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Automated Machine Learning: An Overview

The term machine learning has become highly popular in today’s technology and
is expanding rapidly. Without realizing it, we use machine learning in our daily
lives, such as in self-driving cars [1], medical diagnosis [2], automatic language
translation [5], fraud detection [6], and defect detection [49].

Existing AutoML frameworks aim to automatically build the best ML pipeline
for an arbitrary ML problem. However, applying AutoML to produce a useful ML
product for a real-world problem eventually requires some knowledge of machine
learning and software development. We first discuss some important aspects of the
life cycle of machine learning development in Section 2.1. Next, this chapter will
discuss all the functions of a typical AutoML tool, as shown in Figure 1.1, except
for the optimization part, which we will discuss in Chapter 2 due to its significance
in this thesis. Specifically, Section 2.2 provides an overview of commonly used
approaches for determining the optimal ML pipeline architecture. Section 2.3
discusses various applications of meta-learning in AutoML. Section 2.4 presents
the explainable and low-code techniques utilized in AutoML products.

2.1 Life Cycle of Machine Learning Development

The process of building up a machine learning system can be seen as a combination
of the Software Development workflow [50] and the Data science workflow [51],
which is shown in Figure 2.1. This workflow contains four main stages:

• Data preparation is the starting point for an ML project where the data is
collected [52]. This will be discussed in Section 2.1.1.

• ML pipeline optimization is handled by the employed optimizer, which will
be discussed in Chapter 3. Hence, Section 2.1.2 discusses the topic from the
user’s view rather than the view of an optimizer provider. In this section,
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2. Automated Machine Learning: An Overview
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Figure 2.1: Machine learning development life cycle. This figure takes inspiration
from the software development [50] and data science [51] lifecycles.

we clarify what parts of an ML pipeline can be applied for optimization for
automatic purposes (Section 2.1.2.1), how we can evaluate an ML pipeline
(Section 2.1.2.2), and the over-fitting problem [53] in Section 2.1.3, a common
problem when applying optimization to AutoML [54].

• Application Development stage refers to the application development progress,
where the final application is produced [50]. An engineering team typically
does this stage with expertise in developing applications (e.g., software,
web app, embedded application for Computer Numerical Control (CNC)
machines).

• Continuous Improvement indicates the process of making small incremental
changes to the developed application [55]. The ML application development
is not a one-off process. In the ML applications development scenario, the
constant improvement paradigm is more necessary since the data continues to
be updated. The data distribution changes make the ML model’s prediction
performance less accurate. Thus, the deployed ML model must be retrained
to adapt to the updated data. Besides, the selected ML pipeline may no
longer be the best choice for the new data. Therefore, the ML pipeline has
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2.1 Life Cycle of Machine Learning Development

to be re-tuned. We refer the interested reader to the Kaizen model [55] for
this topic.

2.1.1 Data preparation

In practice, the data used for a particular machine-learning project can be collected
from multiple sources, such as Enterprise Resource Planning (ERP), customer rela-
tionship management (CRM), network log files, Microsoft Excel, Microsoft Word,
images, expert suggestions, or external sources. However, a real-life system, such as
an ERP, can have thousands of data tables with complex relationships. Therefore,
choosing the tables and data to use is a challenging question. Additionally, data
from multiple sources (e.g., data crawled from websites, extracted from multiple
internal systems, or gathered end-user working data files) might be incorrectly
labelled or inconsistent in identity, used metric system units (e.g., millimetre (mm),
centimetre (cm), meter (m)), and format (e.g., DateTime). Collecting data and
joining different data sources are important and challenging. Hence, these tasks
are typically performed manually by experts who deeply understand the data. In
general, data preparation [52], [56]–[58] typically involves the following tasks:

1. Data collection: Useful data is obtained from operating systems, data
warehouses, data lakes, and other information sources. During this step, it is
crucial for data scientists, domain experts, members of the ML team, and
end-users to verify that collected data is a good fit for the objectives of the
anticipated ML applications [56].

2. Data discovery and manual cleansing: This step consists in investigating
the gathered data to determine what it includes and what needs to be done
to make it suitable for intended usage [52]. Next, the detected data flaws
and mistakes are fixed to develop comprehensive and accurate data sets. For
instance, faulty data is rectified or removed, missing values are filled in, and
inconsistent entries are merged as part of the data sets clean up [59].

3. Data organizing: At this stage, the data must be modeled and organized
to be suitable for ML [56]. For example, the data stored in comma-separated
value (CSV) files and reorganizing image files.

