
Efficient tuning of automated machine learning pipelines
Nguyen, D.A.

Citation
Nguyen, D. A. (2024, October 9). Efficient tuning of automated machine
learning pipelines. Retrieved from https://hdl.handle.net/1887/4094132
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4094132
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4094132


ch
ap

te
r

1
Introduction

In recent years, Machine Learning (ML) has achieved success in many real-world
applications, such as self-driving cars [1], assisting doctors in diagnosing diseases [2],
playing video games [3], recognizing faces [4], translating languages [5], detecting
automatic faults [6], and predictive maintenance [7]. In order to apply ML in
real-world applications, practitioners must select a sequence of machine learning
algorithms (e.g., data preprocessing, feature preprocessing, learning algorithm),
together with their configurations well-suited to the target problem [8]. These
tasks are always challenging due to the plethora of algorithms. Moreover, the
No Free Lunch (NFL) theorem [9], [10] prescribes that there is no universally
best algorithm for all problems. Therefore, the development of high-performance
machine-learning applications requires highly skilled ML experts, data scientists
and domain experts [11], [12]. Together, these experts attempt further experi-
ments/trials, resulting in the best-performing ML pipeline for the given problem.
In other words, applying ML to a real-world application is challenging, as it requires
considerable human effort and has a strong dependency on data scientists.

The class of Automated machine learning (AutoML) approaches [8] are widely
applied to automatically produce the best machine learning pipeline in order to
minimize reliance on data scientists in the machine learning development cycle for
real-world applications [8]. The domain experts can profit from using AutoML by
automatically choosing a well-performing sequence of ML algorithms and their
optimized hyperparameters, leading to a sensible ML model for their real-work
problems without relying on ML experts.

Initially, AutoML was typically referred to as an optimization process for finding
the optimal ML pipeline (with its tuned hyperparameters) for ML problems [13].
Hence, AutoML is known as a combination of Machine Learning and optimization
for applying machine learning to real-world problems, that is, making ML easier
to use for people without expert knowledge in ML. AutoML research mainly

5



1. Introduction

focuses on optimization, whereas the ML part is inherited from the well-developed
ML community. From the perspective of the optimization community, the ML
part is treated as an objective configured by various ML algorithms with their
hyperparameters and evaluated by an objective function for resulting in a real-
valued performance, e.g., prediction accuracy or running time. A search space
defines the possible choices among the algorithms and hyperparameters. Different
hyperparameter settings led to different results [14]. Then, a practical optimization
approach is used to find the best setting that maximizes the performance of the
objective function. All the above steps are the core functions of a typical AutoML
framework.

On the other hand, AutoML products are also known as a particular type
of software in a ready-to-use state where the effectiveness in applying machine
learning to real-world problems is the top goal [11]. Thus, modern AutoML
systems incorporate many supportive functions, such as supporting the core part
(e.g., applying meta-learning to find the better candidate earlier) and supporting
humans to increase trust (e.g., explainable ML, visualization), and shortening the
final product development cycle in production (e.g., integrating the low/no code
techniques).

Search 
space

Optimizer

7

Core Functions

M
L 

pi
pe

lin
e 

Ar
ch

ite
ct

ur
e 

Se
ar

ch

ML Pipeline 
optimization

Hyperparameter 
optimization

Model Selection

Su
pp

or
t F

un
ct

io
ns

Meta-
learning

Search space 
filtering

Warm-start

ML Pipeline 
architecture 
suggestion

Analysis tools

Visualization

Report

Graphical User 
interface

Development 
tools Code generation

Objective 
function

Figure 1.1: AutoML functions

Some of the core functions and support functions of a typical AutoML framework
are summarized in Figure 1.1. All are discussed in this thesis, where the machine

6



learning pipeline optimization approaches are discussed in Chapter 3, and the
remaining functions are discussed in Chapter 2, i.e., Meta-learning is discussed
in Section 2.3, code generation and analysis tools for AutoML are presented in
Section 2.4 and Section 2.2 presents ML pipeline architecture search. However,
this thesis emphasizes the optimization of AutoML, called AutoML optimization,
which is detailed in Section 1.1. Prior to the detailed discussions, we shall give a
brief explanation of some important aspects of the AutoML optimization problem
(the orange cycle in the middle of Figure 1.1).

