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On the use of AutoML optimization in real-
world applications

Accurate classification of multiple classes is crucial in industrial applications,
especially in identifying surface defects in the steel industry. Quality of surface of
steel products is among the most significant contributors to their overall quality.
Therefore, it is of vital importance to detect and classify various surface defects
correctly. While established quality control measures implemented at various
production stages successfully warrant against the high number of defects, they
complicate further defect detection due to the high imbalance in the occurrence
of defects vs defect-free cases. The situation is further complicated by a wide
range of possible types of surface defects, with a heavily imbalanced distribution
among them. In addition, setting appropriate hyperparameters of new classification
methods to obtain a stable and accurate classification performance is far from
straightforward given their strong interdependence. A hyperparameter optimizer is
typically applied to identify the best Machine Learning (ML) model by evaluating
its performance based on standard metrics such as accuracy rate, recall, precision,
etc. However, some classes are more important in many real-world applications.
Thus, to accommodate the latter, we propose an approach for penalizing existing
classification performance metrics with a user-defined class importance matrix. We
demonstrate the proposed approach on a highly imbalanced instance of multi-class
classification of steel surface defects. We solve the Combined Algorithm Selection
and hyperparameter optimization (CASH) problem to identify the best ML model.
Such optimization is done by means of a competitive Bayesian optimization method
in a search space of 21 resampling techniques and 5 classification algorithms (and
their corresponding hyperparameter settings) for three commonly used multiple-
class classification techniques (Multi-class direct classification, One vs. One and
One vs. Rest). The results of our experiments show that the proposed approach
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6. On the use of AutoML optimization in real-world applications

improves the performance significantly on the considered classification problem
compared to the current classification system at TATA Steel (TATA).

The remainder of this chapter is organized as follows. The motivation, intro-
duction and problem formulation are provided in Section 6.1. In Section 6.2, the
relevant background knowledge on imbalance classification and hyperparameter
optimization are provided, and Section 6.3 lays out the experimental setup. Addi-
tionally, experimental results are discussed in Section 6.3.3. Finally, the chapter is
concluded in Section 6.4.

6.1 Introduction

The appearance of surface of a steel product is one of the significant quality
aspects [49]. While established quality control measures already implemented at
various production stages successfully warrant against the high number of defects
in the resulting products, they complicate further defect detection due to the high
imbalance in the occurrence of defects vs defect-free cases. The situation is further
complicated by a wide range of different types of surface defects, with a heavily
imbalanced distribution among these defect kinds. Additionally, setting appropriate
hyperparameters of new classifiers to obtain a stable and accurate classification
performance is far from straightforward given their strong interdependence. To
maximize the classification performance, practitioners need to find a fine-tuned ML
pipeline out of an extensive portfolio made up of a range of suitable algorithms with
their complex hyperparameter settings. The practical surface defects classification
problem faces two main challenges: (i) unequal/imbalanced distribution of defects
across classes, (ii) unequal importance between classes (some imperfections are
more severe than others).

The imbalanced classification problem can be solved by applying a well-
performing combination of a resampling technique and a classification algorithm [74].
Finding such a well-performing combination of methods and the setting of their hy-
perparameters falls within the problem domain Combined Algorithm Selection and
hyperparameter (CASH) optimization problems which can be solved effectively [47]
via the Bayesian optimization [153].

Inside the optimization, the assessment method is critical in evaluating clas-
sification performance to choose the suitable classification model for the given
problem. The performance metrics usually assume that all classes are equally
important. However, users might want to stipulate preferences over classes. To
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6.1 Introduction

illustrate this, Figs. 6.1a, 6.1b show two classification outcomes that are indistin-
guishable from standard performance metrics. In practice, the practitioner will
prefer the first outcome if class 2 is more important than class 1. Therefore,
the existing classification performance metrics are not able to evaluate and rank ML
models for unequal class importance values. Consequently, the automatic machine
learning approaches (such as Hyperparameter Optimization, CASH optimization,
and AutoML optimization), which are mainly focused on selecting the ML model
with the best predictive performance, are not able to solve the problem efficiently
in case of unequal class importance values.