It is worth noting that the target outcomes of all the above steps should include data
and a set of prepared rules. The rule can be in the form of hard-coding, workflows,
or generic formulas, which can be reused for future data in the production phase.
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2. Automated Machine Learning: An Overview

Apart from the mentioned manual steps, there are two classes of data-cleaning
approaches:

1. Semi-automatic is a class of algorithms/tools that assist scientists in improv-
ing efficiency and reducing human effort during the data preparation phase,
rather than being completely automatic. For instance, KARATA [60] is a tool
that uses knowledge-based [61] and crowd-powered [62] approaches, detecting
both correct and incorrect data to generate possible repairs for the identified
incorrect data. Another class of methods, as exemplified by Krishnan et
al. [63]–[65], involves suggesting cleaning for only a limited portion of the
data while maintaining comparable outcomes to cleaning the entire dataset.
However, these methods require humans to design data-cleaning operations
applied to the dataset.

2. A small class of automatic data cleaning techniques aims to improve the
data quality automatically. It can be applied to various datasets and used
in AutoML frameworks (see Section 2.1.2.1 for an additional discussion).
Nevertheless, they are usually hard-coded and limited to a few specific
functions, such as handling data errors, missing values, redundant records,
invalid values, and outliers [22], [66], [67].

2.1.2 Automated Machine Learning Pipeline

This section’s topic is limited to supervised machine learning fields. This section
focuses on processes that do not involve humans. We first start by listing the
elements of a typical ML pipeline (Section 2.1.2.1). Second, we present the
standard evaluation measurement metrics (Section 2.1.2.2). The last sub-section
presents the common over-fitting problems when optimization approaches are
applied (Section 2.1.3).

2.1.2.1 Machine learning pipeline

A generic ML pipeline p : X → Y designed for problem solving P is a sequence
of operators that transforms a vector of features x ∈ X into a target value y ∈ Y
which can be, for example, a predicted value for a regression problem or a label
for a classification problem. Examples of possible pipeline operators depend on
problem P and can include data pre-processing, encoding, feature selection, and
resampling.
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2.1 Life Cycle of Machine Learning Development

In order to analyze this discussion, we need to use the notations introduced
and explained in Chapter 1. These notations are crucial for our ongoing analysis,
and we discussed them in detail in their original context in Chapter 1 to ensure a
better understanding. Let O = O1 × . . . ×Oz denote the sequence of operators
in the pipeline p, where each subsequent operator is applied to the output of the
previous operator starting from input x: p(x) = Oz(Oz−1(. . . (O1(x)) . . .)). Each
operator’s functionality can typically be delivered by one of the multiple available
ML algorithms: here we assume Oi∈{1,...,z−1} = {∅,A1

i , . . . ,Ani
i } for all operators

except the last and Oz = {A1
z, . . . ,Anz

z } for the last operator that defines the
learning algorithm – i.e., unlike the first z − 1 operators, the last operator Oz has
to be selected and cannot be ∅.

ML pipeline structure Although several AutoML frameworks have been re-
leased to date, there are no best practices for ML pipeline structures for all ML
problems in the literature. We only know that the learning algorithm must be at
the end of the pipeline. Thus, an AutoML framework creates an ML pipeline using
either a fixed structure based on the creator’s expertise or a variable structure
(the detailed discussion on ML pipeline structure search is given in Section 2.2).
We note that the number of operators is flexible, as it highly depends on the ML
problem (i.e., classification, regression), the underlying domain, and the input
data itself (e.g., image, text, and tabulator input require different preprocessing
algorithms).

The considered operators are usually grouped into two main phases:

1. Preprocessing phase includes several preprocessing tasks that can be seen
as an augmentation step adding to the data preparation phase, but it is
automatic. This step includes a sequence of optional steps. For example, a
typical preprocessing sequence for a classification problem includes missing-
value imputation, categorical encoding, data normalization, resampling,
feature extraction, feature generation, and feature selection. Generally
speaking, any data modification before utilizing a learning method is referred
to as the preprocessing step. Note that the input data might be changed
sequentially after processing via preprocessing operators.

2. Learning phase is the last operator in the ML pipeline. It aims to learn
the relation within the dataset D = {(x1, y1), . . . , (xm, ym)} output from
previous operator Oz−1 and able to predict those of unseen dataset Dunseen =
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2. Automated Machine Learning: An Overview

{(xm+1, ym+1), . . . , (xm+t, ym+t)}. More specifically, the learning algorithm
aims at finding a learning function f : X → Y by generalizing beyond D,
that maps inputs x ∈ X to outputs y ∈ Y, i.e., y = f(x). The learning
function f can be formed by any option from the set of possible learning
algorithms, e.g., linear models [68]–[70], tree-based models [71], [72], support
vector machines [21], k-nearest neighbors [20], etc.

