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Conclusions

Automated Machine Learning (AutoML) has emerged as an effective approach to
streamline the machine learning development process for real-world applications.
This thesis provides a comprehensive exploration of AutoML and its various
important aspects. The research conducted in this thesis encompasses several
significant contributions to the field.

To conclude the thesis, in this chapter, we provide a summary of the content of
this thesis. We begin by highlighting the main contributions made in this research
and addressing the research questions posed. This is presented in Section 9.1,
where we summarize the key findings and achievements of this thesis.

Section 9.2 is dedicated to discussing potential avenues for future research. We
outline these potential directions and offer insights into how they can contribute
to advancing the state-of-the-art in AutoML.

9.1 Summary

Chapter 1 begins with a brief introduction and motivation to Automated Ma-
chine Learning (AutoML). It is attempted to give fundamental formulations of
optimization approaches to address the AutoML optimization problem (i.e., HPO-
based and ML pipeline optimization approach). Furthermore, the chapter outlines
the significant contributions of the thesis within the AutoML domain, highlights
the specific research questions and provides an overview of each chapter’s main
contributions and methodologies. Lastly, this chapter also provides a roadmap for
the reader and establishes the overall organization and structure of the thesis.

Chapter 2 discusses the life cycle of machine learning (ML) application
development and provides a comprehensive literature review on key technical
aspects of ML. It explores the different stages involved in the ML application
development process, from data preparation, data preprocessing, ML pipeline
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9. Conclusions

optimization, model evaluation and application development. The chapter also
discusses the challenges and considerations specific to each stage, highlighting
the importance of an efficient and automated approach to streamline the ML
development process. Building upon the ML life cycle, the discussion in this
chapter expands to encompass various functions and techniques offered by existing
AutoML products. The chapter also examines the underlying techniques and
methodologies employed by the existing AutoML products, shedding light on the
potential implications for ML application development.

Chapter 3 focuses on providing a thorough literature review of AutoML
optimization approaches, with a specific emphasis on adapting hyperparameter
optimization (HPO) approaches to address the AutoML optimization problem.
The chapter begins by presenting a comprehensive review of common black-box
optimization approaches employed in AutoML, including Grid search, Random
search, and Bayesian optimization. These approaches serve as the foundation for
understanding the evolution and advancements in AutoML optimization. Follow
up with a literature review of optimization algorithms of the two well-known
multi-fidelity approaches – racing procedure and bandit learning.

Throughout the literature review, the chapter provides insights into the the-
oretical foundations, algorithmic frameworks, and practical implementations of
these optimization approaches in the context of AutoML. This chapter aims to
establish the theoretical background and set the stage for the original contributions
and research conducted in the subsequent chapters of the thesis.

Chapter 4 provides two benchmark experiments repeatedly used in this thesis.
Detailed information about the two experiments is introduced in this chapter,
where each includes a search space, examined datasets and a detailed experiment
procedure. The first benchmark experiment is designed for class-imbalanced
problems, where a set of 44 binary class-imbalanced benchmark datasets and
a suitable search space are provided. The datasets are taken from the Keel
collection [186]. The search space includes 21 resampling techniques and five
classification algorithms, where algorithms and their hyperparameters are selected
based on related work recommendations. Moreover, this experimental design is
successfully used in Chapters [5-8] that demonstrate its usefulness for imbalanced
classification problems. This study also answers RQ1 on how to handle class
imbalance problems.

The second set of benchmark experiments is identical to [22], which includes
73 classification benchmark datasets from OpenML [189], and the search space
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is extracted from Auto-sklearn [45]. This set of experiments is later used in the
works of chapter 7 and chapter 8.

Chapter 5 investigates the effectiveness of the commonly used HPO optimiza-
tion approaches – Random search and Bayesian optimization (BO), to solve the
CASH problem for the binary class imbalance classification problems. This investi-
gation is to answer RQ2 in which approach is most effective for optimizing the
ML pipeline in addressing class imbalance problems. Besides, we are particularly
interested in how CASH improved classification performance compared to using
static default hyperparameters (i.e., try all combinations of resampler and classifier
without hyperparameter tuning). The key findings from this indicate the follow-
ing. We observed that CASH optimization significantly improves classification
performance compared to using static default hyperparameters. Moreover, the
experimental results indicate that BO is always the best method found. This study
concludes that BO outperforms other approaches in answering RQ2. Additionally,
98% of runs yield the best performance by fine-tuned ML pipelines that contain a
resampling and a classification algorithm, demonstrating the experimental design’s
usefulness as well as supporting our answer to RQ1.