Search space or domain space refers to the set of all possible combinations of
algorithms and the algorithm’s hyperparameters that the optimization algorithm
can choose from. There are four common classes of hyperparameters:

1. Ordinal hyperparameter1 belong to a subset of Z, e.g., [1, 10];

2. Continuous hyperparameter1 is a subset of R, e.g., [0, 1];

3. Nominal hyperparameter is a set of categorical values, e.g., [Linear, RBF,
Poly, Sigmoid];

4. Hierarchical hyperparameter or conditional hyperparameter is a particular
type of hyperparameter, that is used to define the dependencies between
hyperparameters, i.e., a hyperparameter depends on another hyperparameter;

5. In practice, the choice of algorithm is a particular type of nominal hyperpa-
rameter, which is referred to as the algorithm choice [15] and one-of nominal
hyperparameter [16]. The dependent hyperparameters of an algorithm are
mapped to an algorithm by a conditional hyperparameter. In this thesis, each
set of algorithms for an operation function shall be called an "operator", e.g., a
resampling operator– ([SMOTE [17], SMOTETomek [18], SVMSMOTE [19]]),
learning operator–([k-nearest neighbors [20], Support Vector Machines [21]]).

Without loss of generality, let a machine learning pipeline structure be modeled as
a directed acyclic graph (DAG) which is restricted by implicit constraints [22], [23],
i.e., some operators are optional, which might have a do not use option, but the
learning operator is mandatory and as the last operator. Note that we shall use the
term machine learning pipeline structure and sequence of algorithms over operators
interchangeably in this thesis. The complete machine learning pipeline includes a
sequence of algorithms over operators and their dependent hyperparameters.

1 We note that, ordinal and continuous hyperparameters are typically bounded for practical
reasons.

7



1. Introduction

In conclusion, the search space defines the range of hyperparameters that the
optimizer can search among to find the best set of hyperparameters (i.e., the best
ML pipeline).

Objective function in AutoML optimization problem is one or more perfor-
mance metrics (e.g., recall, precision rate, accuracy rate), a.k.a., evaluation metrics.
These metrics are used to measure and evaluate the performance of a ML pipeline
(e.g., a sequence of data pre-processing, feature engineering, and a learning algo-
rithm) on a particular task. The optimization problem is called a single-objective
problem if it uses one performance metric. Otherwise, it is called a multi-objective
optimization problem. Throughout this thesis, the objective function is limited to
the single-objective optimization problem. In other words, an objective function
is a real-valued function that measures the performance of the ML pipeline on a
given dataset using a specific performance metric. The objective function can be
constructed using cross-validation, ensemble methods, or other techniques.

Optimization algorithm applied to AutoML is an algorithm that aims to
find the optimal machine learning pipeline on a given dataset using a performance
metric, i.e., objective function. Optimizing the objective function involves a trade-
off between computational complexity and accuracy. The choice of algorithm
depends on the problem’s complexity, the dataset’s size, and the computational
resources available. The literature has highlighted several possible optimization
approaches that can be used for AutoML, such as:

• Bayesian optimization (BO), e.g., Hyperopt [24], SMAC [25], [26], SPO [27],
Spearmint [28], BO4ML [15].

• Grid search [29] and Random search (RS) [30], [31].

• Racing procedure (RP) [32], [33].

• Bandit learning (BL), e.g., Successive Halving [34], HyperBand [35].

• Hybrid approaches, e.g., BOHB [36] and DACOpt [37] hybridize Bayesian
optimization and bandit learning, MIP-EGO [38] hybridizes Bayesian opti-
mization and evolutionary algorithms.

However, Bayesian Optimization is the most commonly used approach in this
domain as it was used in Auto-sklearn [39], Auto-Weka [40], [41] and Hyperopt-
sklearn [42]. Hence, this thesis will review all mentioned approaches but mainly
focus on improving BO and using it to solve the AutoML optimization problems.

8



1.1 Problem definition

1.1 Problem definition

In this thesis, the discussion is focused on AutoML optimization (AO) problems,
and the ML problem is limited to supervised machine learning fields, i.e., regression
and classification problems. Given a classification problem with a dataset D =
{(x1, y1), . . . , (xm, ym)}, where x = {x1, . . . , xk} is a vector representation of the
k features x, and y represents a label in classification problem or a continuous
value in a regression problem. Solving an AutoML optimization problem refers
to finding the best ML model P : X → Y that transforms a vector x ∈ X into a
target value y ∈ Y. In AutoML optimization, the ML model refers to as a ML
pipeline model, which can include data pre-processing, encoding, feature selection,
resampling, and learning algorithm. Hence, we shall interchange the terms of ML
model and ML pipeline model in this section.

