
Efficient tuning of automated machine learning pipelines
Nguyen, D.A.

Citation
Nguyen, D. A. (2024, October 9). Efficient tuning of automated machine
learning pipelines. Retrieved from https://hdl.handle.net/1887/4094132

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4094132

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4094132

ch
ap

te
r

4
Setup of Benchmark Experiments

This chapter aims to evaluate the robustness and general applicability of optimiza-
tion approaches empirically. It is worth noting that there are two common methods
typically used to compare AutoML approaches. The first approach is designed to
compare the underlying optimizers in a predefined scenario to identify the most
effective optimization approach for the AutoML problem. This experimental setup
aims to determine which optimizer can achieve the highest performance for a given
dataset, using a similar experiment setting within a finite budget. AutoML tools
are complex systems that incorporate meta-learning, pruning, early stopping, and
evaluation strategies to prevent overfitting. Typically, these tools are evaluated
based on their performance with unseen data. As a result, benchmark experi-
ments include both of the above approaches. We introduce two sets of benchmark
experiments to investigate the performance of AutoML optimization algorithms,
which will be used in the later chapters. In order to increase comparability, we use
agreed-on datasets, which are often different data sets, and standardized search
spaces for benchmarking purposes [22], [185]. We conduct the experimental setup
with a total of 117 benchmark datasets on two scenarios with optimization of 2
operators (Section 4.2) and 6 operators (Section 4.3).

The first scenario focuses on addressing the common problem in real-world
applications known as class imbalance. It involves 44 well-known binary imbal-
anced datasets from the Keel collection [186]. These datasets represent real-world
scenarios marked by imbalanced class distributions and are used in many class
imbalanced studies [47], [74], [75], [187], [188]. In addition to the selected datasets,
carefully crafted search spaces have been designed, including a collection of 21
options of resampling techniques thoughtfully combined with 5 commonly used
classification algorithms customarily used to solve class imbalanced problems, each
characterized by a carefully selected range of hyperparameters. The geometric
mean is employed as the performance metric.

61

4. Setup of Benchmark Experiments

Simultaneously, the second dataset, drawn from the OpenML repository [189],
comprises 73 well-known datasets in the AutoML community. These datasets
come highly recommended by recent studies [22] and encompass a broad spectrum
of problem domains and complexities, making them valuable for comparing the
efficiency of AutoML optimization approaches. The second search space is directly
inspired by the influential reference [22], aligning seamlessly with prior AutoML
research. It includes the same trusted datasets, algorithmic selections, and their
corresponding hyperparameter configurations, ensuring a consistent benchmarking
framework. Furthermore, the performance metric follows the recommendations
from the same reference, reinforcing the credibility and relevance of the benchmark
experiments in contemporary AutoML investigations. These benchmark datasets
and their associated search spaces offer a robust foundation for comparing AutoML
optimization approaches.

4.1 Benchmarking methodology

Both benchmark experiments introduced in this chapter focus on AutoML opti-
mization problems for classification problems. The problem of AutoML is precisely
defined in Chapter 1 (Section 1.1). It is worth mentioning that we will use
the established notations and equations in this chapter. As a recap, consider-
ing a classification problem with a dataset D = {(x1, y1), . . . , (xm, ym)}, where
x = {x1, . . . , xk} is a vector of k features x and y represents a label. The general
problem in this chapter is to find the best ML pipeline p that trains on dataset D
to produces ML model P. This model is designed to transform a set of features
x ∈ X into a target value y ∈ Y. All experiments were repeated 10 times with
different random seeds to account for the nondeterministic effects of the involved
algorithms. The performance of each ML pipeline configuration was determined at
i(th) fold of the k-fold cross-validation, denoted as:

f(p,D(i)
train,D(i)

valid) = 1
|D(i)

valid|

|D(i)
valid|∑

j=1
R(ŷj , yj) (4.1)

where R(ŷ, y) denotes a metric that returns the accuracy of the value ŷ predicted
by the pipeline compared with the real value y. Then, f denotes the performance
of pipeline configuration p when trained on training dataset Dtrain and evaluated
on validation dataset Dvalid. The ML pipeline optimization problem is then used

62

4.1 Benchmarking methodology

to determine the best setting p∗ that maximizes the objective function f with a
given accuracy metric, for example, the geometric mean, accuracy rate.

