
Efficient tuning of automated machine learning pipelines
Nguyen, D.A.

Citation
Nguyen, D. A. (2024, October 9). Efficient tuning of automated machine
learning pipelines. Retrieved from https://hdl.handle.net/1887/4094132

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4094132

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4094132

ch
ap

te
r

8
An Efficient Contesting Procedure for AutoML
Optimization

Classical AutoML-based Bayesian Optimization approaches often integrate all
operator search spaces into a single search space. However, one drawback of this
strategy is that it can be less robust when initialized randomly than optimizing
each operator-algorithm combination individually. To overcome this issue, a novel
contesting procedure, Divide And Conquer Optimization (DACOpt), is proposed
in this chapter to make AutoML more robust. The DACOpt partitions the
AutoML search space into a reasonable number of sub-spaces based on algorithm
similarity and budget constraints. Furthermore, throughout the optimization
process, DACOpt allocates resources to each sub-space to ensure that (1) all areas
of the search space are covered and (2) more resources are assigned to the most
promising sub-space. Two extensive sets of experiments on 117 benchmark datasets
demonstrate that DACOpt is significantly better than its competitors. Furthermore,
an experiment in surface defect classification in steel manufacturing indicated that
the proposed contesting procedure significantly improved the performance of BO
in real-world applications. The remainder of this chapter is organized as follows.
The motivation and introduction are provided in Section 8.1. Section 8.2 presents
the relevant background knowledge Divide and Conquer techniques and early-stop
strategies. Our contributions are highlighted in Section 8.3, whereas Section 8.4
outlines the experimental setup. Experimental results are discussed in Section 8.5.
Next, an investigation of the use of DACOpt in real-world applications is discussed
in Section 8.6. Finally, the chapter is summed up and further work is outlined in
Section 8.7.

121

8. An Efficient Contesting Procedure for AutoML Optimization

8.1 Introduction

In this study, we evaluated BO-based approaches for solving the AutoML optimiza-
tion problem. The AutoML optimization (AO) problem is typically considered as a
single optimization problem in the BO-based method by merging the optimization
space for all algorithms of all operators – this approach is typically refer to as
integrated approach [14]. The Combined Algorithm Selection and Hyperparameter
Optimization (CASH) approach [40] is a commonly used technique, where the AO
problem is treated as a hyperparameter optimization (HPO) problem. However,
HPO was initially developed to optimize hyperparameters of a single algorithm,
where the considered search space is typically smaller, lower-dimensional, and less
(even non)-structured than the AutoML search space. Hence, the HPO-based
approach is not ideal for handling the AO problem. In order to alleviate the
above limitation, we formulate the AO problem as a ML pipeline optimization
problem, which is proposed by [15]. This can be seen as a generalization of
the CASH approach, where the parameter classes for operator’s algorithms, and
hyperparameters in an algorithm were clearly identified.

As an alternative to the integrated approach, [241] proposed the so-called CASH-
oriented Multi-Armed Bandits (MAB) approach to solve the model selection and
hyperparameter optimization problem for the classification problem (i.e., selecting
a classification algorithm and tuning the hyperparameters, simultaneously) by
applying HPO to each classifier separately. However, this might not be applicable
to AutoML scenarios, because the number of combinations of algorithms over
operators can be up to thousands. Fortunately, [15], [46], [47], [74] have pointed
out that operator algorithms can potentially be grouped and that different groups
of algorithms perform better on different types of problems, for example, a group
of linear classification algorithms performs best on linear classification tasks.

Hence, this study attempts to further improve BO performance for the AO
problems by applying the Divide and Conquer (DAC) strategy: the AutoML
search space is divided into multiple sub-spaces based on their similarity1, and
each sub-space is solved independently by a separate BO process (candidate). The
budget is then allocated to each candidate using a novel competing mechanism,
depending on its performance. Consequently, the most promising candidates have
a larger tuning budget than the least promising candidates. Therefore, the worst
candidates will be ‘terminated’ as soon as ample evidence against them has been

1see grouping approach proposed in [15]

122

8.2 Background

gathered, saving computation time and resources for future assessments in those
search areas.

Notably, as our approach handles BO2 processes independently, it allows
multiple optimization processes to be executed simultaneously without affecting
the performance. In other words, our technique achieves the same numerical results
in both parallel and sequential settings, with the exception of different execution
times.
Our contributions: We summarize our main contributions, which are the follow-
ing:

• We propose a novel contesting procedure, namely DACOpt, to solve the
AutoML optimization problem efficiently, which is complementary to the
existing BO approaches.

• DACOpt efficiently allocates resources to each sub-space to ensure that (1)
all areas of the search space are covered and (2) more resources are assigned
to the most promising sub-space. In addition, we provide a proof that our
approach fixes the existing gap between serial and parallel BO execution (see
Section 8.3.3).

• Two independent empirical studies on a range of AutoML optimization
problems with 2 and 6 operators on a total of 117 benchmark datasets
demonstrate the superiority of the proposed approaches.

• An empirical experiment on a real-world application of surface defect classifica-
tion in steel manufacturing indicated that our proposed approach significantly
improved BO’s performance.

8.2 Background

In this chapter, we review the relevant techniques to the proposed contesting
procedure (Section 8.2.1), and early-stop strategies (Section 8.2.2). Other related
research to Bayesian Optimization and AutoML optimization can be found in
Section 3.1.3.

2BO (a.k.a., Sequential model-based optimization) was originally intended as a sequential
approach [25], [36].

123

8. An Efficient Contesting Procedure for AutoML Optimization

8.2.1 Contesting procedure for AutoML optimization

AutoML optimization typically is a high-dimensional mixed-variables (continuous,
discrete, nominal) optimization problem. In order to handle such a challenge
by a BO approach, three facts are considered: (1) BO performs better for low-
dimensional problems [242], (2) AO problems have low effective dimensionality [30],
[31], and (3) the complexity of AO problem not only comes from its dimensionality,
but also from the number of possible combinations of algorithms within the ML
pipeline [15].

Divide and Conquer (DAC) [243] is a well-known strategy for handling large
problems via decomposing the target problem into c small-scale and low-dimensional
sub-problems. Consider an AO problem p∗ = argmaxp∈M f(p). For applying DAC,
the approach has to first decompose the AutoML search space into c sub-spaces,
and then solve each sub-space by an optimizer. Assuming that we can split the
AutoML search space M into c smaller spaces {M1, . . . ,Mc}, the DAC approach
can be formulated as:

p∗ = (argmax
p∈M1

f(p), . . . , argmax
p∈Mc

f(p)) = (p∗
1, . . . , p∗

c) (8.1)

where p∗
i is the global optimum of sub-space Mi and p∗ is the global optimum

of the original search space M.
The existing DAC studies typically treat elements of the input search space

on the same level and decomposed by complementing [244]. That is, variables
corresponding to sub-space Mi can change freely while the remaining |M \Mi|
dimensions are set to some fixed values. However, such approaches cannot be
used for the AutoML search space where dimensions are hierarchical and, thus,
dependent. As a result, two challenges are faced when using DAC to solve AutoML
problems: (1) how to divide the AutoML space M onto a set of c sub-spaces
efficiently; (2) how to optimize resources during the ‘conquer’ phase, since some
sub-spaces’ performance might be significantly worse than others. To answer the
above questions, we propose (1) a splitting approach based on the combination of
groups of operator algorithms [15], (2) adopting efficient early-stop strategies based
on the theoretical guarantees (see our discussion in Section 8.2.2) for optimizing
resources for the ‘conquer’ phase.

In addition, since the number of algorithms (and therefore, the number of sets
of their parameters) is smaller in the DAC-formulation of the AutoML problem in
Equation 8.1 compared to the original formulation in Equation 1.4, the proposed

124

8.2 Background

contesting procedure also concurs the assumption [30], [31] that the AO problem
has low effective dimensionality.

8.2.2 Early-stop strategies

As we discussed in Section 1.1, the k-fold cross-validation is usually applied to the
AutoML optimization problem to prevent the over-fitting problem as described
in Equation 1.4. For readability, let p denote p(A1,λ,...,Az,λ). The Equation 1.4 is
then formulated as:

p∗ = argmax
p∈M

1
k

k∑
j=1

f
(

p,Dj
t ,Dj

v

)
(8.2)

where f
(

p,Dj
t ,Dj

v

)
is performance of the pipeline setting p when trained and

evaluated on the jth cross-validation data fold Dj
t and Dj

v, correspondingly. As a
consequence of using cross-validation, every function evaluation becomes k times
more expensive. An early stop strategy, e.g., [32]–[36], [173] allows limiting this
issue, since it avoids wasting time and resources on evaluating worse settings over
all k folds.

An important concept is to stop investigating a setting as soon as sufficient
information indicates that it is ineffective. A setting will only be examined in a few
folds in this manner; an iterative elimination function will analyze its performance
on the evaluated folds to compare it to other evaluated settings and determine
how many folds should be utilized for the considered setting.

The elimination function in racing procedure approaches (see Section 3.2.1) is
based on a statistical test procedure, i.e., Friedman test [176], whereas bandit-based
approaches (see Section 3.2.2) compare the setting performance directly to the
best-known setting. In a number of case studies, both strategies performed well [14],
[33], [35], where the task of proposing new settings was commonly handled by
a random search (see Section 3.1.2). Unfortunately, the inconsistencies in how
settings are assessed may provide additional noise for BO, making it less reliable
in suggesting subsequent settings. This means that such approaches should not be
used directly and should be adopted only at the level of search sub-spaces, via the
termination of unpromising sub-spaces (the detailed discussion on the termination
functions is given in Section 8.3.1).

