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1
Introduction

In recent years, Machine Learning (ML) has achieved success in many real-world
applications, such as self-driving cars [1], assisting doctors in diagnosing diseases [2],
playing video games [3], recognizing faces [4], translating languages [5], detecting
automatic faults [6], and predictive maintenance [7]. In order to apply ML in
real-world applications, practitioners must select a sequence of machine learning
algorithms (e.g., data preprocessing, feature preprocessing, learning algorithm),
together with their configurations well-suited to the target problem [8]. These
tasks are always challenging due to the plethora of algorithms. Moreover, the
No Free Lunch (NFL) theorem [9], [10] prescribes that there is no universally
best algorithm for all problems. Therefore, the development of high-performance
machine-learning applications requires highly skilled ML experts, data scientists
and domain experts [11], [12]. Together, these experts attempt further experi-
ments/trials, resulting in the best-performing ML pipeline for the given problem.
In other words, applying ML to a real-world application is challenging, as it requires
considerable human effort and has a strong dependency on data scientists.

The class of Automated machine learning (AutoML) approaches [8] are widely
applied to automatically produce the best machine learning pipeline in order to
minimize reliance on data scientists in the machine learning development cycle for
real-world applications [8]. The domain experts can profit from using AutoML by
automatically choosing a well-performing sequence of ML algorithms and their
optimized hyperparameters, leading to a sensible ML model for their real-work
problems without relying on ML experts.

Initially, AutoML was typically referred to as an optimization process for finding
the optimal ML pipeline (with its tuned hyperparameters) for ML problems [13].
Hence, AutoML is known as a combination of Machine Learning and optimization
for applying machine learning to real-world problems, that is, making ML easier
to use for people without expert knowledge in ML. AutoML research mainly
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1. Introduction

focuses on optimization, whereas the ML part is inherited from the well-developed
ML community. From the perspective of the optimization community, the ML
part is treated as an objective configured by various ML algorithms with their
hyperparameters and evaluated by an objective function for resulting in a real-
valued performance, e.g., prediction accuracy or running time. A search space
defines the possible choices among the algorithms and hyperparameters. Different
hyperparameter settings led to different results [14]. Then, a practical optimization
approach is used to find the best setting that maximizes the performance of the
objective function. All the above steps are the core functions of a typical AutoML
framework.

On the other hand, AutoML products are also known as a particular type
of software in a ready-to-use state where the effectiveness in applying machine
learning to real-world problems is the top goal [11]. Thus, modern AutoML
systems incorporate many supportive functions, such as supporting the core part
(e.g., applying meta-learning to find the better candidate earlier) and supporting
humans to increase trust (e.g., explainable ML, visualization), and shortening the
final product development cycle in production (e.g., integrating the low/no code
techniques).

Search 
space

Optimizer
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Figure 1.1: AutoML functions

Some of the core functions and support functions of a typical AutoML framework
are summarized in Figure 1.1. All are discussed in this thesis, where the machine
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learning pipeline optimization approaches are discussed in Chapter 3, and the
remaining functions are discussed in Chapter 2, i.e., Meta-learning is discussed
in Section 2.3, code generation and analysis tools for AutoML are presented in
Section 2.4 and Section 2.2 presents ML pipeline architecture search. However,
this thesis emphasizes the optimization of AutoML, called AutoML optimization,
which is detailed in Section 1.1. Prior to the detailed discussions, we shall give a
brief explanation of some important aspects of the AutoML optimization problem
(the orange cycle in the middle of Figure 1.1).

Search space or domain space refers to the set of all possible combinations of
algorithms and the algorithm’s hyperparameters that the optimization algorithm
can choose from. There are four common classes of hyperparameters:

1. Ordinal hyperparameter1 belong to a subset of Z, e.g., [1, 10];

2. Continuous hyperparameter1 is a subset of R, e.g., [0, 1];

3. Nominal hyperparameter is a set of categorical values, e.g., [Linear, RBF,
Poly, Sigmoid];

4. Hierarchical hyperparameter or conditional hyperparameter is a particular
type of hyperparameter, that is used to define the dependencies between
hyperparameters, i.e., a hyperparameter depends on another hyperparameter;

5. In practice, the choice of algorithm is a particular type of nominal hyperpa-
rameter, which is referred to as the algorithm choice [15] and one-of nominal
hyperparameter [16]. The dependent hyperparameters of an algorithm are
mapped to an algorithm by a conditional hyperparameter. In this thesis, each
set of algorithms for an operation function shall be called an "operator", e.g., a
resampling operator– ([SMOTE [17], SMOTETomek [18], SVMSMOTE [19]]),
learning operator–([k-nearest neighbors [20], Support Vector Machines [21]]).