2.1.2.2 Evaluation measurement metrics

Finding the optimal ML model for the target problem is the main task in ML
pipeline optimization. Hence, the vital questions are: How well does the model
perform? Moreover, what is the accuracy of the model? To do so, we need a
performance metric (or evaluation measure) to score the model’s quality. The
performance metric depends on the target problem, i.e., a classification problem or
regression problem. For instance, the accuracy rate is usually used in classification
problems [73]. However, when the classes are imbalanced, the geometric mean (GM)
and F-measure are highly recommended [47], [74], [75] because of their ability to
represent the minority class samples. In contrast, the Mean Absolute Error (MAE),
and Mean Squared Error (MSE) are typically used to score a regression model [76].
Hence, choosing a suitable performance metric is the task given to experts. In
this section, we will present the most commonly used performance metrics for
classification and regression problems. For unsupervised machine learning, we refer
the interested reader to other reviews of evaluation metrics for further discussions
on that domain [77].

Measurement metrics for classification problems Classification algorithms
stand for algorithms that predict label y ∈ Z, i.e., discrete/categorical value such
as Spam/Not Spam in Email Spam Filtering problem [78], based on a vector
of features x ∈ X. Therefore, the accuracy of an individual prediction is either
correct or incorrect by comparing the predicted value and the actual value. By
comparing the predicted and actual values, the accuracy of an individual prediction
is either correct or incorrect. The accuracy rate is most commonly used, as it
simply computes the ratio of the number of samples correctly predicted to the
total number of tested samples. However, the accuracy rate is not the sole metric
to evaluate a classification model. In this section, we will summarize a total of
seven performance metrics that are usually used for classification problems. This
discussion is restricted to binary-classification problems. We refer the interested
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Figure 2.2: Illustration of confusion matrix. The illustration is inspired by the
work of [79].

reader to Chapter 6 (Section 6.2.2) for multi-class classification problems and other
reviews of evaluation metrics for other types of classification problems [73], [75],
[80]. For binary classification problems, the performance metrics can be defined
based on the confusion matrix. For consistency throughout this section, we use
the confusion matrix example shown in Figure 2.2, as it can provide intuitive
classification results. The figure on the left shows the distributions of the predicted
and actual classes. The plot on the right shows a confusion matrix for this example.
Using the confusion metric in Figure 2.2, we summarized several commonly used
performance metrics in Table 2.1, including Accuracy rate, Error Rate, Specificity
(or True Negative Rate), Sensitivity (or Recall or True Positive Rate), Precision,
Balanced accuracy, Geometric mean1, Fβ-measure.

1The geometric mean mentioned here follows the work of [81], which is based on Sensitivity
(accuracy on positive examples) and Specificity (accuracy on negative examples). Some other
studies might be based on precision and recall.
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Name Formula Illustration Referring Description
to Figure 2.2

Accuracy
rate

T P +T N
T P +F P +T N+F N

2+5
2+5+5+7 = 0.37 The ratio of cor-

rect predictions
on tested samples

Error
Rate

F P +F N
T P +F P +T N+F N

5+7
2+5+5+7 = 0.63 The ratio of incor-

rect predictions
on tested samples

Specificity
/True
Negative
Rate
(T Nrate)

T N
T N+F P

5
5+5 = 0.5 The ratio of the

number of cor-
rectly predicted
negative samples
overall actual neg-
ative samples

Sensitivity
/Recall
/True
Positive
Rate
(T Prate)

T P
T P +F N

2
2+7 = 0.22 The ratio of the

number of cor-
rectly predicted
positive samples
overall actual pos-
itive samples

Precision T P
T P +F P

2
2+5 = 0.29 The ratio of ac-

tual positive sam-
ples among those
predicted as posi-
tive

continued on the next page

Table 2.1: Performance Metrics for Classification Evaluations.
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Name Formula Referring Description
to Figure 2.2

Balanced
accuracy Specificity+Sensitivity

2
0.5+0.22

2 = 0.36 The arithmetic
mean of class-
wise sensitivity,
i.e., Specificity
and Sensitivity

Geometric
mean

√
Specificity× Sensitivity

√
0.5× 0.22 = 0.33 The root of the

product of class-
wise sensitivity

Fβ-
measure

Fβ = (1 + β2) precision×recall
β2precision+recall The weighted har-

monic mean of
the precision and
recall .