125

8. An Efficient Contesting Procedure for AutoML Optimization

8.3 Proposed approach

We now discuss our proposed contesting procedure for AutoML optimization
problems based on the Divide And Conquer strategy, which we call DACOpt.

8.3.1 Algorithm description

We reformulate the AutoML optimization problem in Equations 1.4, 8.1 and 8.2
into the following:

p∗ = argmax
p∈M

(p∗
1, . . . , p∗

c) (8.3)

s.t. p∗
i = argmax

pi∈Mi

1
k

k∑
j=1

f
(

pi,Dj
t ,Dj

v

)
(8.4)

where Mi = Oi ∪Λi denotes the ith sub-space. Oi = O(i)
1 × . . . × O(i)

z denotes
the possible sequence of operators in Mi, herein ∀i ∈ {1, . . . , c}, O(i)

l∈{1,...,z} =
{A1

l , . . . ,Anl

l } denotes a set of algorithms of the lth operator ∀|O(i)
l |≤ |Ol|, and a

set of the corresponding hyperparameters of O(i)
l : Λ(i)

l∈{1,...,z} = Λ1
l ∪ . . . ∪ Λnl

l and
f

(
pi,D(j)

t ,D(j)
v

)
denotes performance of the setting, similar to Equation 8.2.

The overall proposed structure of the contesting procedure is summarized in
Figure 8.1. The process begins with a Splitter function to be applied on the input
AutoML search space M to produce c possible sub-spaces. Here, we extend our
work from the previous chapter with improvements (a detailed discussion on this
function is given in Section 8.3.2). Then, c BO processes are initialized (in the
following discussion, the BO processes shall be called candidates). The whole
contest is controlled by the Controller function, which allocates budgets to each
candidate per contest round based on the feedback from the Elimination function
that decides which candidates will survive into the next round based on their
performances so far. As mentioned in Section 8.2.2, we adopt two possible settings
for the early-stop functionality. Therefore, two versions of DACOpt are provided,
which differ mainly w.r.t. the elimination criteria: (1) based on highest performance
(Section 8.3.1.1) and (2) based on a statistical procedure (Section 8.3.1.2).

8.3.1.1 Elimination criteria based on the highest performances

In BO (Section 3.1.3), the acquisition function maximizes the best-found value
∆∗

(t) up to time step t. Due to the fact that the goal of AutoML optimization

126

8.3 Proposed approach

Search space

2.
 C

on
tr

ol
le

r

3. Elimination function

1
.

S
p

lit
te

r
c BO processes

In
iti

al

In
ita

l

O
pt

im
iz

e

O
pt

im
iz

e

In
ita

l
O

pt
im

iz
e

Rewards

Surviving
candidates

List of c sub-spaces

1
.

S
p

lit
te

r
1.

 S
pl

it
te

r

Figure 8.1: The workflow of the contesting procedure.

is to find the setting that achieves the highest performance on the target ML
problem, we consider the highest performance as a suitable comparison criterion.
Furthermore, the way of computing the budget, step size, and the number of
rounds follow the Successive Halving (Chapter 3. Section 3.2.2.1) and Hyperband
(Chapter 3. Section 3.2.2.2) approaches with minor adjustments: input parameters
of our procedure include the maximum number of sub-spaces to be split c, total
optimizing budget B, and the ratio of candidates discarded in each round3 η. The
number of rounds in the contest is then calculated as: Rmax = ⌊logη(c)⌋. Each
round has the same budget Br = B

Rmax
. That is, each of m surviving candidates at

the round can have a budget of b = ⌊Br

m ⌋. At the end of the round, the Elimination
function keeps ⌈m

η ⌉ candidates for the following round. Therefore, the surviving
candidate has η times the budget from the previous round.

Our approach is elaborated in Algorithm 11 which requires the maximum
3η = 3, can be changed by user.

127

8. An Efficient Contesting Procedure for AutoML Optimization

number K of sub-spaces to be split and the ratio of candidates discarded in each
round, η, as input parameters. This approach consists of the following steps:

• Initialize: Split the original search space into c (c ≤ K) sub-spaces (line 1).
Next, initialize c corresponding Bayesian optimization candidates (lines 2-3).
Next, the number of contest rounds is calculated, Rmax = ⌊logη(c)⌋ (line 4).

• Parameter for each round: Based on the number of surviving candidates
from the previous round, the number of candidates cr for the current round r

is computed in line 8 for the first round and in line 11 for subsequent rounds.
The elimination function discards candidates labeled as badly performing
and returns a set of cr good candidates (line 11). Herein, we simply select
the top cr candidates based on their best-found values. A reasonable budget
for each candidate is computed based on the remaining budget, remaining
rounds, and the number of surviving candidates (lines 13-14). All the above
steps (lines 10-14) are repeated every round, except the first round. In the
first round, all candidates survive and are given a budget of b = binit (lines
7-9).

• Finally, using value b obtained in the previous step, all surviving candidates
continue their optimization processes (lines 15-19).

8.3.1.2 Elimination criteria based on a statistical procedure

As mentioned in Section 8.2.2, our second option was the approach of racing
procedures to determine well and badly-performing candidates. This approach
also requires a maximum number of sub-spaces K and a level of significance α.
Since the effectiveness of BO is mostly seen in the later phases of optimization
when it learns to produce better settings, we only consider the best-found value of
the initial sampling step for further statistical tests. Unlike the first elimination
criteria method, this method does not compute the number of rounds or budget
for each round since it completely depends on the statistical results; instead, we
use a step size4 γ to limit budget per round. At the end of the round, a Friedman
test [176] is performed to verify whether there is a significant difference between
the pair of candidates. If it is the case, a Holm post-hoc test [245]5 is applied to
compare the highest-ranked candidate to others. Any candidate that fails the test

4γ = 1, can be changed by user.
5Following the recommendations by [246], [247].

128

8.3 Proposed approach

Algorithm 11: DACopt based on the highest performance
Input: M: Search space, K: number of sub-spaces to be split, f :

objective function, B: maximal number of evaluations, binit:
number of evaluations for the initial step in each of c BO processes,
η: ratio controlling the proportion of candidates discarded in each
round

Output: p∗: the best pipeline setting, ∆∗: the best value
1 ({M1, . . . ,Mc}, c)← Splitter(M, K) // divide the input search

space into c sub-spaces
Initialization : Initialization phase

2 for Mi ∈ {M1, . . . ,Mc} do
3 (BOi,Hi)← BayesianOptimizer(Mi, f, binit) // Initialize BOi

and its historical data Hi = {(pn, ∆n)evaluated
n=1 }. (p, ∆)

represent configuration and performance.
Initialization : Contesting phase

4 Rmax ← ⌊logη(c)⌋ // Rmax: number of rounds
5 r ← 0 // r: round number
6 while r ≤ Rmax do
7 if r = 0 then
8 cr ← c; (BO1, . . . , BOcr

)← RandomPermute(BO1, . . . , BOc)
// Note: at the first round cr = c, but the order of
candidates are shuffled.

9 b← binit // all candidates have an equal budget binit
10 else
11 cr ← ⌈

cprevious
η ⌉ // number candidates for rth round

12 (BO1, . . . , BOcr
)← Eliminate((BO,H)i∈{1,...,c}, cr) // Select

good cr candidates, ordered by performance/rank

13 Br ← ⌊ B
Rmax − r ⌋ // Br:total budget for rth round

14 b← ⌊Br
cr
⌋ // Br:budget per candidate

15 for BOi ∈ {BO1, . . . , BOcr} do
16 BOi .AddBudget(b) // Add budget b to BOi

17 (BOi,Hi)← BOi .optimize() // Continues BOi process
18 B ← B − b// Update the remaining budgets
19 cprevious ← cr; r ← r + 1
20 Return p∗, ∆∗ = argmaxp,∆ {H}i∈{1,...,c};

is removed from the list of surviving candidates. This loop is repeated until the
best candidate is found. This process, summarized in Algorithm 12, consists of
the following steps:

• Initialize: Using the same split function as Algorithm 11, to produce c

(c ≤ K) sub-spaces (line 1). All candidates are initialized with the minimum

129

8. An Efficient Contesting Procedure for AutoML Optimization

required budget binit (line 2-3).

• The main operates in the contesting phase: maintain a set of surviving
candidates6. A statistical test is performed at each round to determine if
there are any pairs of candidates that are significantly different (lines 7-10).
If the null hypothesis is false, we first perform a rank test, e.g., the Wilcoxon
signed rank test, to detect the highest-ranked candidate (line 12). Next, a
post-hoc test is applied to the pair of every candidate and the highest-ranked
candidate (line 13). Any candidate that fails the test is removed from the
set of surviving candidates (line 14). Next, a budget γ is added to each
candidate in the survived set (line 18) and continues the tuning process with
the added budget (line 19). This procedure is repeated until the total budget
runs out.

Lastly, both options naturally support parallel implementation. We require the
number of maximum available threads τ, (τ ≥ 1), as an extra input parameter for
the parallel mode. The parallel mode will be discontinued when the best sub-space
is found. In both algorithms, parallel mode is applied to execute the BO processes.

6Note for the contesting phase: Since the effectiveness of BO is mainly determined during
the initial sampling step as it learns to produce better settings. Therefore, we consider only
the best-found value from the initial sampling step for further statistical tests, and we perform
statistical tests only when the sample size exceeds 2.

