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Efficient AutoML via Combinational Sampling

In the previous chapter, the CASH approach converted the ML pipeline opti-
mization problem into a hyperparameter optimization (HPO) problem, where the
choice of algorithms was modelled as an additional categorical hyperparameter.
In this manner, algorithms and their local hyperparameters are referred to at the
same level. Consequently, this approach renders the resulting initial sampling less
robust. Unlike the CASH approach, in this study, we used a new hyperparameter
class to model the choice of the algorithm under the operator. Additionally, we
propose a novel initial sampling approach to maximize the coverage of the AutoML
search space to help BO construct a robust surrogate model. We experimented
with both experimental scenarios of AutoML with two operators and six operators
over 117 benchmark datasets, as introduced in Section 4. The results of our
experiments demonstrate that the performance of BO is significantly improved
using our sampling approach.

The remainder of this chapter is organized as follows. First, the motivation and
introduction are provided in Section 7.1. Next, our contributions are highlighted in
Section 7.2, Section 7.3 lays out the experimental setup. The experimental results
are discussed in Section 7.4. Finally, the chapter is concluded, and further work is
outlined in Section 7.5.

7.1 Introduction

Recall that existing AutoML approaches (e.g., [39], [40]) can be considered as
optimization processes for which the best ML pipeline is searched. Each pipeline
includes an architecture and a set of hyperparameter settings.

Bayesian Optimization (BO) is a commonly used approach in AutoML as it has
been successfully used in hyperparameter optimization (HPO) problems and plays
a role of an optimizer in many AutoML frameworks, e.g., Auto-Sklearn [39],
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7. Efficient AutoML via Combinational Sampling

Auto-Weka [40], and Hyperopt-sklearn (HPsklearn) [42]. BO is an efficient global
optimization approach (in terms of the number of function evaluations) in which
the trade-off between local exploitation and global exploration is well handled.
Therefore, in this work, we focus on improving the BO by using it to solve the
AutoML optimization problem. Traditionally, the AutoML optimization problem is
treated as a HPO process, where the optimizer is inherited from the HPO domain.
As HPO was originally developed to find the best hyperparameter setting from a
single algorithm, it naturally does not consider the choice of algorithm. The choice
of algorithm is then modelled as an extra categorical hyperparameter. Consequently,
this HPO-based approach in handling the choice of algorithm mismatches the
nature of the AutoML optimization problem.

The search space in the AutoML approach is largely owing to the many possible
algorithm choices for pipeline operators. However, including many algorithms in
the search space naturally leads BO to slow convergence or to get stuck in a local
optimum [30], [31], [35]. One reason is that the initial sampling step in AutoML
is typically restricted to a small budget, which is much smaller than the number
of possible pipelines that can be constructed in the search space. The reason for
this setting is that the effectiveness of BO becomes evident mainly in the later
stages of optimization when it learns to produce better configurations. Many
well-known sampling approaches, for example, the discrepancy-based quasi-random
(quasi-random) sampling [30], the Latin Hypercube (LHD) sampling [239], have
been employed for the initial sampling in this optimization context. However, they
have shown themselves to be insufficiently robust [31], [240], [241] because they
have been used in conjunction with the traditional approach of solving an AutoML
optimization problem, which, as explained above, consists of converting it to a
HPO, thus rendering obscure the differences between the choice of an algorithm
and the choice of the algorithm’s parameters.

Additionally, to construct a robust surrogate model, BO requires good coverage
of the search space [31], but as the number of algorithms increases, the number
of samples required to cover the search space increases exponentially. Previous
studies [46], [47] pointed out that some algorithms can be grouped based on their
technical behaviors.

To assess this theory, in this chapter, we propose a new two-fold approach to
improve BO used in AutoML optimization:

• Group the similar operator algorithms when allocating initial sampling
budget, e.g., the grouping of linear classifiers vs. the grouping of rule-based
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7. Efficient AutoML via Combinational Sampling

classifiers [46]. Table 7.1 summarises different hyperparameter classes with
their semantics in our work.