F1 = (1 + 12) precision×recall
12precision+recall 2× 0.29×0.22

0.29+0.22 = 0.25 β = 1 is typ-
ically used (i.e.,
Fβ becomes F1),
also means the re-
call and the pre-
cision are equally
important. Other-
wise, recall is con-
sidered β times as
important as pre-
cision .

Table 2.1: Performance Metrics for Classification Evaluations – continued from
previous page
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Residual =|     -     | 

Predicted value
Actual value

Figure 2.3: Example of regression prediction. The illustration is inspired by the
work of [84].

Measurement metrics for regression problems Regression algorithms, as
opposed to classification algorithms, predict a specific numeric value, i.e., y ∈ R.
For instance, weather forecasting [82] and housing price forecasting [83]. Hence,
the accuracy of a prediction becomes the residual between the predicted value
ŷ and the actual value y, i.e., residual = |y − ŷ| (see Figure 2.3 for illustration).
The four common measurement metrics for regression problems are summarized in
Table 2.2. For consistency reasons throughout this sub-section, we use the example
shown in Figure 2.3, e.g., each method will be calculated base on that example. In
addition, notations are shared throughout this section: t denotes the total number
of tested samples.
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2.1 Life Cycle of Machine Learning Development

Name Formula Referring Description
to Figure 2.3

Mean
Abso-
lute
Error
(MAE)

1
t

∑t

i=1 |yi − ŷi| 0.3+0.1+0.1
3 = 0.17 The average of the ab-

solute differences be-
tween the actual val-
ues and the predicted
values.

Mean
Squared
Error
(MSE)

1
t

∑t

i=1 (yi − ŷi)2 0.32+0.12+0.12

3 = 0.04 The average of the
squared differences be-
tween the actual val-
ues and the predicted
values.

Root
Mean
Squared
Error
(RMSE)

√
1
t

∑t

i=1 (yi − ŷi)2
√

0.04 = 0.2 The square root of
MSE

R2 score 1−
∑t

i=1
(yi−ŷi)2∑t

i=1
(yi−ȳ)2

ȳ = 0.5+0.25+0.35
3 = 0.37 The coefficient of de-

termination
ȳ = 1

t

∑t

i=1 yi R2 = 1− 0.11
0.03 = −2.67

Table 2.2: Performance Metrics for Regression Evaluations.
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Predicted value
Actual value

Predicted value

Training samples
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(a) Under-fitting

(c) Over-fitting

Actual value

True (unknown) model

Predicted model

Figure 2.4: Illustration of Under-fitting (a), Good fit (b), and Over-fitting (c). The
illustration is inspired by the work of [85].

2.1.3 Over-fitting and under-fitting

Generalization is a common problem in AutoML and hyperparameter optimiza-
tion[53], [86]. During the optimization process, the highest-performing configu-
ration is discovered through multiple trials on a training dataset. However, this
optimal configuration may not generalize well to new, unseen data, leading to
what is known as the over-fitting problem. Therefore, addressing over-fitting is an
important concern in AutoML optimization. This section will provide an overview
of the overfitting problem and highlight common practices to avoid overfitting in
AutoML. In supervised machine learning, we have to find the best form of the
function f that minimizes the difference between true value yi and predicted value
ŷi, i.e., yi ≃ f(xi),∀x ∈ X. Hence, the learning algorithm aims to produce a model
that fits the data. However, if the model is too fit to the training data, it may
result in the so-called over-fitting problem, in which the model performs well on
the known training set but performs poorly on the unknown test set. In other
words, the model does not have generalization ability. For clarification, Figure 2.4
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2.1 Life Cycle of Machine Learning Development

illustrates under-fitting, good fit, and over-fitting problems. Assuming we have 12
samples, the 6 stars denote training samples, the 6 dots are test samples, the black
colour indicates actual values, and the white colour indicates predicted values. The
dashed curved line indicates the actual model, and the solid curved line indicates
the predicted model. The plot in (a) shows an example of an underfitting. We can
see that the predicted and actual models are completely different; the performance
is poor for both the training and test samples. The predicted model in plot (b)
was similar to the actual model. In this case, the predicted model may be a good
fit. The last case is an example of over-fitting. The predicted model perfectly
models the training samples but lacks generalization ability. Consequently, the
model yielded poor predictions for the test samples. Under-fitting can easily be
detected via performance metrics (see Section 2.1.2.2).

k-fold cross
validation

1 2 k

Performance
metric

1st
  ca

ll

1 2 k

1 k2

ML pipeline configuration

 

2nd call

kth
  ca

ll

Function Evaluation

Function CallValidation fold

Training fold

Figure 2.5: k-fold cross validation.