Sequence of
Operators

Set of
Algorithms

Hyperparameters
spaces

Figure 1.2: The structure of AutoML search space

Let ŷ denote the predicted label calculated by model P for input features x,
i.e., ŷ = P(x), and R(ŷ, y) denote a measure of classification accuracy between the
predicted label ŷ and the true label y. Let p be an ML pipeline setting trained on
dataset D to produce the ML model P, i.e., P = (p,D). The performance of p is
then calculated as:

f(p,D) = 1
m

m∑
j=1

R(P(xi), yj)

= 1
m

m∑
j=1

R(ŷj , yj)
(1.1)

9



1. Introduction

In practice, the predictive performance of ML pipeline p needs to be calculated
based on its prediction on an unseen dataset, i.e., a test/validation set. The
dataset D is then split into non-overlapping training and validation sets: Dtrain =
{(x1, y1), . . . , (xn, yn)} and Dvalid = {(xn+1, yn+1), . . . , (xm, ym)}. Equation 1.1
allows calculating performance of the ML pipeline setting p when trained on Dtrain

and evaluated on Dvalid as:

f(p,Dtrain,Dvalid) = 1
m− n

m−n∑
j=1

R(ŷn+j , yn+j) (1.2)

However, the over-fitting problem is often encountered in applying optimization
approaches [13]. To overcome this problem, the k-fold cross-validation can be
applied to the Equation. 1.2, which becomes:

f(p,Dtrain,Dvalid) = 1
k

k∑
j=1

f(p,Dj
train,Dj

valid) (1.3)

where f(p,Dj
train,Dj

valid) is performance of the ML pipeline p when trained and
evaluated on the jth data fold Dj

train and Dj
valid, correspondingly.

Solving an AutoML optimization problem involves finding the optimal ML
pipeline p that trains on a dataset D to produce the best-performing ML model
P. Traditionally, the AutoML optimization problem is customarily treated and
solved as a hyperparameter optimization problem (HPO), called the HPO-based
approach, where the target ML pipeline p is constructed as a single algorithm.
An alternate approach is to construct the target ML pipeline p structure as an
ML pipeline of multiple ML algorithms, called ML pipeline-based approach. In
this section, we will first look at solving the problem of AutoML optimization,
also referred to as ML pipeline optimization. This topic is explained in detail
in Section 1.1.1. Afterward, we will briefly discuss the traditional HPO-based
approach, which treats the problem as a hyperparameter optimization problem.
This discussion is covered in Section 1.1.2.

1.1.1 Machine Learning Pipeline Optimization

Let O = O1 × . . .×Oz denote the sequence of operators in the pipeline p, where
each subsequent operator is applied to the output of the previous operator starting
from input x: p(x) = Oz(Oz−1(. . . (O1(x)) . . .)). The functionality of each such
operator can typically be delivered by one of the multiple available ML algorithms:
herein, we assume Oi∈{1,...,z−1} = {∅,A1

i , . . . ,Ani
i } for all operators except the

10



1.1 Problem definition

last and Oz = {A1
z, . . . ,Anz

z } for the last operator which defines the learning
algorithm – i.e., unlike the first z − 1 operators, the last operator Oz has to be
selected and cannot be ∅.

Typically, all algorithms have hyperparameters; we denote the domain of the
i-th hyperparameter by λi. Let Λi = λ1 × . . . × λb be a hyperparameter space
consisting of b hyperparameters of algorithm Ai. Let ΛOi

= Λ1
i ∪ . . . ∪ Λni

i be the
hyperparameter space of the operator Oi and Λ = ΛO1 ∪ . . . ∪ ΛOz

denotes the
hyperparameter space of all considered algorithms for all considered operators.
Let M denote the search space that includes the sequence of operators O and
its corresponding hyperparameter spaces. The overall structure of the resulting
AutoML search space is illustrated in Figure 1.2.