Without loss of generality, let a machine learning pipeline structure be modeled as
a directed acyclic graph (DAG) which is restricted by implicit constraints [22], [23],
i.e., some operators are optional, which might have a do not use option, but the
learning operator is mandatory and as the last operator. Note that we shall use the
term machine learning pipeline structure and sequence of algorithms over operators
interchangeably in this thesis. The complete machine learning pipeline includes a
sequence of algorithms over operators and their dependent hyperparameters.

1 We note that, ordinal and continuous hyperparameters are typically bounded for practical
reasons.
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1. Introduction

In conclusion, the search space defines the range of hyperparameters that the
optimizer can search among to find the best set of hyperparameters (i.e., the best
ML pipeline).

Objective function in AutoML optimization problem is one or more perfor-
mance metrics (e.g., recall, precision rate, accuracy rate), a.k.a., evaluation metrics.
These metrics are used to measure and evaluate the performance of a ML pipeline
(e.g., a sequence of data pre-processing, feature engineering, and a learning algo-
rithm) on a particular task. The optimization problem is called a single-objective
problem if it uses one performance metric. Otherwise, it is called a multi-objective
optimization problem. Throughout this thesis, the objective function is limited to
the single-objective optimization problem. In other words, an objective function
is a real-valued function that measures the performance of the ML pipeline on a
given dataset using a specific performance metric. The objective function can be
constructed using cross-validation, ensemble methods, or other techniques.

Optimization algorithm applied to AutoML is an algorithm that aims to
find the optimal machine learning pipeline on a given dataset using a performance
metric, i.e., objective function. Optimizing the objective function involves a trade-
off between computational complexity and accuracy. The choice of algorithm
depends on the problem’s complexity, the dataset’s size, and the computational
resources available. The literature has highlighted several possible optimization
approaches that can be used for AutoML, such as:

• Bayesian optimization (BO), e.g., Hyperopt [24], SMAC [25], [26], SPO [27],
Spearmint [28], BO4ML [15].

• Grid search [29] and Random search (RS) [30], [31].

• Racing procedure (RP) [32], [33].

• Bandit learning (BL), e.g., Successive Halving [34], HyperBand [35].

• Hybrid approaches, e.g., BOHB [36] and DACOpt [37] hybridize Bayesian
optimization and bandit learning, MIP-EGO [38] hybridizes Bayesian opti-
mization and evolutionary algorithms.

However, Bayesian Optimization is the most commonly used approach in this
domain as it was used in Auto-sklearn [39], Auto-Weka [40], [41] and Hyperopt-
sklearn [42]. Hence, this thesis will review all mentioned approaches but mainly
focus on improving BO and using it to solve the AutoML optimization problems.

8



1.1 Problem definition

1.1 Problem definition

In this thesis, the discussion is focused on AutoML optimization (AO) problems,
and the ML problem is limited to supervised machine learning fields, i.e., regression
and classification problems. Given a classification problem with a dataset D =
{(x1, y1), . . . , (xm, ym)}, where x = {x1, . . . , xk} is a vector representation of the
k features x, and y represents a label in classification problem or a continuous
value in a regression problem. Solving an AutoML optimization problem refers
to finding the best ML model P : X → Y that transforms a vector x ∈ X into a
target value y ∈ Y. In AutoML optimization, the ML model refers to as a ML
pipeline model, which can include data pre-processing, encoding, feature selection,
resampling, and learning algorithm. Hence, we shall interchange the terms of ML
model and ML pipeline model in this section.