• Building on top of other sampling approaches, we propose a novel sampling
method that aims to allocate reasonable budgets for each set of algorithms
to maximize the coverage of sampling areas in terms of the grouping of
algorithms to provide a robust surrogate model. In other words, our pro-
posed approach is complementary to other sampling approaches, rather than
competitive, with the aim of optimizing the performance of the search space
of AutoML.

7.2 The Proposed Approaches for Automated Ma-
chine Learning

In this section, we first introduce our proposed combination-based sampling ap-
proach for increasing the efficiency and robustness of AutoML. Next, we introduce
a new BO Python library for AutoML optimization and an AutoML framework
that implements this paradigm.

7.2.1 Novel combination-based initial sampling for Bayesian
optimization for AutoML optimization

The central idea of our approach is to provide optimized coverage of the algorithm-
hyperparameter search space already during the initial sampling of BO in order to
characterize the response surface more accurately.

To properly analyze this discussion, we need to utilize the notations that were
introduced in Chapter 1 (Section 1.1.1). These notations are crucial for our ongoing
analysis and were discussed in detail in their original context in Chapter 1 to
ensure a better understanding. Given a search space denoted by M includes the
sequence of z operators O = O1 × . . .×Oz and its corresponding hyperparameter
spaces Λ = ΛO1 ∪ . . . ∪ ΛOz , as defined in Section 1.1.1 of Chapter 1.

A grouping of algorithms of operator Oi assumes that the set of all algorithms
{∅,A1

i , . . . ,Ani
i } available to be employed for operator1 Oi can be partitioned

into gi non-empty and non-overlapping subsets, according to their inner workings2:
{G1

i , . . . , Ggi

i }, gi ≤ ni + 13. Such partitioning is called a grouping of algorithms.
1if i < z or {A1

z , . . . , Anz
z } if i = z.

2or any other user-defined logic.
3if i < z and gz < nz otherwise.
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7.2 The Proposed Approaches for Automated Machine Learning

The operator can then be represented as Oi = {G1
i , . . . , Ggi

i }. According to
our proposed combination-based initial sampling method (see Algorithm 9), the
sequence of pipeline operators O = O1 × . . .×Oz should be sampled in BO from
the domain space of sets {G1

1, . . . , Gn1
1 } × . . .× {G1

z, . . . Gnz
z } and the total initial

sampling budget should be split equally per group. The main idea behind such
sampling budget reallocation is the potential exploitation of similarities between
algorithms within the group: sampling fewer of the same algorithms frees up
the budget to be distributed to other (different) algorithms, thus improving the
coverage of algorithm-hyperparameter search space at an earlier stage of BO.

As an input parameter for our method, we require a number of data points Binit

for the initial sampling and a maximum number of combinations K, K ≤ Binit. If
K exceeds the maximum number of possible combinations computed from the input
operation steps k =

∏z
i=1|Oi|, then we use Algorithm 10 to randomly regroup

algorithms in operators to ensure k ≤ K. The proposed sampling algorithm,
presented in Algorithm 9, consists of the three following steps:

1. Generate the list of combinations: List all k possible combinations of groups
for all z operators; apply RandomRegrouping until k is small enough
(k ≤ K) (lines 2− 4).

2. Allocate budget to combinations: first allocate budget to all combinations
based on the number of algorithms and hyperparameters behind (lines 5
- 10). Then, if there is any remaining budget Bremain, randomly allocate
Bremain to the top k

η combinations ordered by their size (i.e. the number of
algorithms and hyperparameters in the combination). We take the size of
the combinations into account to give larger combinations a higher chance of
getting a larger budget.

3. Sampling configurations: for each combination s, an existing sampling ap-
proach (e.g., LHD, quasi-random, here we use quasi-random) is used to
generate a trial sequence sj = (G1, . . . , Gz) (lines 12 − 16); Lastly, the
generated configurations must be verified by CheckForbidden4.