For readability, let Ai,λj represent algorithm A selected for an operator Oi and
configured by a hyperparameter setting λj ∈ ΛOi

. Then, we denote a pipeline with
algorithms selected and configured with their hyperparameters for all operators in
the pipeline p as p(A1,λ1 ,...,Az,λz ). We note that some approaches [43] consider in
finding a suitable order of algorithms in the pipeline, which is called ML pipeline
structure selection [22], [43]. Let the set of valid ML pipeline structures be denoted
by S = {s1, ..., sh}, where s ∈ S represents a valid ML pipeline structure that orders
the position of algorithms A1, . . . ,Az in the pipeline. The ML pipeline becomes
p(s,A1,λ1 ,...,Az,λz ). However, it is worth noting that most AutoML optimization
approaches do not search for structure, such as Auto-sklearn [39], Auto-weka [40],
Hyperopt-sklearn [42]. Instead, they use a fixed structure, i.e., |S|= 1. This fixed
structure is based on a well-known linear sequence of operators recommended in
literature or based on their experiences. When |S|> 1, it is referred to as the case
of flexible ML pipeline structure search. This thesis limits our discussion to the
fixed ML pipeline structure. Therefore, we will use the notation p(A1,λ1 ,...,Az,λz )

to denote the ML pipeline, while the ML pipeline structure will not be further
discussed. However, we will briefly discuss both approaches in Chapter 2, i.e., the
discussion on the Fixed ML pipeline structure in Section 2.2.1 and the Flexible
ML pipeline structure in Section 2.2.2.

To solve the AutoML problem (see Equation 1.4) and find the best choice of
algorithms and their hyperparameters for the pipeline operators, every such choice
needs to be evaluated. The R(ŷ, y) denotes a metric that returns the accuracy
of value ŷ predicted by the pipeline compared to the real value y. Then, perfor-
mance f of pipeline configuration p(A1,λ,...,Az,λ) when trained on a training dataset
Dtrain = {(x1, y1), . . . , (xm, ym)} and evaluated on a validation dataset Dvalid =

11



1. Introduction

{(xm+1, ym+1), . . . , (xm+t, ym+t)} is calculated as: f(p(A1,λ,...,Az,λ),Dtrain,Dvalid) =
1
t

∑t
j=1 R(ŷm+j , ym+j). Hence, the AutoML optimization problem becomes the

ML pipeline optimization maximizing problem:

(A1,λ1 , . . . ,Az,λz )∗ = argmax
A1,λ1 ,...,Az,λz

f
(

p(A1,λ1 ,...,Az,λz ),Dtrain,Dvalid

)
(1.4)

where (A1, . . . ,Az) ∈×z

i=1Oi are all possible choices of algorithms for all pipeline
operators, {λ1, . . . , λz|λ1 ∈ ΛO1 , . . . , λz ∈ ΛOz

} are algorithms’ hyperparameters
and f

(
p(A1,λ1 ,...,Az,λz ),Dtrain,Dvalid

)
is performance of the sequence operators and

their corresponding hyperparameter choices when trained and evaluated on Dtrain

and Dvalid
2, correspondingly.

1.1.2 Combined Algorithm Selection and Hyperparameter
Optimization

Traditionally, the AutoML optimization problem is commonly referred to as
Combined Algorithm Selection and Hyperparameter Optimization (CASH) [39],
[40] or Full Model Selection (FMS) [44] problem, in which the choice of algorithm
is modeled as an additional categorical hyperparameter. Then, the AutoML
optimization problem is treated as a HPO problem. As such, the choice of
algorithms for each operator is modeled as an extra categorical hyperparameter λ0.
The search space for the ith operator is then defined as ΛOi

= λ0
i ∪ Λ1

i ∪ . . . ∪ Λni
i ,

and the entire search space be Λ = ΛO1 ∪ . . .∪ΛOz
Hence, the AO problem becomes

the HPO maximizing problem:

λ∗ = arg max
λ∈Λ

f(λ,Dtrain,Dvalid) , (1.5)

where f(λ,Dtrain,Dvalid) is performance of the hyperparameter setting λ ∈ Λ when
trained and evaluated on Dtrain and Dvalid, correspondingly.

In this setting, the categorical hyperparameters after the root of this hierarchical
search space (see Figure 1.2) are known as the choice of algorithm for an operator.
Consequently, algorithms and their local hyperparameters are treated at the same

2We note that AutoML tools are typically evaluated based on their performance on an unseen
dataset during optimization, e.g., test set or ground truth set. These tools include several
strategies to avoid overfitting together with other setups. These comparisons compare the
performance of the whole AutoML system rather than the optimizer only. However, this thesis
focuses on the optimization process to maximize performance on an unseen dataset for ML
algorithms but known to the optimizer, referred to here as the validation set Dvalid. Therefore,
we will not use the term test set Dtest in this section. Instead, Dtest will be used in Chapter 4
(Section 4.3), where we set up benchmarks for comparing different AutoML tools.