Sequence of
Operators

Set of
Algorithms

Hyperparameters
spaces

Figure 1.2: The structure of AutoML search space

Let ŷ denote the predicted label calculated by model P for input features x,
i.e., ŷ = P(x), and R(ŷ, y) denote a measure of classification accuracy between the
predicted label ŷ and the true label y. Let p be an ML pipeline setting trained on
dataset D to produce the ML model P, i.e., P = (p,D). The performance of p is
then calculated as:

f(p,D) = 1
m

m∑
j=1

R(P(xi), yj)

= 1
m

m∑
j=1

R(ŷj , yj)
(1.1)
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1. Introduction

In practice, the predictive performance of ML pipeline p needs to be calculated
based on its prediction on an unseen dataset, i.e., a test/validation set. The
dataset D is then split into non-overlapping training and validation sets: Dtrain =
{(x1, y1), . . . , (xn, yn)} and Dvalid = {(xn+1, yn+1), . . . , (xm, ym)}. Equation 1.1
allows calculating performance of the ML pipeline setting p when trained on Dtrain

and evaluated on Dvalid as:

f(p,Dtrain,Dvalid) = 1
m− n

m−n∑
j=1

R(ŷn+j , yn+j) (1.2)

However, the over-fitting problem is often encountered in applying optimization
approaches [13]. To overcome this problem, the k-fold cross-validation can be
applied to the Equation. 1.2, which becomes:

f(p,Dtrain,Dvalid) = 1
k

k∑
j=1

f(p,Dj
train,Dj

valid) (1.3)

where f(p,Dj
train,Dj

valid) is performance of the ML pipeline p when trained and
evaluated on the jth data fold Dj

train and Dj
valid, correspondingly.

Solving an AutoML optimization problem involves finding the optimal ML
pipeline p that trains on a dataset D to produce the best-performing ML model
P. Traditionally, the AutoML optimization problem is customarily treated and
solved as a hyperparameter optimization problem (HPO), called the HPO-based
approach, where the target ML pipeline p is constructed as a single algorithm.
An alternate approach is to construct the target ML pipeline p structure as an
ML pipeline of multiple ML algorithms, called ML pipeline-based approach. In
this section, we will first look at solving the problem of AutoML optimization,
also referred to as ML pipeline optimization. This topic is explained in detail
in Section 1.1.1. Afterward, we will briefly discuss the traditional HPO-based
approach, which treats the problem as a hyperparameter optimization problem.
This discussion is covered in Section 1.1.2.

1.1.1 Machine Learning Pipeline Optimization

Let O = O1 × . . .×Oz denote the sequence of operators in the pipeline p, where
each subsequent operator is applied to the output of the previous operator starting
from input x: p(x) = Oz(Oz−1(. . . (O1(x)) . . .)). The functionality of each such
operator can typically be delivered by one of the multiple available ML algorithms:
herein, we assume Oi∈{1,...,z−1} = {∅,A1

i , . . . ,Ani
i } for all operators except the

10



1.1 Problem definition

last and Oz = {A1
z, . . . ,Anz

z } for the last operator which defines the learning
algorithm – i.e., unlike the first z − 1 operators, the last operator Oz has to be
selected and cannot be ∅.

Typically, all algorithms have hyperparameters; we denote the domain of the
i-th hyperparameter by λi. Let Λi = λ1 × . . . × λb be a hyperparameter space
consisting of b hyperparameters of algorithm Ai. Let ΛOi

= Λ1
i ∪ . . . ∪ Λni

i be the
hyperparameter space of the operator Oi and Λ = ΛO1 ∪ . . . ∪ ΛOz

denotes the
hyperparameter space of all considered algorithms for all considered operators.
Let M denote the search space that includes the sequence of operators O and
its corresponding hyperparameter spaces. The overall structure of the resulting
AutoML search space is illustrated in Figure 1.2.

For readability, let Ai,λj represent algorithm A selected for an operator Oi and
configured by a hyperparameter setting λj ∈ ΛOi

. Then, we denote a pipeline with
algorithms selected and configured with their hyperparameters for all operators in
the pipeline p as p(A1,λ1 ,...,Az,λz ). We note that some approaches [43] consider in
finding a suitable order of algorithms in the pipeline, which is called ML pipeline
structure selection [22], [43]. Let the set of valid ML pipeline structures be denoted
by S = {s1, ..., sh}, where s ∈ S represents a valid ML pipeline structure that orders
the position of algorithms A1, . . . ,Az in the pipeline. The ML pipeline becomes
p(s,A1,λ1 ,...,Az,λz ). However, it is worth noting that most AutoML optimization
approaches do not search for structure, such as Auto-sklearn [39], Auto-weka [40],
Hyperopt-sklearn [42]. Instead, they use a fixed structure, i.e., |S|= 1. This fixed
structure is based on a well-known linear sequence of operators recommended in
literature or based on their experiences. When |S|> 1, it is referred to as the case
of flexible ML pipeline structure search. This thesis limits our discussion to the
fixed ML pipeline structure. Therefore, we will use the notation p(A1,λ1 ,...,Az,λz )

to denote the ML pipeline, while the ML pipeline structure will not be further
discussed. However, we will briefly discuss both approaches in Chapter 2, i.e., the
discussion on the Fixed ML pipeline structure in Section 2.2.1 and the Flexible
ML pipeline structure in Section 2.2.2.