A common technique for avoiding over-fitting is k−fold cross validation (see
Figure 2.5) in which the input data is randomly partitioned into k independent
folds (also called leave-one-out technique). The average of the k function calls,
computes the performance of one test case; a single fold is kept as a test set, while
the remaining folds are used as the training set. The term function evaluation
(green rounded-box) and function call (purple rounded-box) will be used in future
discussions in this thesis, e.g., Chapter.3. Aside from k−fold cross-validation, there
are several other techniques for preventing over-fitting, such as early stopping [68],
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regularization [87], [88]. We refer the interested reader to those studies for further
discussions on this topic.

Dataset

Training data

Validation 
data

Preprocessing

Data 
Preprocessing

Feature 
Preprocessing

Resampling

Learning

Data 
Preprocessing

Feature 
Preprocessing

Learning 
Algorithm

Model

Validation score

Figure 2.6: An example of calculating the validation performance of a typical
Machine Learning pipeline.

Finally, when training and validating a model, we usually use exactly the
same ML pipeline architecture for preprocessing and learning phases, for example,
encoding categorical data and normalizing data in the same way. However, some
operators in the preprocessing step must not be applied to the validation/test data.
Otherwise, all techniques for overcoming over-fitting are useless. In general, the
preprocessing can be grouped into two groups:

• Impact on the individual sample’s quality, e.g., missing value imputation, cat-
egorical encoding, normalization data, feature extraction, feature generation,
and feature selection.

• Changing the original distribution of the samples, for example, resampling
(e.g., under-resampling, over-resampling, combine-resampling techniques)
and removing outliers.

The first group has to stick to applying precisely the same (i.e., algorithms,
hyperparameter settings, and their order) to both the training and test/validation
sets. In contrast, the second group impacts the sample size to improve the
training model’s generalization and quality. Recall that a model’s test/validation
performance is based on the prediction values and actual values of the entire
test/validation dataset samples — no more or fewer samples. Hence, the quality
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2.2 ML pipeline architecture search

measurement is incorrect when we base it on more or fewer samples’ predictions
than the actual test/validation set.

In other words, no approach that impacts the integrity of samples can be
applied to the test/validation dataset. Figure 2.6 shows a workflow of a typical
ML pipeline when applied to the training and validation data.

2.2 ML pipeline architecture search

The first step in solving any ML problem is to find a suitable machine learning
pipeline structure. An ML pipeline includes several optional operators (e.g.,
imputation of missing data, encoding, scaling, feature extraction, and feature
selection) and a mandatory learning operator. The generic ML pipeline is shown
in Figure 2.7. The ML pipeline architecture search aims to answer the following
research question: How many operators are required in the pipeline? Moreover,
how are they ordered? The only known is the last operator, which is a learning
algorithm, that is, classification, regression, or clustering. However, there is no
fixed rule in the early steps, which confuses non-experts when creating their own
ML pipelines.

Machine Learning Pipeline

Figure 2.7: Prototypical ML pipeline architecture.

In addition, the performance of an ML pipeline is calculated based on its
prediction quality on test data, that is, we only evaluate an ML pipeline when the
input data are past all pipeline operators. Finally, every ML pipeline is unique [15],
i.e., any changes to the ML pipeline lead to a different ML pipeline, which might
change the final performance.

2.2.1 Fixed ML pipeline architecture

Many AutoML frameworks, such as Auto-Weka [40], [41], Hyperopt-sklearn [42],
H2O [89], ATM [90], Auto-Gluon [91], [92] do not directly solve ML pipeline
architecture search to reduce the complexity of determining ML pipeline structure.
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2. Automated Machine Learning: An Overview

Instead, they have predefined a fixed structure, which closely resembles a well-
known linear sequence of operators recommended in literature or based on their
experiences. Figure 2.8 shows an example of a commonly used fixed ML pipeline
architecture for class-imbalanced problems, as used by [15], [37], [47], [74], [75]. A
possible disadvantage of this approach is that it might result in inferior predictive
performance for complex datasets requiring, e.g., multiple preprocessing steps.

Machine Learning Pipeline

Figure 2.8: Fixed ML pipeline architecture used by most imbalanced-class classifi-
cation studies.