p∗ = argmax 1
k

k∑
i=1

f
(

p,D(i)
train,D(i)

valid

)
(4.2)

More precisely, the two scenarios were adapted from the experimental setups
of [47] and [22]. Furthermore, we follow the parameter settings of those studies,
including datasets, search space, k-fold cross-validation setup, train/test split, and
performance metric – all parameter settings are summarized in Table 4.1:

1. The first experiment is limited to exactly 500 iterations1. Our initial ex-
periments show no significant improvements before hitting this iteration
limit. The performance of each configuration is determined using a 5-fold
cross-validation technique, calculated as:

∆p = 1
k

k∑
i=1

∆(i)
p (4.3)

where ∆(i)
p denotes the performance of p for a function call (see Figure 2.5) on

the ith data fold, i.e., the performance of the ML model that uses configuration
p trained and evaluated on the ith data fold D(i)

train and D(i)
valid, correspondingly.

Therefore, when an optimization process is over, the performance of the
underlying optimizer is the highest ∆∗

p, and the corresponding configuration
is considered the best p∗. Because each optimizer had 10 independent runs,
each optimizer had 10 configurations (they might be different) at the end of
the experiment.

2. The second experiment is limited to 1 hour1. The dataset is split into a train-
ing dataset D(70%)

train for the optimization process and a test dataset D(30%)
test for

calculating the performance of the optimizer when the optimization process
is over. In other words, only D(70%)

train is involved during the optimization pro-
cedure. First, we do a similar procedure on D(70%)

train as the first experiment to
determine the best configuration within the tuning budget of 1 hour, except
k becomes 4 instead of 5, as we strictly follow the experiment procedure
of [22] for a fair comparison with this study.

1This dual approach is chosen because optimization methods are commonly compared in terms
of function evaluations, whereas AutoML tools are typically assessed based on their performance
within a specified wall-time budget.

63

4. Setup of Benchmark Experiments

Table 4.1: Parameter settings

1st 2nd

experiment experiment

Optimizer parameters
- Total budgets 500 1

(func. eval.) (hour)

Experimental parameters
- Search space 2 operators 6 operators
- Number of datasets 44 73
- Performance metric Geometric Accuracy rate

mean (GM) (Acc)
- k-folds cross validation 5 4

(for optimization)
- Train/test split No train: 70%

test: 30%
* train set uses for the optimization process

test set uses to compute final result once the optimization process is done
- Final results Average GM over Accuracy rate

k-folds of the unseen
test set

Once the best configuration p∗ is found, we manually build an ML model
configured by p∗. The performance of the underlying optimizer is then
the performance of that ML model when trained on D(70%)

train and tested on
D(30%)

test . Consequently, at the end of the experiment, each optimizer has 10
configurations as 10 runs. We note that each run starts from the train/test
split step with a different random seed.

4.2 First experiment: class-imbalanced classifica-
tion problems with two operators

This problem is based on a machine learning pipeline optimization problem with
two operators:

• A collection of 21 options of resampling techniques, i.e., 20 resampling
algorithms belong to 3 groups– under-resampling, over-resampling, and
combine-resampling, and a "no resampling" option.

• A set of 5 commonly used classification algorithms customarily used to solve
class imbalanced problems, i.e., Support Vector Machines (SVM), Random

64

4.2 First experiment: class-imbalanced classification problems with two
operators

Forest (RF), k-Nearest Neighbors (KNN), Decision Tree (DT) and Logistic
Regression (LR).

• A set of 44 binary class imbalanced datasets from Keel collection [186].

In this section, we briefly introduce the datasets (Section 4.2.1) and resampling
techniques (Section 4.2.2) used in this work. We then specify the experimental
procedure (Section 4.2.3). Finally, detailed information on the hyperparameters
used is provided in Section A.1.1 of the Appendix.

4.2.1 Datasets

For this study, 44 binary class imbalanced datasets from the Keel repository [186]
are used. Their Imbalance Ratio (IR), i.e., the ratio of the number of majority
class instances to that of minority class instances, ranges here from 1.82 to 129.44.
Figure 4.1 shows the 44 examined datasets presenting the imbalance ratio (#IR)
on the x-axis and the number of samples (#samples) on the y-axis; where the
color of the symbols denotes the number of attributes for each dataset. A full list
of datasets is provided in Section (A.2) of the appendix.