To solve the AutoML problem (see Equation 1.4) and find the best choice of
algorithms and their hyperparameters for the pipeline operators, every such choice
needs to be evaluated. The R(ŷ, y) denotes a metric that returns the accuracy
of value ŷ predicted by the pipeline compared to the real value y. Then, perfor-
mance f of pipeline configuration p(A1,λ,...,Az,λ) when trained on a training dataset
Dtrain = {(x1, y1), . . . , (xm, ym)} and evaluated on a validation dataset Dvalid =

11



1. Introduction

{(xm+1, ym+1), . . . , (xm+t, ym+t)} is calculated as: f(p(A1,λ,...,Az,λ),Dtrain,Dvalid) =
1
t

∑t
j=1 R(ŷm+j , ym+j). Hence, the AutoML optimization problem becomes the

ML pipeline optimization maximizing problem:

(A1,λ1 , . . . ,Az,λz )∗ = argmax
A1,λ1 ,...,Az,λz

f
(

p(A1,λ1 ,...,Az,λz ),Dtrain,Dvalid

)
(1.4)

where (A1, . . . ,Az) ∈×z

i=1Oi are all possible choices of algorithms for all pipeline
operators, {λ1, . . . , λz|λ1 ∈ ΛO1 , . . . , λz ∈ ΛOz

} are algorithms’ hyperparameters
and f

(
p(A1,λ1 ,...,Az,λz ),Dtrain,Dvalid

)
is performance of the sequence operators and

their corresponding hyperparameter choices when trained and evaluated on Dtrain

and Dvalid
2, correspondingly.

1.1.2 Combined Algorithm Selection and Hyperparameter
Optimization

Traditionally, the AutoML optimization problem is commonly referred to as
Combined Algorithm Selection and Hyperparameter Optimization (CASH) [39],
[40] or Full Model Selection (FMS) [44] problem, in which the choice of algorithm
is modeled as an additional categorical hyperparameter. Then, the AutoML
optimization problem is treated as a HPO problem. As such, the choice of
algorithms for each operator is modeled as an extra categorical hyperparameter λ0.
The search space for the ith operator is then defined as ΛOi

= λ0
i ∪ Λ1

i ∪ . . . ∪ Λni
i ,

and the entire search space be Λ = ΛO1 ∪ . . .∪ΛOz
Hence, the AO problem becomes

the HPO maximizing problem:

λ∗ = arg max
λ∈Λ

f(λ,Dtrain,Dvalid) , (1.5)

where f(λ,Dtrain,Dvalid) is performance of the hyperparameter setting λ ∈ Λ when
trained and evaluated on Dtrain and Dvalid, correspondingly.

In this setting, the categorical hyperparameters after the root of this hierarchical
search space (see Figure 1.2) are known as the choice of algorithm for an operator.
Consequently, algorithms and their local hyperparameters are treated at the same

2We note that AutoML tools are typically evaluated based on their performance on an unseen
dataset during optimization, e.g., test set or ground truth set. These tools include several
strategies to avoid overfitting together with other setups. These comparisons compare the
performance of the whole AutoML system rather than the optimizer only. However, this thesis
focuses on the optimization process to maximize performance on an unseen dataset for ML
algorithms but known to the optimizer, referred to here as the validation set Dvalid. Therefore,
we will not use the term test set Dtest in this section. Instead, Dtest will be used in Chapter 4
(Section 4.3), where we set up benchmarks for comparing different AutoML tools.

12



1.2 Research Questions

level. However, unlike the pure categorical hyperparameter, i.e., choose one in a set
of nominal options, the choice of algorithms heavily affects other hyperparameters,
i.e., once the algorithm is known, only its hyperparameters are relevant.

