Universiteit

w4 Leiden
The Netherlands

Efficient tuning of automated machine learning pipelines
Nguyen, D.A.

Citation
Nguyen, D. A. (2024, October 9). Efficient tuning of automated machine
learning pipelines. Retrieved from https://hdl.handle.net/1887/4094132

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4094132

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4094132

CHAPTER

Efficient AutoML via Combinational Sampling

In the previous chapter, the CASH approach converted the ML pipeline opti-
mization problem into a hyperparameter optimization (HPO) problem, where the
choice of algorithms was modelled as an additional categorical hyperparameter.
In this manner, algorithms and their local hyperparameters are referred to at the
same level. Consequently, this approach renders the resulting initial sampling less
robust. Unlike the CASH approach, in this study, we used a new hyperparameter
class to model the choice of the algorithm under the operator. Additionally, we
propose a novel initial sampling approach to maximize the coverage of the AutoML
search space to help BO construct a robust surrogate model. We experimented
with both experimental scenarios of AutoML with two operators and six operators
over 117 benchmark datasets, as introduced in Section dl The results of our
experiments demonstrate that the performance of BO is significantly improved
using our sampling approach.

The remainder of this chapter is organized as follows. First, the motivation and
introduction are provided in Section Next, our contributions are highlighted in
Section Section lays out the experimental setup. The experimental results
are discussed in Section Finally, the chapter is concluded, and further work is
outlined in Section [Z.5

7.1 Introduction

Recall that existing AutoML approaches (e.g., [39], [40]) can be considered as
optimization processes for which the best ML pipeline is searched. Each pipeline
includes an architecture and a set of hyperparameter settings.

Bayesian Optimization (BO) is a commonly used approach in AutoML as it has
been successfully used in hyperparameter optimization (HPQO) problems and plays

a role of an optimizer in many AutoML frameworks, e.g., AUTO-SKLEARN [39],

103

7. Efficient AutoML via Combinational Sampling

Auto-Weka [40], and Hyperopt-sklearn (HPsklearn) [42]. BO is an efficient global
optimization approach (in terms of the number of function evaluations) in which
the trade-off between local exploitation and global exploration is well handled.
Therefore, in this work, we focus on improving the BO by using it to solve the
AutoML optimization problem. Traditionally, the AutoML optimization problem is
treated as a HPO process, where the optimizer is inherited from the HPO domain.
As HPO was originally developed to find the best hyperparameter setting from a
single algorithm, it naturally does not consider the choice of algorithm. The choice
of algorithm is then modelled as an extra categorical hyperparameter. Consequently,
this HPO-based approach in handling the choice of algorithm mismatches the
nature of the AutoML optimization problem.

The search space in the AutoML approach is largely owing to the many possible
algorithm choices for pipeline operators. However, including many algorithms in
the search space naturally leads BO to slow convergence or to get stuck in a local
optimum [30], [31], [35]. One reason is that the initial sampling step in AutoML
is typically restricted to a small budget, which is much smaller than the number
of possible pipelines that can be constructed in the search space. The reason for
this setting is that the effectiveness of BO becomes evident mainly in the later
stages of optimization when it learns to produce better configurations. Many
well-known sampling approaches, for example, the discrepancy-based quasi-random
(quasi-random) sampling [30], the Latin Hypercube (LHD) sampling [239], have
been employed for the initial sampling in this optimization context. However, they
have shown themselves to be insufficiently robust [31], [240], [241] because they
have been used in conjunction with the traditional approach of solving an AutoML
optimization problem, which, as explained above, consists of converting it to a
HPO, thus rendering obscure the differences between the choice of an algorithm
and the choice of the algorithm’s parameters.

Additionally, to construct a robust surrogate model, BO requires good coverage
of the search space [31], but as the number of algorithms increases, the number
of samples required to cover the search space increases exponentially. Previous
studies [46], [47] pointed out that some algorithms can be grouped based on their
technical behaviors.

To assess this theory, in this chapter, we propose a new two-fold approach to

improve BO used in AutoML optimization:

e Group the similar operator algorithms when allocating initial sampling

budget, e.g., the grouping of linear classifiers vs. the grouping of rule-based

104

7.1 Introduction

Udnois Tdnois
{wygra06yy purwo N Ua, ot c...ipTa S ; .

“gourpaO ‘smonurguon} :odKy Aue jo aq ued *dnoiS yoes ({ onrea uonea}l { onEs Hwid&,vﬁfﬁnﬁum?»m Surdnoxd
UOPPIQIO ST SWDUDJ pue LUDUDJ JO UOIFRUIUIOD oY) USyM A:?Vuiamﬁ:v ‘CwWDuD) Aﬁiui@ﬂ&# ‘TWDUD)) WeIR JUOPPIqIO] o[qrseayuy
UaIP[IYD sey weleJIodA[e usym {¥prryo ¢ Ty o} {PMIPAg } ‘QuauD g) urere JIeuo}Ipuo)) [eoTyDIRISTE]
{uy ¢ -1y} 9es ur enjea e 9800y (wy ¢ Ty)edtoyuY)LIoS[Y w0y ,
{“o " “TH} ges ur enjea ' v9sooy) (v ¢+ Ip)wrereJeorio8eje)) [eurwoN
7 U [Tow ‘urw] Jo aSuer ut enjea 19899Ul & 9S00y (xpw ‘urw)wrereJro8aguy reurpiQ
N U [zpw ‘urw] jo a8uel ur anfea jeO[® 95007 (zpw ‘urw)urereyeol Snonuuo))
uornydrrosaq uorjeloUUY Jorowreredasd Ay

uorjpejuawR[dul o Ul pasn suorjouny pue sod4) rejowrerediodAy :1°), 9[qR],

105

7. Efficient AutoML via Combinational Sampling

classifiers [46]. Table summarises different hyperparameter classes with

their semantics in our work.

