
Efficient tuning of automated machine learning pipelines
Nguyen, D.A.

Citation
Nguyen, D. A. (2024, October 9). Efficient tuning of automated machine
learning pipelines. Retrieved from https://hdl.handle.net/1887/4094132

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4094132

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4094132

ch
ap

te
r

3
An In-Depth Review of AutoML Optimization
Approaches

This chapter introduces commonly used optimization approaches for AutoML
optimization problems. We note that our discussion in this chapter will rely heavily
on the problem definition and accompanying notations discussed in Chapter 1
(Section 1.1). These notations are crucial for the ongoing analysis, and we dis-
cussed them in detail in their original context in Chapter 1 to ensure a better
understanding.

All of the approaches presented in this study follow the same principle: finding
the best machine learning pipeline configuration p ∈M to maximize a measurement
performance1 for a given machine learning problem with the k-fold cross-validation
technique. They can be divided into two groups:

1. The performance of a particular configuration will be evaluated on all k-folds.

2. They intend to save computational cost by evaluating it on a subset of data,
e.g., on fewer folds, to infer performance on the entire data. Hence, we shall
use the term function call to indicate one-time access to a configuration on
one fold.

The term function evaluation indicates the average performance over k folds, i.e.,
a function call is k times cheaper than a function evaluation in terms of evaluating
data input. The difference between the term function call and function evaluation
in this thesis is shown in Figure 2.5.

3.1 Black-box optimization approaches

In general, both hyperparameter and AutoML optimization problems are typically
treated as black-box optimization problems for various reasons. For instance, we

1See Section 2.1.2.2.

45

3. An In-Depth Review of AutoML Optimization Approaches

cannot access a gradient of the objective function concerning the hyperparameters,
or it is not possible to directly optimize the generalization performance as the
training datasets are of limited size [8]. Generally, every black-box optimization
approach can solve these problems. This section introduces three common opti-
mization approaches, grid search (Section 3.1.1), random search (Section 3.1.2),
and Bayesian optimization (Section 3.1.3). The working principles of these three
approaches are shown in Figure 3.1. As shown, grid search sequentially evaluates
points individually on a user-defined grid. On the other hand, a random search
evaluates points at random, as the name implies. Bayesian optimization (BO) is
a more complex technique based on advanced probabilistic models that makes it
intelligent for automatically finding suitable configurations in the search space.
In this example, we can see that BO can find more configurations with stronger
results than other approaches. That is, more samples in the purple-filled contours.

1 0 1 2 3 4
x

3

2

1

0

1

2

3

y

1 0 1 2 3 4
x

3

2

1

0

1

2

3

y

1 0 1 2 3 4
x

3

2

1

0

1

2

3
y

Grid Search Random Search Bayesian Optimization

Figure 3.1: An illustration between grid search (left), random search (middle), and
Bayesian optimization (right) for hyperparameter optimization on the McCormick’s
function f(x, y) = −1.5x + 2.5y + (x− y)2 + sin (x + y) + 1 with two continuous
parameters: x ∈ [−1.5, 4] and y ∈ [−3, 3]. All three approaches used a total of 66
functions evaluations. Purple-filled contours indicate regions with strong results,
whereas yellow ones show regions with poor results.

3.1.1 Grid Search

Grid search is the most basic optimization algorithm. Given a set of hyperparame-
ters, each of which has a (finite) set of values, for instance, continuous hyperparam-
eter, e.g., [0, 1] ∈ R, ordinal hyperparameter, e.g., [1, 10] ∈ Z, boolean hyperparam-
eter, e.g., [True, False], nominal hyperparameter, e.g.,[Linear, RBF, Poly, Sigmoid].

46

3.1 Black-box optimization approaches

We enumerate all combinations of these sets and create a list of all candidates. Grid
search evaluates each of these candidates and chooses the best configuration among
them – the number of function evaluations is precisely the number of configurations.
However, practitioners are usually restricted by a limited computational budget,
i.e., the number of function evaluations, for hyperparameter optimization and
AutoML optimization problems. Such a limited budget is typically much smaller
than the number of possible evaluation configurations. Thus, a limited budget
restricts the applicability of grid search.

