster [11]. This is the case because when closer to the optimum, the vicinity of

the last solution is the most important. In the multi-objective case, the vicinities of

all the feasible Pareto-optimal solutions are important. Experiments confirmed that

the approximation errors of the feasible Pareto-optimal solutions and the last four

solutions should be considered. The approximation errors of the last four solutions

ensure that the algorithm does not get stuck on one RBF configuration and the error of

the Pareto-efficient solutions ensures that all the vicinities of the optimal solutions are

considered. The Mean Squared Error measure is used to quantify which RBF kernel

and which transformation function in the previous iterations resulted in the smallest

approximation error.
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Algorithm 2: SelectBestRBF
Input: SE Historic squared RBF approximation error, per RBF kernel, with
and without Plog transformation, for each objective, and for each constraint.
S surrogate models for each kernel, with and without Plog transformation,
for each objective, and for each constraint. x∗ last evaluated solution. F
objective scores, G constraint scores, PF Pareto frontier indicator vector. N
number of function evaluations.
Output: best RBF kernel, and Plog strategy for each objective and con-
straint separately, and historic squared approximation errors.

1 Function SelectBestRBF((SE, S,x∗,F,G,PF, N)):
2 ID← PF ∪ {IDi ← 1 | ∀i = N − 4, . . . , N} . Mark last 4 and Pareto front in a

vector to select relevant approximation errors

3 T ← {Ti ←∞ | ∀i = 1, . . . , (k +m)} . Temporary approx. errors

4 for ϕ ∈ RBFkernels do . For each kernel check approx. errors

5 for i← 1 to k do . For each obj. with and without Plog

6 ŜE
ϕ
i,N ←

(
Interpolate(Ŝϕ

i ,x
∗)− Fi,N

)2
. Save RBF Error

7 S̃E
ϕ
i,N ←

(
Interpolate(S̃ϕ

i ,x
∗)− Fi,N

)2
. Save RBF Error

8 end
9 for j ← 1 to m do . For each constr. with and without Plog

10 ŜE
ϕ
k+j,N ←

(
Interpolate(Ŝϕ

k+j ,x
∗)−Gj,N

)2
. Save RBF Error

11 S̃E
ϕ
k+j,N ←

(
Interpolate(S̃ϕ

k+j ,x
∗)−Gj,N

)2
. Save RBF Error

12 end
13 for i← 1 to k +m do . For each surrogate find best strategy

14 if (
∑N

n=1 IDn · ŜE
ϕ
i,n) < Ti then . If error sum < temp

15 Ti ←
∑N

n=1 IDn · ŜE
ϕ
i,n . Save approx. errors in temp

16 RBF ∗i ← (kernel = ϕ, Plog=False) . Save best strategy

17 if (
∑N

n=1 IDn · S̃E
ϕ
i,n) < Ti then . If error sum < temp

18 Ti ← IDn · S̃E
ϕ
i,n . Save approx. errors in temp

19 RBF ∗i ← (kernel = ϕ, Plog=True) . Save best strategy

20 end

21 end

22 return (RBF∗,SE)

5.1.3 Multi-Objective Optimization Experiments

Two experiments are set up to compare SAMO-COBRA with other state of the art

algorithms. In these experiments, two variants of the SAMO-COBRA algorithm are

tested, one without the uncertainty quantification method (Phv), and one with the

uncertainty quantification method (S-metric). The performance of the two variants

are compared to the performance of the following algorithms: CEGO [154], SA-NSGA-

II [19], NSGA-II [49], NSGA-III [83], and SMES-RBF [44]. The performance of the

algorithms except for SMES-RBF are assessed on 18 benchmark functions. SMES-

RBF could not be tested since the implementation of SMES-RBF has not been made

available and as such it could only be compared to the results reported in the SMES-

75



5.1. Constraint Multi-Objective Optimization

RBF publication.

All test functions from Table 2.1 are used except for the MW test problems. This is

because these problems have a very low feasibility ratio and therefore are not ideal for

testing the performance of surrogate-assisted optimization algorithms. Each algorithm

is tested 10 times on every test function to get a trustworthy result. The results for

NSGA-II and NSGA-III had a high variance. Therefore, 100 runs are executed for

those algorithms. In the first experiment, the algorithms are given a fixed budget to

find a feasible Pareto frontier. In the second experiment the algorithms are evaluated

to see how many function evaluations they require to achieve a predefined threshold

performance.

Hyperparameter Settings

In the experiments for each algorithm either the original implementation is used or

an implementation which was readily available in Python. For all algorithms, the

recommended hyperparameters from the original implementations are used. Since

there are no clear recommendations for the hyperparameters of NSGA-II and NSGA-

III, a grid search is conducted. In the grid search the optimal population size and

number of generations are determined for NSGA-II. For NSGA-III a grid search is

done to find the best parameter value for the number of divisions that influence the

spacing of the reference points of NSGA-III. For the sake of brevity, only the results

with the best scores from this grid search are reported.

The implementations of the different algorithms are listed here: the original im-

plementation of CEGO can be found on the dedicated Github page2. The original

implementation of IC-SA-NSGA-II and SA-NSGA-II can be found on the personal

page of Julian Blank3. For NSGA-II and NSGA-III the implementation of Platypus is

used4. The implementation of the SMES-RBF algorithm is not provided. Therefore,

only the reported results from the SMES-RBF paper [44] can be compared.

More details concerning the implementation of SAMO-COBRA, the experiments,

and the statistical comparison can be found on a dedicated Github page [143].

Fixed Budget Experiment

In the first experiment, each algorithm was given a limited fixed number of function

evaluation after which the HV performance metric is computed. Each algorithm is

2https://github.com/RoydeZomer/CEGO
3https://julianblank.com/static/misc/pycheapconstr.zip
4https://platypus.readthedocs.io/
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allowed to do 40 · d function evaluations, here d represents the number of decision

variables of the optimization test function. As a performance metric, the HV metric

is selected to quantify the results. The HV is computed between the obtained feasible

Pareto-optimal solutions and the reference point reported in Table 2.1. Higher HV

scores mean that more HV is covered and therefore a better approximation of the

Pareto frontier is found.

Convergence Experiment

In the second experiment, each algorithm is tested to see when it reaches a threshold

value of the HV metric. The threshold is set to 95% of the maximum achievable HV

per test function between the reference points in Table 2.1 and the Pareto frontier.

Since the Pareto frontier is not known for every function, NSGA-II is used to find the

maximal HV between a reference point and the Pareto frontier by running it with a

population size of 100 · d and allowing the algorithm to run for 1000 generations.

For each algorithm, after each iteration or generation, the HV is computed. As

soon as the threshold value is achieved, the number of function evaluations are used as

the performance metric. A small number of required function evaluations is desirable

so the algorithm with the smallest number of evaluations is classified as the winner in

this experiment.

To be able to compare the results of SMES-RBF with the results of SAMO-

COBRA, a different experiment is conducted. In this experiment the number of func-

tion evaluations are compared between SAMO-COBRA and SMES-RBF to achieve

the HV as reported in the SMES-RBF paper [44].

5.1.4 Results

The complete set of results from the experiments can be found on Github [143]. The

results of the fixed budget and the convergence experiment are reported in table format

in the following Sections.

Fixed Budget Experiment Results

The results of the first experiment, in which the HV is computed after 40 · d function

evaluations, is reported in Table 5.2. A Wilcoxon rank-sum test with Bonferroni

correction is used to determine if there is a significant difference between the algorithm

with the best results and the algorithm with the lesser results.
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Table 5.2: Mean hypervolume after 40 · d function evaluations for each algorithm on
each test function. Phv and S-metric represent the SAMO-COBRA variants. The highest
mean hypervolumes per test function are presented in bold. The Wilcoxon rank-sum test
(with Bonferroni correction) significance is represented in cyan. Background colours represent
the significant best and incomparable results: p ≤ 0.001, while one shade lighter represents
incomparability with p ≤ 0.01, finally Red shows that the algorithm required more than 24
hours.

Function PHV SMS CEGO NSGA-II NSGA-III SA-NSGA-II
BNH 5072.10 5067.05 5037.20 4910.44 4673.78 4862.96
CEXP 3.7968 3.7968 3.7658 3.1545 2.9585 3.5790
SRN 25016 25004 24974 20767 19749 23261
TNK 0.2887 0.2930 0.2837 0.1181 0.1209 0.2485
CTP1 0.3026 0.3023 0.2972 0.2250 0.2193 0.2739
C3DTLZ4 1.3162 1.4698 1.3644 1.5069 1.5024 1.6560
OSY 12628 12515 12318 2260 2231 12313
TBTD 486.7 485.5 484.5 350.2 361.3 416.3
NBP 798532 798204 792130 737269 705200 763128
DBD 34.635 34.174 34.112 30.107 30.297 33.654
SRD 3068272 3028279 3011838 1839509 1761892 3064597
WB 0.3850 0.3799 0.3984 0.3247 0.3303 0.3718
BICOP1 0.6641 0.0 terminated 0.0003 0.0470 0.6489
BICOP2 0.2283 0.1752 terminated 0.1442 0.1466 0.1265
TRICOP 49.654 49.602 49.599 39.6356 38.1846 42.6394
SPD 5.849 · 109 5.407 · 109 4.960 · 109 3.144 · 109 3.106 · 109 5.060 · 109

CSI 8.3148 7.2818 terminated 4.4687 4.3737 7.0922
WP 3.4315 · 1018 3.3544·1018 3.2455·1018 2.1620·1018 2.2026·1018 1.6930 · 1018

SAMO-COBRA with the predicted hypervolume infill criterion (Phv) achieves in

15 out of the 18 test functions the highest mean hypervolume. The SAMO-COBRA

algorithm with the S-Metric Selection (S-metric) infill criterion achieves the highest

mean hypervolume on the TNK test problem and in 7 other cases achieves a mean

hypervolume that is statistically incomparable to the SAMO-COBRA algorithm with

the Phv infill criterion. The CEGO algorithm achieves the best mean hypervolume

on the WB test function but this is incomparable with the Phv-SAMO-COBRA, S-

metric-SAMO-COBRA and SA-NSGA-II algorithms. On three other problems, the

CEGO algorithm also achieves incomparable results. The CEGO algorithm however

was terminated while optimizing 3 functions since the experiments took longer than

24 hours to find a Pareto frontier. This mainly happened on test problems with a high

number of parameters. The SA-NSGA-II algorithm achieves the best hypervolume

on the C3DTLZ4 test function. On the WB test function, SA-NSGA-II found an

incomparable mean hypervolume.

Convergence Experiment Results

In Table 5.3, the number of function evaluations are reported that are required to

achieve the 95% threshold value of the maximum HV. For some test functions, this
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was quite easy to achieve since it only required to evaluate the initial sample. On other

test functions the algorithms required many more evaluations to achieve the threshold.

NSGA-II and NSGA-III are terminated after 5000 function evaluations on the

C3DLTZ4, OSY, SPD, and SRD test function. CEGO was not able to obtain the

threshold value for the SPD and CSI function within 24 hours.

Table 5.3: The table shows the number of function evaluations needed to achieve the
threshold hypervolume for each test function. The results of the algorithm with the smallest
number of function evaluations are reported in bold accompanied with a ↑. Phv and S-metric
represents the SAMO-COBRA variants. Experiments that required more than 5000 function
evaluations are terminated and displayed as +5000. Experments that required more than 24
hours are terminated and represented with a (-).

Function Threshold PHV SMS CEGO SA-
NSGA-
II

NSGA-
II

NSGA-
III

BNH 5005.5 11 ↑ 16 12 36 56 114
CEXP 3.6181 13 ↑ 16 23 71 392 404
SRN 59441 15 ↑ 15 ↑ 17 66 200 227
TNK 7.6568 11 9↑ 9 ↑ 66 432 586
CTP1 1.2398 10 ↑ 14 14 36 140 170
C3DTLZ4 6.4430 179 ↑ 181 226 275 +5000 +5000
OSY 95592 15 ↑ 31 16 105 +5000 +5000
TBTD 3925 31 ↑ 58 49 357 324 369
NBP 1.024E8 5 ↑ 9 6 36 102 206
DBD 217.31 13 ↑ 19 16 48 112 142
SPD 3.6887E10 43 ↑ 125 - 205 +5000 +5000
CSI 25.717 59 ↑ 484 - 376 +5000 +5000
SRD 3997308 17 ↑ 55 28 81 952 1357
WB 32.9034 7 ↑ 10 10 43 24 24
BICOP1 76.6328 22 ↑ 25 35 119 1700 1975
BICOP2 4606.57 17 18 18 109 10 ↑ 12
TRIPCOP 19578.0 7 ↑ 8 7 ↑ 21 42 8
WP 1.5147E19 48 ↑ 66 111 292 3120 3876

As can be seen in Table 5.3, SAMO-COBRA with the Phv infill criterion again

outperforms the other algorithms for the majority of the test functions. This is inter-

esting because this infill criterion is designed to be exploitative, despite that the infill

criterion is exploitative the algorithm can still find 95% of the Pareto frontier.

SMES-RBF Convergence Experiment Results. As mentioned before, the im-

plementation of SMES-RBF is not publicly available. Therefore, the reported results

of SMES-RBF are compared with the results of SAMO-COBRA. In Table 5.4 the
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number of function evaluations are reported that are required to obtain the same HV

as reported in the SMES-RBF paper.

Table 5.4: Number of function evaluations after which SAMO-COBRA with the Phv infill
criterion achieved the same hypervolume for the test functions as SMES-RBF.

Function SMES-RBF PHV-SAMO-COBRA
BNH 200 50
BNH 500 122
SRN 200 23
SRN 500 27
TNK 200 24
TNK 500 194
OSY 500 14
OSY 1000 14
OSY 2000 14

TRICOP 200 12
TRICOP 500 12
BICOP1 500 56
BICOP2 500 31
BICOP2 1000 31
BICOP2 2000 38
BICOP2 5000 82

As shown in Table 5.4, the number of function evaluations for SAMO-COBRA

is much smaller. For the BICOP1 test function, the Nadir point reported in the

original paper [44] is [3.458533.44905]. The objective scores of BICOP1 can only be

positive; therefore, the absolute maximum achievable hypervolume should be smaller

than 3.45853 · 3.44905 ≈ 11.93. Interestingly, the hypervolume results from SMES-

RBF algorithm after 1000, 2000, and 5000 function evaluations, as reported in the

original paper [44], are higher than 12 (which is impossible). A comparison between

the SMES-RBF and SAMO-COBRA algorithm could therefore not be made for the

BICOP1 problem with more than 500 function evaluations.

Convergence Plots. To further inspect the performance of the algorithms over time,

convergence plots are made for the BNH and TRICOP test functions. The conver-

gence plots show the HV score computed after every iteration. In the convergence

experiments, the same estimation of Nadir points as in the original SMES-RBF pa-

per [44] are used as the reference points. The convergence of the HV on the BNH test

function can be found in Figure 5.2. The convergence of the HV on the TRICOP test

function can be found in Figure 5.3.
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Figure 5.2: Convergence plot on BNH test problem for the NSGA-II, NSGA-III, SA-
NSGA-II, CEGO, Phv-SAMO-COBRA, S-metric-SAMO-COBRA algorithms. . The dashed
lines represents the final obtained Hypervolume of SMES-RBF after 200 and 500 function
evaluations.

5.1.5 Discussion Phv vs. S-metric Infill Criterion

An interesting conclusion from all the experiments is that the exploiting strategy of

the Phv infill criterion leads in most cases to the highest HV and to the least number

of required function evaluations to obtain the 95% threshold. It is no surprise that this

exploiting strategy works well in a constraint multi-objective setting, since a similar

effect was already shown by Rehbach et al. [126]. Rehbach et al. show that in the single

objective case, it is only useful to include an expected improvement infill criterion if

the dimensionality of the problem is low, if it is multimodal, and if the algorithm can

get stuck in a local optimum. The results in Table 5.2 and Table 5.3 allow us to give

the following advice based on empirical results: When searching for a set of Pareto-

optimal solutions, an uncertainty quantification method should not be used. This is

due to the fact that, when searching for a trade-off between objectives, the algorithm is

forced to explore more of the objective space in the different objective directions. The

exploration of objectives stimulates diversity, which makes the algorithm less likely to
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Figure 5.3: Convergence plot on TRICOP test problem for the NSGA-II, NSGA-III, SA-
NSGA-II, CEGO, Phv-SAMO-COBRA, S-metric-SAMO-COBRA algorithms. The dashed
lines represent the final obtained Hypervolume of SMES-RBF after 1000 and 2000 function
evaluations.

get stuck in a local optimum, thereby making the uncertainty quantification method

redundant.

5.1.6 Conclusion and Future Work on Multi-Objective Opti-

mization

In this paper, two variants of the SAMO-COBRA algorithm are introduced, based on

using two different infill criteria: S-Metric-Selection (S-metric) and Predicted Hyper-

volume (Phv), of which the latter is more exploitative than the former. The perfor-

mance of the two SAMO-COBRA variants is compared to five other state-of-the-art

algorithms: SA-NSGA-II, NSGA-II, NSGA-III and SMES-RBF. On 17 out of the 18

test functions, SAMO-COBRA with the Phv infill criterion showed similar or better

results. On the C3DTLZ4 test function, SA-NSGA-II obtained significantly better

results. This can be explained that this function benefits much more from exploration

than exploitation.
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The SAMO-COBRA algorithm with the Phv infill criterion showed to be very effi-

cient at solving constraint multi-objective optimization problems in terms of required

function evaluations. We speculate that this exploiting infill criterion works best in

most cases because of the characteristics of multi-objective problems. While dealing

with multi-objective problems, the algorithm is already forced to explore more of the

objective space, making the uncertainty quantification method redundant.

The final conclusion from this research is that further research efforts should be

put into creating infill criterion that can propose multiple solutions simultaneously.

This way, in each iteration, evaluations can be run in parallel, and wall clock time

can be reduced even further. That is why in the next section the multi-point infill

criterion is introduced.

5.2 Parallel Multi-Objective Optimization

Algorithm classes that can deal with computationally expensive constraint multi-

objective problems in parallel include multi-objective variants of evolutionary algo-

rithms [56] and of Bayesian optimization [107]. In general, the former offers naturally

built-in parallelism while typically requiring more function evaluations and the lat-

ter is more efficient in terms of function evaluations while typically not allowing for

parallelism.

As described in earlier related work in Section 5.1.1, researchers have extended

evolutionary algorithms by using surrogate models trained on the evaluated search

points to allow for a fast prediction of objective and constraint function values for

new candidate solutions (infill points), making them more efficient while keeping the

benefits of parallelism [109]. A state-of-the-art algorithm from this class is for exam-

ple the earlier described algorithm Surrogate-assisted Non-dominated Sorting Genetic

Algorithm (SA-NSGA-II) [19].

Traditionally Bayesian Optimization algorithms on the other hand use an infill

criterion to find a good solution on surrogate models. These infill criteria traditionally

only propose one solution per iteration. Where the use of surrogates can potentially

reduce the number of required evaluations to find optimum solutions, the infill crite-

rion that proposes one solution per iteration drastically increases the time since all

promising solutions have to be evaluated in series instead of in parallel.

Solving expensive optimization problems faster can, according to [92], be done in

three different ways:
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1. problem approximation and substitution,

2. algorithm design enhancement,

3. parallel and distributed computation.

In this section, it is demonstrated how a variety of these techniques are combined in

one algorithm.

As mentioned before, Bayesian optimization algorithms approximate the fitness

and constraint functions by using surrogates. In each iteration, the algorithm finds

a new promising solution by optimizing an acquisition function using the response

surface of the surrogates. Over time, different acquisition functions have been pub-

lished for different surrogate models and for different purposes e.g; for single objective

optimization [85], with an emphasis on exploration/exploitation [126], for constraint

optimization [13], for parallel optimization [72], multi-objective optimization [118],

and for constraint multi-objective optimization [154]. However, not much attention

has been spent on an acquisition function that can both handle multiple constraints,

multiple objectives, and propose multiple solutions for evaluation in parallel in an

efficient manner.

For many real-world problems, candidate solutions can be evaluated in parallel

using large computer clusters and multiple simulations. To make use of these resources,

the optimization algorithm needs to be able to propose multiple candidate solutions in

each iteration. Evaluating multiple solutions in parallel can reduce the total wall clock

time significantly. Following the example of Li et al. [72], the total evaluation time,

also referred to as the total cost of solving a computationally challenging optimization

problem can be formulated as follows: Totalcost = O(C) · O(N). Here O(C) is the

average cost of the expensive evaluation, and O(N) the average number of iterations

of the optimization algorithm until a satisfactory solution is found. If two expensive

evaluations can be run in parallel the cost can already be cut in half in terms of wall

clock time (p = 2), i.e., Totalcost = O(C)·O(N)
p . Obviously, when p solutions are

proposed per iteration, the total cost can also be reduced by a factor p. The downside

of proposing multiple solutions simultaneously is that the new batch of p solutions

is selected based on the surrogates trained on p − 1 less samples as opposed to the

sequential optimization procedure (where p = 1). This means that using parallel

evaluations potentially results in additional required function evaluations compared

to a sequential optimization run with a single solution per iteration.

To propose multiple solutions per iteration, in this section a new acquisition func-

tion is proposed that incorporates problem approximation and substitution, algorithm
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design enhancement, and parallel and distributed computing techniques. This acqui-

sition function is introduced and used in the SAMO-COBRA to demonstrate the

effectiveness of proposing multiple solutions simultaneously. This makes the parallel

SAMO-COBRA algorithm capable of doing multi-objective optimization while dealing

with constraints and doing batch or one-shot optimization. The results of the exper-

iments with this new infill criteria indicate that the missed information per iteration

can also be beneficial since it also provides a means of exploration.

5.2.1 Related Work

Traditionally, evolutionary algorithms, genetic algorithms, and particle swarm opti-

mization are population-based [9]. The evaluations of these populations can naturally

be parallelized. However, evolutionary algorithms have the downside that they require

a lot of function evaluations because they move in small steps before they converge to

the global optimum.

On the other hand, Bayesian optimization does not require a lot of function evalu-

ations and is used in case the objective and/or the constraint functions are expensive

to evaluate. These surrogate-assisted optimization algorithms however typically do

not use acquisition functions that can propose multiple solutions simultaneously. Al-

lowing the surrogate-assisted algorithms to only propose one solution per iteration,

which leads to longer running times and ineffective use of available resources.

Parallel Single Objective Optimization

According to a survey on parallel single objective optimization [72], the three most

obvious techniques for parallelization are; multi-start local searches (if derivatives of

the objective function are available), multiple parallel optimization runs (optionally

in different sub-regions), and as described above with a population of designs. Other

parallelization techniques often tend to combine different acquisition functions with

different hyper-parameters to balance exploration and exploitation. Wang et al. [165]

for example proposed a single objective multi-point acquisition function for Bayesian

optimization. This acquisition function is based on the moment-generating function

where the expected improvement is raised to the power t. For different values of t, the

moment-generating function will therefore result in different proposed solutions with

different trade-offs between exploration and exploitation.

Other techniques used to select p different solutions simultaneously are, for exam-

ple:
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• One way is to optimize a single point acquisition function, then assume that

the surrogate prediction is accurate by adding the prediction to the evaluated

solutions, and then optimize the acquisition p − 1 more times until p solutions

are found [65]. This strategy is better known as the Kriging believer.

• It is also possible to use different surrogates (or weighted combinations of surro-

gates) fitted on the same data and optimize the infill criteria on these different

surrogate models [75].

Parallel Multi-Objective Optimization

Besides the algorithm described in this paper, several surrogate-assisted multi-objective

algorithms are already proposed where multiple points are proposed per iteration, e.g.

MIP-EGO [137], MMBO [164], MOPLS-N [3]. The downside is that they all lack a

constraint handling mechanism and fail to propose solutions on the constraint bound-

aries.

Mixed-Integer Parallel Efficient Global Optimization (MIP-EGO) [137] for example

is designed to automatically optimize the configuration of artificial neural networks.

MIP-EGO uses multiple random forests as surrogates and different infill criteria are

optimized to propose different solutions simultaneously.

Wada and Hino proposed MMBO [164], a Bayesian multi-objective multi-point op-

timization algorithm together with a gradient approximation of the acquisition func-

tion. This algorithm proposes multiple points simultaneously in every iteration based

on multi-point expected hypervolume improvement. This algorithm uses the expected

hypervolume improvement as infill criteria and therefore uses the uncertainty quan-

tification of the solutions to balance exploration and exploitation.

Akhtar and Schoemaker proposed MOPLS-N [3], a Multi Objective Population-

based Parallel Local Surrogate-Assisted Search. MOPLS-N uses Radial Basis Func-

tions (RBF) as surrogates, uses parallel local candidate search from the parent pop-

ulation centers, and uses boxed hypervolume improvement to judge one candidate

solution in a box around one center.

Constraint Parallel Multi-objective Optimization

Additionally, as also mentioned in the survey [72], there is still a lack of well-performing

adaptive sampling algorithms for constraint optimization. Constraint optimization is

traditionally done by making use of penalty functions [72]. Tuning these penalty

functions demands a lot of function evaluations [13]. To save function evaluations
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during the optimization process, just like for the objective functions, surrogates can

be used to model the constraint functions.

A few multi-objective optimization algorithms are found with both a constraint

handling mechanism and capable of proposing multiple solutions per iteration:

1. GOMOEI is a Generalized Asynchronous Multi-objective Expected Improvement

infill criteria (GAMOEI) proposed by Wauters et al. [167]. GAMOEI allows

multiple points to be selected for evaluation asynchronously while balancing

exploration and exploitation in an adaptive manner. The expected improvement

infill criteria depends on the regular multi-objective expected improvement raised

to a higher power. Constraints are dealt with by multiplying the probability of

feasibility with the expected improvement. In their experiments, this however

resulted in undesirable points far away from the Pareto frontier with little to no

points on the constraint boundaries.

2. cK-RVEA is a many-objective reference vector-guided evolutionary algorithm

that uses Kriging models as surrogates for the objectives and deals with the con-

straints by only using the feasible solutions for surrogate training [39]. Because

this algorithm has as a basis an Evolutionary Algorithm, it has naturally built-in

parallelism.

3. EGMOCO is a constraint multi-objective optimization algorithm that uses Krig-

ing as a surrogate and exploits four different acquisition functions to propose

multiple feasible Pareto-optimal solutions per iteration [173]. These four differ-

ent acquisition functions all result in different proposed solutions so at maximum,

four different solutions can be proposed and evaluated per iteration.

4. SBMO is a multi-objective algorithm that uses Kriging models as a surrogate

for both the constraints and objectives. Because of the scalarization of the

objectives, it can propose as many solutions per iteration as scalarizations are

possible [74]. However, when the number of decision parameters increases the

Kriging surrogates quickly become impractical to use.

One Shot Optimization

One-shot optimization [22, 24] or global surrogate modeling can be characterized by

surrogate-assisted optimization algorithms where a surrogate is fitted only once with

training data of an initial sample. After the surrogate is fitted, an optimal solution (or

set of optimal solutions) is found on the surrogate, the obtained solutions are evaluated
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and the algorithm terminates. This means that in contrast to other surrogate-assisted

optimization algorithms, there is no evaluation budget for adaptive sampling. One-

shot optimization is very popular and a classical approach in the maritime [130],

automotive [131], aerospace [111] and other engineering domains. As already stated in

the introduction of this Section, a lot of potentially available information for the last

evaluation is missing when using this approach as all new solutions should be found

based on the first initial samples. A benefit of one-shot optimization is that when a

lot of computational resources are available they can easily be exploited.

5.2.2 Multi-Point Acquisition function

The related work gave inspiration for a new multi-point acquisition function that is

introduced in this section. This new multi-point acquisition function is a reformulation

of the single-point acquisition function from SAMO-COBRA as formally described in

Equation 5.1. This single point acquisition function can also be used to propose

multiple solutions simultaneously. For this to work, first the optimization problem

should be reformulated so that multiple solutions can easily be optimized and judged

on solution quality simultaneously. The reformulation of the solution vector is done

by simply concatenating different solutions in one big solution vector. Suppose one

solution contains d decision variables, then p solutions together can be formulated as

a vector of d · p real values Rp·d. In this formulation, the first d values represent the

first solution, whereas the last d values in this vector represent the pth solution.

Given the p solutions (xi, i ∈ {i, . . . , p}), and the cheap RBF surrogate for each

objective (fi()
′, i ∈ {i, . . . , k}), also p predictions can be made for each objective.