12



1.2 Research Questions

level. However, unlike the pure categorical hyperparameter, i.e., choose one in a set
of nominal options, the choice of algorithms heavily affects other hyperparameters,
i.e., once the algorithm is known, only its hyperparameters are relevant.

Another point worth mentioning is that HPO was originally developed to
find the best hyperparameter setting from a single algorithm which is a much
more straightforward problem compared to the AutoML optimization problem. In
addition to HPO, AutoML optimization also searches for an optimized pipeline
of algorithms. In AutoML, multiple algorithms must be considered, and these
algorithms can belong to different phases in the ML pipeline, for example, pre-
processing and learning models. This pipeline is restricted by some constraints,
such as the learning task, i.e., classification and regression for supervised learning
and clustering for unsupervised learning, which is the last step. For example,

• Auto-sklearn [39], [45] has up to six sequence operation steps: categorical
encoder, numerical transformer, imputation transformer, rescaling, feature
preprocessor, and learning operator.

• In comparison, Auto-Weka [40], [41] and Hyperopt-sklearn [42] have only
two operators: preprocessor and learning operator.

Although, in general, AutoML can have different sizes in terms of operators and
algorithms under operators, most operators are optional, and the learning operator
is mandatory.

Furthermore, the algorithms and techniques used in an ML pipeline are tightly
coupled because every operator step is directly affected by the previous step. For
example, the data pre-processing step aims to produce a new dataset (balanced,
reduced-dimensions, etc.), which can change the performance of the subsequent
operator, such as the learning model. Consequently, the traditional approach for
handling the choice of algorithm is a mismatch with the nature of the AutoML
optimization problem.

1.2 Research Questions

In this thesis, we focus on AutoML techniques that aim at shorting the progress of
producing ML applications. Some of the most critical questions that we will try to
address are:

13



1. Introduction

RQ1: How can we automatically construct high-quality ML pipelines for
imbalanced data with HPO algorithms?

The classification algorithms commonly assume that the input data is equally
distributed between classes. However, the distribution of classes in many
real-world classification problems is ordinarily unequal, which reduces classi-
fication performance. To address this problem, we can apply a well-suited
resampling technique to balance the imbalanced data before passing it to the
classifier for training. There is no universal best algorithm for all problems.
Hence, it becomes the model selection problem of finding the optimal com-
bination of a resampler and classifier for the given problem, each selected
from the sets of existing resampling techniques and classification algorithms.
Besides, both resampling techniques and classification algorithms have lo-
cal hyperparameters that need to be tuned to achieve better performance.
Therefore, the Model selection (MS) and Hyperparameter optimization (HPO)
tasks have to be considered. We note that HPO algorithms are initially
designed for tuning hyperparameters of a single ML algorithm. The Com-
bined Algorithm Selection and Hyperparameter Optimization (CASH) is a
well-known approach for solving those two tasks simultaneously. CASH
converts MS and HPO into a single HPO problem, which HPO algorithms
can solve. Nevertheless, CASH has yet to be studied in detail for imbalanced
class problems. Hence, we explore the potential of applying HPO algorithms
to construct well-performing ML pipelines for imbalanced data automatically.
Study on that problem gives us insights into how to design CASH experiments
for class-imbalanced problems, such as determining applicable resampling
and classification algorithms, constructing search space, and selecting perfor-
mance metrics. The exploration and resolution of this research question are
comprehensively tackled in Chapter 4 of this thesis.

RQ2: What is the most effective CASH optimization approach to achieve
the optimal ML pipeline model for imbalance classification prob-
lems?

The Combined Algorithm Selection and Hyperparameter (CASH) problem
can be addressed by a HPO algorithm. The two well-known HPO algorithms–
Bayesian optimization and random search - are considered in our investigation
to provide insights into choosing appropriate techniques for solving this CASH

14



1.2 Research Questions

for class imbalance problems. The comprehensive exploration and resolution
of the research question can be found in Chapter 5 of this thesis.

RQ3: How to apply the CASH optimization to the steel surface defects
classification problem where the distribution between classes is
imbalanced and has unequal importance?