3.1.2 Random Search

Unlike grid search, which assesses all configurations (for continuous hyperparam-
eters based on a sufficiently coarse-grained discretization), random search [30]
evaluates only a subset of available candidate configurations at random until the
given budget runs out and returns the best of the sampled configurations. The
random search for AutoML optimization is summarized in Algorithm 1, it consists
of the following two steps:

• Generate a set of random configurations (line 3): here we adapted random
sampling in unstructured HPO problem to AutoML optimization problem
based on the search space (i.e., operators and hyperparameters space) and
the number of needed configurations. The sampling algorithm is presented
in Algorithm 2.

• Evaluating and selecting configuration: Each setting pi ∈ {p1, . . . , pB} from
the previous step will be evaluated on the objective function f (line 5). Next,
the current best setting is updated (lines 6-9).

Lastly, when the optimization process is done, the best setting p∗ is reported.
Random Sampling used in Algorithm 1 is presented in Algorithm 2:

• Random selection of a sequence of operators: All operators O1,...,z ∈ O are
randomly sampled to have a sequence of algorithms (line 5).

• Sampling hyperparameters: The corresponding hyperparameters are sampled
randomly (lines 6-7), taking into consideration the selected algorithms in the
previous step. The result is returned as a complete ML pipeline setting p,
i.e., a sequence of ML algorithms and their hyperparameter settings.

• Lastly, the set of sampled configurations is returned.

47

3. An In-Depth Review of AutoML Optimization Approaches

Algorithm 1: Random Search
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, B : number of iterations
Output: p∗: the best found configuration

1 p∗ ← ∅
2 ∆∗ ← 0
3 Θ = {p1, . . . , pB} ← Random Sampling (O, Λ, B) // see Algorithm 2
4 foreach pi ∈ {p1, . . . , pB} do
5 ∆i ← f(pi) // evaluate the configuration pi

6 if ∆i > ∆∗ then
7 p∗ ← pi

8 ∆∗ ← ∆i

9 end
10 end
11 return p∗, ∆∗ // return the best found setting

Recent studies [8], [13], [30], [47] have noted that random search can perform better
than grid search, particularly when only a few hyperparameters impact the perfor-
mance of the machine learning algorithm. Despite its simplicity, random search
remains a crucial benchmark for evaluating the effectiveness of new optimization
methods.

Algorithm 2: Random Sampling for AutoML optimization
Input: O: sequence of operators, Λ: hyperparameter spaces, T : number of

configuration
Output: Θ = {p1, . . . , pT }: set of T configurations

1 t← 1
2 Θ = ∅
3 while t ≤ T do
4 p← ∅
5 foreach Oi ∈ O do
6 Ani

i ← U(Oi) // randomly choose one algorithm for the ith

operator
7 λi ← U(Λni

i) // randomly select a hyperparameter setting
for the selected algorithm Ani

i

8 p← p ∪ {Ani
i , λi}

9 end
10 Θ← Θ ∪ p // insert the new configuration p into Θ
11 t← t + 1
12 end
13 return Θ = {p1, . . . , pT } // return a set of T configurations

48

3.1 Black-box optimization approaches

3.1.3 Bayesian Optimization

As the AutoML optimization task is typically time-consuming, it is preferable
to devise/choose an optimizer that delivers a good ML pipeline setting with a
relatively small computational budget. Building upon surrogate models and the
expected improvement criterion, Bayesian Optimization (BO) [155] is designed for
such a scenario. Generally, BO iteratively updates a surrogate model P(f |H)which
aims to learn the probability distribution of the response value conditioned on
setting p, from the historical information, i.e., the so-far evaluated ML pipeline
settings and the corresponding objective function H = {(pi, ∆i)n

i=1}. The new
candidate ML pipeline is chosen by optimizing the acquisition function [156], [157],
which is defined over the surrogate model P and often balances the exploration and
exploitation of the search. A detailed outline of the BO is presented in Algorithm 3
and Figure 3.2.

Many variants have been proposed for BO, including the Sequential Model-
based Algorithm Configuration (SMAC) [25], Sequential Parameter Optimisation
(SPO) [27], Mixed-Integer Parallel Efficient Global Optimization (MIPEGO) [38],
and Tree-structured Parzen Estimator (Hyperopt) [24], [153], [158]. They differ
mostly in the initial sampling method, the probabilistic model, and the acquisition
function. Common choices for the probabilistic model are Random forests (RF) [72],
Gaussian process regression (GP) [159], and TPE [24]. As for the acquisition func-
tion, the Expected Improvement (EI), the Probability of Improvement (PI) [157],
and the Upper Confidence Bound (UCB) [160] are more frequently applied among
many other alternatives.