e Building on top of other sampling approaches, we propose a novel sampling
method that aims to allocate reasonable budgets for each set of algorithms
to maximize the coverage of sampling areas in terms of the grouping of
algorithms to provide a robust surrogate model. In other words, our pro-
posed approach is complementary to other sampling approaches, rather than
competitive, with the aim of optimizing the performance of the search space
of AutoML.

7.2 The Proposed Approaches for Automated Ma-
chine Learning

In this section, we first introduce our proposed combination-based sampling ap-
proach for increasing the efficiency and robustness of AutoML. Next, we introduce
a new BO Python library for AutoML optimization and an AutoML framework

that implements this paradigm.

7.2.1 Novel combination-based initial sampling for Bayesian
optimization for AutoML optimization

The central idea of our approach is to provide optimized coverage of the algorithm-
hyperparameter search space already during the initial sampling of BO in order to
characterize the response surface more accurately.

To properly analyze this discussion, we need to utilize the notations that were
introduced in Chapter (Section. These notations are crucial for our ongoing
analysis and were discussed in detail in their original context in Chapter [I] to
ensure a better understanding. Given a search space denoted by M includes the
sequence of z operators O = 07 x ... x O, and its corresponding hyperparameter
spaces A = Ap, U...UAp_, as defined in Section of Chapter

A grouping of algorithms of operator O; assumes that the set of all algorithms
{@,A},..., A} available to be employed for operatOIH O, can be partitioned
into g; non-empty and non-overlapping subsets, according to their inner workingsﬂ

{GL,...,G?}, gi <ni+ 1El Such partitioning is called a grouping of algorithms.

Lifg < zor {AL ... A2} if i = 2.
2or any other user-defined logic.
3if i < z and g, < n. otherwise.

106

7.2 The Proposed Approaches for Automated Machine Learning

The operator can then be represented as O; = {G},..., GY'}. According to
our proposed combination-based initial sampling method (see Algorithm E[), the
sequence of pipeline operators O = O x ... x O, should be sampled in BO from
the domain space of sets {G1,...,G7'} x ... x {GL,...G?+} and the total initial
sampling budget should be split equally per group. The main idea behind such
sampling budget reallocation is the potential exploitation of similarities between
algorithms within the group: sampling fewer of the same algorithms frees up
the budget to be distributed to other (different) algorithms, thus improving the
coverage of algorithm-hyperparameter search space at an earlier stage of BO.

As an input parameter for our method, we require a number of data points Biy,;¢
for the initial sampling and a maximum number of combinations K, K < Bj,;. If
K exceeds the maximum number of possible combinations computed from the input
operation steps k = []_,|O;|, then we use Algorithm [10] to randomly regroup
algorithms in operators to ensure & < K. The proposed sampling algorithm,

presented in Algorithm [J] consists of the three following steps:

1. Generate the list of combinations: List all k& possible combinations of groups
for all z operators; apply RANDOMREGROUPING until £ is small enough
(k < K) (lines 2 — 4).

2. Allocate budget to combinations: first allocate budget to all combinations
based on the number of algorithms and hyperparameters behind (lines 5
- 10). Then, if there is any remaining budget B;emain, randomly allocate
Biemain to the top % combinations ordered by their size (i.e. the number of
algorithms and hyperparameters in the combination). We take the size of
the combinations into account to give larger combinations a higher chance of

getting a larger budget.

3. Sampling configurations: for each combination s, an existing sampling ap-
proach (e.g., LHD, quasi-random, here we use quasi-random) is used to
generate a trial sequence s; = (G1,...,G;) (lines 12 — 16); Lastly, the
generated configurations must be verified by CHECKFORBIDDENﬁ

Lastly, the generated configurations are shuffled to remove a potential impact

of grouped configurations based on combinations. This is highly recommended

4 An external function that verifies a combination of algorithms/a configuration with the
forbidden rules defined by the user.

107

7. Efficient AutoML via Combinational Sampling

Algorithm 9: Combination-based sampling

Input: O: sequence of operators, A: hyperparameter spaces, Bini:: number of
initial samples, K: maximum number of combinations of grouping of
algorithms over operators, 7 = 2: proportion of combinations to be
chosen to assign more budget if any remaining budgets are available.

Output: O: set of configurations

// 1-Generating combinations

1 k=1][_,|0i| // maximum number of possible combinations
2 if k > K then
| (0, k) = RANDOMREGROUPING (0, K) // Algorithm

// Create a list s of all possible combinations from O
as={s1,...,80} ={G1,...,GI"}y x ... x {GL,...,G%}
// 2-Allocate budgets to k combinations

5 o= % // number of inital samples per combination

6 m = %Zle (JAs;|+|ss]) /7 |si] is the number of all unique algorithms
and |As,;| is the number of hyperparameters

7 © =0 // set of initial configurations

8 foreach j € {1,...,k} do

9 I =l x WJ// l; is the number of samples for the

combination s;

I N SR
L 7 7 1l;, otherwise.