Since there are p solutions and k objectives, the RBF predictions can be combined in

a vector of p · k objective function values as follows:

F = (f ′1(x1), . . . , f ′k(x1), . . . , f ′1(xp), . . . , f ′k(xp))

Here the vector F has a size of p · k. The p solutions with the corresponding p ·
k predictions for the k objectives can, after this step, be split into the matrix F

with p solutions (as rows) with k objective values (as columns). These p solutions

can then be mapped to the objective space so that their combined performance in

terms of hypervolume contribution can be judged. The judging of how good the

combined p solutions are again computed with the Phv infill criteria resulting in a

Multi-Point Acquisition Function (MPhv). The hypervolume contribution of a set

of solutions can be computed with the individual hypervolume contribution of each
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solution minus the overlap. Because this multi-point acquisition function evaluates

p solutions simultaneously, it will automatically prefer a set of solutions with diverse

objective scores above a set of similar solutions with similar objective scores. This is

the case because a set with diverse solutions with little overlapping hypervolume will

dominate more objective space compared to a set of solutions with very similar scores

with a lot of overlapping hypervolume. After the objectives are predicted with the

RBFs for all p solutions, the p · k is then translated with the multi-point acquisition

function into a single real value which represents the hypervolume contribution of the

p solutions. Predicting p solutions simultaneously does not increase the total number

of RBF surrogates, only the RBF surrogates are now used p times when evaluating p

new solutions in parallel.

A similar formulation and strategy is used for the constraints. Because multiple

solutions are now to be dealt with, also all the p solutions should be judged on fea-

sibility simultaneously. Each solution has m constraints, leading to p ·m constraint

values to consider. With the RBF surrogates (g) representing the m constraints, each

RBF surrogate (gj) can be used p times to predict the constraint values for the p solu-

tions. This results in one long constraint vector of length p ·m, the first m constraint

values represent the m constraint values for the first solution, the last m constraint

predictions represent the constraints for the pth solution.

With this new formulation for p solutions simultaneously, the multi-point acquisi-

tion optimization problem can be mathematically represented in the following way:

(x∗1, . . . ,x
∗
p) ∈ argmax

xi∈Ω⊂Rd

MPhv(f ′(x1), . . . , f ′(xp))

subject to g′(xi) ≤ 0

A visual representation of the multi-point acquisition function is given in Figure 5.4.

Integration of Multi-Point acquisition function in SAMO-COBRA

The newly formulated acquisition function can be directly integrated into the SAMO-

COBRA algorithm. The SAMO-COBRA with the new acquisition function is very

similar to the original acquisition function. The difference is that now expensive

evaluations can be evaluated in parallel. To maximally exploit the parallelism, the

initial size of the design of experiments is now set to max(p, d + 1). After the initial

sample is evaluated, the all RBF model variants are again fitted for every objective and

constraint independently. In the first iteration again the default RBF configuration is
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Figure 5.4: Visual representation of hypervolume contributions of two sets containing two
solutions each. The hypervolume contribution of set 1 is equal to 2(0.6 ·0.2)−(0.2 ·0.2) = 0.2.
The hypervolume contribution of set 2 is equal to 2(0.35 · 0.4) − (0.35 · 0.35) = 0.1575.
So although the individual hypervolume contributions of the solutions of set 2 are higher
compared to the individual hypervolume contributions of the solutions in set 1, the total
hypervolume contribution of set 2 is smaller compared to the total hypervolume contribution
of set 1. This makes set 1 more desirable compared to set 2.

chosen and the new acquisition function is optimized.

For the optimization of the multi-point acquisition function, any optimizer capable

of optimizing one objective and dealing with multiple constraints can be chosen. For

the integration in SAMO-COBRA, the COBYLA algorithm is again selected for this

task.

By letting COBYLA start from a randomly generated vector of length p · d repre-

senting p solutions, COBYLA iteratively also optimizes these p solutions. Important

to note is that COBYLA still does not use the real objective and constraint func-

tions but the RBFs of the constraint and the RBFs of the objectives to optimize the

acquisition function.

Experiments showed that the optimization problem characteristics like the num-

ber of decision variables d, the number of constraints m, the number of objectives k,

and the number of solutions to be optimized in parallel p, all have an influence on

whether COBYLA can converge to good solutions. The experiments show that more

random starting points and larger evaluation budget for COBYLA lead to better re-

sults. However, more starting points and larger evaluation budgets for COBYLA also
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lead to higher computational costs. Therefore, as a rule of thumb, it is recommended

to let COBYLA start from 2(d+m+ k) solutions when using the single point acqui-

sition function, let COBYLA converge from 4(d+m+ k) when using the multi-point

acquisition function, and when doing one shot optimization, let COBYLA start from

8(d+m+k) solutions. A similar rule is created for the evaluation budget of COBYLA:

The budget for using the single point acquisition function is 50(d+m+ k), for using

multi-point acquisition function 100(d + m + k), and for one shot optimization the

evaluation budget for COBYLA is 200(d + m + k). After COBYLA has converged

from the starting points, the solution set with the highest acquisition score is selected

to be evaluated on the real objectives and constraint functions. If COBYLA can not

find any feasible solutions, the solution set with the smallest cumulative constraint

violation is selected and evaluated on the real objective and constraint functions.

Now instead of evaluating only one solution at a time, all p solutions are evaluated

in parallel with the real objective and constraint functions. The results are added to

the solution archive, and the RBF approximation error is again checked. Selection of

the new best RBF modeling strategy is now not done by checking the approximation

error from the solutions on the Pareto frontier and the last four evaluated solutions.

Instead, the approximation error from the solutions on the current Pareto frontier and

the last 2 · p evaluated solutions are taken into consideration when selecting the best

RBF modeling strategy. This way, if the parallel number of evaluations p is large,

then the algorithm doesn’t get stuck in a local optimal RBF configuration.

The process of surrogate fitting, acquisition function optimization, solution eval-

uations in parallel, and RBF strategy selection continues until the evaluation budget

is exhausted. The SAMO-COBRA algorithm continues until the evaluation budget is

exhausted. Note that this is not equal anymore to the number of iterations except

for when p = 1 is chosen which is also still possible with the use of this acquisition

function.

One Shot Optimization

The new Acquisition function can also be used for one-shot optimization. In the

one-shot optimization configuration, the initial sample is of a size equal to half the

evaluation budget. After the initial Halton sample is evaluated, the RBFs with the dif-

ferent configurations are fitted and the best RBF configurations are selected. Selection

of the best input transformation and RBF kernel can in this case not be done based on

historic approximation error. Nor can the best configuration be selected based on the

RBFs trained with all the input data. Instead 10-fold cross-validation is used to select
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the RBF kernel and transformation strategy. Selecting the optimal RBF configuration

based on 10-fold cross-validation requires some computation time, however spending

half of the evaluation budget based on wrongly estimated solutions is for obvious rea-

sons much more computationally expensive. After the selection of the optimal RBF

configurations for each constraint and objective separately, the multi-point acquisition

function is optimized. The multi-point acquisition function is optimized such that in

one run all solutions for the other half of the evaluation budget can be found. Finally,

the predicted optimal solutions are evaluated with the real objectives and constraint

functions and the algorithm terminates.

5.2.3 Multi-Point Acqusition Function Experiments

To test the performance of the multi-point acquisition function in the SAMO-COBRA

algorithm and the one shot option several experiments are conducted. In the exper-

iments, different batch (parallel candidate solution sizes p) sizes are tested for the

multi-point acquisition function: 1 (original), 2, 3, 4, 5, 6, 10 and 20. Bigger batch

sizes are not considered because then multi-point optimization strategy becomes too

similar to one shot optimization. The test functions from Table 2.1 with the exception

of the MW problems are selected for the experiments. Each test function is optimized

in 11 independent runs with different seeds. Optimization of the test functions is done

by using a reference point which is the worst possible objective score per function.

The Nadir point [15] of the test functions is approximated by taking the extremes

of the objective scores on the Pareto frontier from all combined experiment results.

The hypervolume reported in the results of the experiments are calculated by comput-

ing the hypervolume between the Pareto frontier and the Nadir point. The algorithms

variant, the experiments, and the raw results are also published on a dedicated Github

page [144].

Hypervolume after Fixed Evaluation Budget

In the first experiment the hypervolume between the approximated Nadir point and

the obtained Pareto frontier is calculated after a fixed evaluation budget. SAMO-

COBRA with the different batch sizes has a total allowed evaluation budget of 40 · d.

This evaluation budget leads to an initial Halton sample of d+1 samples and 39 ·d−1

iterations for the SAMO-COBRA algorithm with the single-point infill criteria. For

batch sizes larger then 1, max(d + 1, p) initial Halton samples and 40·d−max(d+1,p)
p

iterations are done.
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Convergence Experiment

As explained before, with batch optimization, potentially a lot of wall clock time can

be saved. The downside of proposing multiple solutions simultaneously is that the

new batch of solutions is based on less information compared to when one solution

would be added per iteration. In this experiment, it is tested how much information

is lost per iteration, and on the other hand how much time can be saved. This is

tested by taking 90% of the maximum achievable hypervolume as a threshold, then

the algorithm convergence results can tell how much algorithm iterations and total

number of function evaluations are required to achieve this hypervolume threshold for

the different batch sizes.

One Shot Optimization Experiment

In the last experiment the algorithm and multi-point acquisition function is tested

to see if it is capable of one shot optimization. The one shot optimization algorithm

configuration is tested with 40 initial Halton samples and then in one iteration 40

new solutions are proposed with the multi-point acquisition function and then evalu-

ated. The hypervolume between the Nadir Point and the obtained Pareto frontier is

computed and compared to the hypervolume obtained with batch size 1.

5.2.4 Results

The results of the three experiments are presented in two Pareto frontiers, two con-

vergence plots, and three tables. The overall results show that for test functions with

a low feasibility rate, larger batch sizes lead to worse results after the same number

of function evaluations. For other test functions with a higher feasibility rate, larger

batch sizes can be very beneficial in terms of the required number of evaluations and

therefore iterations.

Hypervolume Results

In Table 5.5 the mean hypervolume and standard deviation of the hypervolume be-

tween the Pareto frontier and Nadir point are given for the different test functions.

As can be seen in the table, the hypervolume in most cases slightly decreases, and the

standard deviation increases, when a larger batch size is chosen. In a few cases, the

mean hypervolume is significantly better for larger batch sizes. It is expected that this
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is the case because more exploration can be beneficial for functions that are hard to

fit with RBF models with few initial data samples.

Table 5.5: Mean and standard deviation of hypervolume (hv) between Pareto frontier and
Nadir point on set of test functions after 40 · d function evaluations with different batch sizes
(1,2,3,4,5,6,10,20) for theMPhv infill criteria given 11 independent runs. HV Scores in bold
indicate a higher mean compared to batch size 1. A ∗ is added if the difference was significant
according to the Wilcoxon rank-sum test with p < 0.05.

Function Batch size 1 Batch size 2 Batch size 3 Batch size 4
hv std hv std hv std hv std

BNH 4969.2 0.0133 4969.0 0.1 4967.5 1.5 4967.6 0.5
CEXP 3.7972 0.0005 3.7961 0.0015 3.7963 0.0016 3.7944 0.001
SRN 25019 5 25008 10 24977 16 24843 22
TNK 0.2988 0.0016 0.2966 0.0033 0.2965 0.0026 0.2949 0.0018
CTP1 0.2985 0.0001 0.2985 0.0001 0.2984 0.0001 0.2984 0.0001
C3DTLZ4 1.5446 0.0759 1.4288 0.17 1.3569 0.0018 1.2526 0.0473
OSY 12629 2 12352 97 12609 3 12526 71
TBTD 8052.6 48.5 7892.3 90.0 7690.2 153.9 7506.0 237.4
NBP 799579 190 800186 130 799770∗ 258 798810 643
DBD 59.9960 0.0806 60.0550∗ 0.0152 60.0614∗ 0.0063 60.0034 0.0391
SPD 5.511 · 109 2 · 106 5.513 · 109 3 · 106 5.502 · 109 3 · 106 5.497 · 109 8 · 106

CSI 7.5394 0.0038 7.5343 0.0049 7.5438 0.0064 7.5372 0.0077
SRD 2952123 95 2949030 574 2945522 755 2941958 935
WB 0.6375 0.0185 0.6435 0.0133 0.6373 0.0138 0.6416 0.0209
BICOP1 0.6640 0.0004 0.6609 0.0010 0.6442 0.0052 0.6226 0.0111
BICOP2 0.2549 0.0381 0.2623 0.0161 0.2289 0.0358 0.2294 0.0364
TRICOP 49.6407 0.0430 49.6971∗ 0.0206 49.7224∗ 0.0215 49.6470 0.0449
WP 3.677 · 1018 5 · 1015 3.662 · 1018 3 · 1015 3.653 · 1018 9 · 1015 3.631 · 1018 1.4 · 1016

Function Batch size 5 Batch size 6 Batch size 10 Batch size 20
hv std hv std hv std hv std

BNH 4967.9 0.7 4967.6 1.2 4960.3 2.3 4949.8 5.7
CEXP 3.7964 0.0004 3.7981∗ 0.0004 3.7925 0.0005 3.7794 0.0030
SRN 24729 53 24723 39 24583 97 24516 103
TNK 0.2953 0.0012 0.2985 0.0018 0.2957 0.0024 0.2676 0.0144
CTP1 0.2981 0.0001 0.2984 0.0002 0.2977 0.0003 0.2956 0.0008
C3DTLZ4 1.3375 0.0512 1.3933 0.0813 1.5091 0.0659 1.5827 0.0308
OSY 12396 139 12443 90 12073 105 11501 297
TBTD 7471.3 205.5 7419.4 300.2 7237.2 272.6 7213.8 231.5
NBP 798377 844 797753 1496 793709 2257 776697 1517
DBD 59.9676 0.0334 59.8961 0.0262 59.8108 0.0296 59.6967 0.0506
SPD 5.497 · 109 8 · 106 5.474 · 109 1.3 · 107 5.369 · 109 1.7 · 107 5.259 · 109 3.0 · 107

CSI 7.5432 0.0076 7.5409 0.0112 7.4329 0.018 6.8714 0.0704
SRD 2940695 1019 2939470 2003 2934512 941 2925597 3690
WB 0.6475 0.0128 0.6089 0.0263 0.6213 0.0169 0.5952 0.0125
BICOP1 0.6029 0.0160 0.5901 0.0139 0.4302 0.1118 0.3375 0.0809
BICOP2 0.2320 0.0356 0.2267 0.0160 0.2198 0.0435 0.2138 0.0250
TRICOP 49.7100 0.0402 49.7270∗ 0.0259 49.5006 0.0825 49.3136 0.1001
WP 3.583 · 1018 1.4 · 1016 3.556 · 1018 1.3 · 1016 3.492 · 1018 2.1 · 1016 3.471 · 1018 1.5 · 1016

For two test functions, the obtained feasible solutions are plotted for the algorithm

with different batch sizes. In Figure 5.5a all the obtained feasible solutions of the test

problem TNK are presented. In this figure, it can be observed that the algorithm with

batch size 1 rarely misses the Pareto frontier, while solutions of the larger batch sizes

are often dominated by other solutions from these batch sizes. In Figure 5.5b all the

obtained feasible solutions of the test problem C3DTLZ4 are presented. In this figure,
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it can be observed that the solutions with the larger batch sizes show better coverage

among the Pareto frontier versus the solutions from other batch sizes.
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Figure 5.5: Obtained Pareto Frontiers for TNK and C3DTLZ4 test function

Convergence Results

The results of the second experiment can be found in Table 5.6. This table clarifies

that for the majority of the test functions, the threshold of 90% was reached before the

allowed number of function evaluations. When comparing batch size 1 with the larger

batch sizes for each test function. The best result with the least number of iterations

on average required 75% less iterations, the trade-off is that the number of evaluations

on average increases with 58% to find the 90% hypervolume threshold. So in the cases

where time-consuming objective and constraint functions can be evaluated in parallel,

the wall clock time can significantly be reduced.

In Figure 5.6a the convergence plot is given for the TNK test function. For this

test function, the algorithm with different batch size combinations all converge to the

approximated optimum except for batch size 20. In Figure 5.6b the convergence plot

is given for the C3DTLZ4 function. Interestingly enough, in this convergence plot

the extra exploration which is naturally included for larger batch sizes seems to be

beneficial since the larger batch sizes 20, 10 and 6 perform better compared to batch

sizes, 2, 3, 4, and 5.
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Table 5.6: Rounded mean number evaluations (Eval), mean number of algorithm iterations
(Itr) given different batch sizes (1, 2, 3, 4, 5, 6, 10, 20) to achieve the hypervolume threshold.
The threshold is 90% of the dominated area between the Nadir point and the Pareto frontier
of all runs combined. A dash (-) indicates that the threshold is not achieved within 40 · d
function evaluations for any of the 11 runs, an arrow down (↓) indicates that not every run
reached the threshold.

Function Threshold Batch size 1 Batch size 2 Batch size 3 Batch size 4
Eval Itr Eval Itr Eval Itr Eval Itr

BNH 4496.2 9 9 10 5 10 4 8 2
CEXP 3.4380 9 9 11 6 11 4 12 3
SRN 22810 17 17 19 10 20 7 22 6
TNK 0.2775 44 44 47 24 48 16 48 12
CTP1 0.2717 13 13 15 8 15 5 15 4
C3DTLZ4 1.5788 197↓ 197↓ 219↓ 110↓ - - - -
OSY 11393 18 18 64 33 20 7 27 7
TBTD 7359.8 16 16 29 15 43 15 57↓ 15↓
NBP 725935 16 16 15 8 14 5 19 5
DBD 54.133 14 14 15 8 15 6 14 4
SPD 5.106 · 109 59 59 58 30 62 21 68 17
CSI 7.1691 120 120 124 62 119 40 118 30
SRD 2658080 14 14 14 7 16 6 17 5
WB 0.61745 94↓ 94↓ 88 45 106↓ 36↓ 65↓ 17↓
BICOP1 0.59988 82 82 67 34 106 36 139 35
BICOP2 0.27667 353↓ 353↓ 338↓ 169↓ - - 356↓ 89↓
TRICOP 45.3701 13 13 16 8 15 6 21 6
WP 3.517 · 1018 58 58 62 31 66 22 74 19

Function Threshold Batch size 5 Batch size 6 Batch size 10 Batch size 20
Eval Itr Eval Itr Eval Itr Eval Itr

BNH 4496.2 8 2 9 2 13 2 21 2
CEXP 3.4380 13 3 11 2 17 2 31 2
SRN 22810 18 4 20 4 30 4 37 2
TNK 0.2775 46 10 44 8 49 5 68↓ 4↓
CTP1 0.2717 19 4 16 3 19 2 34 2
C3DTLZ4 1.5788 - - - 232↓ 24↓ 187↓ 10↓
OSY 11393 37 8 25 5 39 4 125↓ 7↓
TBTD 7359.8 61↓ 13↓ 36↓ 6↓ 76↓ 8↓ 77↓ 4↓
NBP 725935 19 4 20 4 26 3 46 3
DBD 54.133 15 3 20 4 27 3 32 2
SPD 5.106 · 109 62 13 77 13 103 11 140 7
CSI 7.1691 119 24 123 21 179 18 - -
SRD 2658080 18 4 20 4 23 3 68 4
WB 0.61745 81 17 133↓ 23↓ 132↓ 14↓ - -
BICOP1 0.59988 206↓ 42↓ 322↓ 54↓ - - - -
BICOP2 0.27667 - - - - - - - -
TRICOP 45.3701 16 4 17 3 19 2 33 2
WP 3.517 · 1018 92 19 103 18 - - - -

One Shot Optimization Results

The Hypervolumes of the one-shot optimization algorithm experiments are presented

in Table 5.7. Inspection of this table tells us that the test functions with a high
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Figure 5.6: Obtained hypervolume convergence for TNK and C3DTLZ4 test function

feasibility rate tend to give much better results compared to test functions with a low

feasibility rate. This indicates that the constraints are not well fitted after the initial

sample and that more adaptive sampling steps lead to better constraint boundary

approximation and therefore to better Pareto frontier approximations.

5.2.5 Discussion on Parallelization

Bayesian optimization is often used to optimize expensive black box optimization prob-

lems with long simulation times. Typically Bayesian optimization algorithms propose

one solution per iteration. The downside of this strategy is the sub-optimal use of

available computing power. To efficiently use the available computing power (or a

number of licenses etc.) a multi-point acquisition function for parallel efficient multi-

objective optimization algorithms is introduced. The multi-point acquisition function

is based on the hypervolume contribution of multiple solutions simultaneously, lead-

ing to well-spread solutions along the Pareto frontier. By combining this acquisition

function with a constraint-handling technique, multiple feasible solutions can be pro-

posed and evaluated in parallel every iteration. The hypervolume and feasibility of

the solutions can easily be estimated by using multiple cheap radial basis functions

as surrogates with different configurations. The acquisition function can be used with

different population sizes and even for one shot optimization. The strength and gener-

alizability of the new acquisition function is demonstrated by optimizing a set of black

box constraint multi-objective problem instances. The experiments show a huge time

saving factor by using our novel multi-point acquisition function, while only marginally
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Table 5.7: Mean and Standard deviation of hypervolume of the one-shot optimization
algorithm configuration between the Nadir point and the obtained Pareto frontiers over 11
runs after 80 function evaluations with an initial Halton sample of 40. The results are
compared to the result of the original infill criteria with batch size 1 by computing the
hypervolume differences in a percentage.

Function hv std Difference
BNH 4939.6 2 −0.60%
CEXP 3.6507 0.0240 −4.01%
SRN 23649 262 −5.79%
TNK 0.2044 0.0341 −46.18%
CTP1 0.2731 0.0091 −9.30%
C3DTLZ4 1.4308 0.0458 −7.95%
OSY 6144.9 1240.3 −105.52%
TBTD 6007.2 425.2 −34.05%
NBP 768803 4997 −4.00%
DBD 56.812 0.541 −5.60%
SPD 2.9674 · 109 3.058 · 108 −85.72%
CSI 5.9929 0.0472 −25.81%
SRD 2855825 61403 −3.37%
WB 0.5601 0.0126 −13.82%
BICOP1 0.4193 0.0482 −52.04%
BICOP2 0.0759 0.0296 −235.84%
TRICOP 47.750 0.798 −3.96%
WP 3.198 · 1018 2.44 · 1017 −14.98%

worsening the hypervolume after the same number of function evaluations. However,

this claim only holds in cases where the evaluation of one of the objectives or con-

straints is computationally expensive and when they can be run in parallel. The results

of the one shot optimization experiment however does not show very good results on

problems that have a small feasibility ratio. Inspection of the results shows that the

constraints are not well fitted after the initial sample and therefore, a lot of infeasible

solutions are proposed in the one shot step. More adaptive sampling steps will lead

to better constraint boundary approximation and therefore to more feasible solutions

and therefore better Pareto frontier approximations.

5.2.6 Conclusion and Future Work on Parallel Optimization

A new acquisition function capable of multi-point multi-objective optimization is in-

troduced and implemented together with a constraint handling mechanism. This new

acquisition function is used to enhance the SAMO-COBRA algorithm, making the
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algorithm able to propose multiple solutions per iteration. Experiments on a bench-

mark test set show that with larger batch sizes, in the ideal case on average 75% of

the iterations can be saved, and therefore the waiting time can be reduced. This is

especially interesting in cases where the evaluation of solutions is very time-consuming

and when they can be evaluated in parallel. The new infill criteria offer the possibility

to save wall-clock-time and give the user the power to better exploit the computational

resources and the use of commercial licenses.

Future work will have to be put into dealing with multi-fidelity optimization prob-

lems, asynchronous function evaluations, and exploiting inexpensive functions to de-

crease wall clock time even further.

5.3 Expensive and Inexpensive Function Optimiza-

tion

Real-world problems are often defined through multiple objectives and constraints,

combined with the fact that objectives or constraints can be time-consuming (“expen-

sive”) to evaluate [14, 161, 172]. Expensive optimization problems are for example

maritime design problems from Chapter 2 in which (commercial licenses of) finite el-

ement simulation or computational fluid dynamic tools are used for computing the

performance characteristics of a design. These third-party software packages are com-

putationally expensive to run, thereby increasing the overall duration of the optimiza-

tion process. This leads to a very limited amount of allowed solution evaluations for

the optimization algorithms.

Assuming that, at a maximum, a few hundred simulation runs are possible (i.e.,

solution evaluations of objective and constraint functions), the goal becomes to ap-

proximate the true Pareto front of feasible solutions as closely as possible with the

given limited budget. To decrease the wall-clock-time, solution evaluations can be

run in parallel as was shown in the experiments from Section 5.2.3. To decrease the

wall-clock-time even more and to make fewer mistakes in the optimization process,

the inexpensive constraint and objective functions (like volume objective, or main

pariticulars check) can directly be used in the optimization algorithm instead of using

a surrogate for them.

A state-of-the-art algorithm that can deal with similar problems is the recent In-

expensive Constraint extension of the SA-NSGA-II algorithm (IC-SA-NSGA-II [19]).

The IC-SA-NSGA-II algorithm uses radial basis function surrogates only for the ob-
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jectives and assumes that all constraints are inexpensive to evaluate.

The other algorithm that can be extended to exploit inexpensive functions is the

SAMO-COBRA algorithm in combination with the multi-point acquisition function.

Like SA-NSGA-II, the SAMO-COBRA algorithm uses radial basis function approxi-

mations for all objectives and all constraints. These two algorithms are designed with

the purpose of modeling and optimizing surrogates of both the objective and constraint

functions. However, there is a fundamental difference between the working of these

two algorithms. While SA-NSGA-II and IC-SA-NSGA-II use a genetic algorithm’s op-

erators to create new candidate solutions, SAMO-COBRA uses a local search-based

hypervolume maximization approach for creating new candidate solutions.

To facilitate a complete experimental comparison, a SAMO-COBRA variant that

is inspired by IC-SA-NSGA-II’s approach to differentiate between inexpensive con-

straints and expensive objectives is developed. This new variant however generalizes

this approach and can exploit not only the inexpensive constraints but also the in-

expensive objectives. The proposed Inexpensive Objectives and Constraints-SAMO-

COBRA (IOC-SAMO-COBRA) allows the user to identify the expensive objectives

and constraints, for which IOC-SAMO-COBRA will then use radial basis function

surrogates, while it will use the inexpensive objectives and inexpensive constraints

directly. A tabular overview of the four different algorithms and how they deal with

expensive and inexpensive objectives and constraints is given in Table 5.8.

Algorithm Expensive Inexpensive Expensive Inexpensive
constraints constraints objectives objectives

SA-NSGA-II surrogate surrogate surrogate surrogate
IC-SA-NSGA-II direct direct surrogate surrogate
SAMO-COBRA surrogate surrogate surrogate surrogate
IOC-SAMO-COBRA surrogate direct surrogate direct

Table 5.8: Overview of how the four algorithms deal with the (in)expensiveness of con-
straints and objectives. ”Surrogate” means a surrogate replaces the objective/constraint,

direct means that the objective/constraint is used without learning a surrogate for it.

5.3.1 Related Work

There is a growing interest in surrogate-assisted optimization [92, 84], surrogate-

assisted constraint optimization [124], surrogate-assisted optimization in combination

with parallelism [72], surrogate-assisted multi-objective optimization [38], and prob-

lems with heterogeneous evaluation times [4]. Different approaches have been devel-

oped for solving constraint multi-objective problems. However, very little research has

100



Chapter 5. Multi Objective Simulation Based Optimization

been done on surrogate-assisted algorithms that can deal with a mix of both expensive

and inexpensive constraints and objective functions. There exists two algorithms that

are very relevant and already partly address the problem:

1. GP-CMOEA, is like the IC-SA-NSGA-II algorithm a multi-objective optimiza-

tion algorithm that uses both surrogates and exploits the inexpensiveness of the

constraints to find feasible Pareto-optimal Solutions [170]. Due to the Gaussian

Process regression surrogates, this method quickly becomes impractical when

the number of parameters increases.

2. CHVPEI and CHVPOI are a bi-objective optimization acquisition functions

that exploit the inexpensiveness of only the second objective that is always as-

sumed to be inexpensive [95]. For the first objective, the expected improvement

or the probability of improvement are computed depending on the infill criteria.

This infill criteria however still needs to be extended for more than 2 objectives,

and cannot deal with constraints yet.

However, an algorithm that can deal with a mix of expensive and inexpensive objectives

and constraints has not been proposed yet. It is for this reason that in this section a

parallel constraint multi-objective optimization algorithm is proposed that is capable

of dealing with mixed expensiveness of objective and constraint functions.

In the following subsections, the closely related relevant methods IC-SA-NSGA-II

that is used as reference algorithm is described in more detail.