3.1.3.1 Probabilistic Regression Models

The central idea of BO is to construct a surrogate model from the observed data
points on real-valued objective function f . The surrogate model aims to predict the
performance of untested ML pipeline configurations by modeling the relationship
between the set of evaluated configurations Θ and their true response value ∆. In
the following, we will briefly introduce three commonly used surrogate models:
(1) Gaussian processes – the well-known traditional surrogate model, (2) Random
Forest, and (3) Tree-structured Parzen Estimator – two popular surrogate models
for AutoML optimization.

49

3. An In-Depth Review of AutoML Optimization Approaches

Step1. Init Sampling:
Uniform sampling (uniform), Latin
Hypercube Design (LHD), …

Step2. Construct regression model 𝓟
(e.g. Gaussian processes,
RandomForest, TPE, ...)

Objective
function

evaluation

Train Model 𝒫(Θ, Δ)

Step3. Suggest next solutions

3

2

1

3.1: Maximize Acquisition Function (Acq.F).
E.g. Expected Improvement (EI), Upper Confidence
Bound (UCB), Probability of Improvement (PI), ...

3.2: Select 𝒆𝒆𝒊 solutions
(default: 𝑒𝑒𝑖 = 1, 𝑒𝑒𝑖 ≪ 𝑛𝑒𝑖)

evaluation

3.1.1: Generate list
of 𝒏𝒆𝒊 solutions

Regression
model

Compute

Acq.F
Update

1.1

3.2

3.1

4

R
e-Train

 M
o

d
el 𝒫

(Θ
,Δ
)

Bayesian optimization algorithm

Bayesian optimization

Assess

Figure 3.2: Bayesian Optimization

Gaussian processes

Gaussian processes (GP) [159] is a traditional surrogate model for Bayesian op-
timization. Generally speaking, GP is a generalization of Multivariate Gaussian
distribution [161], where the mean vector µ and covariance matrix Σ are redefined
by a mean function µ(p) and a covariance kernel function K(p, p′) of any two
observations2. The objective function f (expensive) is modeled as a GP, and can

2Note that a function is an infinite vector.

50

3.1 Black-box optimization approaches

Algorithm 3: Bayesian Optimization for AutoML optimization
Input: O: sequence of operators, Λ: hyperparameter spaces f : objective

function, ninit: initial sample size,nei: number of samples to be
sampled in the maximize expected improvement (EI) step, eei:
number of samples to be suggested at each BO’ iteration,

Output: p∗: the best ML pipeline configuration
1 Θ← Init Sampling(O, Λ, ninit) // typically done via Random

sampling in Algorithm 2
// Evaluate all configurations on the given objective

function f, their performances are saved to ∆
2 P ← Train P(Θ, ∆)
3 while not terminate do
4 Θnew ← P.Maximize EI(nei, eei) // EI is Expected improvement
5 ∆new ← ∅
6 foreach pi ∈ Θnew do
7 ∆i ← f(pi)
8 ∆new ← ∆new ∪∆i

9 end
10 Θ← Θnew
11 ∆← ∆new
12 P ← Train P(Θ, ∆) // Re-train model
13 end
14 return p∗ ∈ Θ // return the best found configuration

be defined as f(p) ∼ GP(µ(p), K(p, p′)). In other words, for each sample p, a
Gaussian process defines a mean µ and standard deviation σ within a Gaussian
distribution. The squared exponential function is a commonly used kernel function:
K(p, p′) = σ2

f exp[−(p−p′)2

2l2] where l denotes the length scale3 and σ2
f denotes the

output variance. Subsequently, the predictive distribution for an unseen configu-
ration P(fnew|Θ, ∆, pnew) follows a Gaussian distribution. Hence, the mean and
variance can be computed as follows:

µ(pnew) = k∗K−1∆; σ2(pnew) = k∗∗k∗K−1kT
∗ (3.1)

where the covariance matrices are calculated as k∗ = [k(p1, p∗), . . . , k(pt, p∗)],
K = [k(pi, pj)]∀i,j∈{1,...,t} and k∗∗ = k(pnew, pnew).