Lastly, the generated configurations are shuffled to remove a potential impact
of grouped configurations based on combinations. This is highly recommended

4 An external function that verifies a combination of algorithms/a configuration with the
forbidden rules defined by the user.
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7. Efficient AutoML via Combinational Sampling

Algorithm 9: Combination-based sampling
Input: O: sequence of operators, Λ: hyperparameter spaces, Binit: number of

initial samples, K: maximum number of combinations of grouping of
algorithms over operators, η = 2: proportion of combinations to be
chosen to assign more budget if any remaining budgets are available.

Output: Θ: set of configurations
// 1–Generating combinations

1 k =
∏z

i=1|Oi| // maximum number of possible combinations
2 if k > K then
3 (O, k) = RandomRegrouping(O, K) // Algorithm 10

// Create a list s of all possible combinations from O
4 s = {s1, . . . , sk} = {G1

1, . . . , Gg1
1 } × . . .× {G1

z, . . . , Ggz
z }

// 2–Allocate budgets to k combinations
5 lc = Binit

k
// number of inital samples per combination

6 m = 1
k

∑k

i=1 (|Λsi |+|si|) // |si| is the number of all unique algorithms
and |Λsi | is the number of hyperparameters

7 Θ = ∅ // set of initial configurations
8 foreach j ∈ {1, . . . , k} do
9 lj = ⌊lc ×

|Λs(j)|+|sj |
m

⌋// lj is the number of samples for the
combination sj

10 lj =
{

1, if lj = 0.
lj , otherwise.

11 if Bremain = Binit −
∑k

j=1 lj > 0 then
// Randomly allocate Bremain to the top k

η
combinations based on

the number of algorithms and hyperparameters

// 3–Sampling Configurations
12 foreach j ∈ {1, . . . , k} do
13 Θj = ∅ // feasible configurations in the jth combination
14 while |Θj |≤ lj do
15 Θj = Θj ∪ Sampling(sj , Λj , lj − |Θj |)

// Sampling is done via an existing approach, here we choose
quasi-random sampling with minor adjustments

16 foreach λ ∈ Θj do
17 if CheckForbidden(λ) then
18 Θj = Θj \ λ

19 Θ = Θ ∪Θj
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7.2 The Proposed Approaches for Automated Machine Learning

Algorithm 10: Random Regrouping

Input: O =
(
{G1

1, . . . , Gg1
1 } × . . .× {G1

z . . . Ggz
z }

)
: sequence of operators, K:

number of combinations
Output: Onew: new sequence of operators, k: new number of combinations

1 k = K // number of all possible combinations
2 S = ∅ // split solutions
3 C1 = {1, . . . , g1}, . . . , Cz = {1, . . . , gz} // set of possible groupings of

Oi∈{1,...,z}
// List out all split solutions

4 Create a list of all possible splits H = {hi} where hi = (c1, . . . , cz) : cj ∈ Cj∀j
// Select split solutions which can produce k combinations, k ≤ K

5 while S = ∅ do
6 S = {h = (c1, . . . , cz) ∈ H :

( ∏
j

cj

)
= k}

7 if S = ∅ then
8 k = k − 1

9 schosen ∼ U(S)// randomly choose one solution
10 Onew = (∅1, . . . ,∅z), i = 1
11 foreach ci ∈ schosen do

// ci is the number of groups to be created
12 ni = |Oi| // number of groups in the ith operator
13 if ci = ni then
14 Oi = {{G1

i }, . . . , {Gni
i }} // when ci = ni

15 else if ci = 1 then
16 Oi = {G1

i , . . . , Gni
i } // merging all predefined groups

17 else
18 G = ∅, O0 = Oi

19 while ni > 0 do
20 G0 = ∅, nsize = ⌈ni

ci
⌉

21 if ni > nsize then
22 G0 ={Random pick nsize items in O0}
23 else
24 G0 = {O0}
25 G = G ∪G0, O0 = O0 \G0, ni = |O0|
26 Oi = {G}

27 O(i)
new = Oi, i = i + 1

28 return Onew, k
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7. Efficient AutoML via Combinational Sampling

since, in some cases, the computational optimization budget, i.e., the run time
limit, can run out before finishing this initialization step.