130

8.3 Proposed approach

Algorithm 12: DACOpt based on the statistical test
Input: M: Search space, K: number of sub-search spaces, f : objective

function, B: maximal number of evaluations, binit: minimum
evaluations per sub-search space, γ = 1: step size, α = 0.05: level
of significance

Output: p∗: the best pipeline setting, ∆∗: the best value
1 {M1, . . . ,Mc}, c← splitter(M, K) // divide the input search

space into c sub-spaces, c ≤ K
// BEGINNING OF INITIAL PHASE

2 for Mi ∈ {M1, . . . ,Mc} do
3 (BOi,Hi)← BayesianOptimizer(Mi, f, binit) // Initialize BOi

and its historical data Hi = {(pn, ∆n)evaluated
n=1 }. (p, ∆)

represent configuration and performance.
// BEGINNING OF CONTESTING PHASE

4 {(BOi,Hi)}
survive

i=1 ← {(BOi,Hi)}
c

i=1// All candidates survive
5 cr ← c // cr number of surviving candidates
6 while B ≥ 0 do
7 if cr < 3 then
8 stac←WilcoxonTest() // Init WilcoxonTest if cr < 3
9 else

10 stac← FriedmanTest() // Init FriedmanTest if cr ≥ 3
// Performs the chosen statistical test with α to detect if

there is at least one pair of candidates that are
significantly different

11 if (¬stac({Hi}survive
i=1 , α)) & cr > 1 then

12 Hi∗ = argmax Ranking({Hi}survive
i=1) // detect the highest

ranked Hi∗ among the surviving candidates based on a
ranking test, e.g., Wilcoxon signed rank test

13 {(BOi,Hi)}survive
i=1 ← Holm_post_hoc_test// detects

candidates not significantly worse than Hi∗

14 cr ← number of surviving candidates
15 else if cr = 1 then
16 γ ← B// If cr = 1, allocate the remaining budget
17 for BOi ∈ {BOi}survive

i=1 do
18 BOi .AddBudget(γ) // Add budget γ to the selected BOi

19 (BOi,Hi)← BOi .optimize() // Continues BOi process.
20 B ← B − γ // Update the remaining budgets

21 Return p∗, ∆∗ = argmaxp,∆ {H}i∈{1,...,c}

131

8. An Efficient Contesting Procedure for AutoML Optimization

8.3.2 The Splitting approach

In this section, we briefly describe of the splitting function (line 1 of the Algorithm 11
and Algorithm 12). The AutoML search space is complex owing to the number of
operators and their choice of algorithms. In practice, the search space can lead to
thousands of algorithm combinations over operators. Because the tuning budget is
relatively small compared to a large number of possible pipelines over operators,
we propose grouping them based on their similarities with the assumption that a
good choice for one algorithm in the group can also serve as a good choice for other
algorithms in the group. Consequently, the sampler can maximize the coverage of
the search space by sampling at the group level instead of at the algorithm level.

The concept of grouping is similar to that done in Chapter 7. However, it
mainly focused on initial sampling, where the budget was typically much smaller
than the number of combinations of algorithm’s groups. As a result, the group’s
level is limited to only 1, i.e., the group’s item is a specific choice for the algorithm.
In this study, we consider a scenario in which a set of algorithms under a group
might be slightly different. For example, while the RandomOverSampler and
SMOTE algorithms are both oversampling techniques (see the bottom plot in
Figure 8.2), they differ significantly: RandomOverSampler randomly generates
more data for minority classes, whereas SMOTE is based on interpolation. To
account for the possible hierarchical groupings of the algorithms, we extended
Algorithm 10 to allow any group at any level to contain child groups. Therefore,
the required groups are produced by downing (or upping) the levels to minimize
randomness. Consequently, the resulting subspaces are purer, that is, the difference
between items in a group is minimized, representing their actual relationship.

132

8.3 Proposed approach

Fi
gu

re
8.

2:
Ill

us
tr

at
io

n
of

th
e

Sp
lit

tin
g

ap
pr

oa
ch

on
a

se
ar

ch
sp

ac
e

of
tw

o
op

er
at

or
s,

i.e
.,

C
la

ss
ifi

er
an

d
R

es
am

pl
er

,u
se

d
in

ou
r

fir
st

ex
pe

rim
en

t.
T

he
co

nn
ec

tio
n

in
or

an
ge

in
di

ca
te

s
a

se
ar

ch
sp

ac
e/

su
b-

sp
ac

e.

133

8. An Efficient Contesting Procedure for AutoML Optimization

8.3.3 Fixing the gap between serial and parallel BO

Bayesian optimization, called otherwise the Sequential model-based optimization
(SMBO), is naturally sequential. However, most modern optimizer-based BO
approaches include a parallelized version in addition to the original BO method.
AutoML-based BO is typically parallelized by either assessing in parallel (1) cross-
validation folds or (2) multiple settings, e.g., [26], [38], [248]. While the first
approach focuses on parallelizing evaluations inside the objective function, it does
not affect BO, however, it is efficient when k is less than the available resources.
The second approach might lead to inefficient solutions proposed by BO, in terms
of the number of function evaluations. Since the objective function is expensive, we
have to choose a configuration that might perform best. In the following, we discuss
how parallelized BO can lead to poorer results compared to serial approaches.

Let us consider a noiseless function f : M ⊂ Rd → R and its real-valued
surrogate model f̂ = {P(pi, ∆i)t

i=1} for time step t. At a new step t + 1, a
sampling approach (randomly) generates a set of solutions {p̂1, . . . , p̂n}. Those
later will be estimated by the surrogate model f̂ and used to propose one setting
pt+1 ∈ {p̂1, . . . , p̂n} by maximizing the acquisition function in Eq. 3.5. The set
of m next settings from the time step t of the sequential approach is {p/t+1 =
argmaxp∈M E[I(pt)], . . . , p/t+m = argmaxp∈M E[I(pt+m)]}. In contrast, the paral-
lel approach proposes a set of solutions {pq1

t+1, . . . , pqm
t+1} ∈ argmaxp∈M E[I(pt)].

Let p = |f(p)− f̂(p)| denote the difference between the performance of the setting
p on the true objective function f and its surrogate f̂ . Clearly, the quality of BO in
suggesting new solution(s) is highly dependent on f̂ and the statistical property of
f̂ (i.e., uncertainty) at time t, which significantly increases as more historical data
is collected. Thus,

∑m
j=1 p/t+j ≥

∑m
j=1 p

qj

t+j . Hence, the quality of m additional
time steps in the sequential method may be more robust than those in the parallel
technique. Thus, there is a discrepancy between the current serial and parallel
BOs.

For the reasons above, we use sequential BO to solve each search sub-space. For-
tunately, BO processes in our proposed procedure are independent (see Figure 8.1).
Therefore, we introduce a partly-parallel approach instead of fully parallel. Instead
of proposing a set of future solutions from a single search area like the fully parallel
technique does, in order to ensure the best performance of BO at every iteration,
DACOpt proposes a set of next setting solutions as sequential approach from
multiple independent search areas: p/i

t+1 = argmaxp∈Mi
E[I(pt)],∀i ∈ {1, . . . , c}.

134

8.4 Experimental Setup

Table 8.1: Proposed DACOpt approaches compared in this study

Name Contesting procedure BO variant
Highest Statistical BO4ML Hyperopt

DAC-HB ✓ ✓
DAC-HH ✓ ✓
DAC-SB ✓ ✓
DAC-SH ✓ ✓

Thus, p/i
t+1 in either serial or parallel situations are exactly the same. For parallel

computing, a parallel pool of m available workers will be repeated ⌈ c
m⌉ times to

finish c processes. The last iteration of that parallel pool is partly parallel if (c
mod m) > 0 and fully parallel otherwise. As a result, our approach holds the same
effectiveness in both cases.
The key benefits of our DACOpt approach are as follows:

• Based on the performance of the related BO process, the budget adaptively
redistributes to the search area7. As a result, the budget is distributed
effectively.

• As a partly-parallel BO variant, the proposed approach has parallel efficiency
without harming BO performance.

• BO performance and robustness can be increased since each BO process
optimizes a relatively small low-dimensional search space independently.

8.4 Experimental Setup

In order to evaluate the robustness and general applicability of our proposed
approach, we compare it to other state-of-the-art AutoML optimization approaches.
We reproduce the experimental setup with a total of 117 benchmark datasets on
two scenarios with optimization of 2 operators (Section 4.2) and 6 operators
(Section 4.3). In both scenarios, we compare the performance of BO-based variants
with the TPE surrogate model BO4ML (Chapter 7) and Hyperopt [153], with the
two proposed contesting procedures against those without such procedure (see
Table 8.1). Our local parameter settings are summarized in Table 8.2.

Both experiments used similar parameter settings as Chapter 7. All approaches
use an initial sample size of 50 function evaluations.

7In this thesis, we use the term search area to refer to an area (subset) of the search space.

135

8. An Efficient Contesting Procedure for AutoML Optimization

Table 8.2: Parameter settings

1st 2nd

experiment experiment

Total budgets (Bmax) 500 1
(func. eval.) (hour)

DACOpt parameters
- Number of candidates (K) 10 10
- Initial sample size per 5 5
candidate (Binit)
- DAC variants used

DAC-HB ✓ ✓
DAC-HH ✓ ✓
DAC-SB ✓ ✓
DAC-SH ✓ ✓

HyperOpt parameters
- Initial sample size per 50 50

BO4ML parameters
- Number of candidates (K) 10 10
- Initial sample size per 5 5
candidate (Binit)

The first experiment used a budget of 500 function evaluations. The 5-fold cross-
validation approach and the averaged geometric mean values over 10 repetitions
were reported. The selected classification algorithms were not grouped together.
The resampling techniques were grouped by a hierarchical graph as shown on the
right-hand side of Figure 8.2, following the suggestion in [48].