11 if Bremain = Binit — Y_y_, l; > 0 then
// Randomly allocate Bjremain to the top % combinations based on

the number of algorithms and hyperparameters

// 3-Sampling Configurations
12 foreach j € {1,...,k} do

13 ©; = @ // feasible configurations in the j™ combination
14 while |0;|<; do
15 O; = ©, USAMPLING(sj, Aj,1; —|0;])

// SAMPLING is done via an existing approach, here we choose
quasi-random sampling with minor adjustments

16 foreach A € ©; do
17 if CHECKFORBIDDEN(A) then
18 L @j = @j \ A

19 | ©=0U69;

108

7.2 The Proposed Approaches for Automated Machine Learning

Algorithm 10: Random Regrouping

Input: O = ({Gi, a G Y x Lo x {GE ... GY }) sequence of operators, K:
number of combinations

Output: Oew: new sequence of operators, k: new number of combinations
k = K // number of all possible combinations

2 S=@ // split solutions
s Ch={1,...,¢1},...,C.={1,...,9.} // set of possible groupings of

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27

28

// List out all split solutions
Create a list of all possible splits H = {h;} where h; = (c1,...,¢:) : ¢; € C;Vj
// Select split solutions which can produce k combinations, k < K

while S = @ do
S={h=(c1,...,c.) € H: (Hjcj):k}
if S = @ then
| k=k-1

Schosen ~ U(S)// randomly choose one solution
Onew = (&1,...,9:),1=1
foreach c¢; € schosen do
// c;i is the number of groups to be created
n; = |0;| // number of groups in the 3" operator
if ¢; = n; then
| 0i={{G;},....{G}"}} // when ¢; =n;
else if ¢; = 1 then
‘ 0; ={G},...,G}"} // merging all predefined groups
else
G = g, Oy = 0O,
while n; > 0 do
Go = D, Nsize = (%—I
if n; > nsize then
‘ Go ={Random pick ns;.. items in Op}
else
L Go ={0o}
G =G UGy, Oo:Oo\Go, n; = ‘(90|
0; ={G}

| Ol =0 i=i+1

return Opey, k

109

7. Efficient AutoML via Combinational Sampling

since, in some cases, the computational optimization budget, i.e., the run time
limit, can run out before finishing this initialization step.

The RANDOMREGROUPING method used in Algorithm [J] is presented in Al-
gorithm For a sequence of operators that consists of multiple groupings of
algorithms, it produces, via a regrouping, k combinations of operators (k < K)

using the following steps:

1. Step 1 (lines 3 — 9): Based on the number of the grouping in operators, we

list out all possible solutions of regrouping to have & combinations.

2. Step 2 (line 10): Randomly choose one solution scpesen = (€1, - ., c,) where

¢; is the number of groupings to be created for the operator O;.

3. Step 3 (lines 11 — 27): For each operator O;, we randomly group algorithms

into ¢; groups.

7.2.2 A New Optimization Library for AutoML Optimiza-
tion

To take advantage of the new sampling approach introduced in Section [7.2.1] we
introduce a BO library for AutoML optimization, named BO4MIEL where the
new sampling approach is implemented. In this work, we use the Tree-structured
Parzen Estimator (TPE) implemented in Hyperopt [153] for the surrogate model

and Expected improvement (EI) [156] for the acquisition function.

7.3 Experimental Setup

This study examines the two experiments introduced in Chapter [4{ (Section
and Section . In both scenarios, we compare the performance of Bayesian
optimization (see Chapter [3| Section with and without our proposed initial
sampling approach.

The first experiment uses similar parameter settings as in Chapter [5} we select
two different values of the initial sample size 20 and 50. We use a budget of
500 function evaluations. The 5-fold cross-validation approach and the averaged
geometric mean values over 10 repetitions are reported. The selected classification

algorithms are not grouped together. The resampling techniques are grouped into

5 The library is published at https://github.com/ECOLE-ITN/NguyenSSCI2021.

110

https://github.com/ECOLE-ITN/NguyenSSCI2021

7.4 Results and Discussion

four groups "Over-resampling", "Under-resampling”, 'Combine-resampling", and
"No-sampling', as suggested in [47], [48].

In the second experiment, we used a budget of 50 samples for the initial
sampling. All the experiments performed 10 runs with different random seeds,
with a time limit of 1 hour. The performance of a single configuration is limited to
10 minutes with 4-folds cross-validation on training data, i.e., the evaluation of a
fold is allowed to take 150 seconds. The evaluation of a configuration is aborted
and returns zero if any folds have an error, for example, due to an infeasible
configuration or timeout. Then, the average accuracy values for the test data over
10 runs are reported. Finally, the selected algorithms are grouped, according to
the suggestions in [46], |[151].

The implementation of the proposed methods is published in a git—repositoryﬂ
and PyPi—repositoryﬁ The experiment scripts for the reproducibility of the reported

results are provided in a git—repositoryﬂ

7.4 Results and Discussion

In this section, we report and discuss the results obtained from using the above
experimental setups. Our experiments has two objectives. First, we compare the
performance of Bayesian optimization with the help of our proposed sampling
approach with that without our contributions in terms of AutoML optimization
for class-imbalance problems, with a search space of two operators. Second, we
compared them against state-of-the-art AutoML frameworks with a search space

of six operators.

