
Efficient tuning of automated machine learning pipelines
Nguyen, D.A.

Citation
Nguyen, D. A. (2024, October 9). Efficient tuning of automated machine
learning pipelines. Retrieved from https://hdl.handle.net/1887/4094132

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4094132

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4094132

ch
ap

te
r

5
An Empirical Investigation Comparing CASH
Optimization Approaches for Class Imbalance
Problems

This imbalanced classification problem is relevant to both academic and industrial
applications. The task of finding the best machine-learning model to use for a
specific imbalanced dataset is complicated because of the large number of existing
algorithms, each with its own hyperparameters. In this chapter, we study ML
pipeline optimization in detail in the class imbalance domain, where the best
combination of resampling techniques and classification algorithms is searched for,
together with their optimized hyperparameters. The Combined Algorithm Selec-
tion and Hyperparameter Optimization (CASH) has been introduced to solve ML
pipeline optimization problem by converting the problem into a hyperparameter
optimization problem. We experimented with the first experiment (see Section 4.2),
i.e., a search space of 5 classification algorithms, 21 resampling approaches and
64 relevant hyperparameters. Moreover, we investigated the performance of two
well-known optimization approaches: random search and the Tree Parzen Esti-
mator approach, which is a type of Bayesian optimization. For comparison, we
also performed a grid search for all combinations of resampling techniques and
classification algorithms with their default hyperparameters. The remainder of
this chapter is organized as follows. First, Section 5.1 shows the motivation and
provides a brief introduction to our work. In Section 5.2, the relevant background
knowledge on imbalance classification and hyperparameter optimization are pro-
vided, and Section 5.3 outlines the experimental setup. Experimental results are
discussed in Section 5.4. Finally, the chapter is concluded, and further work is
outlined in Section 5.5.

73

5. An Empirical Investigation Comparing CASH Optimization
Approaches for Class Imbalance Problems

5.1 Introduction

The imbalanced classification problem has garnered increasing attention from both
academic and industrial fields. Technically, any dataset with an unequal class
distribution is imbalanced. However, only datasets with a significantly skewed
distribution are traditionally regarded as imbalanced in the learning domain [209].
Academic researchers aim to propose novel algorithms to handle imbalanced
classification problems in different scenarios, for example, resampling techniques
and algorithm-level approaches, whereas industrial researchers focus on improving
imbalanced classification performances for specific real-life applications, such as
fault diagnosis or anomaly detection [210], [211].

The combination of resampling techniques and classification algorithms is the
most commonly used approach for handling imbalanced data [74], [212]. This
leads to a challenge for an imbalanced classification problem on how to choose
the best model (i.e., a combination of a resampling method) and a classifier (the
so-called model selection problem or algorithm selection problem [213]) and their
optimized hyperparameters [74] to achieve the best performance. This is a case of
ML pipeline optimization where two tasks have to be considered in this chapter:
model selection (MS) and hyperparameter optimization (HPO). Typically, these
tasks are addressed separately and sequentially [14], [46], where the practitioner
can choose to handle either task first. Generally, practitioners proceed by tuning
the hyperparameters for each modeling algorithm separately and then choosing
the best model. However, this approach is considerably more expensive due to a
high number of possible combination operations.

Alternatively, the practitioner can select a suitable model by training all models
with their default hyperparameters or based on experience, and then tune the
hyperparameters only for the best model. This approach might get stuck in a local
optimum of the model that was initially chosen based on the default hyperparameter
setting. On the other hand, instead of sequentially solving these problems, they
can be combined into a single problem and solved simultaneously. This approach is
commonly referred to as the Combined Algorithm Selection and Hyperparameter
Optimization (CASH) [40] or Full Model Selection (FMS) [44] approach.

Approaches for tackling the CASH problem have been widely proposed in
the machine learning domain, particularly in the context of automated machine
learning (AutoML), such as, Auto-Weka [40], [41] and Auto-Sklearn [39],
[41], TPOT [43], HyperOpt-Sklearn [42]. In addition, [14] demonstrated that

74

5.2 Related Works

the CASH approach is competitive with the sequential approach and requires less
computational effort. However, the CASH approach has not yet been studied in
detail in the context of learning from unbalanced data.