Chapter 6 presents our new method to compute performance for classification
problems where the distribution between classes is imbalanced and has unequal
class importance. In ML, the assessment method is critical in evaluating an ML
model’s performance and choosing the suitable ML model that works well on the
given problem. Many performance metrics, such as F1, geometric mean, recall,
and precision, can be used in class imbalanced learning. However, these methods
do not consider the unequal class problem.

Built on top of standard performance metrics, we propose a new performance
metric incorporating unequal class importance into the standard performance
metrics. More precisely, we propose to compute the classification performance
based on the new penalized confusion matrix based on the actual confusion matrix
and a user-defined penalty matrix. The domain experts define the penalty matrix,
which contains the penalty values between actual and predicted classes. The
penalized confusion matrix is then produced by multiplying every element of the
actual confusion matrix with the corresponding element in the penalty matrix. The
final classification performance is later calculated via the new penalized confusion
matrix instead of the actual one, as usual. Our approach solves RQ3 in handling
the dual problem of class imbalanced and unequal importance between classes.
Moreover, we also investigate the correlation of assessment values between the
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new method and the standard one. Our finding indicates that the performance
computed by the new approach and the standard metrics are strongly correlated.
That is to say, our approach incorporates unequal class importance into the
standard performance metrics and does not change their purposes (e.g., metrics
for imbalanced problems).

Chapter 7 researches improving BO performance for AutoML optimization
problems via maximizing coverage of search space already during the initial sam-
pling of BO to characterize the response surface more accurately. The initial
sampling step is the first step of BO to utilize the first response surface. It is
typically restricted to a small budget since the effectiveness of BO becomes evident
mainly in the later stages of optimization when it learns to produce better configu-
ration. Considering how to improve coverage over AutoML search space within a
limited budget, we propose the novel combination-based sampling approach for the
initial sampling stage of BO. Our proposed initial sampling approach is as follows.
We first attempt to group algorithms with similar technical behaviours as in the
literature, where one can represent the rest of the group. Then, we reallocate
the sampling budget to explore the potential of similarities between algorithms
within the group: sampling fewer of the same algorithms frees up the budget to
be distributed to other (different) algorithms, thus optimizing the coverage of
algorithm-hyperparameter search space.

To investigate the potential of our proposed approach in AutoML optimization
scenarios, we compare the performance of BO with and without using it on the two
AutoML benchmark experiments (see Chapter 4) over 117 classification problems.
The key findings from this indicate the following. In the first set of benchmark
experiments, we evaluated them on two scenarios of initial sample sizes – 20
and 50 iterations. With our improvement, the performance of BO significantly
improved in several cases and did not significantly worst in any tested cases. In
the second experiment, we also compared the two experimented BO approaches
against the other six well-known AutoML products (i.e., Auto-sklearn (BO and
Random search), H2O, TPOT, ATM and Hyperopt-sklearn). The experimental
results indicate that the BO using our initial sampling approach produces the
best results and significantly outperforms others in more cases than all compared
approaches. In contrast, the experimented BO without our improvement does not
significantly win in any tested cases.

In conclusion, the experimental results answer RQ4: Our approach, which
maximizes the coverage of algorithm-hyperparameter search space during the initial

158



9.1 Summary

sampling stage of BO, clearly improved BO performance in solving the AutoML
optimization problems.

Chapter 8 introduces a novel contesting procedure algorithm, Divide And
Conquer Optimization (DACOpt), to efficiently solve AutoML optimization. Mo-
tivated by the fact that BO performs better for low-dimensional problems [31],
while AutoML is typically high-dimensional mixed variables. This causes BO to
be less robust for solving AutoML. To limit this issue, we first partition the search
space into a reasonable number of sub-spaces based on algorithm and budget
constraints. Then, multiple BO performs on every sub-space independently (i.e.,
sub-process) to optimize BO performance. Due to their independence, this also
allows them to be explored in parallel. Additionally, we adopt the ideas of the two
well-known multi-fidelity approaches (i.e., bandit learning and racing procedure)
into our procedure to eliminate ineffective sub-processes to free up the budget to
be distributed to the better one, thus optimizing the budget usage.