2.2.2 Flexible ML pipeline architecture

In order to achieve the best performance for a given problem, human experts
usually build highly specialized ML pipelines, i.e., the ML pipeline is adaptable
to a specific task. An illustration on ML pipeline architecture search is shows in
Figure 2.9.

Machine Learning Pipeline

Figure 2.9: Flexible ML pipeline architecture, where the ML pipeline structure is
also searched for.

This flexibility is missing from the fixed ML pipeline structure approach. To
address this issue, one class of AutoML frameworks considers flexible ML pipeline
architecture. Auto-Sklearn [39], [45] can be seen as a semi-flexible approach.
Auto-Sklearn predefined a set of fixed structures for ML problems. For a given
ML problem, it generates a pipeline structure using meta-features of the input
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2.3 Meta Learning

AutoML tool Underlying technique domain

TPOT Genetic programming [102], [103]
AlphaD3M Reinforcement learning [104]
MLPlan Hierarchical task networks [105]
Mosaic MonteCarlo tree search [106], [107]
FEDOT Evolutionary algorithms [108]–[110]

Table 2.3: AutoML frameworks support ML pipeline architecture search

data, e.g., the structure for binary and multi-class classification problems might
be different. However, the same structure will be used for the same ML problem
domain. Apart from that if-else style, there is a class of AutoML frameworks that
support ML pipeline architecture search, including TPOT [43], AlphaD3M [93],
[94], ML-Plan [95], [96], and P4ML [97], Mosaic [98], FEDOT [99]. The main
idea of these approaches is to apply restrictions in the form of ad hoc configuration,
primitive taxonomies, or context-free grammars [100], [101]. Table 2.3 provided
the relevant techniques to these AutoML tools.

Lastly, a class of techniques based on meta-learning will be discussed in Sec-
tion 2.3.

2.3 Meta Learning

A typical ML pipeline optimization problem consists of three fundamental compo-
nents – a search space, an optimizer, and an objective function. The search space
describes the feasible search domain. The optimizer is used to discover the best
combination of algorithms over operators and their optimized hyperparameters,
thereby maximizing the performance of the objective function. Finally, the objec-
tive function is a child program that evaluates the settings of the ML pipeline,
resulting in a real-valued performance measures, such as accuracy, precision, and
recall rate. In other words, the ML pipeline optimization process aims to find the
most suitable solution from a predefined search space.

Usually, for optimizing a new (unknown) ML problem, the optimizer explores
the search space from scratch. In contrast, ML experts take advantage of previous
tasks (e.g., referring to literature and their experiences so far) to shorten the
optimization process and avoid wasting time on unpromising search areas. Inspired
by the behavior of human experts when dealing with a new ML task, meta-learning
is quite similar to learning from the experiments of previous ML tasks to increase
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2. Automated Machine Learning: An Overview

the efficiency of the search. Meta-learning is the science of learning similar datasets,
which can be characterized by a set of meta-features [111], which might include:

1. Simple features includes the following: number of samples, number of features,
number of classes, number of missing values, number of instances with missing
values, number of numeric features, number of categorical features, number
of binary features.

2. Statistical features: mean, standard deviation, mean skewness, quarterlies.

3. Information-theoretic features: class entropy, mean mutual information.

4. Land-marking [112]: Performance evaluations of some simple classifiers on
the entire data or sub-set of data [113], e.g., performances evaluated by
k-nearest neighbor with 1 neighbor.

Search space

Optimizer
Objective 
function

Data

M
et

a 
fe

at
u

re
s

M
et

a 
fe

at
u

re
s

Meta-Learning

Search space filtering 
& construction

Meta-learning

Figure 2.10: Applications of meta-learning. The illustration is inspired by the
work of [114], [115].

Meta-learning can be applied in many stages of the ML pipeline optimization
process (see Figure 2.10):
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2.4 Explainable and low-code for AutoML

• Search space filtering and reduction: The search space is usually predefined by
the AutoML owners, which is typically large with many possible algorithms
that have been integrated. Furthermore, the hyperparameters of the chosen
algorithms are set by a wide range of values. Nevertheless, the search space
is arbitrarily defined without referencing the given ML problem. Therefore,
meta-learning can be used to reduce the large search space, such as eliminating
unimportant hyperparameters, irrelevant algorithms (e.g., [116]–[121]), and
automatically construct a (minimal) search space (e.g., [101], [122]).