Another point worth mentioning is that HPO was originally developed to
find the best hyperparameter setting from a single algorithm which is a much
more straightforward problem compared to the AutoML optimization problem. In
addition to HPO, AutoML optimization also searches for an optimized pipeline
of algorithms. In AutoML, multiple algorithms must be considered, and these
algorithms can belong to different phases in the ML pipeline, for example, pre-
processing and learning models. This pipeline is restricted by some constraints,
such as the learning task, i.e., classification and regression for supervised learning
and clustering for unsupervised learning, which is the last step. For example,

• Auto-sklearn [39], [45] has up to six sequence operation steps: categorical
encoder, numerical transformer, imputation transformer, rescaling, feature
preprocessor, and learning operator.

• In comparison, Auto-Weka [40], [41] and Hyperopt-sklearn [42] have only
two operators: preprocessor and learning operator.

Although, in general, AutoML can have different sizes in terms of operators and
algorithms under operators, most operators are optional, and the learning operator
is mandatory.

Furthermore, the algorithms and techniques used in an ML pipeline are tightly
coupled because every operator step is directly affected by the previous step. For
example, the data pre-processing step aims to produce a new dataset (balanced,
reduced-dimensions, etc.), which can change the performance of the subsequent
operator, such as the learning model. Consequently, the traditional approach for
handling the choice of algorithm is a mismatch with the nature of the AutoML
optimization problem.

1.2 Research Questions

In this thesis, we focus on AutoML techniques that aim at shorting the progress of
producing ML applications. Some of the most critical questions that we will try to
address are:

13



1. Introduction

RQ1: How can we automatically construct high-quality ML pipelines for
imbalanced data with HPO algorithms?

The classification algorithms commonly assume that the input data is equally
distributed between classes. However, the distribution of classes in many
real-world classification problems is ordinarily unequal, which reduces classi-
fication performance. To address this problem, we can apply a well-suited
resampling technique to balance the imbalanced data before passing it to the
classifier for training. There is no universal best algorithm for all problems.
Hence, it becomes the model selection problem of finding the optimal com-
bination of a resampler and classifier for the given problem, each selected
from the sets of existing resampling techniques and classification algorithms.
Besides, both resampling techniques and classification algorithms have lo-
cal hyperparameters that need to be tuned to achieve better performance.
Therefore, the Model selection (MS) and Hyperparameter optimization (HPO)
tasks have to be considered. We note that HPO algorithms are initially
designed for tuning hyperparameters of a single ML algorithm. The Com-
bined Algorithm Selection and Hyperparameter Optimization (CASH) is a
well-known approach for solving those two tasks simultaneously. CASH
converts MS and HPO into a single HPO problem, which HPO algorithms
can solve. Nevertheless, CASH has yet to be studied in detail for imbalanced
class problems. Hence, we explore the potential of applying HPO algorithms
to construct well-performing ML pipelines for imbalanced data automatically.
Study on that problem gives us insights into how to design CASH experiments
for class-imbalanced problems, such as determining applicable resampling
and classification algorithms, constructing search space, and selecting perfor-
mance metrics. The exploration and resolution of this research question are
comprehensively tackled in Chapter 4 of this thesis.

RQ2: What is the most effective CASH optimization approach to achieve
the optimal ML pipeline model for imbalance classification prob-
lems?

The Combined Algorithm Selection and Hyperparameter (CASH) problem
can be addressed by a HPO algorithm. The two well-known HPO algorithms–
Bayesian optimization and random search - are considered in our investigation
to provide insights into choosing appropriate techniques for solving this CASH
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1.2 Research Questions

for class imbalance problems. The comprehensive exploration and resolution
of the research question can be found in Chapter 5 of this thesis.

RQ3: How to apply the CASH optimization to the steel surface defects
classification problem where the distribution between classes is
imbalanced and has unequal importance?

In collaboration with Tata Steel Europe - The Netherlands in the steel surface
defects detection problem, we address the classification problem where the
distribution between classes is imbalanced and has unequal importance,
i.e., detecting severe defects that might heavily affect the quality of the
final product is more priority than others with lighter affections. In CASH
optimization problems, the proper performance metric is vital for evaluating
ML models to correctly choose the optimal ML model. For the imbalance
problem, several performance metrics (e.g., F1, geometric mean) can be used.
However, those performance metrics treat all classes equally important. Thus,
those metrics’ overall accuracy cannot be used for this situation. In other
words, the required performance metric for this real-world problem has yet to
be. Therefore, to apply CASH to the steel surface defects detection problem,
we need a new performance metric that considers both class imbalanced and
unequal class importance problems. In Chapter 6, we delve into the heart of
the research question, presenting a detailed analysis and solution.