4.2.2 Resampling Algorithms

The resampling algorithms were designed to handle the class imbalance scenario by
producing balanced datasets. The resampling algorithms used in our experiments
can be arranged into three groups:

1. Over-resampling (7 algorithms): In the imbalanced learning domain, over-
resampling technique balances the class distribution via producing synthetic
minority samples. SMOTE is the most famous resampling technique and gen-
erates synthetic samples based on random interpolation between the chosen
minority samples and their k-nearest neighbors. Various SMOTE-based exten-
sions have been proposed to further improvement on the SMOTE basis. For
example, ADASYN [190] focused on the harder-to-learn samples and Border-
lineSMOTE [191] emphasized the borderline samples. Other over-resampling
approaches considered in this experiment are KMeansSMOTE [192], SMO-
TENC [17], SVMSMOTE [19] and RandomOverSampler [193].

2. Under-resampling (11 algorithms): In contrast, under-resampling approach
balances the class distribution by removing majority samples. A Tomek link
is defined as a pair of samples from different classes which are the nearest

65

4. Setup of Benchmark Experiments

102 103
100

101

102

3

4

5

7

8

9

10

13

18

19

#Instances

#I
m

ba
la

nc
e

Ra
tio

 (I
R)

#Features

Figure 4.1: Overview of the characteristics of the datasets. The scatter plot shows
the Imbalance Ratio (#IR) and the number of samples (#Instances) for all 44
datasets on a logarithmic scale. The color indicates the number of attributes
(#Features).

neighbors for each other [194]. The undersampling method TomekLinks
removes the Tomek links in the dataset in order to produce a clear decision
boundary. OneSidedSelection [81] first removes noisy and borderline majority
samples, then removes the safe majority samples which have limited contribu-
tion for building the decision boundary with the CondensedNearestNeighbour
Rule [195]. Other under-resampling methods considered in this experiment are
CondensedNearestNeighbour, EditedNearestNeighbours [196], RepeatedEdit-
edNearestNeighbours [197], AllKNN [197], InstanceHardnessThreshold [198],
NearMiss [199], NeighbourhoodCleaningRule [200], ClusterCentroids [201],
and RandomUnderSampler [202].

3. Combine-resampling (2 algorithms): In order to balance the class distribu-
tion, the combine-resampling integrates both over-resampling and under-
resampling approaches, i.e., removing the majority samples and creating
synthetic minority samples. For example, SMOTETomek first oversamples

66

4.2 First experiment: class-imbalanced classification problems with two
operators

Search space

LabelEncoder,
StandardScaler

Optimizer

Stratified k-Fold

Figure 4.2: Flowchart of the experimental setup. The process begins with data
pre-processing of the input dataset using LabelEncoder and StandardScaler. Next,
we apply the 5-fold cross-validation to overcome the overfitting problem. The
outcome is fed into the optimization phase, which has a budget of 500 function
evaluations. The optimizer handles the process by generating a new configuration
p ∈ M at each iteration. The objective function, in the rounded rectangle
consisting of resampling and classification algorithms, is then parameterized by p
and computes its performance, i.e., geometric mean, on {Dtrain,Dvalid}k

j=1. Lastly,
the performance ∆ ∈ R is returned to the optimizer as an extended input to
generate a new configuration.

the minority class using SMOTE, after which the Tomek links for the after-
sampled samples are removed. Similar to SMOTETL, SMOTEENN first
oversamples the minority class with SMOTE. Thereafter, the Wilson’s Edited
Nearest Neighbors (ENN) was used to remove the sample that has a different
class from at least two of its three nearest neighbors [203].

The setup also allows a “no resampling” option. The resampling algorithms
are implemented in the Python package imbalanced-learn2[48].

4.2.3 Implementation details

The overall structure of our implementation is summarized in Figure 4.2. The
process begins with data pre-processing of the input dataset. A 5-fold cross-
validation is then applied to overcome the overfitting problem. The outcome is fed
into the second phase, which consists of the resampling and classification processes.
The complete pseudo-code of this flowchart is elaborated in Algorithm 7.