• ML pipeline architecture suggestion: Apart from the mentioned approaches for
flexible ML pipeline architecture in Section 2.2. Meta-learning is a promising
research domain for identifying ML pipeline synthesis. [101] proposed a data-
centric approach, called DSWIZARD, that learns from related ML tasks to
construct a suitable ML pipeline for the target problem. Similarly, predicting
the pipeline’s performance and favoring a good pipeline architecture to be
constructed was studied in [94], [97], [98], [111], [123], [124].

• Warm-start for optimizer : Traditionally, the optimization process often starts
from scratch. For example, the initialization step in Bayesian optimization
(Section 3.1.3) randomly selects some ML pipeline configurations without
any evaluation of the given dataset, that is, with the same random seed
– the optimizer generates the same set of initialization configurations for
any dataset. On the other hand, by learning from previous tasks, many
studies proposed to start from a set of the best configurations of the related
tasks [39], [120], [125]–[127]. In this manner, the underlying optimizer can
characterize the search space by focusing on promising areas for the given
data. Consequently, the optimizer maximizes the chance of finding the best
solution early. This is the general idea of a warm-start in ML pipeline
optimization.

Finally, we refer the interested reader to other reviews of meta-learning for
further discussions on this topic [114], [115].

2.4 Explainable and low-code for AutoML

AutoML and optimization studies have been applied in many industrial domains [7],
[128]–[130]. However, the current state of AutoML is only seen as a reference tool
for human experts in real-life application development [131]. From a practitioner’s
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perspective, AutoML is also seen as a black-box, i.e., optimization process, that
optimizes another black-box, i.e., objective function [11]. Also, different frameworks
might lead to different results and suggestions. Many studies have been noted that
users do not trust AutoML systems [12], [132]–[134]. Without understanding its
optimization behaviors, users might not confidently decide to use its suggestion
(i.e., the best-found ML pipeline). For instance, [12] has revealed that even though
AutoML might deliver high-quality solutions, practitioners refuse to use them as
they do not want to be held accountable for a model they do not understand. In
addition, [11] concluded that the main reason for the limited trust of practitioners
is the limited explanation and transparency of the outcome of AutoML.

Therefore, establishing trust in an AutoML system is an important motivation
for explainability [135], that is, explaining in a way that humans can understand
in a reasonable time [136].
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Figure 2.11: Requirements analysis of different user groups on their need for
ML explainability. Explainable AutoML is a sub-class of explainable AI that
targets ML high-skill user groups that can read/understand ML algorithms and
visualization techniques.

2.4.1 Stakeholders of AutoML

Stakeholders involved in a ML project can be grouped into three groups:
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• Direct stakeholders: Indicate actors who are directly involved in the whole
process of developing their final ML application with the day-to-day activities,
e.g., data scientists, domain experts, and software engineers.

• Indirect stakeholders: People are not affected by the project but may support
the project in some terms but not focused on the process of finishing it, such
as system infrastructure administrators who may prepare a suitable system
infrastructure and system configuration, legal advisors might be involved in
the term of making the end-users policies, managers who set the business
goals for the project, build the project team, customers (for an internal
project, and the customers can be the board of managers) might approve
the project results.

• End-users: They can be internal or external actors who will use the output
application for their daily work.

2.4.2 Components of an explainable AutoML

Each group of actors had different skill sets, knowledge, and demands. Thus,
the explanation is that adaptability is based on its properties. Figure 2.11 sum-
marizes the requirements analysis of different user groups on their need for ML
explainability. The co-badged guidance [137] defines the explainability of intelligent
systems as a combination of technical (information extraction) and non-technical
(communication method) considerations. Furthermore, recall that AutoML is a
combination of optimization and ML. Hence, the scope of explainable AutoML
includes both aspects. According to the relevant discussions on optimization [138]
and machine learning [51], we formulate the technical explainability requirements
for AutoML as three complementary approaches that form to increase trust and
transparency:

1. Global explanations on the optimization level aim to explain the decision-
making process of the optimizer. In addition, this level of explainability
provides helpful information on optimizer behavior to illustrate optimization
convergence and how it constructs the pipeline.

2. Global explanations on a particular model level aim to explain the general
model’s decision-making process. This level of explainability is about under-
standing how the model makes decisions and the distribution of the target
outcome based on the features.
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3. Local explanations for a single prediction: Global explainability is more useful
in the research and development phase as it helps project owners determine
how their data distribute and how the ML pipeline transforms the input
data to lead to the final result. The local explainability helps examine what
the model predicts for a particular sample and explains why/ why not.