3The length scale establishes a point’s area of influence. inside the parameter space, where
the effect of an observation diminishes as one moves away from it.

51

3. An In-Depth Review of AutoML Optimization Approaches

Random forests

Random forests (RF) [72], is an algorithm used in Machine Learning for regression
and classification. It is employed in SMAC [25] as the mere surrogate model4.
Fundamentally, RF can be considered as a collection of regression (decision) trees.
The historical data (Θ, ∆) were randomly divided into multi decision trees with
few features. The trees in the forest individually score the unseen configuration
candidate pnew (pnew ∈ M), and the final result is based on the majority of the
votes. A major limitation of RF is that it does not provide an estimate of the
variance in its predictions. When adopting it in the BO scenario, SMAC [25] uses
the empirical variance in the predictions of trees in the ensemble. Hence, mean µ

and variance σ2 for the new candidate pnew are computed as the empirical mean
and variance of each tree r in the forest of B trees:

µ(pnew) = 1
|B|

∑
r∈B

r(pnew); σ2(pnew) = 1
|B|−1

∑
r∈B

(r(pnew)− µ(pnew))2 (3.2)

where B denotes a set of trees, r denotes a tree in the forest, i.e., r ∈ B. r(pnew)
is the predicted value of the new (unseen) configuration pnew by a tree r.

Tree-structured Parzen Estimator

Tree-structured Parzen Estimator (TPE) [24] is another alternative to a GP, which
is a tree-based model by using the Parzen-window density estimators [162], [163].
Instead of modeling the distribution of the true objective function f , TPE models
the likelihood P(H|f) by using the parzen window kernel density estimator. In this
setting, the evaluated configurations are split into two density distributions of a well
l(p) and a badly g(p) performing set depending on whether its performance is below
or above a predefined threshold5 α. We note that l(p) and g(p) probability models
are usually represented by Gaussian Mixture Models (GMMs) or Kernel Density
Estimation (KDE) independently. Hence, we have two means, that is, µl(p) for the
mean of l(p) and µg(p) for the mean of g(p), and two variances, that is, σ2

l(p) for the
variance of l(p) and σ2

g(p) for the variance of g(p), the computation of these values
depend on the models used. For the detailed discussion and relevant formulas, we
refer the interested reader to [24] for further discussion on the Hyperopt framework,
a well-known implementation of TPE, [164] and [165] for further discussion on
KDE and GMMs.

4Note that the property of regression trees is supported conditional variables domains, while
GP family currently do not.

5By default, α = 25%.

52

3.1 Black-box optimization approaches

3.1.3.2 Acquisition Function

Bayesian optimization is designed to find a global optimum for an optimization
problem that may have many local optima. However, as noted in the previous
section, the surrogate model only approximates the true objective function, and
its estimations may be imperfect. This leads to the following question: Should we
exploit the most known search area or explore other areas that are less known? The
so-called Acquisition Function (AF, or infill-criterion) [155] is designed to answer
this question, aiming to achieve a trade-off between exploration and exploitation.
Generally, AF computes the expected improvement value from the mean and
covariance (uncertainty) estimated by a regression model. Therefore, we can
choose a new configuration candidate for evaluation by maximizing the expected
improvement values.

Although many acquisition functions have been proposed [38], [157], [160],
[166]–[172], the Expected improvement (EI) [156] is the most popular acquisition
function for BO and remains the default AF in BO packages, such as SMAC [25],
Spearmint [28], SPO [27] and TPE [24], [158]. EI balances the trade-off between
exploration and exploitation via the expectation of the improvement function over
the best-found value ∆∗

(t) at time step t as It(p) = max{0, f̂(p)−∆∗
(t−1)}, where

∆∗
(t−1) = max(∆0, . . . , ∆t−1) and f̂(p) denotes the predicted performance of the

setting p via surrogate model P. The EI is thus defined as:

E[It(p)] =
∫ ∞

0
It(p) dP (3.3)

Let us denote by z = z(t−1)(p) = µ(t−1)(p)−∆∗
(t−1)

σ(t−1)(p) , we obtain the closed-form AF
by taking the expectation via the improvement function It(p) as:

E[It(p)] = σ(t−1)(p)ϕ(z) + [µ(t−1)(p)−∆∗
(t−1)]Φ(z) (3.4)

where µ(p) and σ(p) denoted the mean and standard deviations; ϕ(.) and Φ(.) are
the probability density function (p.d.f) and the cumulative distribution function
(c.d.f) of the standard normal distribution. Hence, the next setting is selected by
maximizing the EI:

pnew = argmax
p∈M

E[It(p)] (3.5)

where M denotes the AutoML search space (see Section 1.1).