In the second experiment, all experiments are based on 10 runs with different
random seeds, and a time limit of 1 hour. The performance evaluation of a single
configuration is limited to 10 minutes with 4-folds cross-validation on training data,
i.e., the evaluation of a fold is allowed to take 150 seconds. The evaluation of a
configuration will be aborted and returned to zero if any of the folds have an error,
for example, infeasible configuration or timeout. The average accuracy values for
the test data over 10 runs were reported. Finally, the selected algorithms used a
hierarchical tree of similarity of algorithms8.
Reproducibility and Open Science: The implementation of the proposed meth-
ods is published in a git-repository9 and PyPi-repository10. The experiment scripts

8based on the hierarchy used in [151] and discussed in [46].
9https://github.com/ECOLE-ITN/NguyenIEEEAccess2022

10https://pypi.org/project/DACOpt

136

https://github.com/ECOLE-ITN/NguyenIEEEAccess2022
https://pypi.org/project/DACOpt

8.5 Results and Discussion

for the reproducibility of the reported results are provided in a git-repository11.

8.5 Results and Discussion

In this section, we report and discuss the results obtained from the two experimental
setups introduced above. Generally speaking, we target three goals: (1) to compare
the performance of our two contesting procedures in terms of number of function
evaluations and wall-time limit; (2) to compare the performance of BO with and
without the proposed contesting procedures; (3) to compare those against the
current state-of-the-art AutoML frameworks.

The first experiment’s results are provided in Table 8.3, and the second in
Table 8.4. Both tables highlight the highest performance for the corresponding
dataset/task in bold. According to the Wilcoxon signed-rank test, the method
that performs significantly worse than the best with α = 0.05 is underlined. Two
extra rows at the end of the corresponding table display additional summaries.
The first extra row shows the number of times each scenario got the highest value
over tested datasets/tasks. The last extra row indicates the number of times each
approach was significantly better than the other in a group.

For each tested case, the method that achieved the highest performance was
counted as winning, provided that its performance was significantly better than
that of all other methods. The method that performed significantly worse than
the best was counted as a loss. They are considered equal if there is no significant
difference in performance between the two methods. The method is counted as
performing well if it either achieves the best performance or is not significantly
worse than the best-found method in the corresponding case.

11https://github.com/ECOLE-ITN/NguyenIEEEAccess2022/tree/main/Experiments

137

https://github.com/ECOLE-ITN/NguyenIEEEAccess2022/tree/main/Experiments

8. An Efficient Contesting Procedure for AutoML Optimization

Table 8.3: Average geometric mean (rounded to 4 decimals) based on six approaches,
i.e., DAC-HB, DAC-HH, DAC-SB, DAC-SH, BO4ML and Hyperopt, over 10
repetitions for the 44 examined datasets, ordered by increasing imbalance ratio
(#IR) value.

Dataset #IR DAC-HB DAC-HH DAC-SB DAC-SH BO4ML Hyperopt
glass1 1.82 0.8015 0.8004 0.804 0.7945 0.7922 0.7968
ecoli-0_vs_1 1.86 0.9864 0.9864 0.9864 0.9864 0.9868 0.9864
wisconsin 1.86 0.9813 0.9816 0.9813 0.9814 0.9814 0.9819
pima 1.87 0.769 0.7725 0.768 0.7719 0.7694 0.7705
iris0 2.0 1 1 1 1 1 1
glass0 2.06 0.876 0.8777 0.8736 0.8757 0.8736 0.8745
yeast1 2.46 0.7332 0.7333 0.7322 0.7321 0.7335 0.7325
haberman 2.78 0.7057 0.701 0.7023 0.6974 0.6968 0.7012
vehicle2 2.88 0.9903 0.991 0.9902 0.9898 0.9912 0.991
vehicle1 2.9 0.8709 0.8707 0.8512 0.8445 0.862 0.8701
vehicle3 2.99 0.84 0.8476 0.8166 0.8202 0.848 0.8461
glass-0-1-2-3_vs_4-5-6 3.2 0.9571 0.9568 0.9545 0.9572 0.9562 0.9514
vehicle0 3.25 0.9865 0.9868 0.9837 0.9837 0.9864 0.9855
ecoli1 3.36 0.9034 0.9047 0.9036 0.9029 0.9031 0.9047
new-thyroid1 5.14 0.9975 0.9986 0.9966 0.9972 0.9972 0.9978
new-thyroid2 5.14 0.9975 0.9978 0.9972 0.9972 0.9975 0.9978
ecoli2 5.46 0.9375 0.9375 0.9365 0.9362 0.9361 0.9358
segment0 6.02 0.9993 0.9993 0.9992 0.9992 0.9991 0.9993
glass6 6.38 0.952 0.9547 0.9516 0.9503 0.9489 0.9524
yeast3 8.1 0.9436 0.9437 0.9422 0.942 0.9428 0.9425
ecoli3 8.6 0.9075 0.9079 0.907 0.9072 0.9054 0.9091
page-blocks0 8.79 0.9471 0.9467 0.9468 0.9463 0.948 0.9472
yeast-2_vs_4 9.08 0.9535 0.952 0.9533 0.951 0.9538 0.9533
yeast-0-5-6-7-9_vs_4 9.35 0.8145 0.8258 0.8146 0.8169 0.8238 0.8195
vowel0 9.98 0.9628 0.9569 0.9598 0.9554 0.9564 0.9555
glass-0-1-6_vs_2 10.29 0.8515 0.8424 0.845 0.8359 0.8436 0.8342
glass2 11.59 0.8593 0.8546 0.8601 0.8534 0.8578 0.856
shuttle-c0-vs-c4 13.87 1 1 1 1 1 1
yeast-1_vs_7 14.3 0.8017 0.8043 0.8003 0.8026 0.8017 0.8001
glass4 15.46 0.9355 0.9372 0.9291 0.935 0.9192 0.9334
ecoli4 15.8 0.9743 0.9709 0.9701 0.9637 0.9661 0.9698
page-blocks-1-3_vs_4 15.86 0.9944 0.9889 0.9929 0.9882 0.9901 0.99
abalone9-18 16.4 0.8951 0.8864 0.8834 0.8846 0.8873 0.8838
glass-0-1-6_vs_5 19.44 0.9655 0.9535 0.9588 0.9597 0.9681 0.9644
shuttle-c2-vs-c4 20.5 1 1 1 1 1 1
yeast-1-4-5-8_vs_7 22.1 0.7166 0.7037 0.7155 0.7011 0.6979 0.7011
glass5 22.78 0.9716 0.9699 0.9659 0.96 0.9625 0.96
yeast-2_vs_8 23.1 0.8242 0.8259 0.8135 0.8117 0.828 0.8254
yeast4 28.1 0.8794 0.8812 0.8694 0.8726 0.8708 0.8773
yeast-1-2-8-9_vs_7 30.57 0.7515 0.7546 0.7416 0.7459 0.7391 0.7429
yeast5 32.73 0.9801 0.9806 0.9795 0.9796 0.9801 0.9798
ecoli-0-1-3-7_vs_2-6 39.14 0.866 0.8799 0.8892 0.9035 0.9034 0.9057
yeast6 41.4 0.9007 0.9018 0.8994 0.9003 0.897 0.9004
abalone19 129.44 0.8059 0.8031 0.8022 0.8003 0.8049 0.8021

Cases achieved the 14 18 5 4 11 7
highest values

Significant wins over 10 8 1 1 4 0
other approaches

138

8.5 Results and Discussion

DA
C-

HB

DA
C-

HH

DA
C-

SB

DA
C-

SH

BO
4M

L

Hy
pe

ro
pt

0

5

10

15

20

25

30

35

40

Highest value achieved
Significant win

Insignificant loss
Significant loss

Da
ta

se
ts

Figure 8.3: Overview of the results over 10 repetitions for the 44 binary imbalanced
benchmark datasets.

8.5.1 First experiment results

The results of the first experiment are presented in Table 8.3 to illustrate the
performance between 2 BO variants based on TPE surrogate model with and
without proposed contesting procedures using 2 elimination criteria – highest
performance and statistical test procedure, i.e., DAC-HB, DAC-SB, DAC-HH,
DAC-SH compared to BO4ML and Hyperopt. Additionally, these results are
summarized in Figure 8.3. This figure is based on the average geometric mean
over a 5-fold cross-validation over 44 imbalanced binary benchmark datasets. We
make the following observations:

• Comparing two methods that use the highest performance as the elimina-
tion criteria (highest value-based contest), DAC-HH achieved the highest
performance more times than DAC-HB (18 vs. 14). However, DAC-HB
significantly won on more tested cases than DAC-HH. Additionally, DAC-HB
loses on fewer cases than DAC-HB (1 vs. 5).

• Compared to the contesting procedures that used statistical tests as the
elimination criteria (statistical-based contest), two methods, i.e., DAC-SH
and DAC-SB, achieved similar performance.

139

8. An Efficient Contesting Procedure for AutoML Optimization

0 50 100 150 200 250
Iteration

0.7

0.8

0.9

Ge
om

et
ric

 m
ea

n

0 50 100 150
Iteration

0 50 100 150 200 250
DAC-HH

0.7

0.8

0.9

Ge
om

et
ric

 m
ea

n

0 50 100 150
DAC-SH

DAC-HB DAC-SB
Longest sequence of the corresponding competitor

Figure 8.4: Illustration of the contesting process on dataset abalone9-18. This
figure shows the optimization convergence plots of DAC-HB (top-left), DAC-SB
(top-right), DAC-HH (bottom-left) and DAC-SH (bottom-right) approaches. All
approaches are initialized with the same random seed. The colors represent BO
processes on sub-spaces.