Hence, in this study, we introduce CASH in the context of optimizing the
machine learning pipeline of combined classification algorithms and resampling
techniques for the class imbalance problem. We are particularly interested in
studying which optimization approach for handling the CASH problem yields the
best classification performance.

In the first experiment (see Section 4.2), we use two well-known optimization
approaches – Random search and Bayesian optimization. Furthermore, we experi-
ment with dropping the hyperparameter tuning and carrying out only the model
selection (MS) part, as sometimes done by practitioners. Our results suggest the
inferiority of such an approach and demonstrate that applying CASH optimization
yields better performance, for all test cases considered. Moreover, we observe that
the Bayesian optimization approach produces better results than Random search.
Hence, we recommend using this approach for handling the CASH problem for the
class-imbalanced classification problem.

5.2 Related Works

In this section, we first provide a brief introduction to imbalanced classification
(Section 5.2.1) and the CASH problem (Section 5.2.2) studied in this chapter.

5.2.1 Imbalanced Classification

The main problem in imbalanced classification is that the number of samples of
one class is much lower than that of other classes [209]. Herein, the one or more
classes being underrepresented are called minority class(es) and the other class(es)
are called majority classes.

It has been shown that both the data-level (resampling) approaches and
algorithm-level approaches are efficient in handling class-imbalance problems [214].
The data-level approaches focus on producing balanced datasets based on the
unbalanced original data, whereas the algorithmic-level approaches concentrate
on adjusting classification algorithms to make them appropriate for the imbal-
anced datasets. In the imbalanced learning domain, resampling techniques can be
further divided into three groups: under-resampling, over-resampling, and combine-
resampling. Under-resampling balances the class distribution by removing majority

75

5. An Empirical Investigation Comparing CASH Optimization
Approaches for Class Imbalance Problems

samples, for example, the TomekLinks [194], while over-resampling balances the
class distribution via producing synthetic minority samples, e.g., SMOTE [17].
The combine-resampling integrates both removing the majority samples and cre-
ating synthetic minority samples in order to balance the class distribution, e.g.,
SMOTETomek [18].

Owing to recent developments in data storage and management, it has become
possible for industry and engineering practitioners to collect a large amount of
data in order to extract knowledge and acquire hidden insights. An application
example may be illustrated in the field of computational design optimization [215],
where product parameters are modified to generate digital prototypes and the
performance is usually evaluated through numerical simulations which often require
minutes to hours of computation time. Here, some parameter variations (minority
number of designs) would result in effective and producible geometric shapes, but
the given constraints are violated in the final step of optimization. In this case,
applying proper imbalanced classification algorithms to the design parameters may
save computation time.

The family of evolutionary under-resampling techniques (EUS) has proven to
be powerful in handling instance reduction [216]. An EUS algorithm attempts to
optimize the selected samples in the majority class by performing a binary search
guided by an evolutionary algorithm [108], [110]. Results of the EUS and the most
recent research studies in this family consist of EUS-Windowing (EUSW) [217],
clustering-based surrogate model for EUS (EUSC) [218] and hybrid surrogate
model for EUS (EUSHC) [187] are also compared with our approach in the followed
section.

In the class imbalance domain, it is widely known that accuracy is a deceptive
estimate of performance [74], [219]. Instead of accuracy, other metrics such as
the area under the receiver operating characteristic (ROC) curve, F-measure, or
geometric mean (GM) are commonly used to measure performance [220]. For
comparison with previous studies [187], [218], we use GM as the performance
evaluation metric (see Section 2.1.2.2).

5.2.2 The Combined Algorithm Selection and Hyperparam-
eter Optimization (CASH) Approach

The Combined Algorithm Selection and Hyperparameter Optimization (CASH)
[40] is a commonly used approach for solving the ML pipeline optimization problem
by converting it into a hyperparameter optimization (HPO) problem. As we delve

76

5.3 Experimental Setup

into the ongoing discussion, it is essential to reference Chapter 1 (Section 1.1.2),
where the CASH is extensively discussed. Throughout the ongoing discussion,
we consistently employ the notations and problem definition introduced in that
section for a comprehensive understanding. In the context of optimization, HPO
is generally viewed as a black-box optimization problem, which aims at finding
the global optimum λ∗ of the hyperparameters, with respect to a real-valued
loss function f . As a reminder, the CASH approach incorporates an additional
hyperparameter λ0 to model the choice of algorithms for each operator.