53

3. An In-Depth Review of AutoML Optimization Approaches

3.2 Multi-fidelity approaches

As mentioned in Section 1.1, the k-fold cross-validation is typically used when eval-
uating a pipeline configuration to avoid the over-fitting problem (see Section 2.1.3).
However, if the performance of a particular configuration is poor when evaluated
on the first folds, it is likely to not perform well on the rest of the cross-validation
fold [173]. Hence, we should not invest further computational resources in this
configuration or redistribute the saved resources to the most promising configura-
tions. A class of optimization methods named multi-fidelity approaches intends to
save computational resources and speed up the optimizing process by evaluating
configurations on a subset of the input data [174], [175], limiting iterations [13], or
using a subset of features [8]. In this study, we use the term k-fold cross-validation
(see Figure 2.5 for reference), then the multifidelity limits the use of a few folds
of the cross-validation folds, that is, using i folds (i ≤ k). The configuration
candidates in this class of methods tend to be evaluated faster on fewer folds than
the approaches in Section 3.1. Hence, we use the term function call to indicate a
one-time access to a configuration on one fold.

This thesis reviews two commonly used classes of methods aiming at reducing
computational effort, namely: (1) Racing procedure approaches and (2) Bandit-
based approaches.

3.2.1 Racing procedure

Hoeffding Races [32], [173] were the first version of the racing procedure. It was
initially designed to find the best machine learning model for a set of problem
instances (here, we use the term k-folds instead) in the supervised machine learning
domain. To reduce the computational cost of poor configurations, a (pairwise)
statistical test (e.g., t-test, Friedman-test [176]) is used to determine poor configu-
rations to be terminated as soon as enough statistical evidence arises against them,
that is, the ones that are significantly worse than the best.

Although a number of racing procedure variants have been developed, such as
F-Race [177], [178], Sampling F-Race [179], and Iterated racing (irace) [33], [180],
[181] ; irace is the most the latest of this class. It is particularly well-suited for
Hyperparameter Optimization [13] and AutoML optimization [182]. Hence, we
present the irace algorithm in greater detail in the following section. For details
on other methods, we refer the reader to Birattari (2009) and the book chapter by
Hoos (2012).

54

3.2 Multi-fidelity approaches

3.2.1.1 Iterated racing (irace)

In contrast to Hoeffding Races, the later variants of the racing procedure add a
rank-based Friedman test (i.e., Friedman two-way analysis of variance by ranks)
to determine if there is any significant difference between configurations. If
any differences were found, pairwise comparisons were performed with the best
candidate. Irace also followed this procedure. The detailed outline of irace is
shown in Algorithm 4. Irace first initializes parameters (lines 1-2). The first
round uses the random sampling method in Algorithm 2, generates a set of
Nj(Nj = ⌊ Bj

T first+T each ⌋) configurations (line 5). A racing procedure (line 6) is used
to discard poorly performing configurations, based on their evaluated performance
on T first folds. This race relies on the Friedman test [176] and Conover post-hoc
test [183] with a significance level α6.

After the first race, a new race is initialized by taking the remaining budget
(B −Bused) and the number of remaining races (N iter − j + 1) (lines 11-12). Next,
EliteBasedSampling generates a set of Nj configurations by sampling the set
of surviving configurations Θ∗, from the previous race. For every new sample, the
sampling procedure repeats as follows:

1. One sequence of operators will be chosen as the parent sequence (A1, . . . ,Az)parent

(see Figure 1.2 for the used notation) for this new race, with a probability
ρparent that is based on its configuration pparent, (pparent = (A1,λ, . . . ,Az,λ)parent ∈
Θ∗) and its rank rparent over the surviving set Θ∗. The probability ρparent is
computed as follows:

ρparent = 2 · |Θ∗|−rparent + 1
|Θ∗|·(|Θ∗|+1) (3.6)

2. The corresponding hyperparameters λ to (A1, . . . ,Az)parent are sampled by
either a truncated normal distribution for numerical hyperparameters, or a
discrete distribution for categorical hyperparameters7.