To solve that unequal importance classes problem, the assessment method has
to be adjusted to reward correct predictions of important classes while penalizing
incorrect predictions of those classes. Since almost all performance metrics are
built on the confusion metric [221], we propose a novel approach that adjusts the
confusion matrix by combining the confusion matrix with a user-defined penalty
matrix (see Figure 6.1c), which contains different weights for predictions over
classes. The general performance metric is then computed based on the penalized
confusion matrix, potentially helping the optimizer solve the unequal importance
classes efficiently.

Based on the formulation of the target objective function (Equation 1.2) given in
Section 1.1, let α(ŷi, yi) denote a penalty value of ŷi and yi, that can be extracted
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Figure 6.1: Examples of two confusion matrices with misclassifications in class 0
(left and middle figures, where true and predicted labels are shown vertically and
horizontally, respectively). A corresponding example of proposed penalty matrix
(right figure) indicating that class 2 is more important than class 0 and class
1. Numbers in the penalty matrix indicate the misclassification severity weights
per predicted-true label pair (e.g. a sample of class 2 misclassified as class 0
will be multiplied by 3).
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6. On the use of AutoML optimization in real-world applications

from the pre-defined penalty matrix PM × M of M classes (see Figure 6.1c for
illustration, for example, α(0, 2) = 3). Adding α(ŷi, yi) to the Equation 1.2, to
punish wrong or reward correct prediction on class i. Then, the Equation 1.2 to
compute the overall performance of the ML model p when trained on Dtrain of n

samples and evaluated on Dvalid of (m− n) samples, can be adapted to:

f(p,Dtrain,Dvalid, PM × M) = 1
m− n

m−n∑
j=1

R(ŷn+j , yn+j , α(ŷn+j , yn+j)) (6.1)

where ŷ is the predicted class, y is the true class and R indicates a measure metric.
Referring back to the discussion on CASH approach in Chapter 1 (Section 1.1.2)

and search space for class imbalance problem in Chapter 5 (Section 5.2.2), the ML
model p is structured as p = {(Ares, λres,Acls, λcls)|Ares ∈ λ0

res,Acls ∈ λ0
cls, λres ∈

{Λ1
res, . . . , Λnr

res}, λcls ∈ {Λ1
cls, . . . , Λnc

cls}}. Hence, the CASH optimization can be
defined as:

p∗ = arg max
p∈Λ

f(p,Dtrain,Dvalid, PM × M) , (6.2)

where f(p,Dtrain,Dvalid, PM × M) denotes the penalized performance accuracy of
the ML pipeline p when trained on Dtrain, evaluated on Dvalid, and penalized by
the penalty matrix PM × M.

6.2 Background

In this section, we review some background knowledge. We first provide a brief
introduction of multi-class classification approaches (Section 6.2.1), the commonly
used performance metric in the field of multi-classes imbalanced learning (Sec-
tion 6.2.2) is presented.

6.2.1 Multi-Class Imbalance Learning

Most studies on the classification problem are devoted to the two-class classification
scenario. However, a significant number of real-world applications contain more
than two classes, for instance, image classification, protein classification, and medi-
cal diagnosis. The increasing number of classes poses new challenges for learning
from multi-class imbalanced problems. First of all, more decision boundaries need
to be defined during the multi-class classification process. Another challenging
issue is that the imbalance among classes becomes more complicated as there
will be multi-majority and multi-minority classes [222]. The data complexity, an
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important cause of the degradation in binary case [220], is more sophisticated.
Several solutions designed for imbalanced binary classification are extended to
multi-class scenarios.

Class decomposition is an intuitive method to deal with multi-class classification
problems [223]. After transforming the multi-class problem into multiple subsets,
the existing approaches for handling the binary scenarios can be applied directly.
Unlike the class decomposition approaches, multi-class direct classification [224]
aims to solve the multi-class problem directly without reducing the problem to
multiple binary classification tasks. This section first reviews two commonly
used decomposition strategies: One vs. Rest (OvR) and One vs. One (OvO), see
Sections 6.2.1.1and 6.2.1.2, respectively. Lastly, the multi-class direct classification
method is given in Section 6.2.1.3.