7.4.1 First experimental results

The results of the first experiment are presented in Table [7.2] to illustrate the
performance of BO with and without the help of our proposed approach for two
different initial sample sizes, that is, 20 (left, not shaded) and 50 (right, gray
shaded). In both scenarios, the best performance for the corresponding dataset
is highlighted in bold. A method that performs significantly worse than the best
method according to the Wilcoxon signed-rank test with o = 0.05 is underlined.
A value labeled * indicates the best result obtained for the corresponding dataset.

The two extra rows at the end display the additional summaries. The first extra

Shttps://pypi.org/project/BO4ML.
“https://github.com/ECOLE- ITN/NguyenSSCI2021/tree/assets/SSCI-Experiments)

111

https://pypi.org/project/BO4ML
https://github.com/ECOLE-ITN/NguyenSSCI2021/tree/assets/SSCI-Experiments

7. Efficient AutoML via Combinational Sampling

Table 7.2: Average geometric mean (rounded to 4 decimals) based on two different
initial sampling settings, i.e., the Hyperopt approach and our approach (BO4ML), over
10 repetitions for the 44 examined datasets, ordered by increasing imbalance ratio (#IR)
value. The two extra rows display summaries for each scenario, i.e., 20 and 50 initial
samples: (1) Highest performance shows the number of times the optimizer achieved
the highest value. (2) Significantly better performance shows the number of times the
optimizer was significantly better than the competitor.

Dataset #IR 20 initial samples 50 initial samples
Hyperopt BO4ML | Hyperopt BO4ML

glass1 1.82 0.7935 0.7944 *0.7970 0.7944
ecoli-0_vs_ 1 1.86 0.9864 0.9864 0.9864 *0.9868
wisconsin 1.86 0.9814 0.9817 0.9818 *0.9819
pima 1.87 *0.7712 0.7696 0.7703 0.7707
irisO 2 *1 "1 *1 *1
glassO 2.06 0.8777 0.8748 0.8740 *0.8853
yeastl 2.46 0.7319 0.7332 0.7321 *0.7345
haberman 2.78 *0.7049 0.7012 0.6991 0.7040
vehicle2 2.88 0.9908 *0.9927 0.9912 0.9918
vehiclel 2.9 0.8690 0.8684 0.8713 *0.8735
vehicle3 2.99 0.8463 0.8486 0.8416 *0.8506
glass-0-1-2-3 vs_ 4-5-6 3.2 *0.9567 0.9539 0.9534 0.9553
vehicle0 3.25 *0.9876 0.9867 0.9867 0.9867
ecolil 3.36 0.9038 *0.9053 0.9050 0.9043
new-thyroidl 5.14 0.9980 0.9972 *0.9983 0.9966
new-thyroid2 5.14 *0.9972 0.9964 0.9952 0.9966
ecoli2 5.46 0.9363 0.9353 *0.9365 0.9360
segment0 6.02 *0.9993 0.9992 0.9992 0.9992
glass6 6.38 0.9488 0.9514 *0.9518 0.9511
yeast3 8.1 0.9423 0.9421 0.9427 *0.9441
ecoli3 8.6 0.9038 0.9059 0.9064 *0.9072
page-blocks0 8.79 *0.9475 0.9472 0.9464 0.9457
yeast-2_vs_4 9.08 0.9549 0.9542 *0.9554 0.9531
yeast-0-5-6-7-9__vs_4 9.35 0.8245 0.8177 *0.8261 0.8193
vowelO 9.98 0.9567 *0.9593 0.9525 0.9561
glass-0-1-6_vs_ 2 10.29 0.8404 0.8421 0.8334 *0.8460
glass2 11.59 *0.8504 0.8461 0.8462 0.8471
shuttle-c0-vs-c4 13.87 *1 *1 *1 *1
yeast-1_vs_ 7 14.3 0.7991 0.8013 *0.8033 0.8010
glass4 15.46 *0.9390 0.9230 0.9299 0.9324
ecolid 15.8 0.9712 0.9694 0.9632 *0.9737
page-blocks-1-3_vs_ 4 15.86 0.9931 0.9874 0.9917 *0.9944
abalone9-18 16.4 *0.8899 0.8829 0.8856 0.8859
glass-0-1-6_vs_5 19.44 0.9494 *0.9571 0.9564 0.9565
shuttle-c2-vs-c4 20.5 "1 *1 *1 *1
yeast-1-4-5-8 vs 7 22.1 0.6989 0.7024 *0.7052 0.7045
glassh 22.78 0.9589 0.9558 0.9591 *0.9595
yeast-2__vs_8 23.1 0.8136 *0.8348 0.8136 0.8150
yeast4 28.1 0.8764 0.8788 0.8782 *0.8788
yeast-1-2-8-9_vs_ 7 30.57 0.7500 0.7489 0.7397 *0.7538
yeasth 32.73 *0.9802 0.9798 *0.9802 0.9800
ecoli-0-1-3-7_vs_2-6 39.14 *0.9265 0.9076 0.9113 0.8982
yeast6 41.4 0.8953 0.8918 0.8939 *0.8955
abalonel9 129.44 0.7958 0.7974 0.7992 *0.7998
Highest performance 15 8 12 19
Significantly better performance 0 2 0 4