Algorithm 7 consists of the following two steps:
2https://github.com/scikit-learn-contrib/imbalanced-learn (version 0.7.0)

67

https://github.com/scikit-learn-contrib/imbalanced-learn

4. Setup of Benchmark Experiments

Algorithm 7: Experimental setup
Input: O = (Oresampler,Oclassifier): sequence of operators, Λ: hyperparameter

spaces, r: Random seed, k: Number of folds, B: Number of iterations
Output: p∗: the best configuration, ∆∗: GM achieved by p∗

Data: dataset D
1 D← DataPreProcess(D)

// DataPreProcess includes LabelEncoder, StandardScaler
2 {Dtrain,Dvalid}k

j=1 ← StratifiedK-fold(D, k, r)
3 Optimizer← Optimizer.init(O, Λ, f, r, {Dtrain,Dvalid}k

j=1) // initialize
optimizer

4 p∗, ∆∗ ← Optimizer.optimize()

• Preprocessing (line 1-2): We need to apply data preprocessing since machine
learning models require input and output data to be numeric. Thus, we used
the Label encoder3 to encode any categorical data to a number for the input
dataset. Then, we apply Standard Scaler3 on the encoded dataset to have
zero mean and a standard deviation of one (line 1). Next, stratified k-fold
cross-validation3 using k = 5, commonly used in the literature, is used.

• Hyperparameter optimization (line 3-4): All parameters of HPO are initialized
(line 3), taking values from the provided input including sequence of operators
O, hyperparameter spaces Λ, random seed r, number of iterations B, objective
function f and k folds of the examined dataset. The algorithm then optimizes
the problem until the number of function evaluations reaches 500.

The computation of the objective function is presented in Algorithm 8. It
elaborates further steps presented in the rounded rectangle in Figure 4.2. The input
is a parameter setting generated by the optimizer consisting of a random seed r and
ML pipeline configuration p. The configuration p consists of two parts: the choice
of resampler represented by pre0 , and classifier denoted by pcls0 , together with
their corresponding hyperparameter settings {pre1 , . . . , preq

} and {pcls1 , . . . , pclsp
}.

For a fold of the examined dataset, the computation of an evaluation has the
following steps:

• Step 1 (line 2-3): Resampler and classifier are initialized, using values of the
configuration p and random seed r.

3 Label encoder, Standard scaler and Stratified k-fold cross-validation are implemented in the
python library scikit-learn (version 0.23.2).

68

4.2 First experiment: class-imbalanced classification problems with two
operators

Algorithm 8: Objective function
Input: Hyperparameter configuration p generated by the optimizer; r: Random

seed
// p= (pre0 , pre1 , . . . , preq︸ ︷︷ ︸

Resampler

, pcls0 , pcls1 , . . . , pclsp︸ ︷︷ ︸
Classifier

)

Data: {Dtrain,Dvalid}k
j=1

1 foreach {D(j)
train,D(j)

valid} ∈ {Dtrain,Dvalid}k
j=1 do

// Build resampler and classifier models
2 Resampler← Parameterize Resampler pre0 with the hyperparameters

{pre1 , . . . , preq} and random seed r
3 Classifier← Parameterize Classifier pcls0 with the hyperparameters

pcls1 , . . . , pclsp and random seed r

4 D(j)
train ← Resampler(D(j)

train)
5 δj ← Classifier.Learn(D(j)

train).Evaluate(D(j)
valid)

6 return ∆← 1
k

∑k

j=1 δj

• Step 2 (line 4-5): The selected resampler is applied to the fold, followed by
the classifier, which is applied to the balanced result from the resampler.
The geometric mean δj for jth validation fold is then calculated (line 5).

The final value of the objective function, denoted as ∆, is an average geometric
mean of k folds (line 6).

69

4. Setup of Benchmark Experiments

4.3 Second experiment: AutoML benchmark with
up to six operators

The second experiment is based on the search space used in the well-known AutoML
software, i.e., Auto-Sklearn [39], with up to 6 operators for classification prob-
lems on 73 AutoML benchmark datasets. In this section, we briefly introduce the
datasets (Section 4.3.1) and the experimental procedure (Section 4.3.2). Finally,
detailed information on the hyperparameters used is provided in Section A.3.2 of
the Appendix.