6.2.1.1 One vs. Rest approach

Suppose there are M classes in the multi-class imbalanced problem. In the OvR
decomposition, each of the M classes is trained against the remaining (M−1)
classes [225]. In other words, an M-class classification problem is decomposed into
M binary classification problems. When predicting the final label for a test sample,
each binary classifier provides a prediction with confidence, and the prediction with
the highest confidence is usually determined as the final label for this test sample.
While OvR provides the convenience of treating multi-class scenarios as binary
scenarios, it also brings further imbalance into the binary subsets. In addition,
all the individual classifiers are trained with the complete dataset, ensuring no
information is dropped in the training procedure. However, this also preserves
the overlapping regions, a factor leading to the degradation of the classification
performance [220].

6.2.1.2 One vs. One approach

In the OvO decomposition, each of the M classes is trained against one of the
remaining classes [226]. Thus, an M-class classification problem is decomposed into
M(M−1)/2 binary problems, i.e. M(M−1)/2 classifiers will be built. The final
predictions are usually determined via the majority voting among the M(M−1)/2
classifiers. Each binary classifier is only trained with pairs of classes; this makes
the decision boundaries much simpler and properly addresses the overlapping
issue. However, when pairing the classes, the number of binary classifiers increases
quadratically in M [227]. The training time can be long if M is large.
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6.2.1.3 Multi-class direct classification

The class decomposition methods are typically time-consuming as they transform
the single multi-class problem into multiple binary problems, i.e., decomposing
the input data into smaller parts or features. The multi-class direct classification
(direct method) indicates the approach using a single classification algorithm to
map input features to output (multi) classes directly, making it faster compared to
the class decomposition approaches [228]. Hence, this approach only applies to the
classification algorithms that can be modified, e.g., [229], [230] proposed to adjust
the decision function in support vector machines, or are naturally designed to be
applicable to multi-class problems. For examples, decision trees [71], [231], support
vector machines [21], [232], k-nearest neighbors [233]–[235], logistic regression [236],
and random forest [72], are suitable algorithms.

6.2.2 Performance Metrics

Table 6.1: Confusion matrix for a multi-class classification problem

Predicted Class
A B . . . M

T
ru

e/
A

ct
ua

l
C

la
ss

A TPA EA,B . . . EA,M
B EB,A TPB . . . EB,M
. . . . . . . . . . . . . . .
M EM,A EM,B . . . TPM

The assessment method is key in evaluating a classification performance to
choose the right classification model for the given problem. In a classification
problem, the confusion matrix is a common method to determine the performance
of a classifier, as it can provide classification results. For instance, Table 6.1
shows the confusion matrix for a multi-class classification problem with M classes
(A, B, . . . , M). As shown, TPA is the number of True Positive (TP) samples in
class A, and EA,B is the number of samples from class A that were incorrectly
predicted as class B. Hence, the number of False Negatives in class A (FNA) is the
sum of EA,B to EA,M, i.e., FNA = EA,B + . . . + EA,M, which indicates the sum of
all class A samples that were misclassified. Whereas the number of False Positives
(FP) in class A is the sum of all samples that were misclassified as class A, i.e.,
FPA = EB,A + . . . + EM,A.
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Performance metrics for multi-class classification are usually decomposed into
multiple single-class performance metrics by converting the confusion matrix in
Table 6.1 into multiple 2× 2 confusion matrices:[TPA FPA

FNA TNA

]
, . . . ,

[TPM FPM
FNM TNM

]
The common per-class measurement metrics are presented in Table 2.1.

To compute an overall performance, the scores per class can be averaged to
obtain a single score [227], [237]. There are three ways:

• Macro approach averages all per-class scores using the arithmetic mean of
those values without considering the sample size difference between classes.

• Weighted approach is similar to the macro process but takes the sample
size rate of classes, e.g., the sample size rate of class A is the number of
samples of class A over the total number of samples.

• Micro approach computes the corresponding performance metrics by count-
ing the sums of the True Positives (TP), False Negatives (FN), True Negatives
(TN), and False Positives (FP).