Generally speaking, the contesting procedure is complementary to the existing
BO approaches to handle their limit when optimizing the AutoML problems. The
proposed approach is constructed of three main components:

• The splitter function to partition the search space into multiple sub-spaces.
Then, an existing BO approach is employed to optimize those sub-spaces inde-
pendently, leading to a corresponding number of optimization sub-processes.

• The elimination function decides to stop poorly performing sub-spaces (i.e.,
terminate the corresponding sub-processes). This function also addresses
RQ5, which concerns when we should stop tuning in a particular area (sub-
space) of the search space. To summarize, we can stop tuning in an area when
it demonstrates significantly worse results compared to the most promising
area.

• The controller function allocates budgets adaptively for tuning each sub-
space based on the performance of the corresponding optimization processes.
This function provides an answer to RQ6 on how to allocate computational
resources over the search space. In simple terms, we conduct multiple
competitions over the available resources, which are calculated based on the
input computation resources and the number of areas. After each race, several
areas are eliminated, and the remaining areas share the saved resources of
the race. This ensures that the most effective area stays longer and has the
most tuning resources.
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Lastly, we compare the performance of BO with and without our contesting
procedures on the two AutoML benchmark experiments Chapter 7. We use
Hyperopt [153] and BO4ML [15] as the underlying BO. Besides, the proposed
procedure has variants of the elimination function (i.e., it adopts bandit learning
and racing procedure). Thus, we have four variants in total. The key findings from
this indicate the following.

• First, in both experimental scenarios, both BOs with our contesting procedure
significantly perform better than one without using it. Overall, the contesting
procedure that used BO4ML achieved more best results than any other
competitors. This finding again demonstrated the effectiveness of BO4ML
(i.e., also providing an answer to RQ4) for solving AutoML problems.

• Comparing the two adopted elimination functions, the one that adopted
bandit learning performs better than the competitor. Thus, we recommend
that researchers use the bandit learning variant for AutoML problems.

• Lastly, we also compared the proposed approaches against the six state-
of-the-art AutoML products (i.e., Auto-sklearn (BO and Random search),
H2O, TPOT, ATM and Hyperopt-sklearn), in the second scenario. The
proposed contesting procedure produces the best results, performs well (i.e.,
either achieved the best performance or not significantly worse than the
best-found method) and significantly outperforms others in more cases than
all compared approaches (i.e., our best contest procedure produces 28 highest,
53 well-performing and 26 significantly outperforms values over 73 tested
cases).

In conclusion, the experimental results demonstrated the effectiveness of our new
contesting procedures in solving AutoML optimization problems. They notably
enhanced BO’s performance, and the AutoML, using our proposed contesting
procedure as an optimizer, won over the current state-of-the-art AutoML tools,
such as H2O, Auto-sklearn, ATM, Hyperopt-sklearn, and TPOT, in a wide range
of benchmark tests.

9.2 Future work

This thesis has focused on conducting research in the field of Automated Machine
Learning (AutoML) and has presented significant achievements and insights. How-
ever, numerous future works within AutoML still require further investigation
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and development. In this section, we outline some potential directions for future
research and provide insights into how they can contribute to advancing the state-
of-the-art in AutoML. In the following discussion, we will explore potential future
research directions to extend the work presented in this thesis.

9.2.1 Combination-based sampling

The combination-based sampling approach, introduced in Chapter 7, aims to
maximize the coverage of algorithm-hyperparameter samples in the search space.
This approach improves the accuracy of characterizing the response surface during
the initial sampling stage of the historical-based optimization approach. Here are
several potential future research directions for extending this work:

• The combination-based sampling is initially incorporated for Tree Parzen
Estimators [153]). It would be interesting to exploit the potential of applying
the proposed sampling approach to other BO variants (e.g., SMAC [25],
MIPEGO [38]) and historical-based approaches, such as evolutionary strate-
gies [108] and genetic algorithms [103]. By extending the evaluation of
our sampling approach to different optimization techniques, we can assess
its generalizability and potential for improving the performance of various
optimization algorithms. This exploration may provide a comprehensive
understanding of how the initial sampling effect to the later stage of historical-
based optimization approaches.