RQ4: How does maximizing coverage of initial sampling improve BO
performance to AutoML optimization problems? Bayesian optimiza-
tion (BO) is a typical optimization approach that is structured by three
fundamental components: initial sampling, surrogate model and acquisition
function. The initial sampling step is typically restricted to a small budget
since the effectiveness of BO becomes evident mainly in the later stages of
optimization when it learns to produce better ML pipeline configurations.
Another point worth mentioning is that the search space of AutoML is large,
which includes many possible algorithms in the ML pipeline.

Many studies [46]–[48] noted that some algorithms have similar technical
behaviours. To take advantage of this, we explore the potential of sampling
on the group of similar algorithms for maximizing coverage of the AutoML
search space already within a small budget of the initial sampling of BO.
The exploration also provides insights into the effectiveness of optimized
initial sampling to BO to characterize the response surface more accurately
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1. Introduction

and how we can adapt BO to solve the AutoML problems. For a detailed
response to the research question, readers are directed to Chapter 7, where
an exhaustive exploration and conclusion await.

RQ5: When should we stop tuning in an area of the search space?

As mentioned in RQ4, the AutoML search space is ample; trying every
configuration is costly and typically impossible in practice due to the limited
computation resources. The solution to RQ4 can be adapted to separate
the AutoML search space into multiple search areas (i.e., sub-spaces). Given
limited computational resources for optimization, allocating more resources
to the most promising areas while reducing resources to the unpromising areas
to ensure achieving the best performance accuracy is necessary. Thus, the
question is how to detect unpromising areas early and correctly. Chapter 8
provides an in-depth examination and resolution of the research question
that guides this study.

RQ6: How can we efficiently allocate computational resources in the
AutoML search space? The class of multi-fidelity approaches (Chapter 3.
Section 3.2) aims to maximize the number of configurations to be evaluated
within a limited budget. The central idea is to save computation resources
for ineffective configurations and use them for other configurations. In this
setting, the effective configuration will be tested on more data than the
ineffective one. Racing procedures (Chapter 3. Section 3.2.1) and bandit
learning (Chapter 3. Section 3.2.2) are the two well-known multi-fidelity
approaches for HPO problems. Adopting their techniques to the AutoML
optimization problem can provide insight into how we can handle resources
efficiently in AutoML optimization. The comprehensive exploration and
resolution of the research question can be found in Chapter 8 of this thesis.

1.3 Outline of the Dissertation

This thesis is organized as illustrated by a high-level overview in Figure 1.3. The
motivation, research questions, and major contributions of each chapter are briefly
introduced.

The relevant technical background for this thesis is split into two chapters where
the AutoML optimization approaches are discussed in Chapter 3 and the relevant

16



1.3 Outline of the Dissertation

…Data
set Quality 

Score

Data
set

Prediction

Optimization algorithm

Search space

Learning 
Algorithm

…

St
ar

t EndPreprocessing

An efficient search space for 
imbalanced class problem

Comparison of HPO optimization 
approaches for imbalanced 
binary class problems

Two new AutoML 
optimization algorithms

A review of AutoML 
optimization algorithms

Introduce two sets of 
AutoML benchmarks

Lifecycle of ML 
Development: Preliminaries

Chapter ... Literature Chapter ... New method

Chapter 3

Chapter 4 Chapter 2

Chapter 7 (BO4ML)

Chapter 8 (DACOpt)

Ch
ap

te
r 5

A new classification 
measurement metric

Chapter 6

Figure 1.3: Mapping of chapters of this thesis to the process of development and
life cycle of an AutoML pipeline.

machine learning development life-cycle knowledge provided by existing AutoML
frameworks are discussed in Section 2.

Chapter 4 aims at introducing two sets of AutoML benchmarks to evaluate
optimization approaches. Both scenarios provide a search space and a set of
corresponding benchmark datasets– the first scenario includes two operators in
the pipeline and 44 binary imbalanced benchmark datasets; the second scenario is
a ML pipeline optimization of a dynamic search space with up to six operators
and 73 AutoML benchmark datasets.

Chapter 5 focuses on the issue of how to apply optimization approaches to class
imbalanced classification problems properly. Optimizer is a core component of an
AutoML framework. In addition, various optimization approaches are compared
in this chapter, where the most efficient approach is discovered.