In this chapter, we use the penalized geometric mean micro (GMP
micro) as the

objective function to maximize, calculated as:

GMP
micro =

√
SpecificityP

micro × SensitivityP
micro

=

√ ∑M
i=1 TNP

i∑M
i=1 TNP

i +
∑M

i=1 FPP
i

×
∑M

i=1 TPP
i∑M

i=1 TPP
i +

∑M
i=1 FNP

i

(6.3)

where TPP
i , TNP

i , FPP
i , FNP

i denote the number of penalized true positives, penal-
ized true negatives, penalized false positives and penalized false negatives samples
in class i, i ∈ M classes, respectively. Those values are based on the proposed
penalized confusion matrix.

Based on the input (standard) confusion matrix CM × M and a penalty matrix
PM × M (defined by user). We take the Hadamard product, i.e., the pairwise
product, of the two matrices, i.e., (C ′

M × M)ij = (CM × M)ij · (PM × M)ij , where C ′

denotes the penalized confusion matrix.

6.3 Experiments

In this section, we briefly introduce the dataset (Section 6.3.1) and the experimental
procedure (Section 6.3.2).
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6.3.1 Datasets
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Figure 6.2: Schematic explanation of how the defect images are captured. Defect
images are taken from TATA’s official website1, for illustration.

The appearance of the surface of a steel product is one of the major quality
aspects. Therefore, surface defects should be avoided or at least known. A camera-
based Surface Inspection System (SIS) is used in various process lines to identify
those defects in the industry [238]. Grey value images taken from the surface
by the SIS contains information on the defects. These images of various defects
occurring in production are assessed and gathered in defined classes within a
so-called defect library. Figure 6.2 shows a diagram, illustrating how the defect
images are captured in the production process. The defect library is used to
train and test classifiers, and these classifiers are finally used to identify the new
surface defects from production. Thus, stable, accurate, and high classification

1https://automation.tatasteel.com/products/rolling-mills/
squins-surface-quality-inspection-system/
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6.3 Experiments

Figure 6.3: The distribution of samples over classes for the top-side (left) and
bottom-side (right) camera datasets. The top-side dataset contains 23 classes and
5578 samples, while the bottom-side dataset contains 18 classes and 6908 samples
(158 attributes in both cases).

performance is a must in the quality control procedure. However, the imbalance
in the number of various defect types makes it challenging to obtain a stable and
accurate classification performance.

The images captured by the SIS cameras are processed in the feature extraction
module. Then, relevant defect features, e.g., geometrical, textural, and moment
features, are extracted for classification. Both the images and information after
extraction are stored in the defect library. The surface defects dataset used in
this chapter is taken from a defect library after a specific selection was made (for
confidentiality reasons). The library is split into two datasets with 158 features:
the top-side camera and the bottom-side camera dataset. The top-side dataset
contains 5578 samples distributed in 23 classes. The bottom-side dataset contains
6908 samples distributed in 18 classes. The distribution of the classes on surface
defects data used for the experiments is given in Figure 6.3.

6.3.2 Experimental procedure

In this chapter, we experiment with two datasets (top- and bottom-side, see
Section 6.3.1) with three multi-class classification strategies, i.e., One vs. Rest
(OvR), One vs. One (OvO), and direct method (see Section 6.2.1). TPE as
implemented in the Python package HyperOpt2 (version 0.2.5) is used as the mere
CASH optimization algorithm with a budget of 500 function evaluations. We
reuse the search space identical to Section 4.2, with 5 classification algorithms
(Support Vector Machines (SVM), Random Forest (RF), k-Nearest Neighbors

2https://github.com/hyperopt/hyperopt

93

https://github.com/hyperopt/hyperopt


6. On the use of AutoML optimization in real-world applications

Standard
Scaler

Figure 6.4: Flowchart of the experimental setup.

(KNN), Decision Tree (DT) and Logistic Regression (LR)) and 21 choices of
resampling techniques.

In this study, we set up three independent experiments, each representing a
different approach mentioned in Section 6.2.1, i.e., One vs. Rest, One vs. One
and Direct method. Our experiments aim to compare the current classification
system (current system in figures and tables below) used by TATA3. We use the
same training and test datasets as the current system for a fair comparison. The

3For reasons of confidentiality, since proprietary software of a supplier is used by the industrial
partner, no details about the algorithmic approach taken by the currently used system are
available.
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Table 6.2: Average penalized geometric mean (micro), rounded to 5 decimals over
10 repetitions for the 2 datasets. Boldface highlights the best-performing method
per dataset and underline indicates results that are significantly different from the
best method in that group according to a Wilcoxon signed-rank test (p < 0.05).