• Overall, DAC-HB performs well in most of the tested cases. More precisely,
over 44 tested dataset, DAC-HB loses only on dataset pima, where DAC-HH
is the winner.

Lastly, another point worth mentioning is that we expected the statistical-based
approaches, i.e., DAC-SB and DAC-SH, to perform better than the highest-
based approaches, i.e., DAC-HB and DAC-HH. However, the experimental results
contradict our assumptions. To investigate their optimizing behavior, we plot
a single run of these approaches on the dataset abalone9-18 in Figure 8.4. The
two plots on the left show the convergence behavior of the highest-based contests
and the statistical-based contests are shown on the right. All approaches used a
total budget of 500 function evaluations, and the search space was split into 10
sub-spaces. The colors represent BO processes on sub-spaces. The dashed-grey
vertical lines indicate a contest round cutoff point, i.e., the end of the round where
the elimination function is called. The extra dashed-red vertical line on the two left

140

8.5 Results and Discussion

plots shows the most extended sequence of the corresponding underlying optimizer.
The statistical-based approach maintained more candidates throughout the contest
than the highest-based approach. Consequently, the best candidate was found late
with less budget than the best candidate in the competitor approach.

141

8. An Efficient Contesting Procedure for AutoML Optimization
Table

8.4:
Average

accuracy
(rounded

to
5

decim
als)

over
10

repetitions
for

the
73

O
penM

L
datasets,ordered

by
#

Task
ID

.
T

he
first

fourth
colum

ns
after

"D
ataset"

show
s

our
experim

entalresults,i.e.,4
variants

ofthe
contesting

procedure.
T

he
rem

aining
colum

ns
contain

results
obtained

by
other

A
utoM

L
fram

eworks
according

to
results

from
C

hapter
7

and
[22].

O
p

en
M

L
ID

s
D

A
C

O
p

t
contestin

g
p

roced
u

re
C

hapter
7

[22]
#

T
askID

D
A

C
-H

B
D

A
C

-H
H

D
A

C
-S

B
D

A
C

-S
H

B
O

4M
L

H
yp

erop
t

A
u

to
R

an
d

om
H

P
T

P
O

T
A

T
M

H
2O

sklearn
search

sklearn
3

0.99802
0.99666

0.99802
0.99666

0.99656
0.9951

0.98986
0.99062

0.99051
0.99431

0.99326
0.99426

12
0.98617

0.98383
0.98617

0.98383
0.98417

0.98117
0.97767

0.97633
0.94758

0.97333
0.98178

0.97433
15

0.98095
0.97524

0.98095
0.97524

0.97952
0.97048

0.96875
0.95873

0.96
0.96571

0.98474
0.96286

23
0.57376

0.57805
0.57376

0.57805
0.57285

0.55158
0.54638

0.53262
0.53047

0.55882
0.581

0.53733
24

1
1

1
1

1
1

1
0.99993

1
1

1
0.99848

29
0.88647

0.87778
0.88647

0.87778
0.88744

0.86522
0.87289

0.85507
0.85956

0.86377
0.89133

0.86184
31

0.767
0.74533

0.767
0.74533

0.766
0.72733

0.73433
0.724

0.70121
0.744

0.76578
0.74867

41
0.94927

0.93659
0.94927

0.93659
0.95171

0.92878
0.91954

0.91911
0.92585

0.92732
0.94504

0.93122
53

0.86299
0.8374

0.86299
0.8374

0.86457
0.83858

0.82008
0.81969

0.75787
0.81811

0.81522
0.82717

2079
0.69864

0.69548
0.69864

0.69548
0.69502

0.66018
0.63886

0.6267
0.64072

0.65566
0.6419

0.6557
3021

0.99134
0.9909

0.99134
0.9909

0.99152
0.98737

0.98288
0.9855

0.97438
0.98746

0.98419
3543

1
1

1
1

1
1

0.99019
0.99081

0.99404
0.99091

1
0.97967

3560
0.2375

0.22417
0.2375

0.22417
0.23042

0.21125
0.20365

0.20382
0.19139

0.20833
0.27028

0.19542
3561

0.69901
0.67228

0.69901
0.67228

0.63119
0.64752

0.65687
0.64563

0.63762
0.66832

0.71221
0.71089

3904
0.82535

0.82171
0.82535

0.82171
0.82404

0.81393
0.81344

0.81126
0.80998

0.8181
0.821

0.74819
3917

0.87172
0.86572

0.87172
0.86572

0.87393
0.85972

0.85118
0.8534

0.84044
0.86019

0.86856
0.80869

3945
0.98325

0.98285
0.98325

0.98285
0.98323

0.98197
0.98244

0.98228
0.98189

0.98182
0.96555

3946
0.92863

0.92809
0.92863

0.92809
0.92901

0.92624
0.92725

0.92586
0.92599

0.92624
0.78802

3948
0.9506

0.95137
0.9506

0.95137
0.94345

0.94116
0.95094

0.9503
0.95068

0.95085
0.93415

7592
0.86906

0.86527
0.86906

0.86527
0.86251

0.85769
0.86938

0.87013
0.86727

0.87089
0.85448

0.86656
7593

0.87738
0.93199

0.87738
0.93199

0.70278
0.80902

0.96395
0.89143

0.95227
0.94542

0.6639
0.92908

9910
0.80595

0.80062
0.80595

0.80062
0.80107

0.78073
0.7889

0.77762
0.77798

0.80249
0.77087

0.80044
9952

0.91726
0.91196

0.91726
0.91196

0.91319
0.90826

0.89716
0.89205

0.89273
0.9045

0.89963
0.89205

9955
0.69562

0.6775
0.69562

0.6775
0.67167

0.65146
0.65172

0.62795
0.54667

0.61146
0.61097

0.56435
9977

0.97132
0.97098

0.97132
0.97098

0.96525
0.95924

0.96903
0.96656

0.96891
0.97026

0.96055
0.97146

9981
0.96235

0.95432
0.96235

0.95432
0.95093

0.94228
0.94167

0.93117
0.94012

0.94784
0.96049

0.95216
9985

0.61983
0.61133

0.61983
0.61133

0.61029
0.59853

0.59695
0.58601

0.58293
0.61291

0.60272
0.61656

10101
0.80622

0.79644
0.80622

0.79644
0.80667

0.76578
0.76667

0.77778
0.78044

0.78711
0.81956

0.73378
14952

0.97422
0.97272

0.97422
0.97272

0.97094
0.96623

0.9659
0.96244

0.96964
0.96913

0.96464
0.9716

14954
0.83395

0.82037
0.83395

0.82037
0.83642

0.81111
0.79012

0.76173
0.76667

0.81009
0.81701

0.78333
14965

0.90695
0.90625

0.90695
0.90625

0.90307
0.90007

0.90447
0.90398

0.90451
0.90705

0.89957
0.9006

14967
1

1
1

1
1

1
0.98265

0.99841
0.97131

1
1

14968
0.84259

0.84074
0.84259

0.84074
0.8358

0.80432
0.77353

0.77058
0.75823

0.81173
0.79155

0.8
14969

0.66722
0.6812

0.66722
0.6812

0.64001
0.61864

0.67733
0.65004

0.67272
0.67586

0.66217
0.70165

34538
1

1
1

1
1

0.99907
1

0.99907
0.99983

1
1

1
34539

0.94915
0.94702

0.94915
0.94702

0.94825
0.94557

0.94761
0.94444

0.9475
0.94891

0.94606
0.95114

125920
0.61533

0.6
0.61533

0.6
0.63133

0.562
0.56667

0.55556
0.56844

0.56867
0.66978

0.584
146195

0.82042
0.82628

0.82042
0.82628

0.77358
0.77321

0.82109
0.79628

0.82886
0.84123

0.77698
0.865

continued
on

the
next

page

142

8.5 Results and Discussion
Ta

bl
e

8.
4:

Av
er

ag
e

ac
cu

ra
cy

(r
ou

nd
ed

to
5

de
ci

m
al

s)
ov

er
10

re
pe

tit
io

ns
fo

r
th

e
73

O
pe

nM
L

da
ta

se
ts

,o
rd

er
ed

by
#

Ta
sk

ID
.T

he
fir

st
fo

ur
th

co
lu

m
ns

af
te

r
"D

at
as

et
"s

ho
w

th
e

ex
pe

rim
en

ta
lr

es
ul

ts
,i

.e
.,

4
va

ria
nt

s
of

th
e

co
nt

es
tin

g
pr

oc
ed

ur
e.

T
he

re
m

ai
ni

ng
co

lu
m

ns
co

nt
ai

n
re

su
lts

ob
ta

in
ed

by
ot

he
rA

ut
oM

L
fra

m
ew

or
ks

ac
co

rd
in

g
to

re
su

lts
pr

es
en

te
d

in
Ch

ap
te

r7
an

d
[2

2]
.

–
co

nt
in

ue
d

fro
m

pr
ev

io
us

pa
ge

O
p

en
M

L
ID

s
D

A
C

O
p

t
co

nt
es

ti
n

g
p

ro
ce

d
u

re
C

ha
pt

er
7

[2
2]

#
T

as
kI

D
D

A
C

-H
B

D
A

C
-H

H
D

A
C

-S
B

D
A

C
-S

H
B

O
4M

L
H

yp
er

op
t

A
u

to
R

an
d

om
H

P
T

P
O

T
A

T
M

H
2O

sk
le

ar
n

se
ar

ch
sk

le
ar

n
14

62
12

0.
99

99
0.

99
98

9
0.