As mentioned in Section 5.1, we use a combination of resampling and classifica-
tion algorithms to handle the class-imbalanced problem. Hence, the search space
includes a set of resampling techniques, a set of classification algorithms, and their
hyperparameters. Let λ0

res = {A1
res, . . . ,Anr

res,∅} and λ0
cls = {A1

cls, . . . ,Anc

cls}
denote sets of possible choice of resampling and classification algorithms, cor-
respondingly. In practice, the use of a resampling technique is optional, we
hence add a choice of not using any resampler, i.e., represented by ∅. Let
Λres = λ0

res ∪ Λ1
res ∪ . . . ∪ Λnr

res and Λcls = λ0
cls ∪ Λ1

cls ∪ . . . ∪ Λnc

cls represent the
hyperparameter spaces of resampling and classification operators. Hence, the
entire search space for this particular problem is denoted by Λ, which includes Λres

and Λcls. The ML pipeline optimization problem becomes the HPO maximizing
problem:

λ∗ = arg max
λ∈Λ

f(λ) , (5.1)

Note that in practice, most HPO methods can handle the CASH problem by
modeling the choice of algorithms as a categorical hyperparameter. Each algorithm
is mapped to its locally dependent hyperparameters by the so-called conditional
parameter (see hierarchical hyperparameter in Table 7.1).

The HPO algorithms chosen in this study include Grid Search (see Section 3.1.1),
Random Search (see Section 3.1.2) and a Bayesian optimization variant, namely
Tree Parzen Estimators approach (TPE) (see Section 3.1.3).

5.3 Experimental Setup

This study reports and discusses the first experiment that has been introduced
in detail in Section 4.2 including the search space, datasets and ML algorithms.
Therefore, we only provide some additional information.

77

5. An Empirical Investigation Comparing CASH Optimization
Approaches for Class Imbalance Problems

Random search and Bayesian optimization algorithms implemented in the
Python package HyperOpt1 are used as HPO algorithms. Based on the initial
experiments, we set the number of iterations of HPO to 500, after which the
algorithms have shown no significant improvements.

Moreover, to study the effectiveness of the HPO algorithms, we evaluated all
possible combinations of classification and resampling algorithms with their default
hyperparameter settings, i.e., dropping hyperparameter tuning and carrying out
only the model selection part, as sometimes done by practitioners. For each dataset,
we reported the combination with the highest GM value. The considered search
space includes 5 classification algorithms and 21 resampling techniques, resulting in
5× 21 = 105 combinations. Evaluating these combinations individually is referred
to as “Grid-Def” here (grid search HPO algorithm).

The experiment scripts for the reproducibility of the reported results are
provided in a git-repository2.

5.4 Results and discussion

In this section, we report the results and discuss our insights. The experimental
results are summarized in Table 5.1 to illustrate the performance differences
between the three integrated optimization approaches used, i.e., TPE, Random
search (RS) and Grid-Def (Grid), and to compare them with the state-of-the-art
Evolutionary under-resampling (EUS) methods [218]. In this table, our results
are presented in the corresponding columns on the left side (not shaded) and
the results from [218] are presented on the right side (grey shaded) for EUS,
EUSW, EUSC and EUSHC. In both groups, the highest performance for each
dataset is highlighted in bold font. In our experimental results, the methods that
perform significantly worse than the best according to the Wilcoxon signed-rank
test with α = 0.05 are underlined. A value labeled with ∗ indicates that our results
outperform those of [218] for the corresponding dataset. Additionally, an extra
column to the right summarizes the method that achieved the highest GM for the
corresponding dataset.

The results allow the following insights:

• HPO approaches exhibit better performance compared to the Grid-Def
approach which uses static default hyperparameters. Moreover, according

1https://github.com/hyperopt/hyperopt (version 0.2.5).
2https://github.com/ECOLE-ITN/NguyenDSAA2021

78

https://github.com/hyperopt/hyperopt
https://github.com/ECOLE-ITN/NguyenDSAA2021

5.4 Results and discussion

Table 5.1: Average geometric mean (rounded to 4 decimals) over 10 repetitions for
the 44 datasets, ordered by increasing IR value.