Dataset Direct OvO OvR Current
method system

Top side 0.88293 0.88475 0.88729 0.81308
Bottom side 0.90990 0.91275 0.91245 0.79811

current system executes 10 times on each of the tested datasets. For each execution,
the considered dataset is randomly split into training (80%) and test (20%) sets.
The prediction performances are reported in Section 6.3.3, and the train/test
sets are exported to use in our experiments. i.e., we have 2 × 10 = 20 different
train/test sets in total. The overall structure of our implementation is summarized
in Figure 6.4. The experimental process begins with a data normalization step by
applying the so-called Standard Scaler4 function to the input dataset, i.e., resulting
in zero mean and a standard deviation of one. Then, the training and test datasets
are fed into the optimization phase.

During the optimization process, the training dataset is used for the ML pipeline
proposed by the optimizer. The ML pipeline is then measured by evaluating
its prediction performance on the test dataset. We note that the performance
is computed based on the penalized confusion matrix that is recomputed by
multiplying values in the standard confusion matrix with the corresponding values
in the penalty matrix, which is defined by TATA’s domain experts (see Figure 6.5).
The final evaluation value is calculated by computing the geometric mean (micro)
on that penalized confusion matrix. Lastly, the reported result of each method for
an individual dataset is averaged over 10 executions.

6.3.3 Results

In this section, we report the results and discuss our insights. The experimental
results are summarized in Table 6.2 to illustrate the performance differences between
the three classification strategies used: Direct method and two decomposition
approaches, i.e., One vs. One (OvO) and One vs. Rest (OvR), and to compare
them against the classification approach used in the current system. The highest
performance for each dataset is highlighted in bold. The methods performing

4Standard scaler is implemented in the python library scikit-learn (version 0.23.2).
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Figure 6.5: Penalty matrix used in our experiments

significantly worse than the best according to the Wilcoxon signed-rank test with
α = 0.05 are underlined.

Additionally, the distribution of the used performance metric, i.e., the penalized
geometric mean (micro), over 10 repetitions for the two tested datasets, is visualized
in Figure 6.6. Each box plot represents 10 repetitions. The horizon inner line
shows the median. The whiskers show the lowest and the highest observed value5.
The color dots show the observed values, and the dots outside the whisker represent
the outliers. The box covers the first to the third quantiles.

The results allow the following insights:
5whisker scale is set as 1.5.

96



6.3 Experiments

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Pe

na
liz

ed
 G

eo
m

et
ric

 M
ea

n 
(m

icr
o)

Top-side camera

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Bottom-side camera

Figure 6.6: Box plots showing the distribution of classification results over 10
repetitions for two examined datasets.

• According to the results of the Wilcoxon signed-rank test, our experimental
approaches significantly outperform the current approach used at TATA
(current system). Additionally, from Figure 6.6, the median and whiskers of
our three approaches are higher than those of the current system.

• Overall, the decomposition approaches produce the highest performance for
both tested cases. More precisely, OvO shows the highest result on the
"Bottom side camera" dataset, while OvR achieves the highest result on the
"Top side camera" dataset.

• Additionally, according to our experimental results, Direct method does not
outperform decomposition approaches but is not significantly worse than any
decomposition approaches over all tested cases.

As mentioned in Section 6.2, the decomposition approaches are more expensive
than the direct classification approach. To investigate this in more detail, we
provide Figure 6.7 to show the running time of 10 executions for the 3 experimental
approaches. The colour box shows the running time for 1 execution of 500 function
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Figure 6.7: Running time over 500 function evaluations over 10 repetitions for two
examined datasets.

evaluations. The box covers the first to the third quantiles. The horizon inner
line shows the median. The whiskers show the fastest and the slowest execution.
We can observe that the direct method is the fastest of the three experimental
approaches. Notably, the average running time of the OvO and OvR on the "Top
side camera" dataset is slower than the direct classification approach, approx 372%
and 464%, respectively. In the same computation way on the "Bottom side camera",
they are 811% and 643%. This is consistent with our presupposition, because the
two decomposition approaches, i.e., OvO and OvR, convert the original multi-
class dataset into multiple binary-class datasets, resulting in increased resource
consumption for each iteration.