4.3.1 Datasets

This experiment is based on 73 datasets from OpenML [204] as described in
Figure 4.3. More precisely, all datasets from the AutoML benchmark [189]
suite and all datasets from the OpenML100 [205], OpenML-CC18 [206] suites
that require data preprocessing steps, for example, containing missing values, were
used. A full list of datasets is provided in Section A.3.1 in the Appendix. Finally,
categorical features of the selected datasets are transformed by one-hot encoding
implemented in Scikit-Learn [151], and datasets are shuffled to remove the
potential impacts of ordered data.

4.3.2 Implementation details

The overall structure of our AutoML experiment is summarized in Figure 4.4:

1. The process begins by downloading the corresponding dataset from OpenML
[204], [207] of the OpenML #Task ID (input by user).

2. The necessary metadata is extracted from the input dataset to generate a
suitable search space χ by the Auto-Sklearn search space generator. It is
worth noting that this search space generator is based on two aspects: the
machine learning problem, that is, binary classification, multiclass classifica-
tion, multilabel classification, regression, multioutput regression, and data
representation, that is, either dense or sparse representation. In practice, the
generated search space for a single ML problem is large and commonly has up
to 153 hyperparameters and six operators, i.e., categorical encoder, numerical
transformer, imputation transformer, re-scaling, feature pre-processor, and
learning operator.

70

4.3 Second experiment: AutoML benchmark with up to six operators

103 104 105 106

101

102

103

104

Binary classes (41)
3-10 classes (27)

19 classes (1)
46 classes (1)

100 classes (2)
355 classes (1)

0

20

100

300
500
1000

3000

7000
50000
100000
425000

#Instances

#F
ea

tu
re

s

#Incom
plete instances

Figure 4.3: Overview of the characteristics of 73 AutoML benchmark datasets. The
scatter plot shows the number of features (#Features) and instances (#Instances)
on a logarithmic scale. The symbols indicate the number of classes and the
color indicates the number of samples that contain missing values (#Incomplete
instances).

3. The search space χ is converted to our search space M of the corresponding
optimizer. Meanwhile, the input dataset is preprocessed and split into two
independent sets Dtrain and Dtest, with the original data preprocessing and
train/test split techniques used in [22], i.e., 30% for testing and the remaining
for training. Next, 4-fold cross-validation was applied to Dtrain to avoid
overfitting. The later optimization phase takes k-folds and search space M.
For a fair comparison, the optimization time is only counted after this step.

4. The optimizer optimizes the given problem until the wall-time reaches 1 hour
and returns the best-found pipeline setting p∗, consisting of a sequence of
operators and their optimized hyperparameter settings.

5. Once the optimization process is done, the best-found pipeline setting p∗ is
used to initialize the corresponding machine learning model. Subsequently, it
learns on Dtrain and predicts on Dtest. Lastly, the test performance measure
on Dtest was calculated.

71

4. Setup of Benchmark Experiments

 K-Fold

Train/test split

Target program (Auto-sklearn)

Test the best-found setting
(Auto-sklearn)

Auto-sklearn:
Search space

generator

Auto-sklearn
search space Convert

M
et

a
da

ta

OpenML

User

Task ID

Optimizer

Generate

Figure 4.4: Flowchart of the second experimental setup.

4.3.3 Parameter setting

For a fair comparison, we used computational resources similar to those in [22].
For clarification, all experiments were conducted using our available computational
clusters, namely The Distributed ASCI Supercomputer 5 (DAS5) [208], where each
computation node (32 cores) runs 4 experiments in parallel, that is, fixing 8 cores
for one experiment. All experiments were repeated 10 times with different random
seeds, limited by a soft limit of 1 hour4 and a hard-limit of 1.25 hours5. The
performance evaluation of a single configuration is limited to 10 min with 4-fold
cross-validation on the training data, that is, the evaluation of a fold is allowed to
take up to 150s. The evaluation of a configuration is aborted and returns zero if
any fold has an error, for example, infeasible configuration and timeout.

4Soft-limit: the timeout’ parameter set to the optimizer.
5Hard-limit: The optimization process will be manually aborted after 1.25 hours for any

unexpected technical reasons. Thus, the configuration that achieves the highest performance is
known as the best configuration for the run.

72