Dataset #IR Our experimental Evolutionary algorithms Overall
results [218] Winner

TPE RS Grid EUS EUSW EUSC EUSHC
glass1 1.82 ∗0.7989 0.7763 0.7793 0.7773 0.7010 0.7941 0.7367 TPE
ecoli-0_vs_1 1.86 ∗0.9864 ∗0.9864 ∗0.9864 0.9583 0.9312 0.9581 0.9615 TPE | RS | Grid
wisconsin 1.86 ∗0.9814 ∗0.9807 ∗0.9788 0.9690 0.9652 0.9600 0.9590 TPE
pima 1.87 ∗0.7711 ∗0.7651 ∗0.7599 0.6943 0.6749 0.6957 0.7145 TPE
iris0 2.00 1 1 1 1 1 1 1 -
glass0 2.06 ∗0.8749 ∗0.8588 ∗0.8719 0.8009 0.6176 0.8047 0.6595 TPE
yeast1 2.46 ∗0.7324 ∗0.7304 ∗0.7183 0.6533 0.6501 0.6600 0.6600 TPE
haberman 2.78 ∗0.7025 ∗0.6926 ∗0.6678 0.5475 0.5635 0.5521 0.5497 TPE
vehicle2 2.88 ∗0.9915 ∗0.9874 ∗0.9895 0.9259 0.9175 0.9265 0.9173 TPE
vehicle1 2.90 ∗0.8658 ∗0.8429 ∗0.8333 0.6729 0.6624 0.6512 0.6926 TPE
vehicle3 2.99 ∗0.8482 ∗0.8231 ∗0.8108 0.7280 0.7142 0.7165 0.7204 TPE
glass-0-1-2-3 3.20 0.9559 0.9505 0.9483 0.9525 0.9385 0.9647 0.9546 EUSC
_vs_4-5-6
vehicle0 3.25 ∗0.9863 ∗0.9809 ∗0.9766 0.9164 0.9027 0.9103 0.9016 TPE
ecoli1 3.36 ∗0.9047 ∗0.8966 ∗0.8999 0.8634 0.8306 0.8554 0.8424 TPE
new-thyroid1 5.14 ∗0.9969 ∗0.9966 ∗0.9944 0.9882 0.9809 0.9859 0.9653 TPE
new-thyroid2 5.14 ∗0.9978 ∗0.9966 ∗0.9910 0.9865 0.9773 0.9831 0.9746 TPE
ecoli2 5.46 ∗0.9361 ∗0.9337 ∗0.9361 0.9000 0.8663 0.9034 0.8772 TPE | Grid
segment0 6.02 ∗0.9993 ∗0.9990 ∗0.9965 0.9881 0.9870 0.9876 0.9858 TPE
glass6 6.38 ∗0.9524 ∗0.9516 ∗0.9381 0.8889 0.9071 0.9156 0.9054 TPE
yeast3 8.10 ∗0.9428 ∗0.9395 ∗0.9290 0.8728 0.8740 0.8752 0.8550 TPE
ecoli3 8.60 ∗0.9061 ∗0.9023 ∗0.9044 0.8348 0.8153 0.8500 0.8097 TPE
page-blocks0 8.79 ∗0.9456 ∗0.9422 ∗0.9401 0.9117 0.9038 0.9096 0.9085 TPE
yeast-2_vs_4 9.08 ∗0.9559 ∗0.9474 ∗0.9401 0.9042 0.8774 0.9156 0.8930 TPE
yeast-0-5-6 9.35 ∗0.8212 ∗0.8063 ∗0.7938 0.7685 0.7663 0.7901 0.7535 TPE
-7-9_vs_4
vowel0 9.98 0.9581 0.9483 0.9427 0.9897 0.9719 0.9877 0.9831 EUS
glass-0-1-6_vs_2 10.29 ∗0.8498 ∗0.8216 ∗0.7904 0.6383 0.6164 0.6651 0.5815 TPE
glass2 11.59 ∗0.8516 ∗0.8271 ∗0.7903 0.7194 0.6525 0.7262 0.6173 TPE
shuttle-c0-vs-c4 13.87 ∗1 ∗1 ∗1 0.9960 0.9968 0.9960 0.9960 TPE | RS | Grid
yeast-1_vs_7 14.30 ∗0.8028 ∗0.7926 ∗0.7979 0.7176 0.7079 0.7068 0.6669 TPE
glass4 15.46 ∗0.9323 ∗0.9244 ∗0.9318 0.8700 0.8513 0.8613 0.8531 TPE
ecoli4 15.80 ∗0.9727 0.9551 0.9415 0.8984 0.9362 0.8857 0.9645 TPE
page-blocks 15.86 ∗0.9925 ∗0.9877 ∗0.9884 0.9674 0.9399 0.9471 0.9294 TPE
-1-3_vs_4
abalone9-18 16.40 ∗0.8889 ∗0.8752 ∗0.8536 0.7269 0.6772 0.7224 0.6559 TPE
glass-0-1-6_vs_5 19.44 ∗0.9567 ∗0.9530 0.9304 0.9214 0.9151 0.9160 0.9501 TPE
shuttle-c2-vs-c4 20.50 ∗1 ∗1 ∗1 0.9577 0.6449 0.9414 0.7365 TPE | RS | Grid
yeast-1-4 22.10 ∗0.7035 ∗0.6874 ∗0.6650 0.6569 0.6088 0.6604 0.6149 TPE
-5-8_vs_7
glass5 22.78 ∗0.9637 0.9555 0.9438 0.8105 0.9076 0.9600 0.9103 TPE
yeast-2_vs_8 23.10 ∗0.8231 ∗0.8031 ∗0.7945 0.7931 0.7496 0.7656 0.7668 TPE
yeast4 28.10 ∗0.8803 ∗0.8664 ∗0.8585 0.8050 0.7799 0.8288 0.7970 TPE
yeast-1-2 30.57 ∗0.7459 ∗0.7402 ∗0.7289 0.6721 0.6078 0.6704 0.6500 TPE
-8-9_vs_7
yeast5 32.73 ∗0.9803 ∗0.9790 ∗0.9788 0.9634 0.9494 0.9455 0.9653 TPE
ecoli-0-1 39.14 ∗0.9095 ∗0.8770 ∗0.9091 0.6700 0.7048 0.6625 0.6865 TPE
-3-7_vs_2-6
yeast6 41.40 ∗0.8972 ∗0.8905 ∗0.8840 0.8357 0.8080 0.8034 0.8031 TPE
abalone19 129.44 ∗0.7967 ∗0.7942 ∗0.7579 0.6258 0.6061 0.7214 0.6556 TPE