112

7.4 Results and Discussion

~ 8 ~ 8
2 2 g S
= 2 B 3 = 2 B 9
o = £ £ o = - £
£ £ 0 Q £ = 0 Q
= b4 £ = Q £
Q. © o Q © o
€ 3 ? £ 3 a
© o g 9 © « g Q
»n £ 4 n = <
0] o o) = 0] o Q -
o ° S 9] o ° €]
o C o > o C o >
=2 D @] (@] =2 - @) (@]
[@)] | | | | | | | |
£
55 LR- - o L
£8 /
S o KNN -) =)
—
2 g DTC- - o 6
Ex re- - o ®
2= svm- ® - o ® >
D:]]]]]]]] 4
c
S LR- - L 4 L 4 3
S - - | 4 o
© KNN
g DTC - - o @ 2
@©
S] : : 1
SVM - -
o
Number of samples: 20 Number of samples: 50

Figure 7.1: Illustration of the number of samples allocated to different combinations
of methods in random sampling implemented in Hyperopt (top rows) vs. our
proposed approach (bottom rows). The cases with 20 (left) and 50 (right) samples
are shown.

row shows the number of times each scenario achieved the highest value over 44
datasets. The last extra row indicates the number of times each approach was
significantly better than the others in the group. From the table, we can observe

the following.

o In 20 initial samples scenario, Hyperopt achieved the best results on 28/44
cases, and our approach on 20/44 cases. However, our approach significantly
wins on 2 tested cases, i.e., "ecoli3" and "yeast-2_ vs_ 8" and is not significantly

worse than Hyperopt in any tested cases.

o In the second scenario, our approach achieves the highest value on 31/44 cases
and Hyperopt- on 16/44 cases. Similarly, our approach is not significantly
worse than Hyperopt in any tested cases but significantly better on 4 examined

datasets, i.e., "glass0", "yeastl", "ecoli4", "yeast-1-2-8-9 vs_7".

To investigate the sampling behavior of both approaches for the initial sample
sizes, we provided two plots: Figure [7.I] shows the distributions of the samples and
Figure[7.2] shows the distributions at the level of the individual algorithms. In both
plots, the case with 20 samples is shown on the left and 50 on the right of the plot,

113

7. Efficient AutoML via Combinational Sampling

— S — S
—~ —
2 f = ER -
SHE- E 2 SHE- E 2
)] Q © =)] [o% © =
£ IS b3 Q £ € 9 o
- 3 2 £ ° @ o £
s ¢ ¢ F 5 & g 3
P e o - re) o4
& 3 £ 5 < 3 £ 5
B 5 S 3 E 5 o 3
AT T T T T T T T T T ITITTITTIT7T17 T T I T T T T T T T I TITITITT11
[®)]
%A LR —++@ o) -+ @ ° 4
E5 KNN - o - °
[}
ggDTC— - o e\l
gz Rt : . .
S SVM- - ® °®
o4
rrrrrrrrrrrrrrrrrrnrn rrrrrrrrrrrrrrrrrrrn
< LR~ - 2
@
SKNN- -
g DTC - -
S RF- -
5 1
O SVM - -
Number of samples: 20 Number of samples: 50

Figure 7.2: lustration on the distribution of samples obtained via initial sampling
methods on the level of individual methods, i.e., under resampling has 11 algorithms,
combine resampling has 2 algorithms, over resampling has 7 algorithms and no
resampling. The left part shows the case with 20 samples, while the case with 50
samples is shown on the right.

respectively. Looking at these figures, we observe that our approach samples all
combinations of groupings over two operators for both sample sizes. By contrast,
the sampling strategy used in the Hyperopt samples has less coverage in terms
of these combinations. This is because we consider the choice of algorithms in
operators to be different from categorical parameters, whereas Hyperopt does not.

The plots clearly explain why BO performs better with the help of our approach.

7.4.2 Results of second experiment

The results of the second experiment are presented in Table The third and
fourth columns show our experimental results, i.e., TPE with and without our
sampling approach. The remaining columns contain the results obtained using other