IC-SA-NSGA-II

An extension of SA-NSGA-II has been proposed to address optimization problems

where objectives are computationally expensive, but the constraints are not [19]. For

such problems, the optimization method shall exploit the asymmetry of expensiveness,

or in other words, the fact that one can collect significantly more information regarding

the feasibility of a solution before having to run an expensive simulation. The novelty

of the proposed method is the constraint sampling for finding feasible designs in the

first optimization cycle. The challenge of finding a feasible yet diverse set of solutions is

addressed by incorporating a Riesz s-energy [77] based sampling method [21] modified

for constraint search spaces. Furthermore, to make IC-SA-NSGA-II more efficient for

the optimization of highly constraint problems (still with inexpensive constraints), the

embedded surrogate-based optimization loop has been extended by a repair operator

applied to each solution after mating [87]. The repair operator ensures that only
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feasible solutions are evaluated (on the surrogates and on the expensive functions)

and has demonstrated to be effective for problems with complex constraints. The

novel evaluated solutions are added to the archive which is used in the next iteration

to retrain the surrogates. This continues until the objective evaluation budget has

been exhausted. A more extensive explanation of the IC-SA-NSGA-II algorithm is

given in [19].

5.3.2 Inexpensive Function Exploitation

In the original SAMO-COBRA algorithm for every objective and constraint function,

an RBF surrogate is used during the search for new candidate solutions. In the IOC-

SAMO-COBRA extension, one or more of the RBFs can be replaced with the real

inexpensive constraint or objective function. Instead of finding good solutions on the

RBFs, in IOC-SAMO-COBRA the inexpensive constraints and objectives are used

directly during the search for feasible Pareto efficient solutions that contribute HV to

the Pareto front. The direct use of inexpensive functions can be beneficial because

the real functions do not make approximation errors like RBF surrogates do in unseen

regions. This should, especially in the early iterations, lead to better results compared

to the use of RBFs since in early iterations the RBF approximation error might still

be large. Besides a benefit during the early iterations, inexpensive constraints can also

be exploited when finding the Pareto fronts of optimization problems with very few

feasible solutions. The pseudocode of the IOC-SAMO-COBRA algorithm is given in

Algorithm. 3.

Hypervolume Maximization

The IOC-SAMO-COBRA algorithm uses the same acquisition function as presented

in Section 5.2.2 (line 12 in Algorithm 3). While the original SAMO-COBRA algorithm

with the multi-point acquisition function used the RBF surrogates for each constraint

and each objective, the IOC-SAMO-COBRA algorithm does this differently. If one

or more of the constraints or objectives are inexpensive to evaluate, then this can

be indicated by the user. This allows the IOC-SAMO-COBRA algorithm to directly

use them to compute the corresponding function values. These inexpensive functions

in combination with the RBF approximations of the expensive functions are used by

COBYLA to find the most promising solution set that is expected to contribute the

most hypervolume.

When optimization of the acquisition function with COBYLA, also with the use
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Algorithm 3: IOC-SAMO-COBRA. Input: Number of decision vari-
ables d, objective functions f(x), split where required into expensive
objective function(s) fe(x), computationally inexpensive objective func-
tion(s) fc(x), constraint function(s) g(x), split where required into ex-
pensive constraint function(s) ge(x), computationally inexpensive con-
straint function(s) gc(x), decision parameters’ lower and upper bounds
[xlb,xub] ⊂ Rd, reference point ref ∈ Rk, number of initial samples
Ninit, maximum evaluation budget Nmax, RBF strategy domain Φ =
{Cubic, Gaussian, Multiquadric, InverseQuadratic, InverseMultiquadric,
ThinP lateSpline} × {Plog, standardized}, acquisition function HV.
Output: Evaluated solutions.

1 Function IOC-SAMO-COBRA(d, f , g, xlb,xub, ref , N , Nmax, RBFkernels):
2 X← {x1, · · · ,xN } . Generate initial design, X ∈ Rd×N

3 F← f(X) . Evaluate objective functions, F ∈ Rk×N

4 G← g(X) . Evaluate constraint functions, G ∈ Rm×N

5 h← {fe ∪ ge} . Union of expensive obj. and constr. functions

6 ϕ∗ ← {(Cubic, standardized) | ∀ h ∈ h} . Init best RBF, ϕ∗ ∈ Φ
7 E← {0 | ∀ h ∈ {h× Φ}} . Init RBF approx. errors for each configuration/

8 j ← N . Initialize expensive evaluation counter

9 while j < Nmax do
10 SΦ ← {FitRBF(X, h,Φ,xlb,xub) | ∀ h ∈ h} . Fit RBF with all Φ strategies

for all h

11 Sϕ∗ ←
{
Sϕ∗ | ∀ h ∈ h

}
. Select best RBF surrogate based on line 6 or 17

12 x∗1, . . . ,x
∗
p ← Max(HV, p, ref , Sϕ∗ , fc, gc) . Get p new solutions based on HV

13 j ← j + p . Increase iteration counter to new matrix sizes

14 X←
[
X, x∗1, . . . , x

∗
p

]
. Add p new solution vectors, X ∈ Rd×j

15 F←
[
F, f(x∗1), . . . , f(x∗p)

]
. Add vectors of evaluated objectives, F ∈ Rk×j

16 G←
[
G, g(x∗1), . . . , g(x∗p)

]
. Add vectors of evaluated constraints,

G ∈ Rm×j

17 HV,ϕ∗,E←SelectBestStrategy(E, SΦ,X,F,G) . Update HV, RBF approx.

errors E, and new best RBF configuraiton ϕ∗ based on E

18 end

19 return (F, G, X)

of inexpensive functions where possible, COBYLA can get stuck in local optima. To

overcome this problem also in the IOC-SAMO-COBRA algorithm, COBYLA is run

in parallel starting from multiple random starting points.

After all COBYLA instances have converged, all feasible solutions found are 10000

times randomly combined in groups of size p. Since there are
(

16·p·d
p

)
such groups,

for small values of p and d fewer combinations are sufficient. However, due to the

negligible computational effort, it is decided to fix this number to 10000. The set of

p solutions which together contribute the most HV are selected for evaluation on the

expensive objective and constraint functions.
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After the parallel evaluation of the solutions on the real functions (line 14, 15, 16

of algorithm 3), the RBF approximation errors (E) are stored for each RBF modeling

strategy (line 17 of algorithm 3), the RBFs are updated (line 10 of algorithm 3), the

best RBF modeling strategy is selected based on the historic approximation errors (line

11 of algorithm 3) and COBYLA is used again to find the next set of optimal solutions

(line 12 of algorithm 3). This optimization process continues until the expensive

evaluation budget is exhausted (line 9 of algorithm 3).

Acquisition Function Switching

IOC-SAMO-COBRA maximizes the predicted HV contribution every iteration, mean-

ing that by default it does not use any uncertainty quantification of the RBF models

for the objectives. Just like the RBF functions, by default, the inexpensive objectives

also do not have an uncertainty quantification method. Other Bayesian optimization

algorithms, however, often use Kriging or Gaussian process regression models, which

provide an uncertainty quantification method for the objectives to encourage explo-

ration [154, 118, 85]. Earlier experiments from Section 5.1.3, showed that the use of

uncertainty quantification is in many cases redundant because by maximizing the HV,

the algorithm is naturally forced to explore the objective space [148]. If, however,

IOC-SAMO-COBRA gets stuck and does not find any HV improvement for three con-

secutive iterations, an uncertainty quantification method for RBFs (see Section 2.3.2

and Equation 2.5 or [12]) is enabled to help with exploration (this is part of line 17 of

algorithm 3, but for space reasons not explicitly formulated in the pseudocode). By

enabling the uncertainty quantification method, the acquisition function changes to

an RBF variant of the S-Metric selection criterion [118]. Note that the inexpensive

objectives still do not have an uncertainty quantification and therefore, only for the

objectives modeled with RBFs the uncertainty is calculated.

5.3.3 IOC-SAMO-COBRA Experiments

The four algorithms (SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA, IOC-SAMO-

COBRA) are compared on the complete set of diverse test functions from Table 2.1.

The surrogate-assisted algorithm and the Inexpensive function exploiting counterparts

are compared to confirm our hypothesis that exploiting inexpensive functions in the op-

timization process directly is beneficial. The metrics used to compare the algorithms’

performances are the HV and the IGD+ performance metrics which are described in

more detail in Section 2.5.1.
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Experimental Settings

The allowed number of function evaluations for the different algorithms is set to 40·d for

all functions experimented with. The performances of the algorithms are checked with

a different number of candidate solutions per iteration (In the SA-NSGA-II variants

also referred to as population sizes) p ∈ {1, 2, 3, 4, 5, 6, 10, 20}. To get statistically

significant results on all test functions, each test function is optimized 10 times per

algorithm configuration.

All benchmark test functions are inexpensive to evaluate. However, SA-NSGA-II

and SAMO-COBRA are developed to optimize computationally expensive problems.

To test this functionality, in the experiments done with SA-NSGA-II and SAMO-

COBRA all constraints and objectives are assumed to be expensive and are therefore

modeled with the RBF surrogates. To test the functionality where inexpensive func-

tions are directly used instead of a surrogate with IC-SA-NSGA-II and IOC-SAMO-

COBRA, a decision needs to be made concerning the expensiveness of the objective and

constraint functions. To be able to compare IOC-SAMO-COBRA to IC-SA-NSGA-II

as fairly as possible, the assumption from IC-SA-NSGA-II that the constraints are

inexpensive and the objectives are expensive to evaluate is also adopted in the ex-

periments with IOC-SAMO-COBRA. A description and implementation of the test

functions, the obtained Pareto frontiers for the IGD+ performance metric, all raw

experiment results, and implementation of the IOC-SAMO-COBRA algorithm can be

found on a dedicated Github page [145].

5.3.4 Results

The results obtained from the four algorithm variants are presented in tables, empirical

cumulative distribution function plots, and empirical attainment function difference

plots. Special attention is given to the problems with a very small feasibility ratio since

these test problems benefit the most from using the inexpensive constraint functions

directly in the optimization algorithms.

Performance Metrics Results

The two performance metrics used to assess and compare the performance of the dif-

ferent algorithms are the IGD+ metric and the HV metric. Table 5.9 and Table 5.10,

respectively, report the mean and standard deviation of the HV and the IGD+ per-

formance metric after 40 · d function evaluations. The HV is computed between the

Nadir point and the obtained Pareto fronts, the IGD+ metric is computed between
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a well-spread Pareto front approximation and the obtained Pareto fronts by the dif-

ferent algorithms. The performance metrics for the SA-NSGA-II, IC-SA-NSGA-II,

and SAMO-COBRA are statistically compared with a Wilcoxon rank sum test to the

results of IOC-SAMO-COBRA at a 5% confidence level. A (−) in the tables indi-

cates significantly worse results, (≈) indicates indifference between the results, and

(+) indicates significantly better results of the given algorithm, compared to IOC-

SAMO-COBRA. In the second last row of Table 5.9 and Table 5.10 a summary is

given of the results of the significance test. Inspection of this summary shows that

IOC-SAMO-COBRA in most cases achieves the best or statistically indistinguishable

results after the number of function evaluations is exhausted for both the HV and

IGD+ metric. On 14 out of 22 test problems, IOC-SAMO-COBRA outperforms the

other algorithms when the performance is aggregated on data for all values of p that

were tested. On 4 out of 22 test problems, SAMO-COBRA achieves a larger HV

compared to IOC-SAMO-COBRA, however, these results are often not significant and

differences are too small to be captured in the table with only two numbers after the

decimal point. On the remaining 4 out of 22 test problems, the IC-SA-NSGA-II algo-

rithm performs better compared to IOC-SAMO-COBRA, especially on BICOP1 and

MW2. The mean Friedman rank test confirmed (with p = 1 · 10−16) the alternative

hypothesis which states that there is a significant difference in the mean ranks of the

algorithms. In the last rows of Table 5.9 and Table 5.10, respectively, the mean ranks

of the algorithms are reported (a low rank indicates a better rank for both performance

metrics).

Empirical Cumulative Distribution Function Results

Table 5.9 and Table 5.10 do not tell us anything about the convergence rate or how

fast the different algorithms are able to find Pareto efficient solutions. Empirical Cu-

mulative Distribution Functions (ECDF) from Section 2.5.2 visualize the convergence

of the different algorithms. The aggregated results of the HV and IGD+ metric of the

four different algorithm variants are visualized in Figure 5.7 and figure 5.8 by means

of their ECDF, based on a fixed-target perspective. For each algorithm, the corre-

sponding ECDF curve is aggregated over all functions and the number of candidate

solutions per iteration. The four curves illustrate the advantage of the Inexpensive

Constraint approach, independently of the base algorithm. This finding highlights

the importance of using as accurate as possible models (by IOC-SAMO-COBRA’s

approach to evaluate and compare all RBF configurations in the configuration space

Φ) and shows the relevance of using the constraint and objective functions directly if
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Table 5.9: Hypervolume score ± standard deviation of hypervolume, Wilcoxon rank sum
test with probability value = 0.05 (reference algorithm: IOC-SAMO-COBRA), per test func-
tion and candidate solutions size p. The highest HV per row is reported in bold, best scoring
algorithm per test function is highlighted .

Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
BNH 1 4.89 · 103 ± 3.06 · 101 (−) 4.85 · 103 ± 3.85 · 101 (−) 5.07 · 103 ± 4.10 · 10−2 (≈) 5.07 · 103 ± 2.44 · 10−2

2 4.86 · 103 ± 1.54 · 101 (−) 4.83 · 103 ± 3.36 · 101 (−) 5.07 · 103 ± 3.47 · 10−2 (≈) 5.07 · 103 ± 3.85 · 10−2

3 4.88 · 103 ± 3.12 · 101 (−) 4.85 · 103 ± 3.04 · 101 (−) 5.07 · 103 ± 5.44 · 10−2 (≈) 5.07 · 103 ± 2.86 · 10−2

4 4.89 · 103 ± 1.99 · 101 (−) 4.84 · 103 ± 2.61 · 101 (−) 5.07 · 103 ± 1.57 · 10−1 (+) 5.07 · 103 ± 9.29 · 10−2

5 4.86 · 103 ± 2.52 · 101 (−) 4.85 · 103 ± 2.46 · 101 (−) 5.07 · 103 ± 1.83 · 10−1 (≈) 5.07 · 103 ± 2.24 · 10−1

6 4.88 · 103 ± 1.37 · 101 (−) 4.88 · 103 ± 3.05 · 101 (−) 5.07 · 103 ± 1.25 · 10−1 (≈) 5.07 · 103 ± 1.94 · 10−1

10 4.87 · 103 ± 1.92 · 101 (−) 4.86 · 103 ± 2.68 · 101 (−) 5.07 · 103 ± 2.71 · 10−1 (≈) 5.07 · 103 ± 1.53 · 10−1

20 4.90 · 103 ± 3.03 · 101 (−) 4.87 · 103 ± 2.54 · 101 (−) 5.06 · 103 ± 4.25 · 10−1 (≈) 5.06 · 103 ± 3.94 · 10−1

CEXP 1 3.65 · 100 ± 2.23 · 10−2 (−) 3.64 · 100 ± 6.21 · 10−2 (−) 3.80 · 100 ± 4.36 · 10−4 (−) 3.80 · 100 ± 8.37 · 10−5

2 3.58 · 100 ± 4.48 · 10−2 (−) 3.57 · 100 ± 5.72 · 10−2 (−) 3.80 · 100 ± 1.16 · 10−3 (−) 3.80 · 100 ± 3.89 · 10−4

3 3.58 · 100 ± 3.02 · 10−2 (−) 3.57 · 100 ± 3.76 · 10−2 (−) 3.80 · 100 ± 1.73 · 10−4 (≈) 3.80 · 100 ± 5.62 · 10−5

4 3.57 · 100 ± 3.56 · 10−2 (−) 3.56 · 100 ± 3.62 · 10−2 (−) 3.80 · 100 ± 3.68 · 10−5 (−) 3.80 · 100 ± 2.65 · 10−4

5 3.58 · 100 ± 3.18 · 10−2 (−) 3.56 · 100 ± 4.78 · 10−2 (−) 3.80 · 100 ± 2.35 · 10−4 (≈) 3.80 · 100 ± 1.09 · 10−4

6 3.58 · 100 ± 2.40 · 10−2 (−) 3.58 · 100 ± 3.35 · 10−2 (−) 3.80 · 100 ± 2.67 · 10−4 (≈) 3.80 · 100 ± 1.54 · 10−4

10 3.56 · 100 ± 4.87 · 10−2 (−) 3.60 · 100 ± 2.43 · 10−2 (−) 3.79 · 100 ± 6.69 · 10−4 (≈) 3.79 · 100 ± 7.53 · 10−4

20 3.55 · 100 ± 2.89 · 10−2 (−) 3.59 · 100 ± 3.41 · 10−2 (−) 3.77 · 100 ± 3.43 · 10−3 (≈) 3.77 · 100 ± 4.06 · 10−3

SRN 1 2.38 · 104 ± 1.14 · 102 (−) 2.40 · 104 ± 1.53 · 102 (−) 2.50 · 104 ± 3.86 · 100 (≈) 2.50 · 104 ± 2.28 · 100

2 2.29 · 104 ± 2.99 · 102 (−) 2.34 · 104 ± 1.97 · 102 (−) 2.50 · 104 ± 1.13 · 101 (−) 2.50 · 104 ± 3.96 · 100

3 2.34 · 104 ± 2.55 · 102 (−) 2.35 · 104 ± 2.62 · 102 (−) 2.50 · 104 ± 6.39 · 100 (−) 2.50 · 104 ± 2.56 · 100

4 2.30 · 104 ± 2.84 · 102 (−) 2.33 · 104 ± 2.10 · 102 (−) 2.50 · 104 ± 2.80 · 100 (+) 2.50 · 104 ± 2.14 · 100

5 2.33 · 104 ± 2.32 · 102 (−) 2.35 · 104 ± 2.89 · 102 (−) 2.50 · 104 ± 2.62 · 100 (≈) 2.50 · 104 ± 2.78 · 100

6 2.33 · 104 ± 1.64 · 102 (−) 2.36 · 104 ± 1.43 · 102 (−) 2.50 · 104 ± 7.42 · 100 (≈) 2.50 · 104 ± 3.92 · 100

10 2.33 · 104 ± 2.03 · 102 (−) 2.37 · 104 ± 2.46 · 102 (−) 2.49 · 104 ± 3.07 · 101 (≈) 2.49 · 104 ± 2.99 · 101

20 2.31 · 104 ± 3.95 · 102 (−) 2.37 · 104 ± 1.39 · 102 (−) 2.48 · 104 ± 1.18 · 101 (≈) 2.48 · 104 ± 2.05 · 101

TNK 1 2.05 · 10−1 ± 1.38 · 10−2 (−) 2.87 · 10−1 ± 3.37 · 10−3 (−) 2.96 · 10−1 ± 1.65 · 10−3 (−) 3.03 · 10−1 ± 5.49 · 10−4

2 2.31 · 10−1 ± 1.75 · 10−2 (−) 2.75 · 10−1 ± 5.24 · 10−3 (−) 2.96 · 10−1 ± 1.99 · 10−3 (−) 3.05 · 10−1 ± 4.94 · 10−4

3 2.49 · 10−1 ± 1.70 · 10−2 (−) 2.84 · 10−1 ± 3.80 · 10−3 (−) 2.95 · 10−1 ± 3.09 · 10−3 (−) 3.06 · 10−1 ± 2.40 · 10−4

4 2.47 · 10−1 ± 1.34 · 10−2 (−) 2.71 · 10−1 ± 8.31 · 10−3 (−) 2.97 · 10−1 ± 1.80 · 10−3 (−) 3.06 · 10−1 ± 2.68 · 10−4

5 2.48 · 10−1 ± 1.13 · 10−2 (−) 2.77 · 10−1 ± 7.15 · 10−3 (−) 2.95 · 10−1 ± 2.26 · 10−3 (−) 3.06 · 10−1 ± 1.34 · 10−4

6 2.48 · 10−1 ± 1.47 · 10−2 (−) 2.81 · 10−1 ± 2.97 · 10−3 (−) 2.94 · 10−1 ± 1.25 · 10−3 (−) 3.06 · 10−1 ± 2.19 · 10−4

10 2.35 · 10−1 ± 1.21 · 10−2 (−) 2.73 · 10−1 ± 5.91 · 10−3 (−) 2.93 · 10−1 ± 2.56 · 10−3 (−) 3.06 · 10−1 ± 1.49 · 10−4

20 2.16 · 10−1 ± 1.11 · 10−2 (−) 2.72 · 10−1 ± 7.76 · 10−3 (−) 2.83 · 10−1 ± 3.23 · 10−3 (−) 3.01 · 10−1 ± 8.46 · 10−4

CTP1 1 2.86 · 10−1 ± 4.12 · 10−3 (−) 2.89 · 10−1 ± 2.64 · 10−3 (−) 3.02 · 10−1 ± 1.29 · 10−4 (≈) 3.02 · 10−1 ± 2.34 · 10−4

2 2.76 · 10−1 ± 2.99 · 10−3 (−) 2.74 · 10−1 ± 7.15 · 10−3 (−) 3.00 · 10−1 ± 1.63 · 10−3 (≈) 3.01 · 10−1 ± 1.45 · 10−3

3 2.78 · 10−1 ± 5.88 · 10−3 (−) 2.81 · 10−1 ± 6.28 · 10−3 (−) 3.02 · 10−1 ± 4.18 · 10−4 (≈) 3.02 · 10−1 ± 8.68 · 10−4

4 2.80 · 10−1 ± 2.48 · 10−3 (−) 2.77 · 10−1 ± 4.06 · 10−3 (−) 3.02 · 10−1 ± 4.10 · 10−4 (≈) 3.02 · 10−1 ± 3.57 · 10−4

5 2.74 · 10−1 ± 6.52 · 10−3 (−) 2.76 · 10−1 ± 4.81 · 10−3 (−) 3.02 · 10−1 ± 3.58 · 10−4 (≈) 3.02 · 10−1 ± 3.58 · 10−4

6 2.78 · 10−1 ± 4.94 · 10−3 (−) 2.79 · 10−1 ± 2.59 · 10−3 (−) 3.02 · 10−1 ± 3.14 · 10−4 (≈) 3.02 · 10−1 ± 3.14 · 10−4

10 2.76 · 10−1 ± 5.45 · 10−3 (−) 2.81 · 10−1 ± 3.46 · 10−3 (−) 3.01 · 10−1 ± 2.53 · 10−4 (≈) 3.01 · 10−1 ± 2.82 · 10−4

20 2.74 · 10−1 ± 4.44 · 10−3 (−) 2.81 · 10−1 ± 4.28 · 10−3 (−) 2.99 · 10−1 ± 8.59 · 10−4 (≈) 2.99 · 10−1 ± 1.05 · 10−3

C3DTLZ4 1 1.54 · 100 ± 9.41 · 10−2 (−) 1.23 · 100 ± 2.01 · 10−1 (−) 1.44 · 100 ± 5.31 · 10−2 (−) 1.74 · 100 ± 5.19 · 10−3

2 1.54 · 100 ± 9.22 · 10−2 (−) 1.54 · 100 ± 1.07 · 10−1 (−) 1.27 · 100 ± 5.91 · 10−2 (−) 1.75 · 100 ± 8.81 · 10−3

3 1.64 · 100 ± 2.19 · 10−2 (−) 1.65 · 100 ± 3.30 · 10−2 (−) 1.40 · 100 ± 5.46 · 10−2 (−) 1.76 · 100 ± 1.01 · 10−3

4 1.66 · 100 ± 1.50 · 10−2 (−) 1.69 · 100 ± 1.12 · 10−2 (−) 1.39 · 100 ± 3.50 · 10−2 (−) 1.77 · 100 ± 1.37 · 10−3

5 1.66 · 100 ± 2.01 · 10−2 (−) 1.69 · 100 ± 1.20 · 10−2 (−) 1.43 · 100 ± 4.12 · 10−2 (−) 1.77 · 100 ± 8.47 · 10−4

6 1.67 · 100 ± 1.57 · 10−2 (−) 1.71 · 100 ± 7.88 · 10−3 (−) 1.44 · 100 ± 5.84 · 10−2 (−) 1.77 · 100 ± 5.92 · 10−4

10 1.66 · 100 ± 1.84 · 10−2 (−) 1.72 · 100 ± 4.84 · 10−3 (−) 1.46 · 100 ± 6.98 · 10−2 (−) 1.77 · 100 ± 1.42 · 10−3

20 1.64 · 100 ± 2.17 · 10−2 (−) 1.72 · 100 ± 3.89 · 10−3 (−) 1.52 · 100 ± 3.39 · 10−2 (−) 1.76 · 100 ± 1.46 · 10−3

OSY 1 9.62 · 103 ± 1.98 · 103 (−) 1.13 · 104 ± 4.75 · 102 (−) 1.26 · 104 ± 4.21 · 100 (≈) 1.26 · 104 ± 2.78 · 100

2 1.18 · 104 ± 3.45 · 102 (−) 1.18 · 104 ± 2.70 · 102 (−) 1.26 · 104 ± 3.34 · 100 (−) 1.26 · 104 ± 3.66 · 100

3 1.21 · 104 ± 2.35 · 102 (−) 1.23 · 104 ± 6.57 · 101 (−) 1.26 · 104 ± 3.02 · 100 (≈) 1.26 · 104 ± 2.63 · 100

4 1.22 · 104 ± 1.36 · 102 (−) 1.23 · 104 ± 8.03 · 101 (−) 1.26 · 104 ± 2.79 · 100 (≈) 1.26 · 104 ± 5.11 · 100

5 1.23 · 104 ± 6.76 · 101 (−) 1.23 · 104 ± 7.50 · 101 (−) 1.26 · 104 ± 4.56 · 100 (≈) 1.26 · 104 ± 3.79 · 100

6 1.23 · 104 ± 4.06 · 101 (−) 1.24 · 104 ± 4.16 · 101 (−) 1.26 · 104 ± 6.01 · 100 (≈) 1.26 · 104 ± 6.76 · 100

10 1.24 · 104 ± 1.06 · 102 (−) 1.24 · 104 ± 5.34 · 101 (−) 1.24 · 104 ± 3.24 · 101 (≈) 1.24 · 104 ± 2.87 · 101

20 1.23 · 104 ± 1.40 · 102 (+) 1.23 · 104 ± 1.92 · 102 (+) 1.13 · 104 ± 3.43 · 102 (−) 1.16 · 104 ± 1.67 · 102

TBTD 1 3.46 · 102 ± 9.91 · 101 (−) 3.92 · 102 ± 4.59 · 101 (−) 4.95 · 102 ± 3.40 · 100 (≈) 4.96 · 102 ± 9.50 · 100

2 4.00 · 102 ± 3.40 · 101 (−) 4.37 · 102 ± 1.41 · 101 (−) 4.88 · 102 ± 6.06 · 100 (≈) 4.89 · 102 ± 8.70 · 100

3 4.18 · 102 ± 1.40 · 101 (−) 4.44 · 102 ± 1.56 · 101 (−) 4.73 · 102 ± 9.80 · 100 (−) 4.90 · 102 ± 6.64 · 100

4 4.17 · 102 ± 1.91 · 101 (−) 4.42 · 102 ± 2.26 · 101 (−) 4.70 · 102 ± 9.65 · 100 (−) 4.86 · 102 ± 8.77 · 100

5 4.16 · 102 ± 1.47 · 101 (−) 4.38 · 102 ± 1.54 · 101 (−) 4.77 · 102 ± 7.71 · 100 (−) 4.86 · 102 ± 5.72 · 100

6 4.25 · 102 ± 1.80 · 101 (−) 4.43 · 102 ± 1.44 · 101 (−) 4.72 · 102 ± 1.09 · 101 (≈) 4.76 · 102 ± 1.03 · 101

10 4.15 · 102 ± 2.92 · 101 (−) 4.46 · 102 ± 1.34 · 101 (−) 4.71 · 102 ± 6.75 · 100 (≈) 4.76 · 102 ± 5.01 · 100

20 4.26 · 102 ± 1.70 · 101 (−) 4.50 · 102 ± 1.19 · 101 (≈) 4.68 · 102 ± 4.84 · 100 (≈) 4.61 · 102 ± 9.27 · 100

NBP 1 7.71 · 105 ± 4.45 · 103 (−) 7.72 · 105 ± 8.82 · 103 (−) 7.98 · 105 ± 4.53 · 102 (−) 8.01 · 105 ± 8.88 · 100

2 7.62 · 105 ± 7.06 · 103 (−) 7.63 · 105 ± 5.29 · 103 (−) 7.99 · 105 ± 8.82 · 102 (−) 8.01 · 105 ± 6.72 · 101