The RandomRegrouping method used in Algorithm 9 is presented in Al-
gorithm 10. For a sequence of operators that consists of multiple groupings of
algorithms, it produces, via a regrouping, k combinations of operators (k ≤ K)
using the following steps:

1. Step 1 (lines 3− 9): Based on the number of the grouping in operators, we
list out all possible solutions of regrouping to have k combinations.

2. Step 2 (line 10): Randomly choose one solution schosen = (c1, . . . , cz) where
ci is the number of groupings to be created for the operator Oi.

3. Step 3 (lines 11− 27): For each operator Oi, we randomly group algorithms
into ci groups.

7.2.2 A New Optimization Library for AutoML Optimiza-
tion

To take advantage of the new sampling approach introduced in Section 7.2.1, we
introduce a BO library for AutoML optimization, named BO4ML5, where the
new sampling approach is implemented. In this work, we use the Tree-structured
Parzen Estimator (TPE) implemented in Hyperopt [153] for the surrogate model
and Expected improvement (EI) [156] for the acquisition function.

7.3 Experimental Setup

This study examines the two experiments introduced in Chapter 4 (Section 4.2
and Section 4.3). In both scenarios, we compare the performance of Bayesian
optimization (see Chapter 3. Section 3.1.3) with and without our proposed initial
sampling approach.

The first experiment uses similar parameter settings as in Chapter 5; we select
two different values of the initial sample size 20 and 50. We use a budget of
500 function evaluations. The 5-fold cross-validation approach and the averaged
geometric mean values over 10 repetitions are reported. The selected classification
algorithms are not grouped together. The resampling techniques are grouped into

5 The library is published at https://github.com/ECOLE-ITN/NguyenSSCI2021.
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7.4 Results and Discussion

four groups "Over-resampling", "Under-resampling", "Combine-resampling", and
"No-sampling", as suggested in [47], [48].

In the second experiment, we used a budget of 50 samples for the initial
sampling. All the experiments performed 10 runs with different random seeds,
with a time limit of 1 hour. The performance of a single configuration is limited to
10 minutes with 4-folds cross-validation on training data, i.e., the evaluation of a
fold is allowed to take 150 seconds. The evaluation of a configuration is aborted
and returns zero if any folds have an error, for example, due to an infeasible
configuration or timeout. Then, the average accuracy values for the test data over
10 runs are reported. Finally, the selected algorithms are grouped, according to
the suggestions in [46], [151].

The implementation of the proposed methods is published in a git-repository5

and PyPi-repository6. The experiment scripts for the reproducibility of the reported
results are provided in a git-repository7.

7.4 Results and Discussion

In this section, we report and discuss the results obtained from using the above
experimental setups. Our experiments has two objectives. First, we compare the
performance of Bayesian optimization with the help of our proposed sampling
approach with that without our contributions in terms of AutoML optimization
for class-imbalance problems, with a search space of two operators. Second, we
compared them against state-of-the-art AutoML frameworks with a search space
of six operators.

7.4.1 First experimental results

The results of the first experiment are presented in Table 7.2 to illustrate the
performance of BO with and without the help of our proposed approach for two
different initial sample sizes, that is, 20 (left, not shaded) and 50 (right, gray
shaded). In both scenarios, the best performance for the corresponding dataset
is highlighted in bold. A method that performs significantly worse than the best
method according to the Wilcoxon signed-rank test with α = 0.05 is underlined.
A value labeled ∗ indicates the best result obtained for the corresponding dataset.
The two extra rows at the end display the additional summaries. The first extra