• It would be interesting to explore how the combination-based sampling ap-
proach, introduced in our work, performs during the sequential sampling stage
of BO. By maximizing the coverage of algorithm-hyperparameter samples in
the search space, the candidate configurations proposed at each iteration may
exhibit better exploration and exploitation properties. This could potentially
lead to more efficient and effective sampling. This research direction can
potentially enhance the optimization process, improve the quality of candi-
date configurations, and provide valuable guidelines for selecting suitable
sampling strategies for historical-based optimization approaches to address
AutoML problems.

9.2.2 Contesting procedures

The contesting procedures algorithm introduced in Chapter 8, serves as an efficient
approach for addressing AutoML optimization problems. This algorithm offers
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promising results, but several potential avenues for future research can further
enhance and expand on this work. The following are some of the possible research
directions discussed:

• As part of the proposed contest procedure, the algorithmic hierarchy attribute
allows organizing the choice of algorithms in the search space in a hierarchical
manner, with one algorithm in a branch potentially representing multiple
other algorithms. Due to the large set of possible combinations of algorithms
over operators (i.e., functional algorithms in ML pipeline structures), it is
not possible to try every combination in practice. Hence, the algorithmic
hierarchy is a realistic way to identify ineffective combinations. However, we
acknowledge that the algorithmic hierarchy is currently constructed based on
the experiences of practitioners in the field. As such, the resulting structure
of the search space may not be optimized. It would be highly advantageous
to explore methods to optimize the hierarchical structure using historical
data from experiments. Advanced techniques such as clustering methods
can be applied to automatically identify patterns and relationships among
algorithms, enabling the creation of an optimized algorithmic hierarchy.
This data-driven approach would enhance the efficiency and effectiveness of
AutoML by incorporating empirical insights in a systematic and automated
manner, reducing the reliance on manual construction.

• Moreover, it is worth considering the integration of meta-learning approaches
to identify promising search areas at an early stage. By leveraging meta-
learning techniques, we can leverage prior knowledge or learned patterns to
guide the optimizer. This can help accelerate the optimization process by
focusing on areas that have shown promising performance in previous similar
tasks. We believe that the incorporation of meta-learning can enhance the
efficiency and effectiveness of the optimizer, enabling them to make informed
decisions and prioritize exploration in the search areas likely to yield favorable
results.

9.2.3 Benchmarking methods and application domains

Indeed, an important concern in evaluating AutoML optimization algorithms is the
inconvenience and high cost associated with using a wide range of real datasets.
This process can be time-consuming, resource-intensive, and financially burdensome.
While benchmarking with synthetic test functions is a common strategy in
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optimization studies due to their closed-form representation and efficient evaluation,
the existing synthetic test functions are not suitable for AutoML benchmarking [22].
This is primarily because they do not simulate categorical hyperparameters, pure
categorical hyperparameters, or algorithm choice hyperparameters, nor do they
account for structured search spaces. An interesting direction for future research
is the development of synthetic test functions specifically designed for AutoML
benchmarking. These test functions should accurately represent the complexities
and characteristics of real-world AutoML problems, including the incorporation
of categorical hyperparameters and structured search spaces. By defining such
synthetic test functions, researchers and practitioners can evaluate and compare
AutoML optimization algorithms in a more controlled, cost-effective, and efficient
manner. This would enable the systematic analysis of algorithm performance and
facilitate advancements in the field of AutoML.

Empirical Performance Models (EPMs), as an alternative to synthetic
test functions, introduced by [249]–[252], provide a surrogate representation of the
response surface of a specific performance metric. These models aim to capture
the empirical performance characteristics of a real dataset, offering a means to
theoretically evaluate algorithms in AutoML scenarios. It is important to note
that existing empirical performance models (EPMs) are not tailored for AutoML
scenarios, as mentioned in previous studies [22], [253]. This raises the need for
further investigation and assessment of its suitability within the AutoML context.
Exploring the applicability of EPMs in AutoML can lead to valuable advancements
in the evaluation and benchmarking of AutoML algorithms.

These future works to AutoML benchmarking approaches would drive progress
and advancements in the field, promoting the development of robust and efficient
AutoML solutions for a wide range of practical applications.

Lastly, in this thesis, we have conducted comprehensive investigations into
AutoML, focusing primarily on supervised machine learning problems. However, it
would be beneficial to expand the discussion to include other domains of machine
learning as well. Exploring studies and research in unsupervised machine
learning, reinforcement learning, and deep learning can provide valuable
insights and a broader understanding of the topic. This would allow for a more
holistic analysis of AutoML’s applications and effectiveness across various ML
domains.
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