99
99

0.
99

98
9

0.
99

96
5

0.
99

94
5

0.
99

97
8

0.
99

96
8

0.
99

25
3

0.
99

97
4

0.
99

95
5

0.
99

98
7

14
66

06
0.

71
15

0.
71

64
5

0.
71

15
0.

71
64

5
0.

70
60

5
0.

69
76

1
0.

72
29

6
0.

71
93

0.
70

74
3

0.
72

03
1

0.
67

13
5

0.
71

28
1

14
66

07
0.

87
38

3
0.

87
08

0.
87

38
3

0.
87

08
0.

86
61

1
0.

85
87

1
0.

86
29

1
0.

86
22

5
0.

86
66

1
0.

86
39

2
0.

86
12

8
0.

84
96

8
14

68
00

1
1

1
1

0.
99

96
9

0.
99

32
1

0.
99

04
3

0.
99

50
6

0.
96

38
0.

99
50

6
1

0.
99

55
1

14
68

17
0.

80
89

2
0.

79
96

6
0.

80
89

2
0.

79
96

6
0.

80
49

7
0.

78
21

6
0.

78
26

8
0.

76
36

4
0.

75
95

5
0.

79
09

1
0.

76
41

5
0.

78
06

2
14

68
18

0.
88

88
9

0.
88

26
1

0.
88

88
9

0.
88

26
1

0.
88

64
7

0.
85

84
5

0.
87

05
3

0.
85

55
6

0.
86

91
3

0.
86

18
4

0.
89

05
0.

87
63

3
14

68
19

0.
96

72
8

0.
96

60
5

0.
96

72
8

0.
96

60
5

0.
95

80
2

0.
93

95
1

0.
94

07
4

0.
92

40
7

0.
92

59
3

0.
94

54
7

0.
96

97
5

0.
93

64
2

14
68

20
0.

98
86

4
0.

98
74

7
0.

98
86

4
0.

98
74

7
0.

97
35

5
0.

97
90

6
0.

98
61

2
0.

98
58

1
0.

95
28

9
0.

98
54

0.
98

65
7

0.
98

57
4

14
68

21
0.

99
98

1
0.

99
88

4
0.

99
98

1
0.

99
88

4
0.

99
44

1
0.

98
74

8
0.

97
26

4
0.

97
95

8
0.

98
78

6
0.

99
42

2
0.

96
76

3
0.

99
19

1
14

68
22

0.
94

60
3

0.
94

05
5

0.
94

60
3

0.
94

05
5

0.
94

47
3

0.
93

18
9

0.
93

08
8

0.
93

33
3

0.
90

66
4

0.
94

05
5

0.
92

56
4

0.
94

18
5

14
68

24
0.

98
35

0.
98

23
3

0.
98

35
0.

98
23

3
0.

98
43

3
0.

98
11

7
0.

97
78

3
0.

97
36

7
0.

98
12

1
0.

96
88

3
0.

97
75

0.
97

6
14

68
25

0.
85

19
3

0.
86

74
4

0.
85

19
3

0.
86

74
4

0.
84

3
0.

83
89

1
0.

87
84

4
0.

84
45

0.
85

06
0.

78
08

9
0.

82
11

4
0.

87
34

1
16

71
19

0.
84

89
2

0.
86

67
4

0.
84

89
2

0.
86

67
4

0.
84

64
7

0.
83

95
6

0.
86

77
5

0.
85

37
8

0.
88

69
1

0.
88

73
5

0.
87

54
0.

90
04

7
16

71
20

0.
52

45
7

0.
52

38
5

0.
52

45
7

0.
52

38
5

0.
52

25
7

0.
52

13
4

0.
51

92
6

0.
51

93
9

0.
52

03
3

0.
52

08
2

0.
51

94
1

0.
50

63
5

16
71

21
0.

78
12

0.
89

00
1

0.
78

12
0.

89
00

1
0.

86
65

2
0.

74
91

0.
74

00
9

0.
02

16
9

0.
86

43
8

0.
89

47
0.

58
22

16
71

24
0.

33
28

4
0.

40
95

6
0.

33
28

4
0.

40
95

6
0.

39
67

5
0.

37
81

3
0.

32
09

3
0.

29
42

9
0.

32
00

1
0.

36
38

9
16

71
25

0.
97

85
6

0.
97

87
6

0.
97

85
6

0.
97

87
6

0.
97

71
3

0.
97

03
3

0.
97

77
4

0.
97

11
4

0.
97

35
8

0.
97

39
8

0.
96

9
16

71
40

0.
96

47
5

0.
96

28
7

0.
96

47
5

0.
96

28
7

0.
96

48
5

0.
95

39
7

0.
95

96
2

0.
95

88
9

0.
96

10
9

0.
95

93
1

0.
95

28
2

0.
96

90
4

16
71

41
0.

96
36

0.
96

13
3

0.
96

36
0.

96
13

3
0.

96
27

3
0.

95
36

7
0.

95
62

0.
95

31
3

0.
94

53
3

0.
96

0.
95

00
7

0.
95

37
16

83
29

0.
33

59
4

0.
32

87
1

0.
33

59
4

0.
32

87
1

0.
31

69
0.

29
29

4
0.

30
69

2
0.

29
56

6
0.

28
74

1
0.

33
57

6
0.

32
10

8
16

83
30

0.
68

92
1

0.
70

16
1

0.
68

92
1

0.
70

16
1

0.
68

47
9

0.
66

67
0.

71
81

4
0.

69
27

3
0.

68
49

4
0.

69
64

2
0.

63
78

8
0.

71
78

6
16

83
31

0.
63

19
0.

65
65

8
0.

63
19

0.
65

65
8

0.
60

44
5

0.
59

52
0.

66
93

3
0.

63
76

2
0.

65
45

1
0.

65
07

5
0.

67
94

0.
67

84
1

16
83

32
0.

39
96

3
0.

44
61

3
0.

39
96

3
0.

44
61

3
0.

42
50

7
0.

38
49

7
0.

44
84

3
0.

39
92

2
0.

34
20

3
0.

35
25

2
16

83
35

0.
93

43
5

0.
93

88
9

0.
93

43
5

0.
93

88
9

0.
92

24
8

0.
91

03
5

0.
94

33
4

0.
92

89
1

0.
87

47
7

0.
93

85
0.

90
23

4
0.

94
60

4
16

83
37

0.
75

21
0.

81
45

3
0.

75
21

0.
81

45
3

0.
78

20
5

0.
72

70
7

0.
64

22
7

0.
74

34
7

0.
72

54
8

0.
66

06
3

0.
81

92
8

16
83

38
0.

97
01

0.
99

55
2

0.
97

01
0.

99
55

2
0.

98
30

3
0.

98
03

5
0.

74
75

7
0.

75
04

2
0.

82
51

8
0.

98
49

5
0.

90
72

9
0.

95
62

5
16

88
68

0.
99

18
3

0.
99

31
8

0.
99

18
3

0.
99

31
8

0.
98

98
5

0.
98

9
0.

99
28

7
0.

99
13

7
0.

99
36

0.
99

33
9

0.
97

09
7

0.
99

36
9

16
89

08
0.

75
60

9
0.

75
16

6
0.

75
60

9
0.

75
16

6
0.

73
65

9
0.

72
56

5
0.

74
75

4
0.

73
08

1
0.

71
63

0.
72

64
5

0.
72

16
9

0.
72

81
1

16
89

09
0.

96
51

3
0.

98
3

0.
96

51
3

0.
98

3
0.

95
04

0.
94

43
7

0.
98

35
7

0.
94

79
3

0.
97

24
3

0.
96

25
4

0.
95

39
1

0.
96

98
8

16
89

10
0.

69
56

3
0.

69
30

8
0.

69
56

3
0.

69
30

8
0.

67
56

5
0.

66
17

7
0.

70
25

5
0.

67
39

5
0.

69
10

4
0.

68
33

6
0.

67
35

7
0.

71
75

2
16

89
11

0.
82

57
8

0.
81

94
2

0.
82

57
8

0.
81

94
2

0.
83

25
9

0.
80

74
8

0.
82

00
9

0.
80

60
3

0.
80

07
8

0.
82

36
6

0.
79

91
1

0.
80

90
6

16
89

12
0.

95
03

3
0.

95
27

3
0.

95
03

3
0.

95
27

3
0.

95
70

9
0.

94
65

5
0.

93
92

1
0.

94
75

3
0.

94
67

5
0.

95
53

3
0.

93
47

6
0.

92
51

18
93

54
0.

65
86

6
0.

66
34

0.
65

86
6

0.
66

34
0.

64
62

6
0.

63
95

7
0.

66
66

5
0.

59
84

5
0.

65
08

0.
66

89
5

0.
63

67
1

0.
61

26
6

18
93

55
0.

81
67

8
0.

82
43

3
0.

81
67

8
0.

82
43

3
0.

73
91

6
0.

68
11

2
0.

77
97

1
0.

38
66

6
18

93
56

0.
65

87
4

0.
66

57
6

0.
65

87
4

0.
66

57
6

0.
64

81
0.

64
73

7
0.

68
31

4
0.

66
70

9
0.

66
69

4
0.

66
11

0.
80

06
4

0.
64

79
8

C
as

es
w

it
h

th
e

28
10

6
5

13
3

8
1

1
6

16
12

h
ig

h
es

t
va

lu
es

ac
h

ie
ve

d
S

ig
n

ifi
ca

nt
w

in
s

26
8

4
3

11
2

6
0

0
4

13
11

ov
er

ot
h

er
ap

p
ro

ac
h

es

143

8. An Efficient Contesting Procedure for AutoML Optimization

DA
C-

HB

DA
C-

HH

DA
C-

SB

DA
C-

SH

BO
4M

L

Hy
pe

ro
pt

Au
to

 sk
le

ar
n

Ra
nd

om

HP
sk

le
ar

n

TP
OT AT
M

H2
0

0

10

20

30

40

50

60

70

Highest value achieved
Significant win

Insignificant loss
Significant loss

Da
ta

se
ts

Figure 8.5: Overview of the results over 10 repetitions for the 73 AutoML bench-
mark datasets.