6https://pypi.org/project/BO4ML.
7https://github.com/ECOLE-ITN/NguyenSSCI2021/tree/assets/SSCI-Experiments.
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7. Efficient AutoML via Combinational Sampling

Table 7.2: Average geometric mean (rounded to 4 decimals) based on two different
initial sampling settings, i.e., the Hyperopt approach and our approach (BO4ML), over
10 repetitions for the 44 examined datasets, ordered by increasing imbalance ratio (#IR)
value. The two extra rows display summaries for each scenario, i.e., 20 and 50 initial
samples: (1) Highest performance shows the number of times the optimizer achieved
the highest value. (2) Significantly better performance shows the number of times the
optimizer was significantly better than the competitor.

Dataset #IR 20 initial samples 50 initial samples
Hyperopt BO4ML Hyperopt BO4ML

glass1 1.82 0.7935 0.7944 ∗0.7970 0.7944
ecoli-0_vs_1 1.86 0.9864 0.9864 0.9864 ∗0.9868
wisconsin 1.86 0.9814 0.9817 0.9818 ∗0.9819
pima 1.87 ∗0.7712 0.7696 0.7703 0.7707
iris0 2 ∗1 ∗1 ∗1 ∗1
glass0 2.06 0.8777 0.8748 0.8740 ∗0.8853
yeast1 2.46 0.7319 0.7332 0.7321 ∗0.7345
haberman 2.78 ∗0.7049 0.7012 0.6991 0.7040
vehicle2 2.88 0.9908 ∗0.9927 0.9912 0.9918
vehicle1 2.9 0.8690 0.8684 0.8713 ∗0.8735
vehicle3 2.99 0.8463 0.8486 0.8416 ∗0.8506
glass-0-1-2-3_vs_4-5-6 3.2 ∗0.9567 0.9539 0.9534 0.9553
vehicle0 3.25 ∗0.9876 0.9867 0.9867 0.9867
ecoli1 3.36 0.9038 ∗0.9053 0.9050 0.9043
new-thyroid1 5.14 0.9980 0.9972 ∗0.9983 0.9966
new-thyroid2 5.14 ∗0.9972 0.9964 0.9952 0.9966
ecoli2 5.46 0.9363 0.9353 ∗0.9365 0.9360
segment0 6.02 ∗0.9993 0.9992 0.9992 0.9992
glass6 6.38 0.9488 0.9514 ∗0.9518 0.9511
yeast3 8.1 0.9423 0.9421 0.9427 ∗0.9441
ecoli3 8.6 0.9038 0.9059 0.9064 ∗0.9072
page-blocks0 8.79 ∗0.9475 0.9472 0.9464 0.9457
yeast-2_vs_4 9.08 0.9549 0.9542 ∗0.9554 0.9531
yeast-0-5-6-7-9_vs_4 9.35 0.8245 0.8177 ∗0.8261 0.8193
vowel0 9.98 0.9567 ∗0.9593 0.9525 0.9561
glass-0-1-6_vs_2 10.29 0.8404 0.8421 0.8334 ∗0.8460
glass2 11.59 ∗0.8504 0.8461 0.8462 0.8471
shuttle-c0-vs-c4 13.87 ∗1 ∗1 ∗1 ∗1
yeast-1_vs_7 14.3 0.7991 0.8013 ∗0.8033 0.8010
glass4 15.46 ∗0.9390 0.9230 0.9299 0.9324
ecoli4 15.8 0.9712 0.9694 0.9632 ∗0.9737
page-blocks-1-3_vs_4 15.86 0.9931 0.9874 0.9917 ∗0.9944
abalone9-18 16.4 ∗0.8899 0.8829 0.8856 0.8859
glass-0-1-6_vs_5 19.44 0.9494 ∗0.9571 0.9564 0.9565
shuttle-c2-vs-c4 20.5 ∗1 ∗1 ∗1 ∗1
yeast-1-4-5-8_vs_7 22.1 0.6989 0.7024 ∗0.7052 0.7045
glass5 22.78 0.9589 0.9558 0.9591 ∗0.9595
yeast-2_vs_8 23.1 0.8136 ∗0.8348 0.8136 0.8150
yeast4 28.1 0.8764 0.8788 0.8782 ∗0.8788
yeast-1-2-8-9_vs_7 30.57 0.7500 0.7489 0.7397 ∗0.7538
yeast5 32.73 ∗0.9802 0.9798 ∗0.9802 0.9800
ecoli-0-1-3-7_vs_2-6 39.14 ∗0.9265 0.9076 0.9113 0.8982
yeast6 41.4 0.8953 0.8918 0.8939 ∗0.8955
abalone19 129.44 0.7958 0.7974 0.7992 ∗0.7998