79

5. An Empirical Investigation Comparing CASH Optimization
Approaches for Class Imbalance Problems

to the results of the Wilcoxon signed-rank test, TPE was always the best
method: it significantly outperforms the Grid-Def in 32/44 datasets, whereas
it significantly outperforms RS in 26/44 tested cases

• Overall, TPE shows the highest GM for most of the datasets, 41/44. Other
compared methods win on different datasets, for example, EUSC and EUS
achieve the highest GM on “glass-0-1-2-3_vs_4-5-6” and “vowel0”, respec-
tively. All approaches obtained the maximum GM on dataset “iris0”.

• Furthermore, based on our experimental results, we conclude that TPE wins
over the methods from [218] on 41/44 datasets, RS – on 38/44 datasets and
Grid-Def – on 37/44 datasets. This is surprising because the number of
function evaluations used in our experiment is much smaller than in [218]: 500
function evaluations for TPE and RS, 105 function evaluations for Grid-Def vs
10.000 function evaluations for each method in [218]. A possible explanation
for this might be that [218] employed a simple KNN rule with k = 1 as the
mere classifier, whereas more complicated classification algorithms were used
in our study. More precisely, according to our experimental results, the tuned
KNN wins only in 11% (TPE), 13% (RS), and 9% (Grid-Def) of all cases.