In collaboration with Tata Steel Europe - The Netherlands in the steel surface
defects detection problem, we address the classification problem where the
distribution between classes is imbalanced and has unequal importance,
i.e., detecting severe defects that might heavily affect the quality of the
final product is more priority than others with lighter affections. In CASH
optimization problems, the proper performance metric is vital for evaluating
ML models to correctly choose the optimal ML model. For the imbalance
problem, several performance metrics (e.g., F1, geometric mean) can be used.
However, those performance metrics treat all classes equally important. Thus,
those metrics’ overall accuracy cannot be used for this situation. In other
words, the required performance metric for this real-world problem has yet to
be. Therefore, to apply CASH to the steel surface defects detection problem,
we need a new performance metric that considers both class imbalanced and
unequal class importance problems. In Chapter 6, we delve into the heart of
the research question, presenting a detailed analysis and solution.

RQ4: How does maximizing coverage of initial sampling improve BO
performance to AutoML optimization problems? Bayesian optimiza-
tion (BO) is a typical optimization approach that is structured by three
fundamental components: initial sampling, surrogate model and acquisition
function. The initial sampling step is typically restricted to a small budget
since the effectiveness of BO becomes evident mainly in the later stages of
optimization when it learns to produce better ML pipeline configurations.
Another point worth mentioning is that the search space of AutoML is large,
which includes many possible algorithms in the ML pipeline.

Many studies [46]–[48] noted that some algorithms have similar technical
behaviours. To take advantage of this, we explore the potential of sampling
on the group of similar algorithms for maximizing coverage of the AutoML
search space already within a small budget of the initial sampling of BO.
The exploration also provides insights into the effectiveness of optimized
initial sampling to BO to characterize the response surface more accurately

15



1. Introduction

and how we can adapt BO to solve the AutoML problems. For a detailed
response to the research question, readers are directed to Chapter 7, where
an exhaustive exploration and conclusion await.

RQ5: When should we stop tuning in an area of the search space?

As mentioned in RQ4, the AutoML search space is ample; trying every
configuration is costly and typically impossible in practice due to the limited
computation resources. The solution to RQ4 can be adapted to separate
the AutoML search space into multiple search areas (i.e., sub-spaces). Given
limited computational resources for optimization, allocating more resources
to the most promising areas while reducing resources to the unpromising areas
to ensure achieving the best performance accuracy is necessary. Thus, the
question is how to detect unpromising areas early and correctly. Chapter 8
provides an in-depth examination and resolution of the research question
that guides this study.

RQ6: How can we efficiently allocate computational resources in the
AutoML search space? The class of multi-fidelity approaches (Chapter 3.
Section 3.2) aims to maximize the number of configurations to be evaluated
within a limited budget. The central idea is to save computation resources
for ineffective configurations and use them for other configurations. In this
setting, the effective configuration will be tested on more data than the
ineffective one. Racing procedures (Chapter 3. Section 3.2.1) and bandit
learning (Chapter 3. Section 3.2.2) are the two well-known multi-fidelity
approaches for HPO problems. Adopting their techniques to the AutoML
optimization problem can provide insight into how we can handle resources
efficiently in AutoML optimization. The comprehensive exploration and
resolution of the research question can be found in Chapter 8 of this thesis.

1.3 Outline of the Dissertation

This thesis is organized as illustrated by a high-level overview in Figure 1.3. The
motivation, research questions, and major contributions of each chapter are briefly
introduced.

The relevant technical background for this thesis is split into two chapters where
the AutoML optimization approaches are discussed in Chapter 3 and the relevant

16



1.3 Outline of the Dissertation

…Data
set Quality 

Score

Data
set

Prediction

Optimization algorithm

Search space

Learning 
Algorithm

…

St
ar

t EndPreprocessing

An efficient search space for 
imbalanced class problem

Comparison of HPO optimization 
approaches for imbalanced 
binary class problems

Two new AutoML 
optimization algorithms

A review of AutoML 
optimization algorithms

Introduce two sets of 
AutoML benchmarks

Lifecycle of ML 
Development: Preliminaries

Chapter ... Literature Chapter ... New method

Chapter 3

Chapter 4 Chapter 2

Chapter 7 (BO4ML)

Chapter 8 (DACOpt)

Ch
ap

te
r 5

A new classification 
measurement metric

Chapter 6

Figure 1.3: Mapping of chapters of this thesis to the process of development and
life cycle of an AutoML pipeline.

machine learning development life-cycle knowledge provided by existing AutoML
frameworks are discussed in Section 2.