3.2.2 Bandit-based approaches

The class of bandit-based approaches is similar to the racing procedure in that
they terminate the worst pipeline configurations early. However, compared with
the racing procedure, they differ in two ways:

6By default α = 0.05.
7Ordinal hyperparameters are considered as numerical.

55

3. An In-Depth Review of AutoML Optimization Approaches

Algorithm 4: Iterated racing algorithm
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, I: set of problem instances (or set of k folds), T first: the
number of instances (folds) needed to do the first test, T each: the
number of instances (folds) to test on the later round (by default
T each = 1), B: total budget (maximum number of function calls)

Output: Θ∗: set of best configurations
1 Nparam ← |O|+|Λ| // number of parameter spaces equal to the

total number of operators and the total number of
algorithms’ hyperparameters

2 N iter ← ⌊2 + lognNparam⌋ // number of races to be executed
// THE FIRST RACE

3 j ← 1 // j = 1, . . . , Niter

4 Bj ← B
N iter // compute budget for the first round

5 Nj ← ⌊ Bj

T first+T each ⌋ // number of configuration to be sampled at

the first race
6 Θj ← Random Sampling(O, Λ, Nj) // see Algorithm 2
7 Θ∗ ← Race(Θj , Bj , T first, I) // determine the set of good

configurations
8 Bused ← Bj // used budgets

// LATER RACES
9 while not terminate do

10 j ← j + 1
11 Bj ← B−Bused

N iter−j+1 // compute budgets for the current race

12 Nj ← ⌊ Bj

T first+T each×min{5,j}⌋ − |Θ
∗| // number of configurations

to be sampled for the current race
13 Θj ← EliteBasedSampling(O, Λ, Nj , Θ∗)
14 Θj ← Θj ∪Θ∗

15 Θ∗ ← Race(Θj , Bj , T each, I) // determine the set of good
configurations

16 Bused ← Bused + Bj // update used budgets
17 end
18 return Θ∗

1. All configurations were compared directly based on their evaluated perfor-
mance instead of using a statistical procedure.

2. The number of rounds and budget can be estimated based on the input
budgets, that is, the budgets for each round are equally assigned, but later
rounds have fewer candidates than the previous rounds.

56

3.2 Multi-fidelity approaches

In the following, we present Successive Halving [34] in more detail and outline its
limitations. Next, we discuss two variants of Successive Halving to overcome these
limitations [35], [36].

3.2.2.1 Successive Halving

Jamieson and Talwalkar (2016) introduced Successive Halving as a simple yet
efficient algorithm for multi-fidelity optimization. The outline of Successive Halv-
ing is summarized in Algorithm 5. Here, we slightly adapt the algorithm for
AutoML optimization. That is, we use the term AutoML search space instead of
hyperparameter space, and use it for the k-fold cross-validation scenario, that is,
at least one candidate will be assigned a sufficient budget to evaluate all k folds,
and no configuration can have more than that budget. It requires a budget (finite
value) B, i.e., the maximum number of function calls, the number of configurations
n, the maximum number of folds that can be used for a single configuration R.
The procedure pre-computes the number of rounds t to be executed (line 1). The
value of t is then recomputed by using line 2− 7 to find an appropriate value of t

for the provided budget B and n when using the discard ratio η. Next, a set of n

configurations is generated randomly and saved to Θr (line 3). For each round, the
budget for a configuration is computed in line 13, i.e., either a subset of data or
Br ∈ {1, . . . , k} folds (Br << k). Herein, we slightly modify to adapt to the above
mentioned scenario to ensure no configuration has more than R folds and less than
1 folds. Next, all configurations p ∈ Θr are assessed on Br folds. At the end of the
round, we only keep the top 1

η configurations8 based on their performances to go
to the next round (line 16). The successive procedure is then repeated until the
last round is done. Lastly, the best-found configuration is returned (line 19).

3.2.2.2 Hyperband

Successive Halving requires the number of configurations n and budgets B, e.g., the
number of function calls, as input parameters. Assume that we have a fixed budget
B, e.g., total number of function calls, the proportion of B

n leads to a consideration
of whether we should consider (1) more configurations (large n) in the race with
small average folds or (2) a small number of configurations (small n) with higher
average folds. [35] pointed out that in practice, the problem itself might have some
noise, i.e., the accuracy rate on folds might be significantly different. If the noise is

8We note that the default proportion discard of half was changed to one third with the recent
studies [35]–[37].