AutoML frameworks according to . This table reports the average accuracy over

114

1scussion

7.4 Results and D

abnd)TOU Y] UO PINUIIUOD

00¥8G°0 8.699°0 198950 ¥¥895°0 9GGGG°0 2999¢°0 | 002950 €ETE9°0 (18¢ge) s> 0z6STT
PITS6°0 909760 T68%60 0SL¥60 PPPP6°0 TIL¥6°0 | LSS¥6°0 GZ8¥6°0 (ge1¥) spueq-1opur£> 6ESHE
T T T £8666°0 206660 T L0666°0 T (0gg¥) spueq-10pur[dd 8ECHE
G9TO0L'0 212990 98S.9°0 TLTL90 $00S9°0 €€2.9°0 |¥9819°0 100790 (8€GY) UIOIJAOIN 696F1
00008°0 GGI6L°0 €LTIS 0 £G8SL°0 8G0LL0 €S8LL°0 |cer080 08S€8°0 (cee9) Sogeseygonyson) R96¥I
T - T TEIL6°0 T¥8660 S92860 |T T (08€€T) ovsqomBurysiyd L96¥1
090060 186680 S0L06°0 IS¥06°0 868060 L¥¥06°0 | L0006 0 10€06°0 (T9¥%1) eehojdwe™ uozewry G96¥1
€€€8L°0 T10LI80 600T80 199920 €L19.°0 CI06L0 |TIITI8O Zv9€8°0 (zgg9) osuodserorg HG6¥1
09TL6°0 797960 €£16960 196960 %5960 065960 | £5996°0 $60L6°0 (peey) edA3aenod zgeTT
SLEEL0 9S6TI8°0 TILSL0 ¥W08L0 8LLLL0 1999L°0 |SLG9L0 L9908°0 (P9¥1) Mnpe TOTOT
999T19°0 TLZ090 T6TT9°0 £6835 0 T0986°0 S69650 |£S98650 63019°0 (gL¥1) erd-peapuny-ouo G866
912560 6%096'0 ¥8L¥6'0 TIOV6 0 LTTE€6'0 L9T¥6°0 |8Tc¥6 0 £6056°0 (8971) ewouoyd 1866
9PTL6°0 SS096°0 9T0L60 168960 959960 €0696°0 |¥26S60 G2S96°0 (98%1) oewou 1166
GEV9S'0 60190 O9PII90 L99¥S0 G6L29°0 TLIS90 |9V1S9°0 L9TL9°0 (26%1) oy3-1opio-4siy 5566
G0g6S°0 €9668°0 0SV06'0 €£.T68°0 G0g6S0 9TL68°0 |92806°0 6IS16°0 (68%T) 6-orud 7566
¥7008°0 L80.L°0 6%T08°0 B6LLL0 T9LLL°0 0688L°0 |EL08L0 L0108°0 (PeT¥) 1STysueI3-poorq 0166
806560 068990 TFSH6'0 LTTS6°0 €7168°0 96£96°0 | C0608°0 8.50L°0 (96GT) Surjerew-yueq £65L
9G998°0 8FPS80 680L8°0 LTLISO €10L8°0 86980 |69.88°0 16298°0 (06GT) sourare T6SL
SIVE60 - G80S6°0 89056°0 0£0%6'0 ¥60S6°0 | 9T1¥6°0 STEV60 (PrIT) TOSdn 60dnpaast 8V6¢
Z0SSL0 - 729060 665360 98%26'0 Sclc60 | 729260 10626°0 (g111) wmyp ™ godnpaad 9%6¢
GG%960 - T8I86°0 681860 802860 ¥WE860 |L6I860 £TE86°0 (TT11) etedde godnpaa ST6€
69808°0 99898°0 61098°0 ¥W0O¥80 07EG8°0 8IIS80 |CL6SR0 €6€L8°0 (2901) 1% L16€
6I87L°0 001280 OISIS0 866080 9cI18°0 VPEIR0 |E6E18°0 Y0¥28°0 (ego1) Tl 706¢
680TL0 TTTIL'0 TES990 G9LE9 0 €9S79°0 289990 |GSL¥90 6ITE9°0 (0L%) qzod 19G¢
TVS61°0 8TOLZ'0 £880C0 6EI6L0 78200 G980¢ 0 |Gcllc 0 Zv0ec 0 (69%) yup ™ ejepyeo[RUE 095¢€
L96L60 T 160660 F0¥66°0 180660 610660 |T T (16¥) ysu evae
617860 - 9¥L86°0 8EVLE0 0GS86°0 88C86°0 |LEL86 0 2S166'0 (8¢) snyd4reons 120€
0L669°0 061790 995590 CLOV90 09290 988¢9°0 |810990 20969°0 (881) ororyea 6L0T
LT.58°0 TcSI80 TISIS 0 LSLGL0 696180 S0028°0 |SS8e8°0 LS798°0 (vg) ueaqdos €g
Tole6'0 F0SF6'0 TELi60 S8SG6°0 T16160 ¥S616°0 |SL8G60 TLIS6°0 (zv) 18 1%
L98%L°0 8LS9L0 00F¥¥L0 TGI0L0 007CL'0 €E€VEL0 | EELTL 0 00992°0 (1¢) 8-3pord 1€
78T98°0 €E€T68'0 LL£98°0 996580 20GG8°0 68TL8°0 |ccS980 ¥7L88°0 (62) eaordde-jiparo 62
87866°0 T 1 1 £6666'0 T 1 T () wooaysnu ¥z
€€L8G°0 O00TI8S'0 TS8SS0 L¥0ES 0 792850 SE9¥S0 | SSISS 0 G8TLS0 (gg) owd €T
982960 ¥LP86°0 TLS960 000960 €18G6°0 GLS96°0 |SV0L60 2S6L6°0 (g1) m-3seo1q GT
€E7L60 8LI86'0 €EEL60 8SL¥60 €69.6°0 L9LL6°0 |LITI86°0 LIP86°0 (z1) sio30e}-ye0y 41
9T¥66°0 92€66°0 TE€¥660 150660 290660 986860 | 015660 99966°0 (g) dy-sa-1y e
(3doaadAg-omy) (TINOINYISNqOY)
wiopuey OVIANS burpdwns uno buz)dwns uno (Ai#) sweN
OZH INLV. LOdI _uxespisdH ures[ys-ojny moypm g4 L ypm gd.L jesereq ariseLr#

zg| ssaomeuwreay NoOIMY SUIISIXH

sjuowtredxy anQ

sar TNuedo

Pl SR # Aq po1opilo ‘sjoseyep TINUA(Q €2 oY) I0] suoijedal ()T I0A0 (S[RUIIDOD G 0) POpUNOI) AdeIMdde a8RIOAY :¢°), S[qRL,