3 7.67 · 105 ± 6.99 · 103 (−) 7.69 · 105 ± 3.09 · 103 (−) 7.99 · 105 ± 3.30 · 102 (−) 8.01 · 105 ± 1.03 · 101

4 7.56 · 105 ± 7.57 · 103 (−) 7.65 · 105 ± 7.17 · 103 (−) 7.98 · 105 ± 5.00 · 102 (−) 8.01 · 105 ± 3.08 · 101

5 7.63 · 105 ± 5.21 · 103 (−) 7.69 · 105 ± 3.60 · 103 (−) 7.97 · 105 ± 8.66 · 102 (−) 8.00 · 105 ± 1.36 · 102

6 7.66 · 105 ± 4.83 · 103 (−) 7.68 · 105 ± 6.03 · 103 (−) 7.98 · 105 ± 6.20 · 102 (−) 8.00 · 105 ± 1.48 · 102

10 7.66 · 105 ± 5.68 · 103 (−) 7.72 · 105 ± 3.84 · 103 (−) 7.96 · 105 ± 1.01 · 103 (−) 7.99 · 105 ± 5.26 · 102

20 7.61 · 105 ± 6.10 · 103 (−) 7.68 · 105 ± 4.32 · 103 (−) 7.78 · 105 ± 6.92 · 103 (−) 7.95 · 105 ± 5.81 · 102

DBD 1 3.38 · 101 ± 2.84 · 10−1 (−) 3.29 · 101 ± 1.12 · 100 (−) 3.46 · 101 ± 2.66 · 10−2 (+) 3.46 · 101 ± 1.06 · 10−1

2 3.37 · 101 ± 2.18 · 10−1 (−) 3.32 · 101 ± 3.25 · 10−1 (−) 3.46 · 101 ± 2.00 · 10−2 (+) 3.44 · 101 ± 1.15 · 10−1

3 3.40 · 101 ± 1.14 · 10−1 (−) 3.32 · 101 ± 4.90 · 10−1 (−) 3.46 · 101 ± 2.35 · 10−2 (−) 3.47 · 101 ± 2.46 · 10−3

4 3.37 · 101 ± 2.15 · 10−1 (−) 3.34 · 101 ± 2.14 · 10−1 (−) 3.45 · 101 ± 1.17 · 10−1 (−) 3.47 · 101 ± 4.22 · 10−3

5 3.37 · 101 ± 3.16 · 10−1 (−) 3.34 · 101 ± 2.82 · 10−1 (−) 3.46 · 101 ± 8.13 · 10−2 (≈) 3.46 · 101 ± 5.64 · 10−3

6 3.39 · 101 ± 9.60 · 10−2 (−) 3.31 · 101 ± 6.13 · 10−1 (−) 3.46 · 101 ± 5.80 · 10−2 (≈) 3.46 · 101 ± 5.86 · 10−2

10 3.38 · 101 ± 1.96 · 10−1 (−) 3.34 · 101 ± 3.22 · 10−1 (−) 3.45 · 101 ± 4.46 · 10−2 (≈) 3.46 · 101 ± 1.62 · 10−2

20 3.37 · 101 ± 2.51 · 10−1 (−) 3.31 · 101 ± 3.73 · 10−1 (−) 3.45 · 101 ± 1.72 · 10−2 (+) 3.44 · 101 ± 2.75 · 10−2

SRD 1 3.04 · 106 ± 1.91 · 104 (≈) 2.96 · 106 ± 5.49 · 104 (−) 3.07 · 106 ± 5.91 · 102 (+) 3.06 · 106 ± 6.25 · 103

2 3.06 · 106 ± 8.30 · 103 (≈) 3.06 · 106 ± 4.81 · 103 (−) 3.06 · 106 ± 7.83 · 102 (≈) 3.06 · 106 ± 1.02 · 103

3 3.06 · 106 ± 2.73 · 103 (+) 3.07 · 106 ± 1.45 · 103 (+) 3.06 · 106 ± 8.53 · 102 (−) 3.06 · 106 ± 7.05 · 102

4 3.06 · 106 ± 9.27 · 102 (+) 3.06 · 106 ± 9.80 · 102 (+) 3.06 · 106 ± 1.90 · 103 (−) 3.06 · 106 ± 8.32 · 102

5 3.06 · 106 ± 9.63 · 102 (+) 3.07 · 106 ± 5.04 · 102 (+) 3.06 · 106 ± 2.08 · 103 (−) 3.06 · 106 ± 6.44 · 102

6 3.06 · 106 ± 1.18 · 103 (+) 3.07 · 106 ± 6.02 · 102 (+) 3.06 · 106 ± 1.90 · 103 (−) 3.06 · 106 ± 7.64 · 102

10 3.06 · 106 ± 8.15 · 102 (+) 3.07 · 106 ± 5.43 · 102 (+) 3.05 · 106 ± 1.71 · 103 (−) 3.06 · 106 ± 1.25 · 103

20 3.06 · 106 ± 9.27 · 102 (+) 3.06 · 106 ± 7.54 · 102 (+) 3.04 · 106 ± 2.83 · 103 (−) 3.05 · 106 ± 1.61 · 103

Table continues on next page.
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5.3. Expensive and Inexpensive Function Optimization

Continuation of Table 5.9.
Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
WB 1 2.46 · 10−1 ± 5.47 · 10−2 (−) 4.19·10−1 ± 2.11·10−2 (+) 3.77 · 10−1 ± 1.01 · 10−2 (−) 4.15 · 10−1 ± 1.43 · 10−3

2 3.46 · 10−1 ± 4.48 · 10−2 (−) 4.20·10−1 ± 3.02·10−3 (≈) 3.87 · 10−1 ± 1.70 · 10−2 (−) 4.15 · 10−1 ± 8.41 · 10−3

3 3.73 · 10−1 ± 3.96 · 10−2 (−) 4.23·10−1 ± 3.73·10−3 (+) 4.06 · 10−1 ± 1.32 · 10−2 (≈) 4.14 · 10−1 ± 5.39 · 10−3

4 3.96 · 10−1 ± 1.95 · 10−2 (−) 4.23·10−1 ± 1.86·10−3 (+) 3.86 · 10−1 ± 1.39 · 10−2 (−) 4.11 · 10−1 ± 7.66 · 10−3

5 3.72 · 10−1 ± 6.19 · 10−2 (−) 4.22·10−1 ± 2.55·10−3 (+) 3.84 · 10−1 ± 2.23 · 10−2 (−) 4.14 · 10−1 ± 1.11 · 10−2

6 3.83 · 10−1 ± 3.70 · 10−2 (≈) 4.24·10−1 ± 1.84·10−3 (+) 3.79 · 10−1 ± 1.73 · 10−2 (−) 4.02 · 10−1 ± 1.64 · 10−2

10 3.92 · 10−1 ± 9.35 · 10−3 (≈) 4.25·10−1 ± 2.64·10−3 (+) 3.76 · 10−1 ± 1.69 · 10−2 (−) 3.96 · 10−1 ± 5.10 · 10−3

20 3.67 · 10−1 ± 7.21 · 10−2 (≈) 4.24·10−1 ± 2.30·10−3 (+) 3.72 · 10−1 ± 1.20 · 10−2 (≈) 3.78 · 10−1 ± 1.24 · 10−2

BICOP1 1 6.38 · 10−2 ± 9.98 · 10−2 (≈) 9.60 · 10−2 ± 1.05 · 10−1 (≈) 1.23·10−1 ± 1.62·10−1 (≈) 7.91 · 10−2 ± 1.16 · 10−1

2 5.98 · 10−1 ± 1.92 · 10−2 (+) 6.07·10−1 ± 1.34·10−2 (+) 3.17 · 10−1 ± 2.60 · 10−1 (≈) 4.16 · 10−1 ± 2.11 · 10−1

3 6.29 · 10−1 ± 1.03 · 10−2 (≈) 6.36·10−1 ± 4.84·10−3 (≈) 5.06 · 10−1 ± 2.54 · 10−1 (≈) 5.79 · 10−1 ± 8.34 · 10−2

4 6.41 · 10−1 ± 6.41 · 10−3 (≈) 6.43·10−1 ± 6.09·10−3 (≈) 6.34 · 10−1 ± 1.06 · 10−2 (≈) 6.09 · 10−1 ± 7.65 · 10−2

5 6.49 · 10−1 ± 4.38 · 10−3 (+) 6.50·10−1 ± 5.78·10−3 (+) 6.25 · 10−1 ± 1.39 · 10−2 (≈) 6.20 · 10−1 ± 1.31 · 10−2

6 6.53 · 10−1 ± 4.50 · 10−3 (+) 6.53·10−1 ± 3.46·10−3 (+) 5.89 · 10−1 ± 1.88 · 10−2 (≈) 5.99 · 10−1 ± 1.37 · 10−2

10 6.60·10−1 ± 1.08·10−3 (+) 6.59 · 10−1 ± 1.88 · 10−3 (+) 4.91 · 10−1 ± 4.87 · 10−2 (≈) 5.08 · 10−1 ± 3.28 · 10−2

20 6.60 · 10−1 ± 8.35 · 10−4 (+) 6.60·10−1 ± 7.77·10−4 (+) 2.98 · 10−1 ± 9.13 · 10−2 (≈) 2.68 · 10−1 ± 7.79 · 10−2

BICOP2 1 1.04 · 10−1 ± 2.31 · 10−2 (−) 1.17 · 10−1 ± 2.88 · 10−2 (−) 2.16 · 10−1 ± 4.01 · 10−2 (−) 2.82 · 10−1 ± 1.79 · 10−2

2 1.06 · 10−1 ± 3.53 · 10−2 (−) 1.76 · 10−1 ± 3.44 · 10−2 (−) 2.15 · 10−1 ± 4.28 · 10−2 (−) 3.11 · 10−1 ± 3.03 · 10−2

3 1.22 · 10−1 ± 3.01 · 10−2 (−) 1.53 · 10−1 ± 4.97 · 10−2 (−) 2.23 · 10−1 ± 4.93 · 10−2 (−) 3.01 · 10−1 ± 5.25 · 10−2

4 1.21 · 10−1 ± 3.67 · 10−2 (−) 1.67 · 10−1 ± 5.22 · 10−2 (≈) 2.34 · 10−1 ± 5.56 · 10−2 (≈) 2.50 · 10−1 ± 7.37 · 10−2

5 1.27 · 10−1 ± 4.19 · 10−2 (−) 1.77 · 10−1 ± 4.21 · 10−2 (≈) 2.53·10−1 ± 3.15·10−2 (≈) 2.24 · 10−1 ± 6.76 · 10−2

6 1.26 · 10−1 ± 3.79 · 10−2 (−) 1.55 · 10−1 ± 4.65 · 10−2 (≈) 2.65·10−1 ± 1.68·10−2 (≈) 2.13 · 10−1 ± 6.50 · 10−2

10 1.53 · 10−1 ± 3.98 · 10−2 (−) 1.45 · 10−1 ± 3.91 · 10−2 (−) 2.38 · 10−1 ± 2.77 · 10−2 (≈) 2.44 · 10−1 ± 4.47 · 10−2

20 1.54 · 10−1 ± 4.41 · 10−2 (−) 1.50 · 10−1 ± 4.22 · 10−2 (−) 2.25 · 10−1 ± 2.07 · 10−2 (−) 2.72 · 10−1 ± 1.60 · 10−2

MW1 1 0.00 · 100 ± 0.00 · 100 (−) 2.73 · 10−1 ± 4.54 · 10−2 (−) 1.66 · 10−2 ± 3.27 · 10−2 (−) 3.99 · 10−1 ± 5.85 · 10−5

2 2.40 · 10−1 ± 6.35 · 10−2 (−) 3.37 · 10−1 ± 5.49 · 10−3 (−) 1.92 · 10−1 ± 1.13 · 10−1 (−) 3.98 · 10−1 ± 8.02 · 10−5

3 2.82 · 10−1 ± 4.11 · 10−2 (−) 3.40 · 10−1 ± 1.00 · 10−2 (−) 3.10 · 10−1 ± 7.11 · 10−2 (−) 3.98 · 10−1 ± 1.55 · 10−4

4 3.24 · 10−1 ± 3.86 · 10−2 (−) 3.51 · 10−1 ± 1.15 · 10−2 (−) 2.20 · 10−1 ± 1.61 · 10−1 (−) 3.98 · 10−1 ± 1.56 · 10−4

5 3.49 · 10−1 ± 1.34 · 10−2 (−) 3.66 · 10−1 ± 6.28 · 10−3 (−) 2.09 · 10−1 ± 1.73 · 10−1 (−) 3.98 · 10−1 ± 1.70 · 10−4

6 3.56 · 10−1 ± 1.61 · 10−2 (−) 3.80 · 10−1 ± 5.43 · 10−3 (−) 2.55 · 10−1 ± 1.25 · 10−1 (−) 3.98 · 10−1 ± 5.34 · 10−4

10 3.56 · 10−1 ± 2.92 · 10−2 (−) 3.90 · 10−1 ± 1.81 · 10−3 (−) 1.63 · 10−1 ± 1.23 · 10−1 (−) 3.97 · 10−1 ± 1.10 · 10−3

20 3.72 · 10−1 ± 1.15 · 10−2 (≈) 3.93·10−1 ± 1.16·10−3 (+) 2.09 · 10−1 ± 1.15 · 10−1 (≈) 2.73 · 10−1 ± 1.46 · 10−1

MW2 1 2.86 · 10−2 ± 5.73 · 10−2 (−) 4.24·10−1 ± 1.51·10−2 (+) 1.60 · 10−1 ± 6.38 · 10−2 (−) 3.85 · 10−1 ± 2.32 · 10−2

2 2.63 · 10−1 ± 6.16 · 10−2 (−) 4.33·10−1 ± 6.25·10−3 (≈) 1.82 · 10−1 ± 1.22 · 10−1 (−) 4.19 · 10−1 ± 2.06 · 10−2

3 2.93 · 10−1 ± 8.71 · 10−2 (−) 4.41·10−1 ± 8.60·10−3 (≈) 1.98 · 10−1 ± 1.12 · 10−1 (−) 4.00 · 10−1 ± 6.68 · 10−2

4 3.42 · 10−1 ± 8.05 · 10−2 (≈) 4.40·10−1 ± 8.97·10−3 (+) 1.66 · 10−1 ± 1.03 · 10−1 (−) 3.47 · 10−1 ± 7.45 · 10−2

5 3.38 · 10−1 ± 7.90 · 10−2 (−) 4.42·10−1 ± 8.72·10−3 (+) 1.35 · 10−1 ± 7.24 · 10−2 (−) 3.96 · 10−1 ± 5.05 · 10−2

6 3.40 · 10−1 ± 7.84 · 10−2 (−) 4.42·10−1 ± 7.95·10−3 (+) 1.43 · 10−1 ± 9.95 · 10−2 (−) 4.11 · 10−1 ± 2.91 · 10−2

10 3.20 · 10−1 ± 1.07 · 10−1 (≈) 4.45·10−1 ± 1.08·10−2 (+) 1.04 · 10−1 ± 8.28 · 10−2 (−) 3.78 · 10−1 ± 3.47 · 10−2

20 3.33 · 10−1 ± 9.66 · 10−2 (≈) 4.49·10−1 ± 9.99·10−3 (+) 1.31 · 10−1 ± 1.09 · 10−1 (−) 3.10 · 10−1 ± 4.45 · 10−2

MW3 1 1.04 · 10−1 ± 1.48 · 10−1 (−) 4.10 · 10−1 ± 9.41 · 10−3 (−) 3.72 · 10−1 ± 2.46 · 10−2 (−) 4.50 · 10−1 ± 9.80 · 10−4

2 4.06 · 10−1 ± 1.30 · 10−2 (−) 4.22 · 10−1 ± 3.38 · 10−3 (−) 4.07 · 10−1 ± 8.56 · 10−3 (−) 4.51 · 10−1 ± 1.70 · 10−3

3 4.22 · 10−1 ± 6.32 · 10−3 (−) 4.29 · 10−1 ± 3.08 · 10−3 (−) 4.29 · 10−1 ± 1.08 · 10−2 (−) 4.52 · 10−1 ± 4.92 · 10−4

4 4.22 · 10−1 ± 2.48 · 10−3 (−) 4.32 · 10−1 ± 3.15 · 10−3 (−) 4.43 · 10−1 ± 5.59 · 10−3 (−) 4.52 · 10−1 ± 2.32 · 10−4

5 4.26 · 10−1 ± 4.97 · 10−3 (−) 4.36 · 10−1 ± 2.39 · 10−3 (−) 4.43 · 10−1 ± 3.76 · 10−3 (−) 4.51 · 10−1 ± 1.01 · 10−3

6 4.25 · 10−1 ± 2.38 · 10−3 (−) 4.37 · 10−1 ± 3.88 · 10−3 (−) 4.42 · 10−1 ± 3.55 · 10−3 (−) 4.50 · 10−1 ± 7.45 · 10−4

10 4.29 · 10−1 ± 3.28 · 10−3 (−) 4.41 · 10−1 ± 1.21 · 10−3 (−) 4.36 · 10−1 ± 1.97 · 10−3 (−) 4.48 · 10−1 ± 6.46 · 10−4

20 4.28 · 10−1 ± 4.92 · 10−3 (−) 4.40 · 10−1 ± 1.41 · 10−3 (−) 4.29 · 10−1 ± 2.55 · 10−3 (−) 4.44 · 10−1 ± 7.06 · 10−4

MW11 1 6.65 · 10−1 ± 2.63 · 10−1 (−) 1.36 ·100 ± 4.41 ·10−2 (+) 9.80 · 10−1 ± 3.80 · 10−1 (≈) 1.10 · 100 ± 1.99 · 10−1

2 1.17 · 100 ± 1.75 · 10−1 (≈) 1.42 ·100 ± 2.43 ·10−2 (+) 9.82 · 10−1 ± 1.74 · 10−1 (−) 1.17 · 100 ± 1.55 · 10−1

3 1.09 · 100 ± 2.30 · 10−1 (−) 1.44 · 100 ± 1.83 · 10−2 (−) 9.92 · 10−1 ± 1.97 · 10−1 (−) 1.49 · 100 ± 4.23 · 10−2

4 1.03 · 100 ± 2.44 · 10−1 (−) 1.46 · 100 ± 1.81 · 10−2 (−) 9.99 · 10−1 ± 1.23 · 10−1 (−) 1.51 · 100 ± 1.40 · 10−2

5 1.04 · 100 ± 2.41 · 10−1 (−) 1.46 · 100 ± 9.42 · 10−3 (−) 1.06 · 100 ± 1.80 · 10−1 (−) 1.52 · 100 ± 8.07 · 10−3

6 9.08 · 10−1 ± 1.57 · 10−1 (−) 1.48 · 100 ± 8.50 · 10−3 (−) 9.75 · 10−1 ± 2.81 · 10−1 (−) 1.52 · 100 ± 1.26 · 10−2

10 9.52 · 10−1 ± 2.21 · 10−1 (−) 1.49 · 100 ± 8.09 · 10−3 (−) 8.27 · 10−1 ± 1.73 · 10−1 (−) 1.52 · 100 ± 5.60 · 10−3

20 8.02 · 10−1 ± 1.80 · 10−1 (−) 1.49 · 100 ± 1.53 · 10−2 (−) 8.78 · 10−1 ± 5.96 · 10−2 (−) 1.50 · 100 ± 6.86 · 10−3

TRICOP 1 4.47 · 101 ± 2.03 · 100 (−) 4.57 · 101 ± 1.19 · 100 (−) 4.97 ·101 ± 6.30 ·10−3 (≈) 4.97 · 101 ± 3.81 · 10−2

2 4.19 · 101 ± 1.56 · 100 (−) 4.55 · 101 ± 7.37 · 10−1 (−) 4.96 · 101 ± 2.76 · 10−2 (≈) 4.97 · 101 ± 3.93 · 10−2

3 4.31 · 101 ± 1.75 · 100 (−) 4.63 · 101 ± 5.46 · 10−1 (−) 4.97 ·101 ± 1.93 ·10−2 (+) 4.96 · 101 ± 3.41 · 10−2

4 4.31 · 101 ± 1.50 · 100 (−) 4.63 · 101 ± 6.92 · 10−1 (−) 4.96 ·101 ± 4.30 ·10−2 (≈) 4.96 · 101 ± 3.22 · 10−2

5 4.26 · 101 ± 1.45 · 100 (−) 4.66 · 101 ± 3.57 · 10−1 (−) 4.97 ·101 ± 2.46 ·10−2 (≈) 4.97 · 101 ± 2.45 · 10−2

6 4.36 · 101 ± 1.48 · 100 (−) 4.63 · 101 ± 5.04 · 10−1 (−) 4.97 ·101 ± 3.34 ·10−2 (≈) 4.97 · 101 ± 5.05 · 10−2

10 4.40 · 101 ± 1.43 · 100 (−) 4.71 · 101 ± 3.92 · 10−1 (−) 4.97 ·101 ± 3.00 ·10−2 (≈) 4.97 · 101 ± 1.95 · 10−2

20 4.55 · 101 ± 8.60 · 10−1 (−) 4.76 · 101 ± 3.49 · 10−1 (−) 4.95 · 101 ± 4.39 · 10−2 (≈) 4.95 · 101 ± 2.77 · 10−2

SPD 1 5.04 · 109 ± 8.11 · 107 (−) 4.95 · 109 ± 1.07 · 108 (−) 5.87 · 109 ± 1.68 · 107 (−) 6.01 · 109 ± 1.95 · 106

2 4.88 · 109 ± 1.58 · 108 (−) 5.05 · 109 ± 6.73 · 107 (−) 5.91 · 109 ± 2.36 · 107 (−) 6.02 · 109 ± 3.06 · 106

3 5.02 · 109 ± 7.48 · 107 (−) 5.08 · 109 ± 8.10 · 107 (−) 5.93 · 109 ± 9.35 · 106 (−) 6.01 · 109 ± 2.47 · 106

4 4.97 · 109 ± 1.19 · 108 (−) 5.02 · 109 ± 7.63 · 107 (−) 5.93 · 109 ± 6.67 · 106 (−) 6.01 · 109 ± 3.71 · 106

5 5.06 · 109 ± 8.50 · 107 (−) 5.03 · 109 ± 1.44 · 108 (−) 5.91 · 109 ± 1.68 · 107 (−) 6.01 · 109 ± 3.20 · 106

6 5.07 · 109 ± 5.48 · 107 (−) 5.05 · 109 ± 5.88 · 107 (−) 5.91 · 109 ± 1.17 · 107 (−) 6.00 · 109 ± 5.75 · 106

10 5.08 · 109 ± 6.05 · 107 (−) 5.06 · 109 ± 9.73 · 107 (−) 5.86 · 109 ± 2.25 · 107 (−) 5.99 · 109 ± 3.85 · 106

20 5.08 · 109 ± 1.15 · 108 (−) 5.04 · 109 ± 8.77 · 107 (−) 5.80 · 109 ± 2.77 · 107 (−) 5.93 · 109 ± 1.02 · 107

CSI 1 7.31 · 100 ± 9.10 · 10−2 (−) 6.06 · 100 ± 3.59 · 10−1 (−) 8.33 · 100 ± 6.84 · 10−2 (≈) 8.35 · 100 ± 9.34 · 10−2

2 7.11 · 100 ± 1.34 · 10−1 (−) 7.04 · 100 ± 7.90 · 10−2 (−) 8.45 · 100 ± 1.70 · 10−2 (≈) 8.46 · 100 ± 2.16 · 10−2

3 7.20 · 100 ± 1.01 · 10−1 (−) 7.12 · 100 ± 1.45 · 10−1 (−) 8.47 · 100 ± 1.32 · 10−2 (−) 8.49 · 100 ± 5.44 · 10−3

4 7.13 · 100 ± 6.49 · 10−2 (−) 7.14 · 100 ± 7.68 · 10−2 (−) 8.46 · 100 ± 1.36 · 10−2 (−) 8.48 · 100 ± 9.85 · 10−3

5 7.09 · 100 ± 6.13 · 10−2 (−) 7.10 · 100 ± 1.75 · 10−1 (−) 8.46 · 100 ± 1.11 · 10−2 (−) 8.48 · 100 ± 7.05 · 10−3

6 7.14 · 100 ± 1.04 · 10−1 (−) 7.17 · 100 ± 9.63 · 10−2 (−) 8.45 · 100 ± 1.00 · 10−2 (≈) 8.46 · 100 ± 1.21 · 10−2

10 7.21 · 100 ± 1.05 · 10−1 (−) 7.19 · 100 ± 6.00 · 10−2 (−) 8.33 · 100 ± 1.89 · 10−2 (−) 8.35 · 100 ± 1.28 · 10−2

20 7.10 · 100 ± 1.68 · 10−1 (−) 7.22 · 100 ± 1.10 · 10−1 (−) 7.90 ·100 ± 8.04 ·10−2 (≈) 7.86 · 100 ± 4.02 · 10−2

WP 1 1.03 · 1018 ± 3.31 · 1017 (−) 1.00 · 1018 ± 2.70 · 1017 (−) 3.42 · 1018 ± 8.57 · 1015 (≈) 3.42 · 1018 ± 7.12 · 1015

2 1.47 · 1018 ± 2.17 · 1017 (−) 1.36 · 1018 ± 4.05 · 1017 (−) 3.44·1018 ± 1.62·1015 (+) 3.42 · 1018 ± 5.17 · 1015

3 1.61 · 1018 ± 2.10 · 1017 (−) 1.47 · 1018 ± 2.37 · 1017 (−) 3.42 · 1018 ± 1.04 · 1016 (≈) 3.42 · 1018 ± 8.90 · 1015

4 1.70 · 1018 ± 1.89 · 1017 (−) 1.53 · 1018 ± 2.55 · 1017 (−) 3.42·1018 ± 7.99·1015 (≈) 3.42 · 1018 ± 5.15 · 1015

5 1.69 · 1018 ± 2.27 · 1017 (−) 1.57 · 1018 ± 3.08 · 1017 (−) 3.42·1018 ± 6.03·1015 (+) 3.41 · 1018 ± 1.46 · 1016

6 1.86 · 1018 ± 1.69 · 1017 (−) 1.58 · 1018 ± 3.50 · 1017 (−) 3.42·1018 ± 5.69·1015 (+) 3.40 · 1018 ± 1.47 · 1016

10 1.97 · 1018 ± 2.78 · 1017 (−) 1.70 · 1018 ± 2.86 · 1017 (−) 3.37 · 1018 ± 1.51 · 1016 (−) 3.40 · 1018 ± 6.14 · 1015

20 1.90 · 1018 ± 2.51 · 1017 (−) 1.79 · 1018 ± 2.84 · 1017 (−) 3.37·1018 ± 7.01·1015 (≈) 3.37 · 1018 ± 1.09 · 1016

Wilcoxon summary 151−, 13 ≈, 12+ 138−, 10 ≈, 28+ 95−, 71 ≈, 10+ reference algorithm
Mean Friedman rank 3.35 2.79 2.30 1.56
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Chapter 5. Multi Objective Simulation Based Optimization

Table 5.10: IGD+ score ± standard deviation of IGD+, Wilcoxon rank sum test with
probability value = 0.05 (reference algorithm: IOC-SAMO-COBRA), per test function and
candidate solutions size p. The lowest IGD+ per row is reported in bold, best scoring
algorithm per test function is highlighted .

Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
BNH 1 1.77 · 10−2 ± 2.89 · 10−3 (−) 2.15 · 10−2 ± 3.60 · 10−3 (−) 2.06 · 10−3 ± 1.44 · 10−5 (≈) 2.06 · 10−3 ± 1.08 · 10−5

2 1.95 · 10−2 ± 1.39 · 10−3 (−) 2.21 · 10−2 ± 2.89 · 10−3 (−) 2.12 · 10−3 ± 1.14 · 10−5 (≈) 2.12 · 10−3 ± 1.52 · 10−5

3 1.81 · 10−2 ± 2.50 · 10−3 (−) 2.03 · 10−2 ± 2.92 · 10−3 (−) 2.13 · 10−3 ± 3.93 · 10−5 (≈) 2.12 · 10−3 ± 2.83 · 10−5

4 1.75 · 10−2 ± 1.61 · 10−3 (−) 2.11 · 10−2 ± 1.95 · 10−3 (−) 2.12 · 10−3 ± 4.18 · 10−5 (≈) 2.15 · 10−3 ± 4.39 · 10−5

5 1.94 · 10−2 ± 2.28 · 10−3 (−) 2.05 · 10−2 ± 2.19 · 10−3 (−) 2.14 · 10−3 ± 2.59 · 10−5 (≈) 2.13 · 10−3 ± 3.13 · 10−5

6 1.84 · 10−2 ± 1.03 · 10−3 (−) 1.79 · 10−2 ± 2.52 · 10−3 (−) 2.09 · 10−3 ± 5.02 · 10−5 (≈) 2.09 · 10−3 ± 3.86 · 10−5

10 1.85 · 10−2 ± 1.72 · 10−3 (−) 1.97 · 10−2 ± 2.28 · 10−3 (−) 2.40 · 10−3 ± 5.77 · 10−5 (≈) 2.42 · 10−3 ± 5.79 · 10−5

20 1.67 · 10−2 ± 2.40 · 10−3 (−) 1.89 · 10−2 ± 2.32 · 10−3 (−) 3.03 · 10−3 ± 5.58 · 10−5 (≈) 3.06 · 10−3 ± 6.72 · 10−5

CEXP 1 1.79 · 10−2 ± 2.35 · 10−3 (−) 1.83 · 10−2 ± 6.60 · 10−3 (−) 2.54 · 10−3 ± 4.97 · 10−5 (−) 2.17 · 10−3 ± 1.17 · 10−5

2 2.50 · 10−2 ± 4.41 · 10−3 (−) 2.60 · 10−2 ± 6.07 · 10−3 (−) 2.43 · 10−3 ± 1.16 · 10−4 (−) 2.35 · 10−3 ± 4.84 · 10−5

3 2.50 · 10−2 ± 3.26 · 10−3 (−) 2.66 · 10−2 ± 3.94 · 10−3 (−) 2.17 · 10−3 ± 5.72 · 10−5 (≈) 2.15 · 10−3 ± 8.76 · 10−6

4 2.57 · 10−2 ± 3.90 · 10−3 (−) 2.69 · 10−2 ± 3.73 · 10−3 (−) 2.36 · 10−3 ± 1.49 · 10−5 (≈) 2.38 · 10−3 ± 4.91 · 10−5

5 2.51 · 10−2 ± 3.15 · 10−3 (−) 2.73 · 10−2 ± 5.23 · 10−3 (−) 2.45 · 10−3 ± 3.29 · 10−5 (≈) 2.46 · 10−3 ± 3.09 · 10−5

6 2.52 · 10−2 ± 2.47 · 10−3 (−) 2.46 · 10−2 ± 3.33 · 10−3 (−) 2.34 · 10−3 ± 5.45 · 10−5 (≈) 2.33 · 10−3 ± 4.39 · 10−5

10 2.67 · 10−2 ± 5.05 · 10−3 (−) 2.31 · 10−2 ± 2.66 · 10−3 (−) 2.88 · 10−3 ± 8.27 · 10−5 (≈) 2.84 · 10−3 ± 6.72 · 10−5

20 2.81 · 10−2 ± 3.01 · 10−3 (−) 2.39 · 10−2 ± 3.53 · 10−3 (−) 5.00 · 10−3 ± 3.61 · 10−4 (≈) 4.99 · 10−3 ± 4.43 · 10−4

SRN 1 1.89 · 10−2 ± 1.70 · 10−3 (−) 1.54 · 10−2 ± 1.73 · 10−3 (−) 3.47 · 10−3 ± 4.37 · 10−5 (−) 3.39 · 10−3 ± 3.39 · 10−5

2 3.06 · 10−2 ± 6.16 · 10−3 (−) 2.23 · 10−2 ± 4.60 · 10−3 (−) 3.66 · 10−3 ± 1.52 · 10−4 (−) 3.32 · 10−3 ± 5.62 · 10−5

3 2.09 · 10−2 ± 2.54 · 10−3 (−) 2.02 · 10−2 ± 2.50 · 10−3 (−) 3.56 · 10−3 ± 5.90 · 10−5 (−) 3.31 · 10−3 ± 3.23 · 10−5

4 2.45 · 10−2 ± 3.00 · 10−3 (−) 2.25 · 10−2 ± 2.36 · 10−3 (−) 3.82 · 10−3 ± 5.09 · 10−5 (+) 4.02 · 10−3 ± 3.30 · 10−5

5 2.24 · 10−2 ± 2.40 · 10−3 (−) 1.98 · 10−2 ± 3.02 · 10−3 (−) 3.25 · 10−3 ± 3.31 · 10−5 (≈) 3.23 · 10−3 ± 4.57 · 10−5

6 2.17 · 10−2 ± 1.66 · 10−3 (−) 1.89 · 10−2 ± 1.60 · 10−3 (−) 3.25 · 10−3 ± 9.15 · 10−5 (≈) 3.20 · 10−3 ± 7.84 · 10−5

10 2.20 · 10−2 ± 2.10 · 10−3 (−) 1.82 · 10−2 ± 2.36 · 10−3 (−) 4.97 · 10−3 ± 3.33 · 10−4 (≈) 5.01 · 10−3 ± 2.88 · 10−4

20 2.37 · 10−2 ± 4.11 · 10−3 (−) 1.75 · 10−2 ± 1.39 · 10−3 (−) 5.58 · 10−3 ± 1.63 · 10−4 (≈) 5.68 · 10−3 ± 2.12 · 10−4

TNK 1 1.01 · 10−1 ± 2.12 · 10−2 (−) 1.42 · 10−2 ± 2.16 · 10−3 (−) 9.36 · 10−3 ± 1.10 · 10−3 (−) 3.81 · 10−3 ± 3.15 · 10−4

2 6.63 · 10−2 ± 2.19 · 10−2 (−) 2.13 · 10−2 ± 3.89 · 10−3 (−) 9.14 · 10−3 ± 1.52 · 10−3 (−) 2.68 · 10−3 ± 2.64 · 10−4

3 4.75 · 10−2 ± 1.65 · 10−2 (−) 1.97 · 10−2 ± 4.01 · 10−3 (−) 1.03 · 10−2 ± 2.01 · 10−3 (−) 2.34 · 10−3 ± 1.24 · 10−4

4 4.29 · 10−2 ± 8.54 · 10−3 (−) 2.12 · 10−2 ± 3.24 · 10−3 (−) 8.88 · 10−3 ± 1.46 · 10−3 (−) 2.26 · 10−3 ± 1.64 · 10−4

5 3.56 · 10−2 ± 6.84 · 10−3 (−) 1.99 · 10−2 ± 4.01 · 10−3 (−) 1.04 · 10−2 ± 1.77 · 10−3 (−) 2.31 · 10−3 ± 7.63 · 10−5

6 3.27 · 10−2 ± 7.32 · 10−3 (−) 1.72 · 10−2 ± 2.30 · 10−3 (−) 1.14 · 10−2 ± 1.07 · 10−3 (−) 2.33 · 10−3 ± 1.28 · 10−4

10 3.84 · 10−2 ± 5.80 · 10−3 (−) 2.14 · 10−2 ± 3.90 · 10−3 (−) 1.11 · 10−2 ± 1.54 · 10−3 (−) 2.84 · 10−3 ± 1.19 · 10−4

20 4.53 · 10−2 ± 6.25 · 10−3 (−) 2.08 · 10−2 ± 3.36 · 10−3 (−) 1.85 · 10−2 ± 1.75 · 10−3 (−) 5.97 · 10−3 ± 5.56 · 10−4

CTP1 1 2.29 · 10−2 ± 4.86 · 10−3 (−) 1.87 · 10−2 ± 2.91 · 10−3 (−) 4.39 · 10−3 ± 1.56 · 10−4 (≈) 4.48 · 10−3 ± 2.87 · 10−4

2 3.43 · 10−2 ± 3.52 · 10−3 (−) 3.62 · 10−2 ± 8.82 · 10−3 (−) 6.82 · 10−3 ± 1.72 · 10−3 (≈) 6.38 · 10−3 ± 1.41 · 10−3

3 3.13 · 10−2 ± 6.48 · 10−3 (−) 2.75 · 10−2 ± 6.81 · 10−3 (−) 4.93 · 10−3 ± 4.39 · 10−4 (≈) 5.00 · 10−3 ± 8.95 · 10−4

4 2.91 · 10−2 ± 2.52 · 10−3 (−) 3.26 · 10−2 ± 4.12 · 10−3 (−) 5.12 · 10−3 ± 4.82 · 10−4 (≈) 5.06 · 10−3 ± 4.51 · 10−4

5 3.56 · 10−2 ± 6.89 · 10−3 (−) 3.38 · 10−2 ± 5.08 · 10−3 (−) 5.24 · 10−3 ± 4.87 · 10−4 (≈) 5.24 · 10−3 ± 4.87 · 10−4

6 3.17 · 10−2 ± 5.38 · 10−3 (−) 2.98 · 10−2 ± 2.93 · 10−3 (−) 4.64 · 10−3 ± 2.99 · 10−4 (≈) 4.64 · 10−3 ± 2.99 · 10−4

10 3.43 · 10−2 ± 6.21 · 10−3 (−) 2.85 · 10−2 ± 3.84 · 10−3 (−) 5.59 · 10−3 ± 3.13 · 10−4 (≈) 5.71 · 10−3 ± 3.34 · 10−4

20 3.47 · 10−2 ± 4.60 · 10−3 (−) 2.91 · 10−2 ± 5.41 · 10−3 (−) 8.78 · 10−3 ± 1.04 · 10−3 (≈) 8.26 · 10−3 ± 1.26 · 10−3

C3DTLZ4 1 3.69 · 10−2 ± 1.18 · 10−2 (−) 7.80 · 10−2 ± 3.13 · 10−2 (−) 4.38 · 10−2 ± 6.68 · 10−3 (−) 5.71 · 10−3 ± 6.34 · 10−4

2 4.23 · 10−2 ± 1.83 · 10−2 (−) 3.22 · 10−2 ± 1.46 · 10−2 (−) 6.59 · 10−2 ± 7.44 · 10−3 (−) 4.63 · 10−3 ± 1.08 · 10−3

3 2.12 · 10−2 ± 3.48 · 10−3 (−) 1.77 · 10−2 ± 4.18 · 10−3 (−) 4.79 · 10−2 ± 6.48 · 10−3 (−) 2.48 · 10−3 ± 1.45 · 10−4

4 1.98 · 10−2 ± 1.49 · 10−3 (−) 1.33 · 10−2 ± 1.59 · 10−3 (−) 5.18 · 10−2 ± 4.42 · 10−3 (−) 2.42 · 10−3 ± 1.64 · 10−4

5 1.86 · 10−2 ± 1.81 · 10−3 (−) 1.20 · 10−2 ± 1.58 · 10−3 (−) 4.75 · 10−2 ± 5.26 · 10−3 (−) 2.23 · 10−3 ± 1.31 · 10−4

6 1.68 · 10−2 ± 1.94 · 10−3 (−) 1.00 · 10−2 ± 1.02 · 10−3 (−) 4.51 · 10−2 ± 8.05 · 10−3 (−) 2.15 · 10−3 ± 7.18 · 10−5

10 1.66 · 10−2 ± 2.44 · 10−3 (−) 8.14 · 10−3 ± 7.08 · 10−4 (−) 5.22 · 10−2 ± 1.80 · 10−2 (−) 2.33 · 10−3 ± 1.67 · 10−4

20 1.91 · 10−2 ± 2.98 · 10−3 (−) 8.04 · 10−3 ± 5.96 · 10−4 (−) 6.22 · 10−2 ± 1.54 · 10−2 (−) 2.71 · 10−3 ± 1.66 · 10−4

OSY 1 1.08 · 10−1 ± 7.19 · 10−2 (−) 4.87 · 10−2 ± 1.38 · 10−2 (−) 9.78 · 10−4 ± 1.23 · 10−4 (+) 1.07 · 10−3 ± 4.00 · 10−5

2 3.11 · 10−2 ± 1.13 · 10−2 (−) 3.23 · 10−2 ± 9.08 · 10−3 (−) 9.60 · 10−4 ± 4.80 · 10−5 (−) 8.35 · 10−4 ± 8.30 · 10−5

3 2.05 · 10−2 ± 6.24 · 10−3 (−) 1.61 · 10−2 ± 3.05 · 10−3 (−) 9.91 · 10−4 ± 6.88 · 10−5 (−) 9.38 · 10−4 ± 4.70 · 10−5

4 1.69 · 10−2 ± 4.00 · 10−3 (−) 1.54 · 10−2 ± 4.47 · 10−3 (−) 1.24 · 10−3 ± 7.74 · 10−5 (≈) 1.26 · 10−3 ± 1.30 · 10−4

5 1.35 · 10−2 ± 3.60 · 10−3 (−) 1.23 · 10−2 ± 2.71 · 10−3 (−) 1.54 · 10−3 ± 8.39 · 10−5 (≈) 1.54 · 10−3 ± 1.02 · 10−4

6 1.21 · 10−2 ± 2.18 · 10−3 (−) 1.17 · 10−2 ± 2.25 · 10−3 (−) 2.14 · 10−3 ± 1.76 · 10−4 (≈) 2.01 · 10−3 ± 1.61 · 10−4

10 1.14 · 10−2 ± 3.75 · 10−3 (−) 1.20 · 10−2 ± 3.15 · 10−3 (−) 7.60 · 10−3 ± 1.10 · 10−3 (≈) 7.26 · 10−3 ± 8.61 · 10−4

20 1.31 · 10−2 ± 7.56 · 10−3 (+) 1.31 · 10−2 ± 5.45 · 10−3 (+) 4.22 · 10−2 ± 1.06 · 10−2 (≈) 3.67 · 10−2 ± 5.01 · 10−3

TBTD 1 4.43 · 10−2 ± 3.30 · 10−2 (−) 2.20 · 10−2 ± 8.82 · 10−3 (−) 6.43 · 10−3 ± 9.72 · 10−4 (−) 4.27 · 10−3 ± 2.41 · 10−3

2 2.87 · 10−2 ± 6.48 · 10−3 (−) 1.46 · 10−2 ± 5.57 · 10−3 (−) 1.10 · 10−2 ± 2.68 · 10−3 (−) 5.94 · 10−3 ± 2.08 · 10−3

3 2.17 · 10−2 ± 3.41 · 10−3 (−) 1.40 · 10−2 ± 4.45 · 10−3 (−) 1.37 · 10−2 ± 5.00 · 10−3 (−) 5.24 · 10−3 ± 1.22 · 10−3

4 1.56 · 10−2 ± 3.89 · 10−3 (−) 1.14 · 10−2 ± 2.67 · 10−3 (−) 1.46 · 10−2 ± 3.13 · 10−3 (−) 6.47 · 10−3 ± 1.29 · 10−3

5 1.72 · 10−2 ± 3.94 · 10−3 (−) 1.20 · 10−2 ± 2.80 · 10−3 (−) 1.19 · 10−2 ± 2.65 · 10−3 (−) 6.60 · 10−3 ± 1.12 · 10−3

6 1.38 · 10−2 ± 4.03 · 10−3 (−) 1.12 · 10−2 ± 2.78 · 10−3 (≈) 1.53 · 10−2 ± 4.81 · 10−3 (−) 8.85 · 10−3 ± 2.62 · 10−3

10 1.20 · 10−2 ± 3.09 · 10−3 (≈) 1.07 · 10−2 ± 3.27 · 10−3 (≈) 1.56 · 10−2 ± 6.24 · 10−3 (−) 1.02 · 10−2 ± 1.53 · 10−3

20 1.14 · 10−2 ± 1.54 · 10−3 (≈) 9.82 · 10−3 ± 2.00 · 10−3 (+) 1.55 · 10−2 ± 3.37 · 10−3 (≈) 1.36 · 10−2 ± 3.73 · 10−3

NBP 1 1.83 · 10−2 ± 2.50 · 10−3 (−) 1.82 · 10−2 ± 4.90 · 10−3 (−) 3.76 · 10−3 ± 1.78 · 10−4 (−) 2.33 · 10−3 ± 3.94 · 10−5

2 2.32 · 10−2 ± 4.35 · 10−3 (−) 2.27 · 10−2 ± 2.88 · 10−3 (−) 3.64 · 10−3 ± 4.00 · 10−4 (−) 2.32 · 10−3 ± 5.64 · 10−5

3 2.00 · 10−2 ± 3.63 · 10−3 (−) 1.91 · 10−2 ± 1.80 · 10−3 (−) 3.64 · 10−3 ± 1.72 · 10−4 (−) 2.46 · 10−3 ± 1.46 · 10−5

4 2.60 · 10−2 ± 4.15 · 10−3 (−) 2.13 · 10−2 ± 3.90 · 10−3 (−) 3.87 · 10−3 ± 2.37 · 10−4 (−) 2.45 · 10−3 ± 2.87 · 10−5

5 2.23 · 10−2 ± 2.68 · 10−3 (−) 1.88 · 10−2 ± 2.01 · 10−3 (−) 4.41 · 10−3 ± 4.01 · 10−4 (−) 2.88 · 10−3 ± 9.64 · 10−5

6 2.09 · 10−2 ± 2.49 · 10−3 (−) 1.98 · 10−2 ± 3.48 · 10−3 (−) 4.03 · 10−3 ± 3.02 · 10−4 (−) 3.03 · 10−3 ± 7.37 · 10−5

10 2.11 · 10−2 ± 2.92 · 10−3 (−) 1.77 · 10−2 ± 2.28 · 10−3 (−) 5.38 · 10−3 ± 4.40 · 10−4 (−) 3.58 · 10−3 ± 2.04 · 10−4

20 2.29 · 10−2 ± 3.26 · 10−3 (−) 1.94 · 10−2 ± 2.35 · 10−3 (−) 1.44 · 10−2 ± 3.86 · 10−3 (−) 6.09 · 10−3 ± 3.19 · 10−4

DBD 1 1.17 · 10−2 ± 3.63 · 10−3 (−) 2.43 · 10−2 ± 1.51 · 10−2 (−) 1.35 · 10−3 ± 3.36 · 10−4 (+) 2.26 · 10−3 ± 1.40 · 10−3

2 1.41 · 10−2 ± 2.84 · 10−3 (−) 2.06 · 10−2 ± 4.21 · 10−3 (−) 1.24 · 10−3 ± 2.49 · 10−4 (+) 4.29 · 10−3 ± 1.55 · 10−3

3 1.01 · 10−2 ± 1.49 · 10−3 (−) 2.01 · 10−2 ± 6.65 · 10−3 (−) 1.32 · 10−3 ± 3.12 · 10−4 (−) 9.60 · 10−4 ± 5.64 · 10−5

4 1.39 · 10−2 ± 2.75 · 10−3 (−) 1.69 · 10−2 ± 2.64 · 10−3 (−) 2.89 · 10−3 ± 1.54 · 10−3 (−) 1.18 · 10−3 ± 4.70 · 10−5

5 1.42 · 10−2 ± 4.50 · 10−3 (−) 1.75 · 10−2 ± 3.70 · 10−3 (−) 1.84 · 10−3 ± 1.04 · 10−3 (≈) 1.31 · 10−3 ± 8.45 · 10−5

6 1.07 · 10−2 ± 1.31 · 10−3 (−) 2.10 · 10−2 ± 8.34 · 10−3 (−) 2.08 · 10−3 ± 7.46 · 10−4 (≈) 2.21 · 10−3 ± 7.33 · 10−4

10 1.22 · 10−2 ± 2.49 · 10−3 (−) 1.72 · 10−2 ± 4.16 · 10−3 (−) 2.62 · 10−3 ± 5.78 · 10−4 (≈) 2.33 · 10−3 ± 2.25 · 10−4

20 1.30 · 10−2 ± 3.30 · 10−3 (−) 2.06 · 10−2 ± 5.11 · 10−3 (−) 3.74 · 10−3 ± 2.29 · 10−4 (+) 4.09 · 10−3 ± 3.45 · 10−4

SRD 1 4.42 · 10−3 ± 3.15 · 10−3 (≈) 1.86 · 10−2 ± 9.63 · 10−3 (−) 6.51 · 10−4 ± 9.70 · 10−5 (+) 2.45 · 10−3 ± 9.97 · 10−4

2 2.26 · 10−3 ± 1.37 · 10−3 (≈) 2.09 · 10−3 ± 7.84 · 10−4 (−) 1.24 · 10−3 ± 1.31 · 10−4 (+) 1.40 · 10−3 ± 1.77 · 10−4

3 1.22 · 10−3 ± 4.50 · 10−4 (≈) 1.03 · 10−3 ± 2.35 · 10−4 (+) 1.91 · 10−3 ± 1.38 · 10−4 (−) 1.50 · 10−3 ± 1.16 · 10−4

4 1.15 · 10−3 ± 1.29 · 10−4 (+) 1.09 · 10−3 ± 1.64 · 10−4 (+) 2.11 · 10−3 ± 3.10 · 10−4 (−) 1.58 · 10−3 ± 1.41 · 10−4

5 1.09 · 10−3 ± 1.41 · 10−4 (+) 9.05 · 10−4 ± 8.43 · 10−5 (+) 2.20 · 10−3 ± 3.38 · 10−4 (−) 1.56 · 10−3 ± 9.89 · 10−5

6 1.13 · 10−3 ± 1.61 · 10−4 (+) 9.45 · 10−4 ± 1.19 · 10−4 (+) 2.27 · 10−3 ± 3.09 · 10−4 (−) 1.70 · 10−3 ± 1.29 · 10−4

10 1.19 · 10−3 ± 1.44 · 10−4 (+) 9.06 · 10−4 ± 9.72 · 10−5 (+) 2.95 · 10−3 ± 2.89 · 10−4 (−) 2.26 · 10−3 ± 2.06 · 10−4

20 1.25 · 10−3 ± 1.61 · 10−4 (+) 1.09 · 10−3 ± 1.24 · 10−4 (+) 4.92 · 10−3 ± 4.88 · 10−4 (−) 3.20 · 10−3 ± 3.17 · 10−4

Table continues on next page.
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5.3. Expensive and Inexpensive Function Optimization

Continuation of Table 5.10.
Function p SA-NSGA-II IC-SA-NSGA-II SAMO-COBRA IOC-SAMO-COBRA
WB 1 2.57 · 10−1 ± 8.72 · 10−2 (−) 2.10·10−2 ± 2.89·10−2 (+) 7.51 · 10−2 ± 1.35 · 10−2 (−) 2.63 · 10−2 ± 2.92 · 10−3

2 1.10 · 10−1 ± 6.20 · 10−2 (−) 1.99·10−2 ± 4.07·10−3 (≈) 6.06 · 10−2 ± 2.23 · 10−2 (−) 2.65 · 10−2 ± 1.23 · 10−2

3 7.69 · 10−2 ± 5.10 · 10−2 (−) 1.47·10−2 ± 4.74·10−3 (+) 3.65 · 10−2 ± 1.71 · 10−2 (≈) 2.68 · 10−2 ± 7.70 · 10−3

4 4.66 · 10−2 ± 2.34 · 10−2 (≈) 1.48·10−2 ± 2.35·10−3 (+) 6.29 · 10−2 ± 2.13 · 10−2 (−) 2.92 · 10−2 ± 1.05 · 10−2

5 8.12 · 10−2 ± 8.78 · 10−2 (−) 1.59·10−2 ± 3.51·10−3 (+) 6.44 · 10−2 ± 3.21 · 10−2 (−) 2.74 · 10−2 ± 1.57 · 10−2

6 6.67 · 10−2 ± 4.83 · 10−2 (≈) 1.41·10−2 ± 2.51·10−3 (+) 7.32 · 10−2 ± 2.59 · 10−2 (−) 4.19 · 10−2 ± 2.31 · 10−2

10 5.06 · 10−2 ± 1.16 · 10−2 (≈) 1.33·10−2 ± 3.94·10−3 (+) 7.73 · 10−2 ± 2.58 · 10−2 (−) 4.89 · 10−2 ± 8.56 · 10−3

20 8.73 · 10−2 ± 1.03 · 10−1 (≈) 1.38·10−2 ± 2.70·10−3 (+) 7.29 · 10−2 ± 1.18 · 10−2 (≈) 6.47 · 10−2 ± 1.55 · 10−2

BICOP1 1 6.41 · 10−1 ± 2.12 · 10−1 (−) 6.35 · 10−1 ± 3.17 · 10−1 (−) 2.89·10−1 ± 9.21·10−2 (≈) 3.48 · 10−1 ± 7.81 · 10−2

2 3.58 · 10−2 ± 1.03 · 10−2 (+) 3.10·10−2 ± 6.98·10−3 (+) 2.45 · 10−1 ± 2.17 · 10−1 (≈) 1.23 · 10−1 ± 1.04 · 10−1

3 1.88 · 10−2 ± 5.26 · 10−3 (≈) 1.56·10−2 ± 2.56·10−3 (≈) 8.36 · 10−2 ± 1.34 · 10−1 (≈) 4.29 · 10−2 ± 4.04 · 10−2

4 1.26 · 10−2 ± 3.18 · 10−3 (≈) 1.15·10−2 ± 2.99·10−3 (+) 1.67 · 10−2 ± 5.16 · 10−3 (≈) 2.87 · 10−2 ± 3.66 · 10−2

5 8.76 · 10−3 ± 2.13 · 10−3 (+) 8.44·10−3 ± 2.83·10−3 (+) 2.13 · 10−2 ± 6.69 · 10−3 (≈) 2.44 · 10−2 ± 7.39 · 10−3

6 6.67 · 10−3 ± 2.16 · 10−3 (+) 6.62·10−3 ± 1.66·10−3 (+) 4.21 · 10−2 ± 1.06 · 10−2 (≈) 3.69 · 10−2 ± 8.02 · 10−3

10 3.38·10−3 ± 5.54·10−4 (+) 3.78 · 10−3 ± 9.19 · 10−4 (+) 1.03 · 10−1 ± 3.26 · 10−2 (≈) 9.08 · 10−2 ± 1.96 · 10−2

20 3.41 · 10−3 ± 4.23 · 10−4 (+) 3.36·10−3 ± 4.14·10−4 (+) 2.42 · 10−1 ± 6.91 · 10−2 (≈) 2.70 · 10−1 ± 5.84 · 10−2

BICOP2 1 1.83 · 10−1 ± 1.21 · 10−2 (−) 1.59 · 10−1 ± 2.57 · 10−2 (−) 7.70 · 10−2 ± 2.97 · 10−2 (−) 2.93 · 10−2 ± 9.30 · 10−3

2 1.73 · 10−1 ± 3.16 · 10−2 (−) 1.07 · 10−1 ± 2.61 · 10−2 (−) 7.41 · 10−2 ± 3.19 · 10−2 (−) 1.60 · 10−2 ± 1.77 · 10−2

3 1.58 · 10−1 ± 2.53 · 10−2 (−) 1.28 · 10−1 ± 4.18 · 10−2 (−) 7.19 · 10−2 ± 3.52 · 10−2 (−) 2.31 · 10−2 ± 3.25 · 10−2

4 1.63 · 10−1 ± 2.98 · 10−2 (−) 1.17 · 10−1 ± 4.08 · 10−2 (−) 7.00 · 10−2 ± 4.01 · 10−2 (≈) 5.61 · 10−2 ± 4.71 · 10−2

5 1.61 · 10−1 ± 2.69 · 10−2 (−) 1.08 · 10−1 ± 3.34 · 10−2 (≈) 4.78·10−2 ± 1.21·10−2 (≈) 7.25 · 10−2 ± 4.46 · 10−2

6 1.59 · 10−1 ± 2.69 · 10−2 (−) 1.26 · 10−1 ± 3.67 · 10−2 (−) 4.46·10−2 ± 8.25·10−3 (≈) 7.96 · 10−2 ± 4.29 · 10−2

10 1.30 · 10−1 ± 3.10 · 10−2 (−) 1.35 · 10−1 ± 3.17 · 10−2 (−) 5.90 · 10−2 ± 1.55 · 10−2 (≈) 5.68 · 10−2 ± 2.92 · 10−2

20 1.35 · 10−1 ± 3.16 · 10−2 (−) 1.29 · 10−1 ± 3.42 · 10−2 (−) 7.75 · 10−2 ± 1.54 · 10−2 (−) 3.76 · 10−2 ± 1.00 · 10−2

MW1 1 1.00 · 10+0 ± 0.00 · 10+0 (−) 1.05 · 10−1 ± 3.91 · 10−2 (−) 7.18 · 10−1 ± 3.04 · 10−1 (−) 6.09 · 10−4 ± 7.62 · 10−5

2 1.46 · 10−1 ± 7.65 · 10−2 (−) 4.35 · 10−2 ± 3.54 · 10−3 (−) 2.11 · 10−1 ± 1.19 · 10−1 (−) 6.40 · 10−4 ± 1.02 · 10−4

3 9.49 · 10−2 ± 4.32 · 10−2 (−) 4.30 · 10−2 ± 7.40 · 10−3 (−) 8.58 · 10−2 ± 7.18 · 10−2 (−) 7.57 · 10−4 ± 1.99 · 10−4