8.5.2 Second experimental results

In this experiment, we compare all approaches used in the first experiment to
the current state-of-the-art AutoML frameworks, i.e., Auto-sklearn-SMAC (Auto-
sklearn) and Auto-sklearn-Random search (Random), HPsklearn ([42], TPOT [43],
ATM [90], H2O [89]), based on the results obtained by [22]. The detailed results
of the second tested scenarios are presented in Table 8.4. We note that entries
with missing values in the last 6 columns indicate arbitrary fails reported by [22].
Additionally, the results of the second experiment are summarized in Figure 8.5.
This figure is based on the accuracy of the test dataset over 10 repetitions to show
the performance differences between the two BO variant-based TPE surrogate
models, namely BO4ML and Hyperopt, to compare both with and without the
proposed contesting procedure, as well as with two elimination criteria, namely
the highest value and a statistical procedure (see Table 8.1).

• First, when comparing the three approaches that use Hyperopt as the un-
derlying optimizer, i.e., DAC-HH, DAC-SH, and Hyperopt, we observed
that both proposed contesting procedures won on more tested cases than
Hyperopt. More precisely, DAC-HH, DAC-SH, and Hyperopt significantly

144

8.5 Results and Discussion

outperformed others in 8, 3, and 2 cases, respectively. However, in these
tested cases of Hyperopt, it is never significantly better than both DAC-SH
and DAC-HH; DAC-SH and DAC-HH are not significantly different. In
contrast, correspondingly, DAC-HH and DAC-SH significantly outperform
Hyperopt in 5 and 1 cases. Therefore, we can conclude that (1) both contest-
ing procedures significantly improve the performance of BO, (2) DAC-HH
won against Hyperopt in more cases compared to DAC-SH.

• Secondly, we analyze the results of three approaches that use BO4ML as the
underlying optimizer, i.e., DAC-HB, DAC-SB, and BO4ML. We observe that:
(1) all three approaches performed well on 73%, 67%, and 55% tested cases,
respectively; (2) DAC-HB achieved the highest performances on most of the
tested cases, followed by BO4ML and DAC-SB. In 11 cases where BO4ML
significantly outperformed others, it was not significantly better than any of
the competitors in this comparison. DAC-SB was significantly better than
BO4ML on 1 tested case, i.e., task 146821, but it never won DAC-HB. In
comparison, DAC-HB outperformed DAC-SH and BO4ML on 3 and 7 cases,
correspondingly.

• Comparing the results of 8 approaches using the search space of Auto-sklearn,
i.e., our four approaches, BO4ML, Hyperopt, Auto-sklearn, and Random
search, we can observe that: First, all BO-based approaches performed better
than random searches over all tested cases. Random search achieves the high-
est result in 1 case (#ID:24), in which all competitors perform equally (no
win). Second, it can be seen that DAC-HB won in most tested cases, followed
by BO4ML, DAC-HH, Auto-Sklearn, DAC-SH, DAC-SH, Hyperopt, and
Random search. We conclude that the proposed approach clearly improves
the efficiency of BO in solving AutoML optimization problems. This finding
may be explained by the fact that the HPO-based approach does not consider
the relationship between algorithms under operators; thus, it requires more
resources to cover a large and complex search space in this experiment. In
contrast, by grouping similar algorithms together and splitting the original
search space into smaller independent subspaces, the proposed approach bet-
ter utilizes the given budget. Consequently, the search space can be covered
within a relatively small budget, and the most promising subspace can be
identified early. As a result, resources are efficiently distributed. Additionally,
BO is known to perform better for low-dimensional problems [31], [241], [242].

145

8. An Efficient Contesting Procedure for AutoML Optimization

Our approach transfers the original high-dimensional problem of AutoML
into multiple low-dimensional problems, thus improving the performance of
BO.

• Additionally, when comparing all contesting variants, it can be seen that
DAC-HB won on more tested cases than others. The contesting procedure
based on the highest performance, i.e., DAC-HH, DAC-HB, won on more
cases than those based on the statistical procedure, i.e., DAC-SH, DAC-
SB. This finding may be explained by the fact that executing a statistical
method adds to the overall computational cost of the procedure. As a result,
the contesting technique that used statistical procedures examined fewer
configurations in the same amount of time as the others.

• Finally, Figure 8.5 shows that the proposed contesting procedures performed
well on up to 73% and at least 53% of all tested cases, when compared to
Random Search -8% of all cases, Hyperopt - 11% of all cases, AutoSklearn -
21% of all cases, TPOT - 27% of all cases, ATM - 30% of all cases and H2O
- 37% of all cases.

8.6 Application on Surface Defect Classification
in Steel Manufacturing

Classifi
ers

Resampling

 Techniques

Sa
m

pl
es

0
20
40
60
80

Method: TPE, Highest performance: 0.9159

(a) TPE
Classifi

ers

Resampling

 Techniques

Sa
m

pl
es

0
20
40
60
80

Method: BO4ML, Highest performance: 0.9275

(b) BO4ML
Classifi

ers

Resampling

 Techniques

Sa
m

pl
es

0
20
40
60
80

Method: DACOpt, Highest performance: 0.9253

20

40

60

80

Num
ber of Sam

ples

(c) DACOpt

Figure 8.6: Illustration on the distribution of 500 samples across a search space
of 5 classifiers and 21 resampling techniques of the three optimization algorithms,
namely TPE, BO4ML, DACOpt. In this run, different approaches explore specific
combinations of algorithms (cells in the figure) to find the combination that can
achieve the best performance. BO4ML and DACOpt cover more combinations of
algorithms (cells in the figure) than TPE. Specifically, TPE, BO4ML, and DACOpt
have 35, 13, and 8 combinations with no samples (white cells color in the figure),
respectively.

146

8.6 Application on Surface Defect Classification in Steel Manufacturing

In this section, we present an application of DACOpt in a real-world application
for surface classification in steel manufacturing. This multi-class imbalance problem
was introduced in Chapter 6. We have two main objectives in this section:

• Firstly, we aim to enhance the performance of the current classification system
used for surface defect detection at our industry partner, TATA, by applying
AutoML optimization. This study will use a standard performance metric,
i.e., geometric mean (micro), as the objective function. This is different from
Chapter 6.

• Secondly, we apply our new method, DACOpt, to the real-world application
for surface classification in steel manufacturing. As presented in Section 8.5.1
and Section 8.5.2, the experimental results show that DAC-HB won on more
test cases compared to other variants of DACOpt. Thus, we use DAC-HB
as the mere variant of DACOpt in this study. Additionally, we aim to
investigate the efficiency of DACOpt as compared to BO4ML (Chapter 7)
and TPE [158]. The difference between the three optimization approaches
is illustrated in Figure 8.6. The illustration shows the sample distribution
of 500 samples across the search space of 5 classification and 21 resampling
algorithms. The TPE algorithm is shown in Fig. 8.6a, while the our two
optimization algorithms are BO4ML (Fig. 8.6b) and DACOpt (Fig. 8.6c).
The height and color of each bar represent the number of samples. The white
cell shows unexplored algorithm combinations. The figure shows that TPE
has more unexplored combinations than the other algorithms, indicating that
some ML algorithm combinations were never explored.

In the remainder of this section, we present the experimental setup (Section 8.6.1)
followed by the experimental results and discussion (Section 8.6.2).

8.6.1 Experimental setup

As mentioned, this study reuses the experimental setup introduced in Chap-
ter 612, which includes the search space (Section 6.3), experimental procedure
(Section 6.3.2), and datasets (Section 6.3.1). As a reminder, the search space
includes five classification algorithms, namely Support Vector Machines (SVM),
Random Forest (RF), k-nearest Neighbors (KNN), Decision Tree (DT), and Lo-
gistic Regression (LR), along with 3 commonly used multiple-class classification

12The experiment scripts for the reproducibility of the reported results are provided in a
git-repository :https://github.com/anh05/AutoML-Multiclass-Imbalanced

147

https://github.com/anh05/AutoML-Multiclass-Imbalanced

8. An Efficient Contesting Procedure for AutoML Optimization

techniques (Multi-class direct classification (Direct), One-vs-One (OvO), and One-
vs-Rest (OvR)). We direct interested readers to Chapter 6 (Section 6.2) for a
detailed discussion of the relevant background. Additionally, there are 21 options
for resampling techniques, including the option of not using any resampler, leading
to a total of 84 hyperparameters in the search space. We have improved the
practicality of selected resampling techniques in tackling multi-class imbalanced
problems by introducing a hyperparameter called sampling strategy. It offers a
range of values including {majority/minority13, not minority, not majority,
all, auto}. We use the geometric mean micro (GMmicro) as the objective function
to maximize. For M classes (A, B, . . . , M) in a multi-class classification problem,
we calculate the GMmicro as:

GMmicro =
√

Specificitymicro × Sensitivitymicro

=

√ ∑M
i=1

TNi∑M
i=1

TNi +
∑M

i=1
FPi

×

∑M
i=1

TPi∑M
i=1

TPi +
∑M

i=1
FNi

(8.5)

where TPi, TNi, FPi, FNi denote the number of true positives, true negatives, false
positives and false negatives samples in class i ∈ M, respectively.