To investigate the tuning behavior of the methods, we plot single runs of TPE and
RS on the dataset “abalone9-18” in Figure 5.1. The scatter plots on the left show
the observed GM values over 500 function evaluations. The six stacked histogram
plots to the right describe the distribution of the observed values, in which the first
plot shows all observed values, and the five last plots indicate the distributions for
each of the classification algorithms, such as SVM, RF, KNN, LR and DT. We
conclude that:

• Configurations generated by TPE can avoid infeasible parameters better
than RS3. In this run, the number of errors occurring in the TPE and RS
runs are 14 and 22, respectively. Based on all datasets and repetitions, the
number of infeasible configurations encountered by TPE and RS are 4.4%
and 5.9%, respectively.

• Apart from zero values, the GM values of TPE are mostly in the range from
0.8 to 0.9, while the GM of RS are distributed in the range from 0.6 to 0.7.

3Evaluations with infeasible combinations of parameters are marked in the figure as black
dashes with GM = 0.

80

5.4 Results and discussion

0
10

0
20

0
30

0
40

0
50

0
0.

0

0.
2

0.
4

0.
6

0.
8

0
50

0
50

0
50

0
50

0
50

0
50

SV
M

RF
KN

N
LR

DT Be
st

 v
al

ue
 fo

un
d

Ov
er

-re
sa

m
pl

in
g

Un
de

r-r
es

am
pl

in
g

Co
m

bi
ne

-re
sa

m
pl

in
g

No
-re

sa
m

pl
in

g
Er

ro
r

Ite
ra

tio
n

Co
un

t
Co

un
t

Co
un

t
Co

un
t

Co
un

t
Co

un
t

TP
E

Ov
er

al
l

SV
M

RF
KN

N
LR

DT

GM

0
10

0
20

0
30

0
40

0
50

0
0.

0

0.
2

0.
4

0.
6

0.
8

0
25

0
25

0
25

0
25

0
25

0
25

Ite
ra

tio
n

Co
un

t
Co

un
t

Co
un

t
Co

un
t

Co
un

t
Co

un
t

Ra
nd

om
 se

ar
ch

Ov
er

al
l

SV
M

RF
KN

N
LR

DT

GM

Fi
gu

re
5.

1:
Ill

us
tr

at
io

n
of

th
e

hy
pe

rp
ar

am
et

er
tu

ni
ng

pr
oc

es
s

on
da

ta
se

t
“a

ba
lo

ne
9-

18
”

fo
r

T
PE

(t
op

)
an

d
R

an
do

m
se

ar
ch

(b
ot

to
m

).
Sc

at
te

r
pl

ot
s

sh
ow

th
e

se
qu

en
ce

of
ob

se
rv

ed
va

lu
es

of
G

M
vs

th
e

nu
m

be
r

of
fu

nc
tio

n
ev

al
ua

tio
ns

(it
er

at
io

ns
),

th
e

re
d

lin
e

sh
ow

s
th

e
cu

rr
en

t
be

st
va

lu
e,

an
d

th
e

bl
ac

k
ve

rt
ic

al
ba

rs
on

th
e

ho
riz

on
ta

la
xi

s
in

di
ca

te
th

e
in

fe
as

ib
le

co
nfi

gu
ra

tio
ns

w
he

re
G

M
re

tu
rn

s
to

a
ze

ro
if

an
in

va
lid

co
nfi

gu
ra

tio
n

is
us

ed
.

T
he

st
ac

ke
d

hi
st

og
ra

m
pl

ot
ne

xt
to

th
e

sc
at

te
r

pl
ot

sh
ow

s
th

e
di

st
rib

ut
io

n
of

al
lo

bs
er

ve
d

va
lu

es
.

T
he

fiv
e

la
st

st
ac

ke
d

hi
st

og
ra

m
pl

ot
s

to
th

e
rig

ht
in

di
ca

te
th

e
di

st
rib

ut
io

ns
fo

r
ea

ch
of

th
e

cl
as

sifi
ca

tio
n

al
go

rit
hm

s,
na

m
el

y
SV

M
,R

F,
K

N
N

,L
R

an
d

D
T

.