Figure 6.8 shows the results of 7 measurement metrics (i.e., F1 (weight), F1
(Micro), F1 (Macro), GM (Weight), GM (Macro), GM (Micro) and Accuracy rate)
with and without penalization, by re-evaluating these metrics on the best-found
ML pipelines once optimization processes are over. The results are shown for
each of the ten runs performed. The dashed line with the dots marker shows the
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Figure 6.8: Comparisons between standard vs. penalized version of 7 measurement
metrics on two datasets for three proposed vs. current approaches.
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value of those standard metrics, i.e., without penalization. The solid line with the
diamond marker shows those measurement metrics with our penalization approach.
Penalized values are always lower than the corresponding standard values. A
possible explanation is that the ML model misclassifies samples of the important
classes. Lastly, we can observe that the penalized and the corresponding values of
the used 7 measurement metrics are strongly correlated.

To investigate the predictive performance for the important classes (i.e., class
130 and 140), we provide Figure 6.9 to show recall and precision for those two
important classes of 10 executions for the two tested datasets (i.e., Figure 6.9a for
the top-side camera dataset and Figure 6.9b for the bottom-side camera dataset).
Each box plot represents 10 repetitions. The box covers the first to the third
quantiles. The horizontal inner line shows the median. The whiskers show the
highest and the lowest values. The colour dots show the observed values, and
the dots outside the whisker denotes the outliers. We can observe that the three
CASH approaches produce better precision and recall scores for the two important
classes on the two examined datasets.

6.4 Conclusion

In this chapter, we proposed an efficient approach to solving the steel surface
defect classification, where the defect classes are (1) imbalanced and have (2)
unequal importance. Firstly, we applied Bayesian Optimization (BO) to optimize
the Combined Algorithm Selection and Hyperparameter Optimization (CASH)
problem (i.e., the combination of resampling and classification algorithms, with
their hyperparameter setting), to improve the classification performance for this
class imbalance problem. Second, we propose a novel penalization approach
to compute the classification performance metrics for unequal importance of
classes. Based on our experimental results (Figure 6.6) and the running time
analysis (Figure 6.7), we observed that the CASH approach clearly improves
classification performance compared to the current classification system in use by
TATA. Additionally, the direct classification method is much cheaper than the two
experimented decomposition approaches (i.e., One vs. One and One vs. Rest) and
not significantly worse than any of those in both test cases. Hence, we recommend
to use the direct classification method to deal with similar problems. Lastly, the
penalized performance metrics are strongly correlated to the standard metrics and

100



6.4 Conclusion

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
5

0.
6

0.
7

0.
8

0.
9

Recall
Re

ca
ll 

fo
r c

la
ss

 1
30

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

Re
ca

ll 
fo

r c
la

ss
 1

40

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Precision

Pr
ec

isi
on

 fo
r c

la
ss

 1
30

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
80

0.
85

0.
90

0.
95

1.
00

Pr
ec

isi
on

 fo
r c

la
ss

 1
40

(a
)

SI
S

to
p-

si
de

ca
m

er
a.

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Recall

Re
ca

ll 
fo

r c
la

ss
 1

30

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
6

0.
7

0.
8

0.
9

Re
ca

ll 
fo

r c
la

ss
 1

40

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
7

0.
8

0.
9

1.
0

Precision

Pr
ec

isi
on

 fo
r c

la
ss

 1
30

Di
re

ct
 

M
et

ho
d

Ov
O

Ov
R

Cu
rre

nt
 

Sy
st

em

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Pr
ec

isi
on

 fo
r c

la
ss

 1
40

(b
)

SI
S

bo
tt

om
-s

id
e

ca
m

er
a.

Fi
gu

re
6.

9:
R

ec
al

la
nd

Pr
ec

isi
on

fo
r

im
po

rt
an

t
cl

as
se

s
ov

er
10

re
pe

tit
io

ns
pe

r
ex

am
in

ed
m

et
ho

d.

101



6. On the use of AutoML optimization in real-world applications

efficient in measuring the important misclassified cases. Finally, future work will
apply the proposed penalty approach to other industries.
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