Highest performance 15 8 12 19
Significantly better performance 0 2 0 4
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Figure 7.1: Illustration of the number of samples allocated to different combinations
of methods in random sampling implemented in Hyperopt (top rows) vs. our
proposed approach (bottom rows). The cases with 20 (left) and 50 (right) samples
are shown.

row shows the number of times each scenario achieved the highest value over 44
datasets. The last extra row indicates the number of times each approach was
significantly better than the others in the group. From the table, we can observe
the following.

• In 20 initial samples scenario, Hyperopt achieved the best results on 28/44
cases, and our approach on 20/44 cases. However, our approach significantly
wins on 2 tested cases, i.e., "ecoli3" and "yeast-2_vs_8" and is not significantly
worse than Hyperopt in any tested cases.

• In the second scenario, our approach achieves the highest value on 31/44 cases
and Hyperopt- on 16/44 cases. Similarly, our approach is not significantly
worse than Hyperopt in any tested cases but significantly better on 4 examined
datasets, i.e., "glass0", "yeast1", "ecoli4", "yeast-1-2-8-9_vs_7".

To investigate the sampling behavior of both approaches for the initial sample
sizes, we provided two plots: Figure 7.1 shows the distributions of the samples and
Figure 7.2 shows the distributions at the level of the individual algorithms. In both
plots, the case with 20 samples is shown on the left and 50 on the right of the plot,
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Figure 7.2: Illustration on the distribution of samples obtained via initial sampling
methods on the level of individual methods, i.e., under resampling has 11 algorithms,
combine resampling has 2 algorithms, over resampling has 7 algorithms and no
resampling. The left part shows the case with 20 samples, while the case with 50
samples is shown on the right.

respectively. Looking at these figures, we observe that our approach samples all
combinations of groupings over two operators for both sample sizes. By contrast,
the sampling strategy used in the Hyperopt samples has less coverage in terms
of these combinations. This is because we consider the choice of algorithms in
operators to be different from categorical parameters, whereas Hyperopt does not.
The plots clearly explain why BO performs better with the help of our approach.

7.4.2 Results of second experiment

The results of the second experiment are presented in Table 7.3. The third and
fourth columns show our experimental results, i.e., TPE with and without our
sampling approach. The remaining columns contain the results obtained using other
AutoML frameworks according to [22]. This table reports the average accuracy over
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7.4 Results and Discussion

1 2 3 4 5 6 7 8

RobustAutoML
TPOT

Auto-sklearn
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Auto-Hyperopt
HPsklearn
Random

CD

Figure 7.3: Comparison of all approaches against each other with the Nemenyi
test with 5% significance level.

10 repetitions to illustrate the performance differences between the two implemented
approaches in our AutoML framework8, i.e., TPE with (RobustAutoML) and
without (Auto-Hyperopt) our sampling approach, to compare them against other
well-known AutoML frameworks, i.e., Auto-sklearn-SMAC (Auto-sklearn) and
Auto-sklearn-Random search (Random), HPsklearn, TPOT, ATM, and H2O.
Values in bold indicate the highest values in the corresponding dataset. Underline
values indicate significantly different results from the best method according to
a Wilcoxon signed-rank test with p < 0.05. The two extra rows at the end show
the additional summaries. The first extra row shows the number of times each
approach achieved the highest performance over 73 examined datasets. The last
row presents the number of cases in which these methods significantly outperformed
the other compared methods.