4 5.70 · 10−2 ± 3.73 · 10−2 (−) 3.46 · 10−2 ± 7.84 · 10−3 (−) 2.32 · 10−1 ± 2.49 · 10−1 (−) 9.87 · 10−4 ± 1.55 · 10−4

5 3.47 · 10−2 ± 1.34 · 10−2 (−) 2.42 · 10−2 ± 4.97 · 10−3 (−) 2.38 · 10−1 ± 2.47 · 10−1 (−) 1.07 · 10−3 ± 1.54 · 10−4

6 2.97 · 10−2 ± 1.20 · 10−2 (−) 1.47 · 10−2 ± 2.61 · 10−3 (−) 1.45 · 10−1 ± 1.31 · 10−1 (−) 1.42 · 10−3 ± 3.54 · 10−4

10 3.23 · 10−2 ± 2.70 · 10−2 (−) 9.65 · 10−3 ± 1.91 · 10−3 (−) 2.63 · 10−1 ± 1.70 · 10−1 (−) 2.31 · 10−3 ± 8.80 · 10−4

20 1.74 · 10−2 ± 1.23 · 10−2 (≈) 8.06·10−3 ± 2.14·10−3 (≈) 1.91 · 10−1 ± 1.24 · 10−1 (≈) 1.81 · 10−1 ± 2.22 · 10−1

MW2 1 7.92 · 10−1 ± 2.55 · 10−1 (−) 3.84·10−2 ± 9.30·10−3 (+) 3.14 · 10−1 ± 9.67 · 10−2 (−) 6.63 · 10−2 ± 1.40 · 10−2

2 1.87 · 10−1 ± 7.99 · 10−2 (−) 3.03·10−2 ± 3.62·10−3 (+) 3.06 · 10−1 ± 1.95 · 10−1 (−) 4.20 · 10−2 ± 1.15 · 10−2

3 1.39 · 10−1 ± 7.28 · 10−2 (−) 2.63·10−2 ± 5.49·10−3 (+) 2.74 · 10−1 ± 1.28 · 10−1 (−) 5.89 · 10−2 ± 4.97 · 10−2

4 9.77 · 10−2 ± 6.52 · 10−2 (≈) 2.59·10−2 ± 5.51·10−3 (+) 3.02 · 10−1 ± 1.31 · 10−1 (−) 1.00 · 10−1 ± 5.85 · 10−2

5 1.12 · 10−1 ± 7.36 · 10−2 (≈) 2.45·10−2 ± 5.14·10−3 (+) 3.25 · 10−1 ± 1.44 · 10−1 (−) 6.08 · 10−2 ± 3.79 · 10−2

6 1.08 · 10−1 ± 7.13 · 10−2 (−) 2.48·10−2 ± 5.52·10−3 (+) 3.52 · 10−1 ± 1.57 · 10−1 (−) 5.54 · 10−2 ± 3.19 · 10−2

10 1.21 · 10−1 ± 8.27 · 10−2 (≈) 2.34·10−2 ± 6.84·10−3 (+) 4.05 · 10−1 ± 1.08 · 10−1 (−) 7.55 · 10−2 ± 2.99 · 10−2

20 1.21 · 10−1 ± 7.84 · 10−2 (≈) 2.15·10−2 ± 5.98·10−3 (+) 3.82 · 10−1 ± 1.54 · 10−1 (−) 1.04 · 10−1 ± 3.26 · 10−2

MW3 1 6.07 · 10−1 ± 3.85 · 10−1 (−) 2.33 · 10−2 ± 4.57 · 10−3 (−) 4.14 · 10−2 ± 1.26 · 10−2 (−) 2.53 · 10−3 ± 5.11 · 10−4

2 2.70 · 10−2 ± 8.21 · 10−3 (−) 1.70 · 10−2 ± 1.75 · 10−3 (−) 2.40 · 10−2 ± 4.48 · 10−3 (−) 1.72 · 10−3 ± 8.36 · 10−4

3 1.78 · 10−2 ± 3.25 · 10−3 (−) 1.32 · 10−2 ± 1.40 · 10−3 (−) 1.32 · 10−2 ± 5.51 · 10−3 (−) 1.32 · 10−3 ± 2.29 · 10−4

4 1.73 · 10−2 ± 1.18 · 10−3 (−) 1.12 · 10−2 ± 1.58 · 10−3 (−) 6.28 · 10−3 ± 2.94 · 10−3 (−) 1.40 · 10−3 ± 1.12 · 10−4

5 1.55 · 10−2 ± 2.82 · 10−3 (−) 9.62 · 10−3 ± 1.17 · 10−3 (−) 6.39 · 10−3 ± 1.92 · 10−3 (−) 1.93 · 10−3 ± 4.53 · 10−4

6 1.67 · 10−2 ± 1.46 · 10−3 (−) 8.82 · 10−3 ± 1.96 · 10−3 (−) 7.27 · 10−3 ± 2.02 · 10−3 (−) 1.97 · 10−3 ± 3.23 · 10−4

10 1.38 · 10−2 ± 1.98 · 10−3 (−) 7.04 · 10−3 ± 5.85 · 10−4 (−) 1.03 · 10−2 ± 1.12 · 10−3 (−) 2.91 · 10−3 ± 3.10 · 10−4

20 1.41 · 10−2 ± 2.59 · 10−3 (−) 7.15 · 10−3 ± 5.79 · 10−4 (−) 1.43 · 10−2 ± 1.63 · 10−3 (−) 5.19 · 10−3 ± 3.65 · 10−4

MW11 1 3.79 · 10−1 ± 2.23 · 10−1 (−) 3.50·10−2 ± 8.38·10−3 (+) 1.75 · 10−1 ± 2.77 · 10−1 (≈) 7.91 · 10−2 ± 3.33 · 10−2

2 1.02 · 10−1 ± 9.49 · 10−2 (≈) 2.15·10−2 ± 4.27·10−3 (+) 1.65 · 10−1 ± 1.00 · 10−1 (−) 6.79 · 10−2 ± 2.65 · 10−2

3 1.59 · 10−1 ± 1.21 · 10−1 (−) 1.88 · 10−2 ± 3.75 · 10−3 (−) 1.30 · 10−1 ± 7.44 · 10−2 (−) 6.96 · 10−3 ± 4.95 · 10−3

4 1.99 · 10−1 ± 1.33 · 10−1 (−) 1.50 · 10−2 ± 2.65 · 10−3 (−) 1.44 · 10−1 ± 8.01 · 10−2 (−) 4.78 · 10−3 ± 1.31 · 10−3

5 1.93 · 10−1 ± 1.31 · 10−1 (−) 1.49 · 10−2 ± 2.39 · 10−3 (−) 1.33 · 10−1 ± 8.63 · 10−2 (−) 4.34 · 10−3 ± 6.51 · 10−4

6 2.62 · 10−1 ± 9.96 · 10−2 (−) 1.26 · 10−2 ± 2.12 · 10−3 (−) 1.53 · 10−1 ± 1.09 · 10−1 (−) 4.29 · 10−3 ± 1.14 · 10−3

10 2.31 · 10−1 ± 1.23 · 10−1 (−) 9.83 · 10−3 ± 1.40 · 10−3 (−) 2.50 · 10−1 ± 8.82 · 10−2 (−) 4.12 · 10−3 ± 1.00 · 10−3

20 3.02 · 10−1 ± 8.69 · 10−2 (−) 9.72 · 10−3 ± 1.20 · 10−3 (−) 2.28 · 10−1 ± 1.66 · 10−2 (−) 8.07 · 10−3 ± 1.31 · 10−3

TRICOP 1 6.21 · 10−2 ± 2.49 · 10−2 (−) 4.96 · 10−2 ± 1.36 · 10−2 (−) 1.04 · 10−2 ± 5.92 · 10−5 (≈) 1.03 · 10−2 ± 5.14 · 10−4

2 9.52 · 10−2 ± 1.90 · 10−2 (−) 4.90 · 10−2 ± 9.31 · 10−3 (−) 1.08 · 10−2 ± 2.23 · 10−4 (≈) 1.05 · 10−2 ± 5.52 · 10−4

3 8.17 · 10−2 ± 2.51 · 10−2 (−) 3.97 · 10−2 ± 5.04 · 10−3 (−) 9.88·10−3 ± 1.41·10−4 (+) 1.06 · 10−2 ± 4.73 · 10−4

4 7.72 · 10−2 ± 2.22 · 10−2 (−) 4.02 · 10−2 ± 6.24 · 10−3 (−) 1.02·10−2 ± 3.85·10−4 (+) 1.07 · 10−2 ± 4.01 · 10−4

5 8.22 · 10−2 ± 1.90 · 10−2 (−) 3.68 · 10−2 ± 2.98 · 10−3 (−) 9.75·10−3 ± 3.34·10−4 (≈) 9.99 · 10−3 ± 4.32 · 10−4

6 7.11 · 10−2 ± 2.22 · 10−2 (−) 3.76 · 10−2 ± 4.30 · 10−3 (−) 1.02·10−2 ± 4.04·10−4 (≈) 1.03 · 10−2 ± 6.96 · 10−4

10 6.58 · 10−2 ± 2.09 · 10−2 (−) 3.18 · 10−2 ± 4.24 · 10−3 (−) 9.87·10−3 ± 3.53·10−4 (≈) 9.98 · 10−3 ± 3.69 · 10−4

20 4.62 · 10−2 ± 1.10 · 10−2 (−) 2.63 · 10−2 ± 3.19 · 10−3 (−) 1.21 · 10−2 ± 6.52 · 10−4 (≈) 1.20 · 10−2 ± 5.02 · 10−4

SPD 1 5.95 · 10−2 ± 3.31 · 10−3 (−) 6.46 · 10−2 ± 5.16 · 10−3 (−) 1.55 · 10−2 ± 9.35 · 10−4 (−) 8.78 · 10−3 ± 1.68 · 10−4

2 6.75 · 10−2 ± 9.27 · 10−3 (−) 5.78 · 10−2 ± 3.81 · 10−3 (−) 1.33 · 10−2 ± 1.15 · 10−3 (−) 8.62 · 10−3 ± 2.00 · 10−4

3 6.02 · 10−2 ± 4.04 · 10−3 (−) 5.73 · 10−2 ± 5.38 · 10−3 (−) 1.22 · 10−2 ± 4.52 · 10−4 (−) 8.61 · 10−3 ± 2.55 · 10−4

4 6.37 · 10−2 ± 5.26 · 10−3 (−) 6.03 · 10−2 ± 4.45 · 10−3 (−) 1.21 · 10−2 ± 3.87 · 10−4 (−) 8.84 · 10−3 ± 1.78 · 10−4

5 5.96 · 10−2 ± 5.43 · 10−3 (−) 5.95 · 10−2 ± 7.26 · 10−3 (−) 1.29 · 10−2 ± 5.93 · 10−4 (−) 8.77 · 10−3 ± 1.54 · 10−4

6 5.78 · 10−2 ± 2.68 · 10−3 (−) 5.87 · 10−2 ± 3.80 · 10−3 (−) 1.28 · 10−2 ± 5.15 · 10−4 (−) 9.19 · 10−3 ± 1.91 · 10−4

10 5.90 · 10−2 ± 3.95 · 10−3 (−) 5.93 · 10−2 ± 5.02 · 10−3 (−) 1.51 · 10−2 ± 8.73 · 10−4 (−) 9.68 · 10−3 ± 2.19 · 10−4

20 5.89 · 10−2 ± 6.15 · 10−3 (−) 6.10 · 10−2 ± 4.56 · 10−3 (−) 1.84 · 10−2 ± 1.02 · 10−3 (−) 1.30 · 10−2 ± 3.34 · 10−4

CSI 1 6.04 · 10−2 ± 3.48 · 10−3 (−) 1.10 · 10−1 ± 1.53 · 10−2 (−) 1.91 · 10−2 ± 2.07 · 10−3 (≈) 1.82 · 10−2 ± 2.69 · 10−3

2 6.82 · 10−2 ± 5.25 · 10−3 (−) 7.00 · 10−2 ± 3.47 · 10−3 (−) 1.60 · 10−2 ± 5.08 · 10−4 (−) 1.55 · 10−2 ± 4.95 · 10−4

3 6.37 · 10−2 ± 4.53 · 10−3 (−) 6.82 · 10−2 ± 6.44 · 10−3 (−) 1.54 · 10−2 ± 5.45 · 10−4 (−) 1.48 · 10−2 ± 2.45 · 10−4

4 6.78 · 10−2 ± 3.57 · 10−3 (−) 6.84 · 10−2 ± 3.28 · 10−3 (−) 1.61 · 10−2 ± 4.98 · 10−4 (−) 1.54 · 10−2 ± 3.11 · 10−4

5 6.93 · 10−2 ± 3.22 · 10−3 (−) 6.81 · 10−2 ± 7.55 · 10−3 (−) 1.60 · 10−2 ± 4.18 · 10−4 (−) 1.55 · 10−2 ± 3.41 · 10−4

6 6.75 · 10−2 ± 3.50 · 10−3 (−) 6.59 · 10−2 ± 4.40 · 10−3 (−) 1.64 · 10−2 ± 3.98 · 10−4 (≈) 1.61 · 10−2 ± 5.18 · 10−4

10 6.45 · 10−2 ± 5.78 · 10−3 (−) 6.60 · 10−2 ± 2.35 · 10−3 (−) 2.03 · 10−2 ± 7.23 · 10−4 (≈) 2.00 · 10−2 ± 5.22 · 10−4

20 7.03 · 10−2 ± 7.85 · 10−3 (−) 6.45 · 10−2 ± 5.63 · 10−3 (−) 3.78·10−2 ± 3.68·10−3 (≈) 3.94 · 10−2 ± 1.83 · 10−3

WP 1 2.77 · 10−1 ± 6.16 · 10−2 (−) 2.82 · 10−1 ± 4.32 · 10−2 (−) 2.92·10−2 ± 9.66·10−4 (≈) 2.96 · 10−2 ± 1.52 · 10−3

2 2.11 · 10−1 ± 2.80 · 10−2 (−) 2.19 · 10−1 ± 5.69 · 10−2 (−) 2.85·10−2 ± 4.62·10−4 (+) 3.00 · 10−2 ± 9.23 · 10−4

3 1.92 · 10−1 ± 2.40 · 10−2 (−) 2.02 · 10−1 ± 3.50 · 10−2 (−) 3.03·10−2 ± 9.67·10−4 (≈) 3.07 · 10−2 ± 1.21 · 10−3

4 1.79 · 10−1 ± 2.15 · 10−2 (−) 1.99 · 10−1 ± 2.96 · 10−2 (−) 2.97 · 10−2 ± 1.43 · 10−3 (≈) 2.94 · 10−2 ± 9.56 · 10−4

5 1.82 · 10−1 ± 2.65 · 10−2 (−) 1.93 · 10−1 ± 3.50 · 10−2 (−) 2.97·10−2 ± 7.08·10−4 (≈) 3.08 · 10−2 ± 1.36 · 10−3

6 1.61 · 10−1 ± 1.77 · 10−2 (−) 1.94 · 10−1 ± 4.62 · 10−2 (−) 2.95·10−2 ± 4.75·10−4 (+) 3.15 · 10−2 ± 1.15 · 10−3

10 1.50 · 10−1 ± 3.08 · 10−2 (−) 1.76 · 10−1 ± 3.03 · 10−2 (−) 3.45 · 10−2 ± 1.80 · 10−3 (−) 3.09 · 10−2 ± 1.14 · 10−3

20 1.57 · 10−1 ± 2.86 · 10−2 (−) 1.70 · 10−1 ± 3.11 · 10−2 (−) 3.38 · 10−2 ± 9.03 · 10−4 (≈) 3.35 · 10−2 ± 1.01 · 10−3

Wilcoxon summary 148− 17 ≈ 11+ 139− 6 ≈ 31+ 99− 66 ≈ 11+ reference algorithm
Mean Friedman rank 3.33 2.77 2.33 1.56
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they are computationally inexpensive and available.
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Figure 5.7: Empirical Cumulative Distribution Functions of hypervolume performance
metric for SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA and IC-SAMO-COBRA. All ex-
periments with different numbers of candidate solutions per iteration and on different test
functions are aggregated.
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Figure 5.8: Empirical Cumulative Distribution Functions of IGD+ performance metric
for SA-NSGA-II, IC-SA-NSGA-II, SAMO-COBRA and IC-SAMO-COBRA. All experiments
with different numbers of candidate solutions per iteration and on different test functions are
aggregated.
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5.3. Expensive and Inexpensive Function Optimization

Visual Comparison

The Pareto fronts obtained by the IC-SA-NSGA-II, and the IOC-SAMO-COBRA

algorithm can be visually compared with the Empirical Attainment Difference Func-

tions [96]. In Figure 5.9 the EAF difference plot on the TBTD test function is given as

an example, with all results per algorithm aggregated. The dark areas mark where the

two algorithms obtained different results. As can be seen, the IOC-SAMO-COBRA

algorithm manages to find the minimum values of objective 2 on the Pareto frontier,

while IC-SA-NSGA-II found smaller values for objective 1. The EAF plots of other

two objective test functions can be found in Appendix A.1.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
objective 1

0
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

ob
je

ct
iv

e 
2

EAF Differences for IC−SA−NSGAII  on TBTD

probability [0.8, 1.0]
probability [0.6, 0.8)
probability [0.4, 0.6)
probability [0.2, 0.4)
probability [0.0, 0.2)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
objective 1

0
2e

+
04

4e
+

04
6e

+
04

8e
+

04
1e

+
05

ob
je

ct
iv

e 
2

EAF Differences for IOC−SAMO−COBRA  on TBTD

Figure 5.9: Visualization of the Empirical Attainment Function differences between IC-
SA-NSGA-II and the IOC-SAMO-COBRA algorithm on the TBTD problem. The solid,
dashed and solid lines from left to right represent the best, median and worst found Pareto
frontier of both algorithms combined. The grey level in the plots encodes the probability that
the corresponding algorithm outperforms the other algorithm in that region. In objective 1,
IC-SA-NSGA-II finds smaller values while in objective 2, IOC-SAMO-COBRA finds smaller
values. This can be seen in the plot at the bottom of the Pareto frontier at the right plot,
IOC-SAMO-COBRA has a higher probability of domination compared to the left side of the
Pareto frontier IC-SA-NSGA-II has a higher probability of domination.

5.3.5 Discussion of inexpensive function use

Table 5.9 and Table 5.10 show that IOC-SAMO-COBRA performs better in most cases

compared to the other algorithms. The ECDF plot (Figure 5.7) also shows that the

algorithm on average also finds good solutions faster since it is able to reach a higher
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portion of the run target pairs. The EAF different plots from appendix A.1 also show

in most cases that the IOC-SAMO-COBRA finds solutions closer to the Pareto frontier

compared to the IC-SA-NSGA-II algorithm. However, two things become apparent

when all results are analyzed in more detail.

• IC-SA-NSGA-II significantly outperforms the IOC-SAMO-COBRA algorithm on

the BICOP1 and MW2 test problems. BICOP1 and MW2 do not have any active

constraints on the Pareto front and the difference between the performances of

the algorithms becomes even larger when the number of candidate solutions

per iteration increases. This indicates that IC-SA-NSGA-II has more difficulty

finding feasible solutions on the Pareto fronts with active constraints and IOC-

SAMO-COBRA is directed too much towards the constraint boundaries and has

more difficulty finding the Pareto front if the Pareto front is unconstraint.

• For test problems with a very low feasibility ratio (MW1, MW2, MW3, and

MW11) the IC-SA-NSGA-II and IOC-SAMO-COBRA significantly outperform

their original counterparts where the constraint functions are not directly used

in the algorithm. In a few algorithm runs on the MW test functions not a single

feasible solution was found. This indicates that the more strict and complex the

constraints are, the more beneficial it is to directly use the constraints instead

of attempting to learn them with surrogates.

5.3.6 Conclusion and Future Work on Inexpensive Function

Exploitation

Measured in terms of HV and IGD+, the IOC-SAMO-COBRA algorithm outperforms

the only real competitor IC-SA-NSGA-II in 78% of the benchmark problems. The key

algorithmic components that are expected to be responsible for this advantage include:

1. It is beneficial to compute 12 RBF configurations for each expensive objec-

tive/constraint and pick the best as a surrogate model for the respective ob-

jective/constraint.

2. The use of COBYLA repeatedly and in parallel to find p solution candidates

that maximize their joint HV contribution.

For two test functions (BICOP1 and MW2) that do not have any active constraints

on the Pareto front, IC-SA-NSGA-II has outperformed IOC-SAMO-COBRA.
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5.4. Overall Conclusions and Future Work

Further research is required to improve the IOC-SAMO-COBRA algorithm to be

able to quickly find Pareto fronts not subject to active constraints. A crossover of the

IOC-SAMO-COBRA algorithm and the IC-SA-NSGA-II algorithm could also poten-

tially lead to even better results.

5.4 Overall Conclusions and Future Work

In this chapter, the following research question is answered: How to find the Pareto

frontier of computationally expensive problems? Feasible Pareto efficient solutions can

be found with the multi-objective SAMO-COBRA algorithm. Two extensions have

been made to make the algorithm even more time-efficient. This is done by integrating

a multi-point infill criterion, and an extension is made so that it can deal with a mix of

expensive and inexpensive objectives and constraints. The resulting new IOC-SAMO-

COBRA algorithm has been compared to other state-of-the-art algorithms. By testing

on a diverse set of test functions, it has been shown that SAMO-COBRA by itself is

fast, very efficient in terms of required function evaluations, and can find well-spread

solutions along the Pareto frontier. Integration of the Multi-point infill criteria showed

that more evaluations are required to find similar Pareto frontiers. However, a lot of

iterations (and therefore in real-world scenarios with expensive function evaluations

wall clock time) can be saved. Finally, exploiting the inexpensiveness of constraint

functions was shown to be very beneficial since this will, in the majority of cases, lead

to better Pareto front approximations.

A final open issue is handling mixed-integer decision parameters, as the extension

to such design spaces is crucial for some real-world applications. Extending the IOC-

SAMO-COBRA with the mixed-integer decision parameters is possible by introducing

different surrogate modeling techniques and by replacing the COBYLA algorithm with

a different optimization algorithm that can deal with mixed-integer decision parame-

ters.
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Real World Applications

In this Chapter the last sub-question: What is the performance of the proposed algo-

rithms in real-world scenarios? is answered. This is done by solving five real-world

simulation-based ship design optimization problems using optimization algorithms.

This is done to verify algorithm performance in real-world scenarios and with the

algorithms that were readily available at the time the designs had to be optimized

at C-Job Naval Architects. The first three problems are computationally expensive

multi-objective problems with constraints that can be solved with the algorithms dis-

cussed in the previous chapters. The last two real-world optimization problems in this

chapter required modifications to the optimization algorithm as these problems had

one objective and the computational difference between the objective evaluation and

the constraint evaluation was much larger compared to the other problems.

6.1 Trailing Suction Hopper Dredger

The first problem solved with the constraint multi-objective optimization algorithm

is the Trailing Suction Hopper dredger as described in Chapter 3 and displayed in

Figure 3.3. To repeat the optimization problem briefly, the problem is a two-objective

problem where the steel weight and the resistance at operating speed should be min-

imized. The problem has 11 constraints concerning room and tank capacities, draft,

trim, heel, the forepeak bulkhead, and intact stability criteria. All these constraints

and objectives are evaluated in the commercial NAPA software.

The original design has a resistance coefficient of 1.08 and a steel weight of 2039

tonnes. This original design is parameterized and optimized by the ACD framework
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6.1. Trailing Suction Hopper Dredger

from Chapter 3 using 200 ship design evaluations proposed by the CEGO algorithm

from Section 5.1.1. The framework is allowed to do 200 evaluations to evaluate the

trailing suction hopper dredger. The reference point is fixed and set to [5000, 2]. By

setting the reference point to [5000, 2] the algorithm is limited to solutions with a

smaller steel weight than 5000 tonnes,and a resistance coefficient smaller than 2. The

experiment has been repeated five times independently with different initial starting

points to check for consistency.

In a small first experiment, the severity of the constraints is investigated. In this

experiment, 200 random design variations are generated and evaluated. 24% of these

design variations turned out to be feasible.

6.1.1 Results of Trailing Suction Hopper Dredger Design Ex-

periment

The results of the five independent runs were very similar. The hypervolume metric

as used in multi-objective optimization between the reference point and the Pareto

optimal set was on average 3819 and the standard deviation of this volume was 3.3.

The parameter combinations of a typical run of 200 evaluated design variations are

displayed in the parallel coordinate plot in Figure 6.1. The red lines represent the

obtained infeasible solutions, the blue lines represent the feasible solutions, and the

green lines represent the Pareto optimal solutions.

The Pareto optimal results of a typical run are presented in Figure 6.2. During this

run, the CEGO algorithm in combination with the ACD framework found a set of 10

non-dominated design variations where the most interesting solution has a resistance

coefficient of 0.87 and a steel weight of 1748 tonnes. Therefore, compared to the

original design, the improved design has a 19% smaller resistance coefficient and 14%

less steel weight.

6.1.2 Analysis of the TSHD Results

In Figure 6.3a and Figure 6.3b the original and the improved design are shown respec-

tively. From the first observation, there is not a lot of difference, but the optimized

result is 9 meters longer, and 50 centimeters less wide. Typically when a ship is longer

more steel is needed to fulfill the strength requirements. But in this case, the hopper is

higher which eases the imposed longitudinal bending moment on the ship. The extra

strength results in less thick required steel plates and smaller profiles required to meet

the longitudinal strength.
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Figure 6.1: Parallel coordinate plot of the 200 different design variations. The red lines
represent infeasible solutions, blue lines represent feasible solutions, green lines represent
Pareto optimal solutions.

Furthermore, because the vessel is longer and less wide, the resistance also signifi-

cantly decreased. This can also be seen from the wave pattern around the two design

variations in the Figures 6.3a and Figure 6.3b.

6.1.3 Conclusion from Trailing Suction Hopper Dredger Study

From the results, it can be concluded that the Accelerated Concept Design framework

is capable of optimizing parameterized vessels in a fully automated manner and in a

very efficient way. On top of this, it is shown that this design process can reduce time

and human effort while significantly improving ship designs. Furthermore, because of

the use of surrogate-assisted models, and therefore objective and constrained predic-

tion, the whole design space can be explored which would never have been an option

for a human expert alone.

For future work, more software tools have to be automated and coupled to the

Accelerated Concept Design framework to gather more high fidelity results. On top
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(a) Original Trailing Suction Hopper
Dredger design optimized by human experts.

(b) Trailing Suction Hopper Dredger design
optimized with the CEGO algorithm.

Figure 6.3: Comparison of the two Trailing Suction Hopper Dredger designs

of this, a more in-depth analysis of ship parameterization should be done to achieve

even better results.

6.2 Wind Feeder Vessel

One of the advancements of the accelerated concept design framework after the TSHD

optimization problem is the implementation of the Operability Robustness Index to

optimize a Wind Feeder vessel. The SAMO-COBRA algorithm has been used in

practice to design a wind feeder vessel to support the installation of windmills at sea.

Although high winds are good for power production, they usually also result in rough
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seas. These rough seas around the wind park installation sites increase the demand for

reliable vessels. The impression of such a wind feeder vessel is presented in Figure 6.4.

This vessel has been designed and later optimized at C-Job Naval Architects [30].

This vessel is specifically designed to support the construction of wind farms and to

transport the materials from the shore to the installation sites for the US market.

Figure 6.4: Impression of the Wind Feeder Vessel design by C-Job Naval Architects.

The objectives of the optimization case of the wind feeder vessel are to have a robust

seakeeping performance to maximize the year-round operability, while also keeping

the operational cost and capital expenses at a minimum. The operability can be

optimized by maximizing the so-called Operability Robustness Index (ORI)[71]. The

ORI objective takes the area of operation into account and therefore can be optimized

for a certain wave spectrum. In this case the Pierson Moskowitz spectrum is used

as recommended by the DNV-GL maritime classification bureau [52]. The seakeeping

assessment is done with a strip theory code of NAPA1. Strip theory is proven to be

fast and reliable with sufficient accuracy for conventional hull forms [16, 69]. The

capital expenses can be translated into the cost of steel that is required to build the

vessel, this is roughly equal to the Lightship Weight (LSW) of the vessel. The LSW is

calculated by summing the weight of all the equipment plus the minimum amount of

steel that is required to fulfill the longitudinal strength requirements. The operational

1Intelligent solutions for the maritime industry, https://www.napa.fi/
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expenses can be dealt with by minimizing the ship resistance in the water at service

speed (Rt[kN]). This resistance is calculated with the Holtrop & Mennen method [79].