115

7. Efficient AutoML via Combinational Sampling

Table 7.3: Average accuracy (rounded to 5 decimals) over 10 repetitions for the 73 OpenML datasets, ordered by #Task id. —
continued from previous page

OpenML IDs Our Experiments Existing AutoML frameworks |22]
#TaskID Dataset TPE with TPE without Auto-sklearn HPsklearn TPOT ATM H20
Name (#ID) our sampling our sampling SMAC Random
(RobustAutoML) (Auto-Hyperopt)
146195 dresses-sales (40668) 0.77358 0.77321 | 0.82109 0.79628 0.82886 0.84123 0.77698 0.86500
146212 higgs (40685) 0.99965 0.99945 | 0.99978 0.99968 0.99253 0.99974 0.99955 0.99987
146606 numerai28.6 (23512) 0.70605 0.69761 | 0.72296 0.71930 0.70743 0.72031 0.67135 0.71281
146607 SpeedDating (40536) 0.86611 0.85871 | 0.86291 0.86225 0.86661 0.86392 0.86128 0.84968
146800 connect-4 (40966) 0.99969 0.99321 | 0.99043 0.99506 0.96380 0.99506 1 0.99551
146817 dna (40982) 0.80497 0.78216 | 0.78268 0.76364 0.75955 0.79091 0.76415 0.78062
146818 shuttle (40981) 0.88647 0.85845 | 0.87053 0.85556 0.86913 0.86184 0.89050 0.87633
146819 churn (40994) 0.95802 0.93951 | 0.94074 0.92407 0.92593 0.94547 0.96975 0.93642
146820 Devnagari-Scrip (40983) 0.97355 0.97906 | 0.98612 0.98581 0.95289 0.98540 0.98657 0.98574
146821 CIFAR,__ 10 (40975) 0.99441 0.98748 | 0.97264 0.97958 0.98786 0.99422 0.96763 0.99191
146822 MiceProtein (40984) 0.94473 0.93189 | 0.93088 0.93333 0.90664 0.94055 0.92564 0.94185
146824 car (40979) 0.98433 0.98117 | 0.97783 0.97367 0.98121 0.96883 0.97750 0.97600
146825 Internet-Advert (40996) 0.84300 0.83891 | 0.87844 0.84450 0.85060 0.78089 0.82114 0.87341
167119 mfeat-pixel (41027) 0.84647 0.83956 | 0.86775 0.85378 0.88691 0.88735 0.87540 0.90047
167120 Australian (23517) 0.52257 0.52134 | 0.51926 0.51939 0.52033 0.52082 0.51941 0.50635
167121 steel-plates-fa (40923) 0.86652 0.74910 | 0.74009 0.02169 0.86438 - 0.89470 0.58220
167124 wilt (40927) 0.39675 0.37813 - - 0.32093 0.29429 0.32001 0.36389
167125 segment (40978) 0.97713 0.97033 | 0.97774 0.97114 0.97358 0.97398 0.96900 -
167140 climate-model-s (40670) 0.96485 0.95397 | 0.95962 0.95889 0.96109 0.95931 0.95282 0.96904
167141 Fashion-MNIST (40701) 0.96273 0.95367 | 0.95620 0.95313 0.94533 0.96000 0.95007 0.95370
168329 jungle chess_ 2p (41169) 0.31690 0.29294 | 0.30692 0.29566 0.28741 0.33576 0.32108 -
168330 APSFailure (41168) 0.68479 0.66670 | 0.71814 0.69273 0.68494 0.69642 0.63788 0.71786
168331 christine (41166) 0.60445 0.59520 | 0.66933 0.63762 0.65451 0.65075 0.67940 0.67841
168332 jasmine (41165) 0.42507 0.38497 | 0.44843 0.39922 0.34203 - 0.35252 -
168335 sylvine (41150) 0.92248 0.91035 | 0.94334 0.92891 0.87477 0.93850 0.90234 0.94604
168337 albert (41159) 0.78205 0.72707 | 0.64227 - 0.74347 0.72548 0.66063 0.81928
168338 MiniBooNE (41161) 0.98303 0.98035 | 0.74757 0.75042 0.82518 0.98495 0.90729 0.95625
168868 guillermo (41138) 0.98985 0.98900 | 0.99287 0.99137 0.99360 0.99339 0.97097 0.99369
168908 riccardo (41142) 0.73659 0.72565 | 0.74754 0.73081 0.71630 0.72645 0.72169 0.72811
168909 dilbert (41163) 0.95040 0.94437 | 0.98357 0.94793 0.97243 0.96254 0.95391 0.96988
168910 fabert (41164) 0.67565 0.66177 | 0.70255 0.67395 0.69104 0.68336 0.67357 0.71752
168911 robert (41143) 0.83259 0.80748 | 0.82009 0.80603 0.80078 0.82366 0.79911 0.80906
168912 volkert (41146) 0.95709 0.94655 | 0.93921 0.94753 0.94675 0.95533 0.93476 0.92510
189354 dionis (1169) 0.64626 0.63957 | 0.66665 0.59845 0.65080 0.66895 0.63671 0.61266
189355 jannis (41167) 0.73916 0.68112 - - 0.77971 - 0.38666 -
189356 helena (41147) 0.64810 0.64737 | 0.68314 0.66709 0.66694 0.66110 0.80064 0.64798
Number of cases achieved 28 3 11 - 3 9 18 15

the highest values
Significant wins over other approaches 23 - 9 - 1 6 13 13

116

7.4 Results and Discussion

RobustAutoML —— L Random
TPOT HPsklearn
Auto-sklearn Auto-Hyperopt
H20 ATM

Figure 7.3: Comparison of all approaches against each other with the Nemenyi
test with 5% significance level.