81

5. An Empirical Investigation Comparing CASH Optimization
Approaches for Class Imbalance Problems

glass1
ecoli-0_vs_1

wisconsin
pima
iris0

glass0
yeast1

haberman
vehicle2
vehicle1
vehicle3

glass-0-1-2-3_vs_4-5-6
vehicle0

ecoli1
new-thyroid1
new-thyroid2

ecoli2
segment0

glass6
yeast3
ecoli3

page-blocks0
yeast-2_vs_4

yeast-0-5-6-7-9_vs_4
vowel0

glass-0-1-6_vs_2
glass2

shuttle-c0-vs-c4
yeast-1_vs_7

glass4
ecoli4

page-blocks-1-3_vs_4
abalone9-18

glass-0-1-6_vs_5
shuttle-c2-vs-c4

yeast-1-4-5-8_vs_7
glass5

yeast-2_vs_8
yeast4

yeast-1-2-8-9_vs_7
yeast5

ecoli-0-1-3-7_vs_2-6
yeast6

abalone19

0 2 4 6 8 10

KNN
SVM

RF
LR

DT
Over-resam

pling
Under-resam

pling
Com

bine-resam
pling

No-resam
pling

Repetitions

Figure
5.2:

R
esulting

com
bination

of
classifier

and
resam

pler
choices

for
an

optim
ization

process
using

T
PE

across
10

repetitions
on

44
datasets.

82

5.5 Conclusions and Future Work

Based on the highest results obtained by TPE, Figure 5.2 shows the final combi-
nation of choices of classification algorithms and resampling approaches once the
optimization run is over. Clearly, no dominant algorithm exists over many datasets
but different datasets benefit from different classification algorithms. For example,
“glass0”, “yeast1”, “yeast3”, “haberman”, “vehicle2”, “ecoli1” and “page-blocks0”
achieve the best results with SVM, “vehicle0”, “vehicle1”, “vehicle3” with KNN,
whereas “abalone19” always results in LR.

Besides, 98% of runs yield the best performance by using a resampling tech-
nique. Particularly, over-resampling, under-resampling and combine-resampling
obtain 182, 199, 50 wins over 44× 10 = 440 runs. Additionally, there is no classi-
fier/resampler combination providing the best classification performance over all
datasets. Specifically, RF and SVM obtain 206 and 84 wins, while other algorithms
(LR, KNN, DT) find the best performance in 73, 48 and 29 runs.

5.5 Conclusions and Future Work

In this study, we applied a special type of Bayesian Optimization approach,
the Tree Parzen Estimators to optimize the combined algorithm selection and
hyperparameter optimization problem to improve the performance of classification
algorithms for class imbalance problems. In other words, we propose an automated
CASH optimization approach for imbalanced classification problems. Our approach
automatically selects the best set of algorithms, i.e., the resampling technique and
classification algorithm, together with their optimized hyperparameter settings for
an arbitrary imbalanced dataset. The numeric results show significantly improved
performance with respect to the state-of-the-art techniques in the imbalanced
classification domain over 44 examined datasets.

Four main conclusions can be drawn from our experimental results:

1. Use of HPO clearly improves the classification performance compared to
using static default parameters.

2. TPE outperforms the Random search on 91% of the tested datasets, while
equal performance is found on the remaining cases.

3. Overall, the TPE approach produces the best results among other competitors
in various scenarios. Hence, we recommend using TPE for handling CASH
optimization in imbalanced classification problems.

83

5. An Empirical Investigation Comparing CASH Optimization
Approaches for Class Imbalance Problems

4. Another finding was that 98% of runs yield the best performance with the
help of resampling techniques. Thus we recommend to use resampling to
handle class imbalanced problems.

There are several interesting research directions for extending this work. First,
we intend to apply other Bayesian optimization variants such as SMAC, SPO, and
MIPEGO, to study the performance of variants in this domain. Second, the scope
of this study was limited in terms of classification problems; therefore, our future
studies might extend the research for regression problems. Third, in addition to
GM, other commonly used performance evaluation metrics in this domain will be
investigated in our future work, including the Area Under the ROC Curve (AUC),
F-measure, and recall. Fourth, the penalty-based methods, e.g., penalized-SVM,
themselves can efficiently handle imbalanced datasets in several cases. Thus, we
plan to study their effectiveness in the context of CASH optimization. Additionally,
instead of applying hyperparameter tuning on the level of an individual dataset, we
are interested in studying the behavior of HPO approaches when tuning for a set
of datasets. Finally, besides Bayesian optimization, we shall extend our research
with other state-of-the-art HPO approaches such as iRace [33] and Hyperband [35]
for the class-imbalanced problem.

84