Those applications of explanation are used for many demands, such as debugging
ML models [139], explaining medical decision-making [140], explaining predictions
for classification problems [141], and explain autonomous agent behavior [142],
[143].

2.4.3 Maturity Levels of Automation Tools

According to Figure 2.11, the optimization and programming phases necessitate a
high level of technical knowledge. The optimization phase requires data science
skills, and the programming phase aims to build the deliverable application, which
requires coding skills. Both target a goal that can be used by the layperson (lay
scientist/ developer). The levels of automation tools for AutoML are summarized
in Figure 2.12.

2.4.3.1 Tools for data scientist

To be able to understand and be accountable for the outcome of AutoML in
a real-world application, the practitioner usually investigates the optimization
behaviors and its final suggestions. For example, the practitioner may plot several
visualizations of how the data transformed through the pipeline or trace back the
optimizer’s decision-making process by plotting the necessary figures that they
can explain to others (i.e., non-technical users). However, the process of making
figures might be costly, as it depends on how familiar the data scientist is with the
platforms used. Hence, the practitioners must develop practice skills in ML and
coding [132]. That fact limits the usefulness of AutoML and misses the opportunity
to lead toward helping humans apply ML to real-life applications with limited ML
and statistics knowledge.

To overcome these limitations and save time for data scientists, some AutoML
platforms provide an additional set of visualizations to explain the decision-making
process. These can be classified into two main groups:
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1. Command line based (CLB): This set of AutoML platforms provides visual-
izations via built-in functions. The user can plot figures by executing those
functions. However, the user must have a ready-to-use development tool,
such as Jupyter Notebook, Anaconda, or dot Net Visual Studio, as well as
basic coding skills (e.g., Python, R, C#). They mainly focus on satisfying the
global explanations of the optimization level. Their functions provide ways to
visualize historical data over the tuning process regarding the performance
(e.g., [45], [144]), the optimizer behavior for choosing hyperparameter values
(e.g., [144]–[146]), and comparing ML pipeline structures (e.g., [11], [147]).

2. Graphical user interface based (GUI): refers to a group of platforms that work
as standalone software or web apps and is aimed at users who do not have
coding skills. All steps, starting from importing the dataset to tuning and
visualization, are integrated into a single interface. Well-known platforms
are Google Vizier [145], HyperTuner [148], HyperTendril [149], IBM Watson
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Studio2, Microsoft Azure3, Databricks AutoML4, Rapid-Miner5. They signif-
icantly improved development speed. However, their main limitation is the
limited range of applicability, manageability, and flexibility than the others.

Lastly, visualization is an important component, but it is only considered a
support function in the value chain of AutoML. Therefore, some open-sourced
AutoML platforms might not be interested in developing that function. Fortunately,
several platforms add visualization functions on top of other platforms to create a
new platform that supports explainability well. AutoViz [150], for example, is
an extended version of AutoAI [131], ATMSeer [134] extends ATM [90], and
XAutoML [11] based on five other platforms are – Auto-Sklearn [39], [45],
DSWIZARD [101], Scikit-learn [151], FLAML [152] and Optuna [144]. While
Hyperopt [153] was used in Google Vizier [145], HyperTuner [148] and
HyperTendril [149].

2.4.3.2 Tools for software engineer

This section reviews the low-code technique used in AutoML products, mainly
supporting the programmer in producing the final ML product rather than the
scientist in the research phase. Low-code and no-code refer to software development
methodologies that indicate the concept of practitioners creating their solutions with
little (or no) technical skills. Technically, the no-code platforms consist of standard
pre-built components and a visual development tool that allows practitioners to use
a graphical interface to build their application in a drag-and-drop (e.g., Sway AI6)
or a wizard-based interface (e.g., Akkio7) styles. However, those platforms are
typically limited to some predefined problems, such as object detection in computer
vision (MakeML8), image classification (Lobe9). That is to say, the automation
ability (i.e., ready-to-use) is inversely proportional to the range of applicability.
Thus, AutoML platforms that target solving unlimited problems usually stop at
the basic level of low code as they only generate the relevant source code for the
ML model, e.g., Amazon SageMaker Autopilot [154] export ready-to-use Jupyter
notebooks for tested ML pipelines.

2https://www.ibm.com/cloud/watson-studio/autoai
3https://azure.microsoft.com
4https://databricks.com
5https://rapidminer.com/
6https://sway-ai.com
7https://www.akkio.com
8https://makeml.app/
9https://www.lobe.ai
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