57

3. An In-Depth Review of AutoML Optimization Approaches

Algorithm 5: Successive Halving algorithm
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, I: set of problem instances (or set of k folds), B: total
budget (maximum number of function calls), n: number of
configurations, η: Proportion discard ratio (η = 2 by default), R:
maximum number of instances (folds) that can be allocated to a
configuration (R = |I|, by default).

Output: Θt

1 t← logη(min{R, n}) // pre-compute the number of rounds based on
R, n and η

2 foreach t ≤ logη(min{R, n}) do
3 if nR(t + 1)η−t ≤ B then
4 Evaluate whether the given budget B are sufficient to
5 accommodate the number of rounds t.
6 return t // number of rounds to be executed
7 else
8 t← t− 1
9 end

10 end
11 Θr ← Random Sampling(O, Λ, n) // randomly create n

configurations using Algorithm 2
12 Rremain ← R // number of instances/folds remain unevaluated.
13 r ← 0
14 while r ≤ t do
15 Br ← min(max(⌊(Rηr−t⌋, 1), Rremain) // Budget for a surviving

configuration in the current round.
16 foreach p ∈ Θr do
17 Assess the configuration p on Br folds, which have not been
18 evaluated so far.
19 end
20 Θr+1 ← select top ⌊ |Θr|

η ⌋ in Θr // keep 1/η good configurations

in terms of their corresponding observed performances
21 Rremain, r ← Rremain −Br, r + 1
22 end
23 return p ∈ Θr // return the best found configuration

low, we can quickly determine the quality of the configurations on fewer folds. We
can select a large number of configurations to maximize the possibility of finding
the optimal solution. Otherwise, we should consider fewer configurations, but we
will evaluate them in more detail.

Exploiting this finding, [35] proposed to have an outer loop of Successive Halving,

58

3.2 Multi-fidelity approaches

which will consider a different proportion of total budgets
number of configurations , where the number

of configurations on each outer loop is reduced. The complete algorithm is outlined
in Algorithm 6. The idea behind Hyperband is that it divides resources into
brackets, e.g., {N iter, N iter − 1, . . . , 0}, with different configurations and executes
Successive Halving as a sub-program, that is, the first loop executes Successive
Halving with many configurations, but most of them will validate fewer folds. In
contrast, the last loop handles fewer configurations but will be validated on most
folds. This outer loop is in lines 4− 13.

Algorithm 6: Hyperband algorithm
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, I: set of problem instances (or set of k folds), B: total
budget (maximum number of function calls), η: Proportion discard
ratio (η = 3 by default), R: maximum number of instances that
can be allocated to a configuration (R = |I|, by default).

1 N iter ← ⌊logη(R)⌋
2 Θ← ∅ // set of configurations
3 Bremain ← B
4 foreach r ∈ {N iter, N iter − 1, . . . , 0} do
5 nr ← ⌈B

R ×
ηr

r+1⌉ // number configurations to be sampled
6 if r > 0 then
7 Br ← B

N iter // total budget for the current round
8 else
9 Br ← Bremain // total budget for the last round

10 end
11 Θ← Θ ∪ SuccessiveHalving(O, Λ, f, I, Br, nr, η, R)

// SuccessiveHalving (Algorithm 5) is used as a
subroutine.

12 Bremain ← Bremain −Br // remaining budget
13 end
14 return p∗ ∈ Θ // return the best found configuration

Finally, both Hyperband and Successive Halving are considered fast random
search methods owing to the use of random sampling for generating configurations.
Therefore, they also inherited the major limitation of random search for proposing
new configurations but were not improved to take information accumulated over
the search history into account, such as Evolutionary Strategies [108], Bayesian
Optimization [159], [184], which can propose configurations based on the assessed
points so far. Instead of randomly proposing new configurations, BOHB [36]
and DACOpt [37] proposed to use combine a Bandit approach and Bayesian

59

3. An In-Depth Review of AutoML Optimization Approaches

Optimization to maximize expected improvement. BOHB replaces the random
sampling step in Successive Halving by TPE at the step after the first round. In
contrast, DACOpt uses Successive Halving as an outer loop that can suggest good
search areas for Bayesian optimization.

60