10 repetitions to illustrate the performance differences between the two implemented
approaches in our AutoML frameworkﬂ i.e., TPE with (ROBUSTAUTOML) and
without (Auto-Hyperopt) our sampling approach, to compare them against other
well-known AutoML frameworks, i.e., AUTO-SKLEARN-SMAC (Auto-sklearn) and
AuTO-SKLEARN-Random search (Random), HPSKLEARN, TPOT, ATM, and H20.
Values in bold indicate the highest values in the corresponding dataset. Underline
values indicate significantly different results from the best method according to
a Wilcoxon signed-rank test with p < 0.05. The two extra rows at the end show
the additional summaries. The first extra row shows the number of times each
approach achieved the highest performance over 73 examined datasets. The last
row presents the number of cases in which these methods significantly outperformed
the other compared methods.

The results allow the following insights:

e Comparing the results of approaches using the search space of AUTO-
SKLEARN includes our two approaches, AUTO-SKLEARN and Random Search.
First, it is not surprising that all Bayesian optimization approaches perform
better than random search in most tested cases. This has been demonstrated
in other studies [40], [47]. Second, AUTO-SKLEARN won more tested cases
than AuTO-HYPEROPT with the same search space. A possible explanation
for this might be that HYPEROPT lacks support for k-fold cross-validation
yet, while SMAC, the BO variant used in AUTO-SKLEARN, uses racing algo-

rithms to skip performing on unnecessary folds. Consequently, within the

8For readability, ROBUSTAUTOML stands for TPE with our sampling approach, and AuTo-
HYPEROPT stands for the original version of TPE implemented by Hyperopt without our improve-
ment.

117

7. Efficient AutoML via Combinational Sampling

same budget of time, AUTO-HYPEROPT evaluated a much smaller number
of configurations than AUTO-SKLEARN. Lastly, the experimental results
clearly indicate that the performance of TPE with the help of our sampling

approach significantly improves.

e From the results of three approaches using TPE, we can observe that: Firstly,
comparing the two approaches that do not use our sampling, i.e., HPsklearn
vs. AUTO-HYPEROPT, we can conclude that the search space of AUTO-
SKLEARN does not improve the final performance of TPE. Secondly, the
results clearly demonstrate that significant improvement was achieved with
the help of our sampling approach. Our approach outperforms others 23
times, significantly winning AUTO-HYPEROPT in 16 cases and HPSKLEARN
in 20 cases. Furthermore, in all 3 cases where AUTO-HYPEROPT achieves
the highest results, e.g., tasks 24, 3543, and 14967, both our approach and
AUTO-HYPEROPT get maximum accuracy in those cases. On the other hand,
HPSKLEARN got the highest results in 3 cases, e.g., tasks 24, 146607, 189355,

but never performed significantly better than our approach in any of those.

e Overall, our proposed approach shows the best results in more cases than all
other approaches compared, namely 28/73. Moreover, according to the results
of the Wilcoxon signed-rank test, our approach also significantly outperforms
other compared approaches in 23/73 test cases. However, AUTO-HYPEROPT,

without our improvement, does not win for any of the datasets.

When all approaches are compared, Friedman’s test reveals a significant difference
in average accuracy with p = 6.35 - 107''. Thus, we performed a post-hoc
multiple comparison test with the Nemenyi test (= 0.05), shown in Figure
Approaches that have a distance higher than CDH are considered significantly
different. According to this figure, we conclude that ROBUSTAUTOML is better
than both TPE-based approaches and better than five other AutoML frameworks,
such as, H20, ATM, Auto-HYPEROPT, HPSKLEARN, and Random Search.

7.5 Conclusions and Future Work

In this chapter, we formulated AutoML as an optimization process for the machine
learning pipeline. Then, we built on this paradigm, we proposed a new class for

modeling the choice of algorithms and the concept of grouping algorithms. Second,

9Critical Difference, here CD=1.2288.

118

7.5 Conclusions and Future Work

a robust sampling approach for Bayesian optimization for AutoML optimization
problems was introduced; Third, a BO approach for AutoML optimization was
presented, where our proposed sampling approach and new hyperparameter classes
were implemented. Lastly, a robust AutoML framework was presented which takes
advantage of the proposed BO approach mentioned above.

The experimental results demonstrate the effectiveness of our approaches in two
independent experiments over 117 datasets. The results clearly show significant
improvement achieved by using our approach.

There are several interesting research directions for extending this study. First,
we intend to apply the proposed sampling approach to other AutoML frameworks.
Additionally, we plan to apply some pruning approaches such as Hyperband [35]
and racing algorithm to reduce the time for evaluating configurations that are not

promising by evaluating fewer folds.

119