More details about the wind feeder design study can be found in the paper and

master thesis from Bronkhorst et al. [27, 28].

All objectives, practical constraints, relevant rules, regulations, and loading con-

ditions can be evaluated with the modular Accelerated Concept Design framework as

described in Chapter 3. In this software, a parametric 3D model of the ship is set

up by a naval architect after which automated software tools can evaluate any design

variation in one function call. In the wind feeder vessel case, five design parameters

are defined: Aftship Length, Midship Length, Foreship length, Beam at Waterline, and

Draught. Since sea-keeping and longitudinal strength are already captured in the ob-

jectives, only two constraints are needed. The two constraints are for space reservation

of the wind turbine blades and the meta-centric height for intact stability of the vessel.

SAMO-COBRA from Section 5.1.2 is then used to optimize this ship design op-

timization problem. To enhance the exploration in this case study, SAMO-COBRA

started with more than the advised 50 initial Halton samples. After evaluation of

the initial sample, the SAMO-COBRA algorithm with the PHV infill criterion is used

to propose 250 more solutions. On a desktop with an Intel Xeon Processor E3-1245

V3 quad-core processor with 16 GB of working memory, the 300 evaluations required

three and a half hours of wall clock time.

6.2.1 Results of Wind Feeder Design Experiment

Based on the first 50 Halton samples, 36% of the design space is estimated to be

feasible. Out of the total 300 design variants SAMO-COBRA was able to find 154 non

dominated solutions, 35 feasible but dominated solutions, and proposed 111 infeasible

solutions.

The convergence of the SAMO-COBRA optimization run is visualized in Fig-

ure 6.5a. This plot shows that after the Design of Experiments, SAMO-COBRA

quickly finds the most promising solutions. When zooming in on the solutions after

evaluation 60 (see Figure 6.5b) it can also be observed that the algorithm continues

finding solutions that contribute hypervolume.

The Pareto frontier found on this problem is plotted in Figure 6.6. In this plot, it

can be observed that the solutions on the Pareto frontier are nicely spread.
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Figure 6.5: Wind feeder optimization process convergence plot (a) and zoomed in part
(b).

Figure 6.6: Pareto Frontier of Ship Design case with Original Design by human expert
represented by a square. Objectives are maximize the Operability Robustness Index (ORI[-]),
minimize ship resistance (Rt [kN]), and minimize Lightship Weight (LSW[t]).
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6.2.2 Analysis of Wind Feeder Optimization Results

All evaluated, feasible solutions are visualized on the Pareto frontier in Figure 6.6.

After analysing the results from the optimization study, the base design by the naval

architect was shown to be much too large, causing the ship to be too heavy with a sub-

optimal performance. When a few of the Pareto-optimal solutions are compared to

the original, then the solution with the same ORI score has a 10.3% smaller resistance

value, and 19.64% less light ship weight. The solution with the same resistance score

has a 4% better ORI score, and 13.68% less light ship weight. The lightship weight

reduction can be explained with that a significant reduction in length was possible.

6.2.3 Conclusion for Wind Feeder Vessel

SAMO-COBRA has been used in practice on a wind feeder optimization problem with

three objectives, two constraints, and five decision variables. In this application, the

algorithm demonstrates its ability to outperform the human expert in all objectives

simultaneously mainly due to the fact that the original design was too large and could

have been designed much smaller. The larger design did not contribute to a higher

operability robustness index in the area of interest nor was it good for steel weight and

resistance. However, a significant amount of wall-clock time would have been able to be

saved if at the time of experimenting the IOC-SAMO-COBRA algorithm would have

been available since a few of the constraints and the objectives are computationally

inexpensive to evaluate.

6.3 Single Hold Cargo Ship Damage Stability Opti-

mization

As a real-world application, the mid-ship section of a single-hold general cargo vessel

design2 as presented in Figure 6.7 is optimized for two conflicting objectives: stability

(↑ max) after potential damage (survivability), and cargo hold capacity (↑ max).

Besides the conflicting objectives, the problem has three volumetric constraints

and one regulatory constraint:

• Volumetric: The two fuel tanks should be of sufficient size so that enough fuel can

be stored and the technical space should be large enough to host the equipment.

2Figure courtesy of C-Job Naval Architects, Hoofddorp, Netherlands.
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Figure 6.7: Longitudinal section and top view of cargo vessel design optimized for damage
stability (survivability) and cargo hold capacity (both to be maximized). The pink com-
partments (1) annotates the cargo hold, the red compartments (2) are fuel tanks, the green
compartments (3) are water ballast tanks, the orange compartments (4) are the technical
spaces, and the blue compartments (5) are part of the crew accommodation.

• Regulatory: The attained damage stability index (survivability) score should be

larger compared to the required damage stability index.

The objectives and constraints depend on 17 geometric parameters, which influence the

longitudinal and transversal positioning of the bulkheads and the heights of openings.

The bulkheads split the different compartments and tanks together with the height of

decks and openings in the vicinity of the cargo hold.

The evaluation of the damage stability (survivability) objective and the correspond-

ing comparison between the required damage stability constraint is computationally

expensive. Evaluation of the damage stability index requires a run of the commercial

maritime simulator Delftship pro3. The volumetric objective and the three volumet-

ric constraints are inexpensive to evaluate. This offers the opportunity to optimize

the design problem with the IOC-SAMO-COBRA algorithm from Section 5.3. The

inexpensive constraints and objective are directly used in the IOC-SAMO-COBRA al-

gorithm while for the expensive objective and constraint, RBF surrogates are updated

and selected every iteration. More details about the ship design problem are given

in [103, 102, 146].

This real-world problem is optimized in three different ways:

1. IOC-SAMO-COBRA with number of candidate solutions per iteration p = 1 and

300 function evaluations.

2. IOC-SAMO-COBRA with number of candidate solutions per iteration p = 3 and

3Version 14.20.343; see Delftship: Visual hull modeling and stability analysis. https://www.

delftship.net/
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501 function evaluations.

3. SA-NSGA-II with number of candidate solutions per iteration p = 3 and 501

function evaluations.

The experiments with p = 3 aim at investigating the potential benefit of parallelism in

terms of wall-clock time provided that the corresponding number of simulator licenses

is available. The HV metric is used to compare the performance of SA-NSGA-II

and IOC-SAMO-COBRA. IC-SA-NSGA-II is not experimented with since one of the

constraints is expensive to evaluate, and IC-SA-NSGA-II does not have a built-in

option to use RBFs for that constraint.

6.3.1 Results of Cargo Vessel Design Experiment

For the expensive objective (damage stability), requiring a Delftship pro simulator run,

the median evaluation time was 248 seconds. In experiment 1 (IOC-SAMO-COBRA,

p = 1, 300 evaluations), a HV of 9115 with respect to the reference point (0, 0) was

obtained. In experiment 2 (IOC-SAMO-COBRA, p = 3, 501 evaluations), the same

HV was obtained in the 129th iteration (after 385 function evaluations), saving a total

wall-clock time of 682 minutes compared to experiment 1.

A comparison of the Pareto fronts resulting from experiments 2 and 3 (i.e., a direct

comparison between IOC-SAMO-COBRA and SA-NSGA-II) is shown in Figure 6.8a,

where cargo hold capacity (↑ max) is shown on the y-axis and the attained damage

stability index (↑ max) on the x-axis. The Pareto front obtained by the SA-NSGA-

II algorithm is dominated by the obtained Pareto front obtained by IOC-SAMO-

COBRA, and the latter algorithm also finds more extreme solutions (especially for

damage stability).

Figure 6.8b illustrates the convergence of the algorithms by showing the HV (mea-

sured between the Pareto fronts obtained by the two algorithms and the approximated

Nadir point) over the number of function evaluations. The difference in the two Pareto

fronts (Figure 6.8a) is also clearly visible in this illustration. The different behavior

in the first few evaluations can be explained by the difference in the initial sampling

strategies (Latin Hypercube Sampling [138] for SA-NSGA-II vs. Halton Sampling [73]

for IOC-SAMO-COBRA).
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Figure 6.8: Obtained Pareto Frontier and Convergence plot of single hold cargo optimiza-
tion problem.

6.3.2 Analysis of Cargo Vessel Design Results

The IOC-SAMO-COBRA results were further analyzed by naval architects to un-

derstand and interpret them in the light of vessel design expertise, resulting in the

following observations:

• For every point on the Pareto front, the parameter that defines the tanktop

height has converged to the minimum value. The algorithm learned that extra

height in the double bottom of the vessel does not improve the damage stability

index. The compartments above the tanktop benefited from this in terms of their

size. Interestingly, this finding could be confirmed since it is also prescribed in

the International Convention for the Safety of Life at Sea (SOLAS chapter II-1

part B-2 regulation 9) [81].

• The algorithm also found that a large space between the hull and cargo hold is

beneficial for the damage stability criterion. This result can be explained well

by the fact that a small distance between the hull and cargo hold makes it less

likely for the design to survive in case of damage (flooding of the cargo hold will

always lead to the loss of a single cargo hold vessel).
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6.3.3 Conclusion Cargo Vessel

The single-hold cargo vessel has been optimized with the IOC-SAMO-COBRA algo-

rithm. By using the IOC-SAMO-COBRA algorithm the available resources (3 avail-

able Delftship licences, 3 desktops) are perfectly exploited. The constraints and objec-

tive evaluations that where computationally very inexpensive have been used directly

in the algorithm instead of also training an RBF. With this new functionality, it is

illustrated that a significant amount of wall clock time can be saved and much better

Pareto frontier approximations could be made.

6.4 Roll-on/Roll-off Ferry Hull Optimization

After an operational data analysis study and a feasibility study for alternative fuels,

an initial design is made by C-Job naval Architects for a fully battery-powered Roll-

on/-Roll-off (Ro-Ro) ferry with a capacity of 800 passengers [31, 32]. This vessel is

designed to sail between the Saronic islands and the port of Piraeus. A render of this

C-Job design is presented in Figure 6.9.

Figure 6.9: Render of Saronic Roll-on/Roll-off ferry designed and created by C-Job Naval
Architects.

As this design is intended to sail powered on batteries the vessel requires an op-

timized hull. To accomplish the energy-efficient hull, the hull form is optimized for

minimal resistance at design speed. However, three imposed restrictions limit the
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search space of the to-be-designed hull:

1. The hull above the waterline is only allowed to be modified marginally.

2. The displacement of the new hull design should be equal to or larger than the

original hull displacement to be able to carry the passengers, vehicles, parcels,

and all equipment.

3. The Longitudinal Centre of Buoyancy (LCB) should remain within 1% of the

original hull to keep a good trim, heel, and intact stability without the need to

move heavy components around.

With these conditions, two completely independent experiments are set up. In the

first experiment experienced naval architects with hydrodynamic experience manually

optimized the hull for minimal resistance. In the second experiment, the vessel is pa-

rameterized and optimized with an optimization algorithm. The hull is parameterized

below the waterline varying the following seven parameters (d = 7):

1. transom height,

2. the transom angle,

3. the start of the midship in the longitudinal direction,

4. the shoulder location in the longitudinal direction,

5. the bulb size, (can be 0 which results in a design without a bulb)

6. the bulb width,

7. and finally the foreship width.

The design variants are parameterized and generated in the Rhino software. Af-

ter generation the three computationally relatively inexpensive constraints are also

calculated in the Rhino software. Finally, the hull is exported to evaluate the com-

putationally expensive objective in the Star-CCM+ software on a High Performance

Computer with 120 cores in the Microsoft Azure cloud. The constraints are compu-

tationally relatively inexpensive but still require communication between a software

package they can not be called directly in the optimization algorithm as seen in Sec-

tion 5.3. However, the constraints are computationally much cheaper compared to

the objective. Therefore, a variant of the IOC-SAMO-COBRA algorithm is developed

that models the objectives and constraints with radial basis function surrogates. Since
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we are optimizing a single objective problem, the hypervolume infill criteria of SAMO-

COBRA is exchanged for the feasible predicted value infill criteria of the SACOBRA

algorithm [13]. The most promising solution according to the infill criteria is evalu-

ated first on the constraints, and only if the design variant is feasible according to

the constraints the objective is evaluated. If the constraints are infeasible only the

constraint surrogates are updated and the objective surrogate remains the same as

in the previous iteration. This process continues until the algorithm has converged

and no significant improvements are found for several consecutive iterations. More

details and test results for this single objective optimization algorithm framework can

be found in Appendix B.1 and in [147].

6.4.1 Results of Ferry Hull Optimization Experiment

After 10 initial samples, the algorithm was allowed to do 110 more evaluations. In the

design of experiments, not a single feasible solution is found, however, the first solution

proposed by the algorithm was feasible right away. After enough feasible solutions

(d + 1 = 8) are found to fit a first surrogate model for the objectives, the algorithm

started also optimizing the objective score. In total out of the 120 evaluations 21

feasible hulls are found. The best of the 21 feasible hulls had a 26% smaller resistance

value compared to the original design.

The convergence plot of the feasible solutions are plotted in Figure 6.10. The

convergence plot also shows exactly what was expected. The first 8 feasible designs

still show a relatively high objective value as the algorithm is not minimizing the

objective score yet but putting its attention to finding feasible solutions. After the

algorithm has seen enough solutions to learn from (8 in this case since there are 7

parameters), the algorithm immediately started minimizing the objective value. The

overall best hull found by the algorithm is given in Figure 6.11.

6.4.2 Analysis of Ferry Hull Results

As described earlier, besides the experiment with the algorithm, naval architects with

hydrodynamic experience also optimized the hull of the ferry. In their experiment,

they used their creativity to design the underwater part of the hull in a completely

different way. The engineers chose a knuckle line and fitted the bulb under the bow

flare instead of in front of the ship. After their choice, the naval architects used a total

of 8 CFD evaluations and found a hull with almost identical objective value (a 26%

reduction). The final optimized hull of the naval architects is displayed in Figure 6.12.
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Figure 6.10: Convergence plot of the feasible solutions. Objective score in % compared to
the original design.

Figure 6.11: Optimized hull found by the optimization algorithm.

When compared to the design proposed by the optimization algorithm, the hull

designed by the naval architects is better for a very practical reason. As this is a
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Figure 6.12: Proposed optimized hull design by naval architects.

Ro-Ro ferry, vehicles have to roll on and roll off the ship. When a bulb is in front of

the ship, the ramp that the vehicles use to enter and exit the ship should be longer

compared to when the bulb is under the bow flare. The downside of the design with

the knuckle line is that it might be more complex to build.

6.4.3 Conclusion on Ferry Hull Optimization

The underwater part of a hull from a Ro-Ro ferry is optimized with an optimization

algorithm by optimization experts and independently by naval architects with hydro-

dynamic experience. The best hulls from both the naval architects as the hull from

the optimization algorithm showed a 26% smaller resistance compared to the original

hull. The hull from the naval architects however had practical benefits compared to

the hull from the naval architect. Therefore the hull of the naval architect is preferred

above the hull proposed by the optimization algorithm. The conclusion that can be

drawn from this is that the parameterization part of any optimization problem is the

most important part when optimizing. If not all constraints are captured, the practical

application is ignored, or the objective function does not perfectly represent the true

goal then optimization algorithms can converge to less ideal solutions. Therefore, hu-

man experience remains important and the algorithm can only find as good solutions

as the parameterization allows.
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6.5 Bulb Optimization Problem

The optimization problem in this section is a refit of an existing container vessel with

a container capacity around 10 000 standardized containers. Due to increasing fuel

prices and more strict emission regulations, this vessel must reduce its operational

speed since sailing at the design speed emits too much greenhouse gas and is way too

costly. To sail efficiently at the different operational conditions, the vessel required a

bulbous bow (in short bulb) refit. This bulb refit is done by cutting the current bulb

off and welding a new optimally shaped bulb back in place. However, optimizing the

bulb for all different loading conditions and speeds would lead to four different optimal

bulb shapes. Therefore, the goal of this study is to find the bulb that performs well

on (weighted)average on all four conditions.

Since the SAMO-COBRA algorithm and other algorithms discussed in this work

are designed for multi-objective optimization problems and the problem at hand is a

single objective problem, a single objective variant of the SAMO-COBRA algorithm

has been introduced to optimize the bulb of a container vessel. The new algorithm

variant uses an as small as possible initial Halton sample during the design of experi-

ments, in every consecutive iteration the best RBF transformation strategy and kernel

are chosen, and a purely exploiting infill criteria is used to find promising solutions in

the adaptive sampling steps. If no improvements have been found for three consecutive

iterations, the algorithm switches to an exploring infill criterion. The single objective

SAMO-COBRA variant in this way is similar to the traditional Efficient Global Op-

timization (EGO) algorithm [85] but now with radial basis functions as surrogates

and self-adjusting parameters. More details and test results for this single objective

optimization algorithm framework can be found in Appendix B.1 and in [147].

The main cutting line to cut the current bulb off is at the design draft and 24

meters from the most forward part of the bulb. This allows us to change 24 meters of

the fore hull and only the part below the design waterline. The bulb of the vessel is

parameterized in Rhino, by varying 6 parameters that define the bulb length, height,

width at two locations, and by changing the overall contour lines of the bulb. The

objective is defined by a weighted sum of the required power that is needed to reach

four different speeds with different loading conditions and therefore different drafts.

Instead of searching for an optimal bulb for each condition, the weighted sum of the

four different conditions is chosen as the objective function so that this bulb will

perform well in all four conditions. However, this did mean that the complete hull

had to be evaluated with RANSE calculations in the Star-CCM+ software for all
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four conditions. The mesh for the vessel consists of between 1.7 and 3.7 million cells

depending on the speed and draft of the calculation. For this optimization challenge

the new algorithm is coupled with a high-performance computer on the Microsoft

Azure cloud with 120 CPUs. One RANSE calculation in Star-CCM+ of the complete

hull required approximately 20 minutes, since there are 4 different conditions, one

iteration required 1 hour and 20 minutes of computation time on the high-performance

machine.

6.5.1 Results of Bulb Design Experiment

After a design of experiments of 7 initial Halton Samples, and 38 adaptive sampling

steps, the algorithm converged to several similar optimal solutions that were all found

on the boundary of the design space. However, because the solutions were found on

the boundary of the design space, a second parameterization setup was made that

allowed a smaller bulb in terms of height and width. The second optimization run

resulted in a bulb that in total for all conditions considered had 4.8% less required

power compared to the original design.

In Figure 6.13 the free surface plot is made of the original bulb (left) and the new

bulb (right) in one of the four operating conditions. The color indicates the height of

the water at that location (Red shows a crest, while blue shows a trough). As can be

concluded from the figure, the waves that are generated with the new proposed bulb

are especially in the front less extreme compared to the original hull.

Figure 6.13: Free surface plot of the original bulb (left) and the new bulb (right). The
color indicates the height of the water at that location (Red shows a crest, while blue shows
a trough).
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6.5.2 Analysis of Bulb Design Results

When designing completely new hulls for new build designs the hull surface is modeled

with the Rapid Hull Modelling Methodology of Rhino [64]. In the rapid hull modeling

methodology, the hull surface of the vessel consists of a loft that is fitted around

multiple control lines. However, when refitting a bulb, wrapping a loft around a set of

control lines is a bit less straightforward since the loft should exactly fit the current

hull and there is only decision freedom after the cutoff line. Therefore some manual

fairing was needed to create smooth and continuous hull lines without bumps and

irregularities at the transition point between the hull and the bulb. After some manual

fairing and checking a few extra operating conditions, the final optimized bulb showed

to be able to reduce the power required the most in the slow steaming conditions and

when sailing at a limited draught. This could have been expected upfront because the

original bulb was designed with the principle of interacting waves for a much higher

operating speed and in fully loaded conditions. This principle of interacting waves

involves shaping the bulb to minimize wave resistance by strategically managing the

interaction between waves generated by the bulb and the hull of the ship. The waves

generated by the bulb are intended to cancel the other waves out so that in total, there

is less wave resistance. Because of this principle of interacting waves, the original bulb

worked best in that one condition (one draft and one speed) it was designed for.

However, When a bulb is optimized for multiple different drafts and different

speeds, there is not one bulb design that generates the perfect wave for all differ-

ent conditions. Therefore, the bulb that was proposed in this study does not cancel

out all the waves in all conditions but it is designed to work better on the combined

weighted conditions.

6.5.3 Conclusion on Bulb Optimization

To accommodate slower more energy-efficient trips a bulb refit is proposed for a con-

tainer vessel with a capacity of approximately 10 000 containers. Up front, it was

expected that during the optimization process a bulb would be found that generates

the perfect wave to accommodate the principle of interacting waves. However, since

the operating conditions to be optimized for were so different, it was difficult to find

a bulb that cancels out the waves of the hull in all conditions. The newly developed

single objective optimization algorithm proposed smaller than expected bulbs. The

estimated performance of the small bulbs was better compared to the more traditional

larger bulbs according to RANSE calculations executed with STAR-CCM+. The ini-
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tial results showed that the search space was too narrow and it should be expanded to

allow the algorithm to search for a bulb that was even smaller than initially thought.

After the second optimization run, the optimal bulb required some manual fairing

since the parameterization didn’t align the new bulb perfectly with the already ex-

isting hull. Overall the optimization was a success since the hull with the new bulb

showed to be 4.8% more efficient in terms of power required compared to the original

hull. The largest reduction was found in the operating conditions that deviated the

most from the original design condition which had a significantly higher speed.

6.6 Real World Optimization Conclusions and Fu-

ture Work

Provided with the parameterization, constraint functions, and objective functions,

the optimization algorithm variants were able to find feasible and optimal solutions.

In the most complex design problems, feasible and optimal solutions are for naval

architects often difficult to find as naval architects can’t oversee all the interactions

between the parameters, constraints, and objectives. The solutions found by the

algorithms are however only as good as the parameterization allows, and typically

after optimization require some additional practical modifications. In a few cases,

it was realized that the parameterization did not lead to the expected result which

therefore required a different parameterization setup, a different problem setup, or

a change in objective function after which the optimization process is started again.

This shows that optimization experts and naval architects should continue to work

together to set up optimization problems.

In the future, more research is required in setting up the parameterization of opti-

mization problems as usually the objective and constraint functions are quite clear but

the ideal parameter and the parameter ranges that define the outcome are difficult to

determine upfront. Setting up the optimization problems can be a labor-intensive and

error-sensitive task. So instead of having to parameterize, define objective functions,

define constraint functions, and finally optimize, it would be nice to use a generative

model that could replace these steps. A start with such an approach is made with

ShipHullGAN [86]. However, this thus far can only generate hulls and not complete

designs including room arrangements for example.

Another future research direction that could be interesting to investigate is verify-

ing if the proposed algorithms are also effective in other application domains.
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Chapter 7

Conclusions and Future Work

In this thesis, research is presented on how constraint multi-objective problems can

be optimized with as few function evaluations as possible. This final chapter provides

a summary of all previous chapters, followed by an overall conclusion and answer to

the main research question. The thesis is finalized by proposing directions for future

work.

7.1 Summary

Chapter 1: In the introduction an overview and motivation for the study are pro-

vided. The main research question that is answered in this work is:

How to identify the Pareto frontier of constraint multi-objective

optimization problems with only a few function evaluations?

The main question is divided into sub-questions that are addressed in the subse-

quent chapters. The secondary objective is to apply the newly developed algorithms

to ship design optimization problems and show their applicability.

Chapter 2: The preliminary chapter presents the formal problem notations, the

basic theory of expensive black-box optimization, the benchmark functions used in

this work, performance metrics for validation, and visualization techniques for multi-

objective optimization. This chapter forms the foundational knowledge and notations

that are further developed in the remaining chapters.
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Chapter 3: An investigation of ship design optimization problem characteristics is

presented in the third chapter. The subquestion What are typical ship design optimiza-

tion problem characteristics? is addressed, providing details about both empirical and

simulated design methods. The empirical design method utilizes data from similar ves-

sels for conceptualizing new designs, while the simulated design method is typically

employed to create and optimize more detailed versions of ship designs. Alongside

these design methods, important ship design software is described, and guidelines for

parameterization and optimization problem setup are summarized. Finally, the holis-

tic accelerated concept design methodology is introduced that can be used to evaluate

ships for multiple key performance indicators at different levels of accuracy.

Chapter 4: The empirical design methodology is elaborated upon in the fourth

chapter. A newly proposed empirical design methodology is the reference finder,

which utilizes machine learning, optimization algorithms, and a dataset with static

ship data to identify promising solutions. The reference finder is trained by fitting

a random forest regressor to predict key performance indicators and an isolation for-

est to detect outliers. Finally, the NSGA-II algorithm is coupled with the random

forest regressor and isolation forest to discover promising Pareto optimal ship design

solutions that do not exist yet but are predicted to be feasible and favorable by the

machine learning algorithms. These new preliminary designs can be further developed

with the simulation-based design approach as shown in Chapter 6.

Chapter 5: The most significant scientific contribution and the key points of this

work are detailed in Chapter 5. In this chapter, the IOC-SAMO-COBRA algorithm

is introduced, providing the answer to the main research question. The IOC-SAMO-

COBRA algorithm adeptly handles constraint multi-objective problems that could

have both computationally expensive and inexpensive evaluation functions. It achieves

this by fitting surrogates for the computationally expensive functions and directly

utilizing the inexpensive functions during the search for promising feasible Pareto

optimal solutions. The identification of Pareto optimal solutions is facilitated through

the optimization of a multi-point acquisition function capable of proposing one or

more feasible solutions per iteration. By proposing multiple solutions per iteration,

the computationally expensive evaluations can be run in parallel. With each iteration,

the algorithm learns from evaluated solutions by updating surrogates and subsequently

continues the search for solutions that maximize the joint hypervolume.
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Chapter 6: In the last content-focused chapter of this work, the algorithms intro-

duced in Chapter 5 are used and validated in practice. Five different simulation-based

ship design optimization problems are optimized using the accelerated concept de-

sign methodology in combination with optimization algorithms. In the first optimiza-

tion study, the most promising solution from a trailing suction hopper dredger study

demonstrated a 19% reduction in resistance and a 14% decrease in steel weight com-

pared to the original design. In the second optimization study, the design of a wind

feeder is optimized, revealing a very complete Pareto frontier with improvements in all

three objectives: operability, resistance, and lightship weight. The third optimization

case focused on optimizing cargo volume and damage stability criteria for a single-hold

cargo ship. Here, the power of the multi-point infill criteria (and therefore the pos-

sibility of parallel evaluations) and the exploitation of inexpensive functions directly

in the algorithm demonstrated significant time savings with the IOC-SAMO-COBRA

algorithm compared to traditional approaches. In the final two cases, resistance op-

timization was conducted for two real-world commercial ship design projects. In the

first commercial project, a 26% reduction in resistance was achieved by optimizing the

complete hull below the waterline. In the second commercial project, a 4.8% required

power reduction was realized by exclusively refitting the bulb of a containership with

a capacity of approximately 10,000 containers.

7.2 Conclusions

This study aimed to address the overarching research question: How to identify the

Pareto frontier of constraint multi-objective optimization problems with only a few

function evaluations? The development of innovative algorithms, particularly the

IOC-SAMO-COBRA algorithm, is a significant scientific contribution that helps in

answering this research question. This algorithm demonstrates its effectiveness in han-

dling constraint multi-objective problems, considering both computationally expensive

and inexpensive evaluation functions. It does so by iteratively learning and updat-

ing surrogates for computationally expensive functions and directly using inexpensive

functions when searching for solutions that jointly contribute the most hypervolume.

The practical application of the developed algorithms in real-world ship design opti-

mization problems showcased their impact and flexibility. From reducing the resistance

of trailing suction hopper dredgers, ferries, and container ships, to optimizing cargo

volume and damage stability in cargo ships, the algorithms consistently demonstrated

improvements. Notably, the IOC-SAMO-COBRA algorithm’s ability to handle paral-
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lel simulations and exploit inexpensive functions showcased its efficiency in achieving

significant time savings.

In conclusion, this work provided a constraint multi-objective optimization algo-

rithm and the accelerated concept design methodology for ship design that offered

valuable insights and practical solutions. The investigation into the research ques-

tions, the development of algorithms, and their practical applications have collectively

made a substantial contribution to the naval and global multi-objective optimization

research fields.

7.3 Future Work

There are many research directions possible to enhance the constraint multi-objective

optimization algorithms for computationally demanding problems that are proposed

in this thesis. One significant contribution would be to extend the algorithms with

functionality that could also deal with discrete, integer, and categorical parameters.

This way, computationally expensive mixed-inter constraint multi-objective problems

could be solved. Other contributions would be to investigate and extend the limits

of the SAMO-COBRA algorithm. For example, what is the limit on the number

of objectives, constraints, and parameters that the SAMO-COBRA algorithm can

deal with, and does increasing any of these significantly influence the performance?