Chapter 4 aims at introducing two sets of AutoML benchmarks to evaluate
optimization approaches. Both scenarios provide a search space and a set of
corresponding benchmark datasets– the first scenario includes two operators in
the pipeline and 44 binary imbalanced benchmark datasets; the second scenario is
a ML pipeline optimization of a dynamic search space with up to six operators
and 73 AutoML benchmark datasets.

Chapter 5 focuses on the issue of how to apply optimization approaches to class
imbalanced classification problems properly. Optimizer is a core component of an
AutoML framework. In addition, various optimization approaches are compared
in this chapter, where the most efficient approach is discovered.

Chapter 6 introduces a new classification measurement metric for the multi-class

17



1. Introduction

classification problem where some classes are more important than others.
Chapter 7 and Chapter 8 discuss how to efficiently use BO for AutoML problems.

Chapter 7 introduces a novel initial sampling strategy, Combination-based sampling,
which is particularly designed for using BO for AutoML optimization problems. In
addition, a novel BO approach, BO4ML, is proposed, where the proposed initial
sampling approach is integrated. Chapter 8 introduces a novel contesting procedure,
Divide And Conquer Optimization (DACOpt), which is an optimization approach
specially designed for dealing with the large and complex search space of AutoML
to help BO focus on promising search area earlier.

1.4 Publications and software packages

This thesis is based on the following peer-reviewed publications and software
packages:

1. Nguyen, D.A., Kong J., Wang H., Menzel S., Sendhoff B., Kononova A.V.
& Bäck T.H.W. (2021), Improved automated CASH optimization with tree
parzen estimators for class imbalance problems. In IEEE 8th international
conference on data science and advanced analytics (DSAA), pp. 1-9, DOI:
10.1109/DSAA53316.2021.9564147.

• Github: https://github.com/ECOLE-ITN/NguyenDSAA2021

2. Nguyen, D.A., Kononova A.V., Menzel S., Sendhoff B. & Bäck T.H.W.
(2021), Efficient AutoML via combinational sampling. In IEEE Symposium
Series on Computational Intelligence (SSCI). pp. 01-10, DOI: 10.1109/
SSCI50451.2021.9660073.

• Github: https://github.com/ECOLE-ITN/NguyenSSCI2021

• Pypi: https://pypi.org/project/BO4ML

3. Nguyen, D.A., Kononova A.V., Menzel S., Sendhoff B. & Bäck T.H.W.
(2022), An Efficient Contesting Procedure for AutoML Optimization, in IEEE
Access, vol. 10, pp. 75754-75771, 2022, DOI: 10.1109/ACCESS.2022.3192036.

• Github: https://github.com/ECOLE-ITN/NguyenIEEEAccess2022

• Pypi: https://pypi.org/project/DACOpt

18

https://github.com/ECOLE-ITN/NguyenDSAA2021
https://github.com/ECOLE-ITN/NguyenSSCI2021
https://pypi.org/project/BO4ML
https://github.com/ECOLE-ITN/NguyenIEEEAccess2022
https://pypi.org/project/DACOpt


1.4 Publications and software packages

4. Nguyen, D.A., Kononova A.V., Kong J., Jonker, K., Pipard, N., Mooi, J. &
Bäck T.H.W. (2023), Automated Machine Learning Using Class Importance
Weights For Imbalanced Multi-class Classification Of Steel Coil Defects, in
review.

5. Nguyen, D.A., Kononova A.V., Kong J., Jonker, K., Pipard, N., Mooi,
J. & Bäck T.H.W. (2024), Efficient AutoML Optimization for Imbalanced
Multiclass Data: A Case Study on Surface Defect Classification in Steel
Manufacturing, in review.

• Github: https://github.com/anh05/AutoML-Multiclass-Imbalanced

Other work by the author:

1. Kong J., Kowalczyk W.J., Nguyen, D.A., Bäck T.H.W. & Menzel S.,
(2019), hyperparameter optimisation for improving classification under class
imbalance. In IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 3072-3078, DOI: 10.1109/SSCI44817.2019.9002679.

2. Ullah S., Nguyen, D.A., Wang H., Menzel S., Sendhoff B. & Bäck T.H.W.
(2020), Exploring dimensionality reduction techniques for efficient surrogate-
assisted optimization. In IEEE Symposium Series on Computational Intelli-
gence (SSCI), pp. 2965-2974, DOI: 10.1109/SSCI4 7803.2020.9308465.

19

https://github.com/anh05/AutoML-Multiclass-Imbalanced