The results allow the following insights:

• Comparing the results of approaches using the search space of Auto-
Sklearn includes our two approaches, Auto-Sklearn and Random Search.
First, it is not surprising that all Bayesian optimization approaches perform
better than random search in most tested cases. This has been demonstrated
in other studies [40], [47]. Second, Auto-Sklearn won more tested cases
than Auto-Hyperopt with the same search space. A possible explanation
for this might be that Hyperopt lacks support for k-fold cross-validation
yet, while SMAC, the BO variant used in Auto-Sklearn, uses racing algo-
rithms to skip performing on unnecessary folds. Consequently, within the

8For readability, RobustAutoML stands for TPE with our sampling approach, and Auto-
Hyperopt stands for the original version of TPE implemented by Hyperopt without our improve-
ment.
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same budget of time, Auto-Hyperopt evaluated a much smaller number
of configurations than Auto-Sklearn. Lastly, the experimental results
clearly indicate that the performance of TPE with the help of our sampling
approach significantly improves.

• From the results of three approaches using TPE, we can observe that: Firstly,
comparing the two approaches that do not use our sampling, i.e., HPsklearn
vs. Auto-Hyperopt, we can conclude that the search space of Auto-
Sklearn does not improve the final performance of TPE. Secondly, the
results clearly demonstrate that significant improvement was achieved with
the help of our sampling approach. Our approach outperforms others 23
times, significantly winning Auto-Hyperopt in 16 cases and HPsklearn
in 20 cases. Furthermore, in all 3 cases where Auto-Hyperopt achieves
the highest results, e.g., tasks 24, 3543, and 14967, both our approach and
Auto-Hyperopt get maximum accuracy in those cases. On the other hand,
HPsklearn got the highest results in 3 cases, e.g., tasks 24, 146607, 189355,
but never performed significantly better than our approach in any of those.

• Overall, our proposed approach shows the best results in more cases than all
other approaches compared, namely 28/73. Moreover, according to the results
of the Wilcoxon signed-rank test, our approach also significantly outperforms
other compared approaches in 23/73 test cases. However, Auto-Hyperopt,
without our improvement, does not win for any of the datasets.

When all approaches are compared, Friedman’s test reveals a significant difference
in average accuracy with p = 6.35 · 10−11. Thus, we performed a post-hoc
multiple comparison test with the Nemenyi test (α = 0.05), shown in Figure 7.3.
Approaches that have a distance higher than CD9 are considered significantly
different. According to this figure, we conclude that RobustAutoML is better
than both TPE-based approaches and better than five other AutoML frameworks,
such as, H20, ATM, Auto-Hyperopt, HPSklearn, and Random Search.

7.5 Conclusions and Future Work

In this chapter, we formulated AutoML as an optimization process for the machine
learning pipeline. Then, we built on this paradigm, we proposed a new class for
modeling the choice of algorithms and the concept of grouping algorithms. Second,

9Critical Difference, here CD=1.2288.
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a robust sampling approach for Bayesian optimization for AutoML optimization
problems was introduced; Third, a BO approach for AutoML optimization was
presented, where our proposed sampling approach and new hyperparameter classes
were implemented. Lastly, a robust AutoML framework was presented which takes
advantage of the proposed BO approach mentioned above.

The experimental results demonstrate the effectiveness of our approaches in two
independent experiments over 117 datasets. The results clearly show significant
improvement achieved by using our approach.

There are several interesting research directions for extending this study. First,
we intend to apply the proposed sampling approach to other AutoML frameworks.
Additionally, we plan to apply some pruning approaches such as Hyperband [35]
and racing algorithm to reduce the time for evaluating configurations that are not
promising by evaluating fewer folds.
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