Other directions that require less effort but might improve the performance of the

SAMO-COBRA algorithm and its extensions would be an advanced hyperparameter

optimization study and validation of the algorithm on different benchmark problems.

From a ship design perspective, setting up the parameters (and their upper and

lower limit), constraint functions, and objectives functions correctly before the first

run remains challenging. This is problematic, especially when the evaluation functions

are computationally demanding. Another open issue is that the parameterization de-

fines the decision freedom and the outcome. Typically, only a small part of the vessel

is parameterized and a lot is kept constant which drastically reduces the potential of

the optimization process. Therefore, ship design could benefit from more research into

generative models to generate feasible optimal solutions and domain-specific optimiza-

tion algorithms that apply transfer learning to have a warm start in the optimization

process.

A final interesting future research direction would be to investigate the applicability

of the proposed algorithms in different application domains like aviation, automotive,

or civil engineering disciplines.
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Appendix A

Appendix

A.1 Empirical Attainment Difference Functions

To visually compare the IOC-SAMO-COBRA and the IC-SA-NSGA-II algorithms,

Empirical Attainment Difference Function (EAF) plots are made. The EAF plots of

the two-dimensional problems can be found in the 18 Figures. In the EAF difference

plots the dark areas mark where the two algorithms obtained different results. The

more frequently a certain area is dominated the darker the gray scale is. As can be

seen in the majority of the figures (except for BICOP2, MW2 and WB), the IOC-

SAMO-COBRA algorithm manages to find solutions that dominate the solutions of

the IC-SA-NSGA-II algorithm.
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Figure A.1: EAF difference plot BIOCP1
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Figure A.2: EAF difference plot BIOCP2
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Figure A.3: EAF difference plot BNH
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Figure A.4: EAF difference plot C3DTLZ4
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Figure A.5: EAF difference plot CEXP
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Figure A.6: EAF difference plot CTP1
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Figure A.7: EAF difference plot DBD
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Figure A.8: EAF difference plot MW1
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Figure A.9: EAF difference plot MW2
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Figure A.10: EAF difference plot MW3
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Figure A.11: EAF difference plot MW11
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Figure A.12: EAF difference plot NBP
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Figure A.13: EAF difference plot OSY
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Figure A.14: EAF difference plot SRD
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Figure A.15: EAF difference plot SRN
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Figure A.16: EAF difference plot TBTD
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Figure A.17: EAF difference plot TNK
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Figure A.18: EAF difference plot WB

145



A.1. Empirical Attainment Difference Functions

146



Appendix B

Appendix

B.1 Expensive Single Objective Optimization

For the optimization of the two single objective ship design problems of Chapter 6

the Modular Adaptive Global Optimization Framework (MAGOF) is introduced. The

objective from the two ship design problems were computationally expensive and the

constraints are computationally inexpensive. To be ready for more different problem

characteristics a modular adaptive framework is proposed. In this appendix a pseu-

docode and a detailed explanation is presented together with experiments and results

on the well known constraint single objective G-Problem suite [93, 61].

B.2 Modular Optimization Framework

The pseudocode of the Modular Adaptive Global Optimization Framework (MAGOF)

is presented in Algorithm 4. The evaluation method and strategy are described in

more detail in Algorithm 5 and Section B.2.3. The input, the overall explanation of

the pseudocode, and the working of the framework are described in more detail in the

following subsections.

B.2.1 Input parameters

The input arguments for the modular framework are:

1. Objective function f(x) that is to be minimized. The objective function is

defined by the user as expensive fe(x), or inexpensive fc(x).
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2. Constraint function(s) g(x) that consist out of m separate constraint func-

tions, where m ≥ 0. The constraint function(s) are either defined by the user

as expensive ge(x), or inexpensive gc(x). The constraint functions return the

constraint violation, meaning that constraint values g(x) ≤ 0 are defined as

feasible.

3. Input space x ∈ Ω ⊂ Rd that is limited by the lower and the upper boundary

[xlb,xub].

4. Initial sample strategy and sample size Ninit and DoE define how many

samples are evaluated in the design of experiments. This should at least be larger

than d+ 1.

5. Evaluation budget Nmax defines how many expensive function evaluations are

allowed to be evaluated.

6. RBF strategy domain, Φ = {Cubic, Gaussian, Multiquadric, InverseQuadratic,

InverseMultiquadric, ThinP lateSpline} × {Plog, standardized}. The RBF

strategy domain defines the different surrogates that are used in every iteration

to model the computationally expensive functions.

7. Parallelism p, is the number of solutions that can be evaluated in parallel. Note

that parallelism is not a requirement as p can also be 1.

8. Acquisition function α that used to find promising solutions. The acquisi-

tion function uses the surrogates or the inexpensive functions directly to find p

promising solutions for evaluation.

9. Constraints first indicator that defines if the constraints should all be satisfied

before the objective function can be evaluated.

B.2.2 Design of Experiments

The framework in Algorithm 4 starts in line 2 by creating a Design of Experiments

(DoE). The size and the strategy for the DoE can be chosen by the user and can be

random, a latin hypercube sample, solutions on the boundaries, or a Halton sample.

Each of these sample strategies has its strengths, however, an empirical comparison

by Bossek et al. [23] showed that an as small as possible initial Halton sample [73]

is in most cases the most efficient strategy. It is also possible to start with an initial

sample that is already evaluated.
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Algorithm 4: MAGOF.
Input: Objective function f(x), that can be computationally expensive fe(x)
or computationally inexpensive fc(x), constraint function(s) g(x), split where
required into expensive constraint function(s) ge(x), computationally inex-
pensive constraint function(s) gc(x), decision parameters’ lower and upper
bounds [xlb,xub] ⊂ Rd, sampling strategy DoE, number of initial samples
Ninit, maximum evaluation budget Nmax, RBF strategy domain consisting of
12 RBF strategies Φ = {Cubic, Gaussian, Multiquadric, InverseQuadratic,
InverseMultiquadric, ThinP lateSpline} × {Plog, standardized}, number
of solutions that can be evaluated in parallel p, acquisition function α, con-
straint first indicator cfirst.
Output: Evaluated solutions.

1 Function MAGOF(f , g, xlb,xub,DoE, Ninit, Nmax, Φ, p, α, cfirst):
2 x∗ ← {x1, · · · ,xNinit

} ← DoE (xlb,xub, Ninit) . Generate DoE, X ∈ Rd×Ninit

3 F,G,X← Evaluate(x∗, f, g, p, cfirst, Ninit,F = [],G = [],X = []) . Evaluate

initial sample and initialize archives F, G and X
4 h← {fe ∪ ge} . Union of expensive objective and constraint functions

5 ϕ∗ ←
(
ϕ1, . . . ,ϕ|h|

)
← (Cubic, standardized)|h| . Initialize RBF strategy for all

expensive functions, ϕ∗ ∈ Φ
6 Ei,j ← 0 ∀(i, j) ∈ h× Φ . Initialize RBF approximation errors for each

possible RBF configuration(Φ) for all expensive functions(h)
7 j ← Ninit . Initialize expensive evaluation counter

8 while j < Nmax do

9 SΦ ←
(
SΦ1
h1
, . . . , SΦ12

h|h|

)
← {FitRBF(X, h,Φ,xlb,xub) | ∀h ∈ h} . Fit RBFs

using all strategies(Φ) for all expensive functions(h)

10 Sϕ∗ ←
(
S∗1 , . . . , S

∗
|h|

)
. Select best RBF strategy based on line 5 or 15

11 x∗1, . . . ,x
∗
p ← Max(α, p, Sϕ∗ , fc, gc) . Get p new solutions based on

acquisition function α, use cheap functions fc and gc directly

12 j ← j + p . Increase iteration counter to new matrix sizes

13 X←
[
X, x∗1, . . . , x

∗
p

]
. Add p new solution vectors, X ∈ Rd×j

14 F,G,X← Evaluate(x∗, f, g, p, cfirst, j,F,G,X) . Evaluate new solutions

15 ϕ∗,E←SelectBestRBFStrategy(E, SΦ,F,G,X) . Update RBF approximation

errors E, and new best RBF configuraiton ϕ∗

16 end

17 return (F, G, X)

B.2.3 Evaluation of the solutions

On lines 3 and 14 of Algorithm 4 the solutions that are proposed by the DoE, or

after optimizing the acquisition function, are evaluated as described in the evaluate

Algorithm 5. The approach is dependent on the inexpensiveness of the constraint

and objective functions. There are 3 levels of expensiveness. (1) the function can be

evaluated almost instantly and can therefore be evaluated millions of times (it must at

least be faster than fitting and interpolating an RBF surrogate model). (2) the function
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requires a little bit of evaluation time and can therefore not be evaluated numerous

times and evaluating them millions of times is too costly. Function evaluations of

level 2 for example require a few seconds up to a few minutes and are significantly less

costly compared to the most expensive evaluations. (3) the function is computationally

expensive and the evaluation budget is very limited e.g. computational fluid dynamic

simulations or finite element analysis that can take up to hours on a cluster to evaluate.

The inexpensive functions level 1 are used directly in the optimization algorithm,

see Section B.2.5. If the constraints are inexpensive level 2, they are evaluated first

before the computationally expensive functions. Only if the constraints are satisfied,

the expensive functions (level 3) are evaluated. If the constraints are violated, a null

is stored instead of the expensive outcome. This way, in the next iteration of MAGOF

the RBF surrogates for the expensive functions remain the same as in the previous

iteration while for the inexpensive functions level 2 the RBF surrogates are updated.

Algorithm 5: Evaluate.
Input: Solutions x∗ to be evaluated, Objective function f(x), that can be
computationally expensive fe(x) or computationally inexpensive fc(x), con-
straint function(s) g(x), split where required into expensive constraint func-
tion(s) ge(x), computationally inexpensive constraint function(s) gc(x), num-
ber of solutions that can be evaluated in parallel p, constraint first indicator
cfirst, objective values of evaluated solutions F, constraint values of evaluated
solutions G, evaluated solutions X.
Output: Evaluated solutions.

1 Function Evaluate(x∗, f , g, p, cfirst, j, F, G, X):
2 G←

[
G, gc(x∗1), . . . , gc(x∗p)

]
. Add vectors of cheap constraints, G ∈ Rm×j

3 if not cfirst then
4 . If constraints do not need to be satisfied first then add

5 F←
[
F, fe(x∗1), . . . , fe(x∗p)

]
. Vector of evaluated objectives, F ∈ Rj

6 G←
[
G, ge(x∗1), . . . , ge(x∗p)

]
. Vectors of evaluated constr G ∈ Rm×j

7 else
8 for xi ∈ {x∗1, . . . , x∗p} do
9 if gc(xi) ≤ 0 then

10 . If constraints need to be satisfied first

11 F← [F, fe(xi)] . Only add objective value of feasible solutions

12 G← [G, ge(xi)] . Only add constraint value of feasible solutions

13 else
14 . If constraints are violated

15 F← [F, null] . Don’t evaluate and add null

16 G← [G, null] . Don’t evaluate and add null

17 end

18 return (F, G, X)
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B.2.4 Radial Basis Functions

In every iteration of MAGOF, surrogates are fitted to approximate the constraint and

objective functions (line 9 of Algorithm 4). However, there are many kernel options

and scaling techniques available when fitting RBF surrogates and each option can be

good for different scenarios. Therefore, RBF surrogates are fitted with the following

kernels: Cubic, Gaussian, Multiquadric, InverseQuadratic, InverseMultiquadric,

ThinP lateSpline and two different scaling strategies are used to scale the constraint

and objective values. The standardization method is used so that the uncertainty

quantification method can be used for the RBFs. The Plog transformation from

Equation B.1 is selected so that the RBFs can better model steep slopes. For each

combination of these kernels and transformation methods, a surrogate is fitted which

results in a total 12 RBF surrogate models per expensive function. In every iteration,

the RBF strategy with the smallest approximation error is selected (line 5 and 15 of

Algorithm 4) and the RBF approximation errors are stored.

Plog(y) =

+ ln(1 + y), if y ≥ 0

− ln(1− y), if y < 0
(B.1)

B.2.5 Acquisition Function Optimization

The acquisition functions integrated into the framework are: the expected improve-

ment acquisition function [85], the generalized expected improvement acquisition func-

tion [119] for parallel evaluations when p > 1, and the purely exploitative acquisition

function that predicts the objective value with the RBF surrogate without uncertainty.

This acquisition function is optimized with the COBYLA algorithm [120]. COBYLA

is a single objective optimization algorithm that optimizes an optimization problem

with constraints by linearly approximating the acquisition function and the most vio-

lated constraint in a small trust region. COBYLA finds the most promising solution

in this trust region, then checks the constraint and objective values, and iteratively

adjusts the trust region until the trust region is so small and the local optimum is

found.

For the functions with expensiveness levels 2 and 3, COBYLA is instructed to

use the surrogate models when optimizing the acquisition function. The inexpensive

functions (level 1) that can be calculated instantly, are directly used by COBYLA

when optimizing the acquisition function. The usage of the inexpensive functions is

beneficial because they don’t make approximation errors that surrogate models make.
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Note that during the optimization of the acquisition function, the inexpensive functions

(or surrogate for expensive functions) are evaluated many times.

Because COBYLA is a local optimizer, the COBYLA algorithm starts searching

from multiple random locations. This makes it more likely that the global optimum

is found.

B.3 Experiments

For this algorithm, four types of experiments are conducted. All experiments are

conducted on the G-problem test suite [93, 61].

B.3.1 G-Problem experimental setup

The G-Problems (G1 to G11 from [93, 61]) are selected as an artificially created

benchmark suite to validate the performance of MAGOF. A Python implementation

of the G-Problems is taken from the CEC 2006 Special Session on Constrained Real-

Parameter Optimization [63]. The G-problems considered have between 1 and 9 con-

straints and between 2 and 20 decision parameters, and all are to be minimized. The

optimal solutions are known for all G-problems, some problems have active constraints

at the optimum, while other optima are somewhere in the feasible region. The feasibil-

ity ratio of the G-Problems varies between less than 1% feasible and 99% feasible per

test problem. More details regarding the G-Problems can be found in e.g. [13, 93, 61].

Evaluation of the constraint and the objective functions of the G-problems are compu-

tationally inexpensive. However, for the experiments, it is assumed that the objectives

are computationally expensive to evaluate.

To test the functionality of the mixed expensiveness, four different configurations

of MAGOF are tested with different infill criteria and different inexpensive function

handling techniques.

1 Traditional The ”traditional” configuration uses MAGOF without any special

treatment and/or separation of expensive versus inexpensive functions. The objective

and constraint methods are considered equally expensive which in MAGOF means

that in every iteration the RBFs are fitted for the constraints and objective, the best

RBF strategy is selected, and then the default acquisition function is optimized. The

resulting solution is computed and evaluated with the constraints and the objectives.

2 Constraints First: The ”constraints first” configuration of MAGOF utilizes

the adjustment in the evaluation strategy as presented in Algorithm 5. In this con-
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figuration it is assumed that the constraints evaluations are computationally way less

expensive compared to the objective evaluation. In every iteration, the RBFs are

fitted, the best RBF strategy is selected, and the default acquisition function is op-

timized using the surrogates. The solution that is proposed is now evaluated first on

the constraints. In case any of the constraints are violated, the objective function is

not evaluated and the next iteration starts. In case the constraints apply the objective

function is evaluated.

3 Constraints Integrated: The ”constraint integrated” configuration in MAGOF

is not conventional as instead of fitting RBFs for the constraints, the constraints are

directly used when optimizing the acquisition function because it is assumed that the

constraint function evaluations are computationally cheaper than fitting an RBF and

making predictions with RBFs. The RBFs are now only used to model the objective

function since the objective function evaluation is assumed to remain computationally

expensive.

4 Parallel: The ”parallel” configuration of MAGOF does not assume inexpensive

constraints or objectives and therefore uses RBF models to model the assumed ex-

pensive constraint and objective functions. After the RBF models are fitted, the best

RBF approximation is selected, and the generalized expected improvement acquisi-

tion function is optimized. The hyperparameter (gEI) of the acquisition function is

set in such a way that one solution proposed by the algorithm is purely exploitative

(gEI = 0), one is explorative and would be most similar to solutions proposed by the

expected improvement acquisition function (gEI = 6), and one solution is a balance

between exploitative and explorative (gEI = 3). This way, the generalized expected

improvement acquisition function can be used to propose 3 different solutions. After

the solutions are proposed, they are evaluated in parallel with both the objective and

constraint functions.

All configurations start with an as small as possible initial Halton sample as a

DoE. After the DoE the first 3 configurations are allowed to do a total of 300 −
|DoE| iterations for the non-parallel configurations. The configuration that proposes

3 solutions per iteration was allowed to do an additional 100 iterations. This way

each algorithm configuration has in theory the possibility to do 300 objective function

evaluations. Note that the configuration with constraint first, does not necessarily

use all these 300 objective evaluations since in the 300 iterations, this configuration

also sometimes proposes infeasible solutions. The constraints integrated configuration

uses a lot more constraint function evaluations since when optimizing the acquisition

function, the constraints are evaluated many more times.
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B.4 Results

In Table B.1 the results are presented for the G-problem test suite. In this table, the

mean smallest objective scores of the feasible solutions are presented after 10 indepen-

dent runs of MAGOF with the four different options. Besides the mean objective score,

the number of required function evaluations is reported that was required to reach the

minimum. Please refer to [63] for the complete set of minima for all functions. A red

cross (x) indicates that the optimum was not found within 300 evaluations.

Function Traditional Constraint Constraint Parallel
First Integrated P=3

G01 fv −15.00 −15.00 −15.00 −13.54
fe 28 24 22 x

G02 fv −0.304 −0.304 −0.383 −0.304
fe x x x x

G03 fv −0.000 −0.089 −0.006 −0.000
fe x x x x

G04 fv −30665 −30665 −30665 −30665
fe 26 19 11 111

G05 fv 5126.5 5126.5 5126.5 5126.5
fe 41 12 10 x

G06 fv −6957 −6959 −6959 −6956
fe x x x x

G07 fv 24.306 24.306 24.306 35.479
fe 34 22 21 x

G08 fv −0.096 −0.096 −0.096 −0.096
fe 13 30 28 100

G09 fv 680.63 1186.8 680.64 1597.8
fe 240 x 89 x

G10 fv 7114.3 7088.6 7049.3 9233.1
fe x x 65 x

G11 fv 0.7500 0.7500 0.7500 0.7500
fe 7 5 5 12

Table B.1: The mean minimum encountered objective score of feasible solutions (fv), and
the mean objective function evaluations (fe) required to find the optimal value (a x indi-
cates the known optimal value was not reached in 300 iterations). Four different approaches
are compared, the traditional optimization technique, the constraint first approach, the con-
straints integrated into the acquisition function optimization process, and the approach with
the generalized expected improvement acquisition function that proposes 3 solutions in par-
allel. The best combination of fv and fe are marked in bold per G-problem. All G-problems
are optimized in 10 independent optimization runs.

Inspection of the results shows that in the majority of the problems using the cheap
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constraints directly in the optimization algorithm when optimizing the acquisition

function is beneficial in terms of execution time and convergence. The other option

where the constraints are first evaluated to check for feasibility before the objective

function is evaluated also shows better results compared to the conventional approach

where the objective is evaluated together with the constraints. The option to propose

3 solutions in parallel with the generalized expected improvement acquisition function

does not show good results. It was expected upfront that when proposing multiple

solutions for parallel evaluation (and this way save computation time), the number

of iterations of the algorithm could be reduced. However, the number of required

iterations and therefore also the number of function evaluations is higher compared to

the other approaches.

On the G08 test problem, the traditional approach finds the optimum in less re-

quired objective evaluations compared to the other approaches. It is assumed that the

reason for this quick convergence is that the information gathered from the evaluated

infeasible solutions is of great value for this optimization problem. The information

from the infeasible evaluated solutions is missing when the constraint first configura-

tion or constraints integrated configuration is used in MAGOF.

B.5 Conclusion and Future Work

Specifically for the optimization of the two single objective ship design problems from

Chapter 6, the Modular Adaptive Global Optimization Framework (MAGOF) is intro-

duced. MAGOF can solve constraint single objective problems with a mix of computa-

tionally expensive and computationally inexpensive constraint and objective functions.

MAGOF uses RBF surrogates for expensive functions, the inexpensive functions can

directly be used when searching for promising solutions with an acquisition function.

Besides this, a strategy is added to MAGOF that enforces the feasibility of the inexpen-

sive constraints before computationally expensive objective and/or computationally

expensive constraints are evaluated. MAGOF with the inexpensive constraints used

directly when optimizing the acquisition function showed to be the most promising

option when optimizing the G-Problem test suite.

In the future, more research is required on how to effectively propose multiple

solutions in parallel with other batch acquisition functions described in e.g. [67, 171, 8].

Secondly, more research is required on setting up the parameterization of optimization

problems.
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radial basis function surrogates. In F. Hoffmann, E. Hüllermeier, and R. Mikut,
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signing ships using constrained multi-objective efficient global optimization. In

169



Bibliography

Giuseppe Nicosia, Panos Pardalos, Giovanni Giuffrida, Renato Umeton, and
Vincenzo Sciacca, editors, International Conference on Machine Learning, Op-
timization, and Data Science, pages 191–203. Springer, 2018.

[155] Roy de Winter, Bas van Stein, and Thomas Bäck. Ship design performance and
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Summary

Constraint multi-objective optimization with a restriction to the number of allowed

function evaluations is a challenging topic. This thesis proposes a solution for con-

straint multi-objective optimization problems, with a special emphasis on its appli-

cation in the ship design industry. It distinguishes itself by abandoning traditional

design methodologies by introducing a more holistic, computational framework that

uses efficient global optimization for complex design challenges. These algorithms are

intended to help naval architects deal with these design challenges, where competing

objectives such as cost, efficiency, environmental impact, and safety must be balanced

while the constraints imposed by physics and regulations should be satisfied. This shift

is facilitated by advancements in computational power and simulation technologies,

enabling designers to explore more of the design space efficiently.

Central to this research is the development and application of efficient constraint

multi-objective optimization algorithms that are capable of identifying the feasible

Pareto frontier of computationally expensive problems. The proposed algorithms do

so by exploiting surrogates for the computationally expensive functions, while the

computationally inexpensive functions are used directly when searching for promising

solutions that jointly have a large hypervolume contribution. Because of the use of the

introduced multi-point acquisition function, the expensive evaluation of the solutions

can be done in parallel. This research provides a comprehensive examination of these

algorithms on a diverse set of benchmark problems and compares them with other

state-of-the-art algorithms. After empirically proving the success, the algorithms are

deployed and used to solve ship design optimization problems.

This thesis also highlights the importance of the early design phase, arguing that

decisions made during this stage have a significant impact on the ship’s lifecycle costs

and performance. By integrating multi-objective optimization techniques early in the

design process, the designers can make more informed decisions that lead to more
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cost-effective, efficient, and environmentally friendly vessels. This approach not only

enhances the sustainability of ship designs but also aligns with the broader industry

trend towards greener and more sustainable maritime operations.

The practical applications of these optimization techniques are demonstrated with

a series of case studies. These case studies not only validate the effectiveness of the

algorithms in real-world scenarios but also provide valuable insights into the challenges

and opportunities associated with their implementation. Through these practical ex-

amples, the research bridges the gap between theory and practice, offering a compelling

argument for the adoption of optimization techniques in ship design.

Looking toward the future, several areas for further research are identified, includ-

ing the need for more efficient algorithms that can handle mixed integer optimization

problems. It also calls for a broader application of these techniques beyond ship design,

the use of the proposed algorithms can be interesting to other engineering disciplines

faced with similar multi-objective optimization problems.

In conclusion, the research presented in this dissertation represents a significant

contribution to the field of multi-objective optimization and naval architecture. By

advancing the state of the art in multi-objective optimization and demonstrating its

practical applications in ship design, the research paves the way for more innovative,

sustainable, and cost-effective design solutions. This work not only enhances our

understanding of the complexities involved in ship design but also offers a blueprint

for the future of maritime engineering, where computational optimization techniques

play a central role in addressing the industry’s most pressing challenges.
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Samenvatting

Meerdere-doelstellingen optimalisatie met functionele restricties en met een limiet

op het aantal toegestane functie-evaluaties is een uitdagend onderzoeksonderwerp.

Deze thesis geeft een oplossing voor constraint multi-objective optimalisatieproble-

men, met speciale nadruk op de toepassing in scheepsontwerp. Het onderscheidt zich

door traditionele ontwerpmethodologieën met een meer holistisch, computationeel in-

tensievere methodologie die efficiënte globale optimalisatie gebruikt voor complexe

ontwerpuitdagingen. Deze algoritmes die voorgesteld worden zijn bedoeld om mari-

tiem ingenieurs te helpen bij het optimaliseren van scheepsontwerpen, waarbij concur-

rerende doelstellingen zoals kosten, efficiëntie, milieueffect en veiligheid in evenwicht

moeten worden gebracht binnen de door fysica en regelgeving opgelegde beperkingen.

Deze verschuiving wordt vergemakkelijkt door vooruitgang in computationele kracht

en simulatietechnologieën, waardoor ontwerpers efficiënter meer van de ontwerpruimte

kunnen verkennen.

Centraal in dit onderzoek staat de ontwikkeling en toepassing van efficiënte con-

straint multi-objective optimalisatie algoritmes die in staat zijn de Pareto-front van

computationeel intensieve problemen te identificeren. De voorgestelde algoritmen

werken door gebruik te maken van surrogaten voor de computationeel intensieve func-

ties terwijl de goedkopere functies direct gebruikt worden tijdens het zoeken naar

veelbelovende oplossingen die gezamelijk een groot aandeel hebben in toegevoegd hy-

pervolume. Door het gebruik maken van de multi-point acquisitie functie kunnen

meerdere voorgestelde oplossingen tegelijkertijd geevalueerd worden. Dit onderzoek

biedt een uitgebreide evaluatie van de deze algoritmes door ze te testen op diverse

benchmark problemen en ze te vergelijken met andere algorithmes. Na het empirisch

bewijzen dat ze goed werken zijn de algoritmen ingezet in hedendaags scheeps opti-

malisatie problemen op te lossen.

Deze thesis benadrukt ook het belang van de vroege ontwerpfase, door te stellen
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dat beslissingen die in deze fase worden genomen een diepgaande invloed hebben

op de levenscycluskosten en prestaties van het schip. Door multi-objective optimal-

isatietechnieken vroeg in het ontwerpproces te integreren, kunnen ontwerpers meer

gëınformeerde beslissingen nemen die leiden tot kosteneffectievere, efficiëntere en mi-

lieuvriendelijkere schepen. Deze aanpak verbetert niet alleen de duurzaamheid van

scheepsontwerpen, maar sluit ook aan bij de bredere industrietrend naar groenere en

meer duurzame maritieme operaties.

De praktische toepassingen van deze optimalisatietechnieken worden gedemon-

streerd door een reeks casestudy’s. Deze casestudy’s valideren niet alleen de ef-

fectiviteit van de algoritmes in real-world scenario’s, maar bieden ook waardevolle

inzichten in de uitdagingen en kansen die gepaard gaan met hun implementatie. Via

deze praktische voorbeelden overbrugt het onderzoek de kloof tussen theorie en prak-

tijk, en biedt een overtuigend argument voor de adoptie van optimalisatietechnieken

in scheepsontwerp.

Kijkend naar de toekomst, worden verschillende gebieden voor verder onderzoek

gëıdentificeerd, inclusief de behoefte aan efficiëntere algoritmes die mixed-integer op-

timalisatieproblemen kunnen aanpakken. Er wordt ook opgeroepen tot een bredere

toepassing van deze technieken buiten scheepsontwerp, omdat ze potentieel nuttig kun-

nen zijn in andere technische disciplines die geconfronteerd worden met vergelijkbare

multi-objective optimalisatieproblemen.

Samenvattend vertegenwoordigt het onderzoek gepresenteerd in deze dissertatie een

significante bijdrage aan het veld van multi-objective optimalisatie en scheepsarchitec-

tuur. Door de stand van zaken op het gebied van multi-objective optimalisatie vooruit

te helpen en de praktische toepassingen ervan in scheepsontwerp te demonstreren,

maakt het onderzoek de weg vrij voor innovatievere, duurzamere en kosteneffectievere

ontwerpoplossingen. Dit werk verbetert niet alleen ons begrip van de complexiteit

betrokken bij scheepsontwerp, maar biedt ook een blauwdruk voor de toekomst van

maritieme engineering, waar computationele optimalisatietechnieken een centrale rol

spelen bij het aanpakken van de meest urgente uitdagingen van de industrie.
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