Chapter 6 introduces a new classification measurement metric for the multi-class
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1. Introduction

classification problem where some classes are more important than others.
Chapter 7 and Chapter 8 discuss how to efficiently use BO for AutoML problems.

Chapter 7 introduces a novel initial sampling strategy, Combination-based sampling,
which is particularly designed for using BO for AutoML optimization problems. In
addition, a novel BO approach, BO4ML, is proposed, where the proposed initial
sampling approach is integrated. Chapter 8 introduces a novel contesting procedure,
Divide And Conquer Optimization (DACOpt), which is an optimization approach
specially designed for dealing with the large and complex search space of AutoML
to help BO focus on promising search area earlier.

1.4 Publications and software packages

This thesis is based on the following peer-reviewed publications and software
packages:

1. Nguyen, D.A., Kong J., Wang H., Menzel S., Sendhoff B., Kononova A.V.
& Bäck T.H.W. (2021), Improved automated CASH optimization with tree
parzen estimators for class imbalance problems. In IEEE 8th international
conference on data science and advanced analytics (DSAA), pp. 1-9, DOI:
10.1109/DSAA53316.2021.9564147.

• Github: https://github.com/ECOLE-ITN/NguyenDSAA2021

2. Nguyen, D.A., Kononova A.V., Menzel S., Sendhoff B. & Bäck T.H.W.
(2021), Efficient AutoML via combinational sampling. In IEEE Symposium
Series on Computational Intelligence (SSCI). pp. 01-10, DOI: 10.1109/
SSCI50451.2021.9660073.

• Github: https://github.com/ECOLE-ITN/NguyenSSCI2021

• Pypi: https://pypi.org/project/BO4ML

3. Nguyen, D.A., Kononova A.V., Menzel S., Sendhoff B. & Bäck T.H.W.
(2022), An Efficient Contesting Procedure for AutoML Optimization, in IEEE
Access, vol. 10, pp. 75754-75771, 2022, DOI: 10.1109/ACCESS.2022.3192036.

• Github: https://github.com/ECOLE-ITN/NguyenIEEEAccess2022

• Pypi: https://pypi.org/project/DACOpt
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1.4 Publications and software packages

4. Nguyen, D.A., Kononova A.V., Kong J., Jonker, K., Pipard, N., Mooi, J. &
Bäck T.H.W. (2023), Automated Machine Learning Using Class Importance
Weights For Imbalanced Multi-class Classification Of Steel Coil Defects, in
review.

5. Nguyen, D.A., Kononova A.V., Kong J., Jonker, K., Pipard, N., Mooi,
J. & Bäck T.H.W. (2024), Efficient AutoML Optimization for Imbalanced
Multiclass Data: A Case Study on Surface Defect Classification in Steel
Manufacturing, in review.

• Github: https://github.com/anh05/AutoML-Multiclass-Imbalanced

Other work by the author:

1. Kong J., Kowalczyk W.J., Nguyen, D.A., Bäck T.H.W. & Menzel S.,
(2019), hyperparameter optimisation for improving classification under class
imbalance. In IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 3072-3078, DOI: 10.1109/SSCI44817.2019.9002679.

2. Ullah S., Nguyen, D.A., Wang H., Menzel S., Sendhoff B. & Bäck T.H.W.
(2020), Exploring dimensionality reduction techniques for efficient surrogate-
assisted optimization. In IEEE Symposium Series on Computational Intelli-
gence (SSCI), pp. 2965-2974, DOI: 10.1109/SSCI4 7803.2020.9308465.
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Automated Machine Learning: An Overview

The term machine learning has become highly popular in today’s technology and
is expanding rapidly. Without realizing it, we use machine learning in our daily
lives, such as in self-driving cars [1], medical diagnosis [2], automatic language
translation [5], fraud detection [6], and defect detection [49].

Existing AutoML frameworks aim to automatically build the best ML pipeline
for an arbitrary ML problem. However, applying AutoML to produce a useful ML
product for a real-world problem eventually requires some knowledge of machine
learning and software development. We first discuss some important aspects of the
life cycle of machine learning development in Section 2.1. Next, this chapter will
discuss all the functions of a typical AutoML tool, as shown in Figure 1.1, except
for the optimization part, which we will discuss in Chapter 2 due to its significance
in this thesis. Specifically, Section 2.2 provides an overview of commonly used
approaches for determining the optimal ML pipeline architecture. Section 2.3
discusses various applications of meta-learning in AutoML. Section 2.4 presents
the explainable and low-code techniques utilized in AutoML products.