For this particular study, we conducted 9 optimization processes for a given
dataset using different classification strategies and optimizers. To be specific,
for each optimization approach, we set up three independent experiments, each
representing a different approach– One vs. Rest (OvR), One vs. One (OvO), and
Direct classification (Direct) strategies. Therefore, we had 3× 3 = 9 optimization
processes for a dataset. All 9 optimization processes have a budget of 500 for
function evaluations. Additionally, our experiments aim to compare the current
classification system (current system) used by our industry partner14. We use
the same training and test datasets as the current system for a fair comparison.
The current system executes 10 times on each of the tested datasets. For each
execution, the considered dataset is randomly split into training (80%) and test
(20%) sets. Those train/test sets are exported to use in our experiments, i.e., we
have 2× 10 = 20 different train/test sets in total.

13majority is an option for under resampling, minority is for over/combine resampling tech-
niques

14For reasons of confidentiality, since proprietary software of a supplier is used by the industrial
partner, no details about the algorithmic approach taken by the currently used system are
available.

148

8.6 Application on Surface Defect Classification in Steel Manufacturing

8.6.2 Experimental results and discussion

In this section, we present our findings and insights. We have summarized the
experimental results in Table 8.5 to showcase the performance differences between
three optimization algorithms, namely TPE, BO4ML, and DACOpt. For each
optimizer, we have provided their optimization performance with the use of three
classification strategies, namely multi-class direct classification (Direct), One
vs. One (OvO), and One vs. Rest (OvR). This results in 9 experimental outcomes
for each dataset. We have compared these results against the classification approach
used in the current system. The highest performance for each dataset is highlighted
in bold. The methods performing significantly worse than the best according to
the Wilcoxon signed-rank test with α = 0.05 are underlined. Additionally, the

Table 8.5: Average geometric mean (micro), rounded to 5 decimals over 10 rep-
etitions for the 2 datasets. Boldface highlights the best-performing method per
dataset and underline indicates results that are significantly different from the best
method in that group according to a Wilcoxon signed-rank test (p < 0.05).

Dataset Current TPE BO4ML DACOpt

system Direct OvO OvR Direct OvO OvR Direct OvO OvR

Top side 0.87269 0.92068 0.91957 0.92394 0.92076 0.91982 0.92474 0.92115 0.92069 0.92554
Bottom side 0.86064 0.94085 0.94175 0.94146 0.94096 0.9198 0.94165 0.94137 0.94247 0.94176

distribution of geometric mean micro over 10 repetitions for the two tested datasets,
is visualized in Fig. 8.7. Each box plot represents 10 repetitions. The horizontal
inner line shows the median. The whiskers show the lowest and the highest observed
value15. The color dots show the observed values, and the dots outside the whisker
represent the outliers. The box covers the first to the third quantiles. The results
allow the following insights:

• According to the results of the Wilcoxon signed-rank test, our experimental
approaches significantly outperform the current approach used at our industry
partner (current system). Additionally, from Fig. 8.7, the median and
whiskers of all optimization approaches on three classification scenarios are
higher than those of the current system. In other words, our procedure has
successfully enhanced the performance of the current classification system
used by our industry partner.

15The whisker scale is set as 1.5.

149

8. An Efficient Contesting Procedure for AutoML Optimization

TP
E

BO
4M

L

DA
CO

pt

Cu
rre

nt
Sy

st
em

0.86

0.88

0.90

0.92

0.94
Ge

om
et

ric
 m

ea
n

(m
icr

o)
SIS Top-side camera

Direct
Method OvO OvR Current

system direct ovo ovr TATA

TP
E

BO
4M

L

DA
CO

pt

Cu
rre

nt
Sy

st
em

SIS Bot-side camera

Figure 8.7: Box plots showing the distribution of classification results for two
examined datasets.

• Overall, DACOpt achieved the best classification performance on both
datasets that were examined. Specifically, for the SIS top-side dataset,
the DACOpt approach using the OvR classification strategy outperformed
TPE in all experiments. It also significantly outperformed BO4ML in two
cases of direct classification and OvO strategies. For the SIS bottom-side
dataset, the DACOpt method with the OvR classification strategy also
achieved the highest result. It significantly outperformed TPE with the
direct classification strategy.

• We conducted a Friedman’s Test on all three strategies to determine the
most effective classification strategy among direct classification, OvO, and
OvR when used with AutoML optimization approaches. Surprisingly, the
results showed no significant difference in the average GM (micro) with a
p-value of 0.13169. It is surprising because the decomposition approach is
the most commonly recommended for dealing with multi-class problems from
literature, as it converts the multi-class problem into multiple binary-class

150

8.6 Application on Surface Defect Classification in Steel Manufacturing

Di
re

ct
Ov

O
Ov

R
Di

re
ct

Ov
O

Ov
R

Di
re

ct
Ov

O
Ov

R

0

2

4

6

8

10

TPE BO4ML DACOpt

SIS Top-side camera

Di
re

ct
Ov

O
Ov

R
Di

re
ct

Ov
O

Ov
R

Di
re

ct
Ov

O
Ov

R

0

2

4

6

8

10

TPE BO4ML DACOpt

SIS Bottom-side camera

SVM RF Others (LR, DT, KNN)
Over Resampling
Under Resampling

Combine Resampling
No Resampling

Figure 8.8: Illustration of the different combinations of resampling and classification
algorithms generated by the best ML pipeline resulting from the optimization
processes conducted by TPE, BO4ML, and DACOpt. Within each of the 9
optimization approaches (3 for each method), 3 distinct classification strategies,
namely Direct classification (Direct), One-vs-One (OvO), and One-vs-Rest (OvR).
The optimization process is repeated ten times on two examined datasets.

problems, which makes the classifier work more efficiently. However, our
finding indicates that applying AutoML optimization performs similarly for
three classification strategies.

We have presented Fig. 8.8 to investigate the final combination of choices for
resampling and classification algorithms of all optimization methods. Our findings
indicate that SVM and RF are the algorithms most frequently selected, while
other classification algorithms have not been chosen in any of the test cases. SVM
wins in 61% and 99% of cases for the SIS Top-side and SIS Bottom-side datasets,
respectively. RF obtains 39% wins on the SIS Top-side dataset, but only one win
in the SIS Bottom-side dataset by BO4ML with the OvR classification strategy.
Regarding the usefulness of resampling techniques, 81% of the runs yield the
highest results using some form of resampling technique. Over resampling, under

151

8. An Efficient Contesting Procedure for AutoML Optimization

1 2 3

DACOpt
BO4ML

TPE

CD

Figure 8.9: Comparison of all optimization algorithms compared to each other
using Nemenyi test with a 5% significance level.

resampling, and combined resampling obtain 109 (61%), 34 (19%), and 3 (2%)
wins over (2 datasets×3 classification strategies×3 optimizers)×10 repetitions =
180 runs. At the same time, 34 (19%) runs yield the highest performance without
using any resampling techniques.

Based on the results of Friedman’s test in average GM (micro), we found
significant differences among all optimization approaches, with a p-value of 9.8e-4.
As a follow-up, we performed post hoc multiple comparison tests using the Nemenyi
test at a significance level of 0.05, as shown in Fig. 8.9. Approaches with a distance
greater than CD16 are considered significantly different. Upon analyzing the figure,
we can conclude that DACOpt outperforms all competitors, while BO4ML and
TPE perform similarly.

Based on the results of our experiment, we have arrived at four main conclu-
sions:

1. Our experiments demonstrated that AutoML optimization approaches signif-
icantly improved classification performance compared to the current system.

2. In addition, we found that our new approach, DACOpt, outperforms the two
competitors, i.e., BO4ML and TPE. Therefore, we recommend the use of the
DACOpt method for AutoML optimization.

3. Resampling techniques are recommended to deal with multi-class imbalanced
problems, as 81% of runs yield the best performance using them.

4. Lastly, our findings indicate that applying AutoML optimization to direct
classification yields similar performance compared to using it in OvO and OvR
strategies. Therefore, we highly recommend using the direct classification
approach to address similar problems, as it is much more cost-effective than
OvO and OvR.

16Critical Difference, here CD=1.353

152

8.7 Conclusions and future work

It is worth noting that our study focuses solely on enhancing the current
classification component of the surface defect detection system used by our industry
partner. Moving forward, we plan to expand our research to cover the entire
surface defect detection system, including image processing and feature extraction.
Additionally, we may look into utilizing deep learning and convolutional neural
networks.

8.7 Conclusions and future work

In this study, we proposed a novel contesting procedure for the AutoML opti-
mization problem, namely DACOpt, which is complementary to the existing BO
approaches. DACOpt partitions the AutoML search space into multiple relatively
small sub-spaces based on algorithm similarity and budget constraints. Next, BO
approaches are employed to optimize these sub-spaces independently. The budget
is then adaptively distributed to the search area based on the performance of the
corresponding BO processes. The proposed contesting procedure has two different
variants of elimination criteria – based on the highest performance and a statistical
procedure. Additionally, we presented a partly parallel approach to using BO
to address AutoML optimization problems with provably theoretical guarantees.
Two extensive experiments on a total of 117 benchmark datasets demonstrated
the superiority of our novel contesting procedures over the current state-of-the-art
AutoML optimization approaches. Additionally, an experiment was conducted
on surface defect classification in steel manufacturing. It was concluded that our
proposed approach significantly improves BO’s performance. In future studies,
we intend to incorporate meta-learning approaches to identify search areas that
may perform well in the early stages. Finally, the scope of this study was limited
to the AutoML optimization problem; we plan to extend our research to Neural
Architecture Search (NAS) problems in the future.

153