2.1 Life Cycle of Machine Learning Development

The process of building up a machine learning system can be seen as a combination
of the Software Development workflow [50] and the Data science workflow [51],
which is shown in Figure 2.1. This workflow contains four main stages:

• Data preparation is the starting point for an ML project where the data is
collected [52]. This will be discussed in Section 2.1.1.

• ML pipeline optimization is handled by the employed optimizer, which will
be discussed in Chapter 3. Hence, Section 2.1.2 discusses the topic from the
user’s view rather than the view of an optimizer provider. In this section,
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Figure 2.1: Machine learning development life cycle. This figure takes inspiration
from the software development [50] and data science [51] lifecycles.

we clarify what parts of an ML pipeline can be applied for optimization for
automatic purposes (Section 2.1.2.1), how we can evaluate an ML pipeline
(Section 2.1.2.2), and the over-fitting problem [53] in Section 2.1.3, a common
problem when applying optimization to AutoML [54].

• Application Development stage refers to the application development progress,
where the final application is produced [50]. An engineering team typically
does this stage with expertise in developing applications (e.g., software,
web app, embedded application for Computer Numerical Control (CNC)
machines).

• Continuous Improvement indicates the process of making small incremental
changes to the developed application [55]. The ML application development
is not a one-off process. In the ML applications development scenario, the
constant improvement paradigm is more necessary since the data continues to
be updated. The data distribution changes make the ML model’s prediction
performance less accurate. Thus, the deployed ML model must be retrained
to adapt to the updated data. Besides, the selected ML pipeline may no
longer be the best choice for the new data. Therefore, the ML pipeline has
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2.1 Life Cycle of Machine Learning Development

to be re-tuned. We refer the interested reader to the Kaizen model [55] for
this topic.

2.1.1 Data preparation

In practice, the data used for a particular machine-learning project can be collected
from multiple sources, such as Enterprise Resource Planning (ERP), customer rela-
tionship management (CRM), network log files, Microsoft Excel, Microsoft Word,
images, expert suggestions, or external sources. However, a real-life system, such as
an ERP, can have thousands of data tables with complex relationships. Therefore,
choosing the tables and data to use is a challenging question. Additionally, data
from multiple sources (e.g., data crawled from websites, extracted from multiple
internal systems, or gathered end-user working data files) might be incorrectly
labelled or inconsistent in identity, used metric system units (e.g., millimetre (mm),
centimetre (cm), meter (m)), and format (e.g., DateTime). Collecting data and
joining different data sources are important and challenging. Hence, these tasks
are typically performed manually by experts who deeply understand the data. In
general, data preparation [52], [56]–[58] typically involves the following tasks:

1. Data collection: Useful data is obtained from operating systems, data
warehouses, data lakes, and other information sources. During this step, it is
crucial for data scientists, domain experts, members of the ML team, and
end-users to verify that collected data is a good fit for the objectives of the
anticipated ML applications [56].

2. Data discovery and manual cleansing: This step consists in investigating
the gathered data to determine what it includes and what needs to be done
to make it suitable for intended usage [52]. Next, the detected data flaws
and mistakes are fixed to develop comprehensive and accurate data sets. For
instance, faulty data is rectified or removed, missing values are filled in, and
inconsistent entries are merged as part of the data sets clean up [59].

3. Data organizing: At this stage, the data must be modeled and organized
to be suitable for ML [56]. For example, the data stored in comma-separated
value (CSV) files and reorganizing image files.

It is worth noting that the target outcomes of all the above steps should include data
and a set of prepared rules. The rule can be in the form of hard-coding, workflows,
or generic formulas, which can be reused for future data in the production phase.
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2. Automated Machine Learning: An Overview

Apart from the mentioned manual steps, there are two classes of data-cleaning
approaches:

1. Semi-automatic is a class of algorithms/tools that assist scientists in improv-
ing efficiency and reducing human effort during the data preparation phase,
rather than being completely automatic. For instance, KARATA [60] is a tool
that uses knowledge-based [61] and crowd-powered [62] approaches, detecting
both correct and incorrect data to generate possible repairs for the identified
incorrect data. Another class of methods, as exemplified by Krishnan et
al. [63]–[65], involves suggesting cleaning for only a limited portion of the
data while maintaining comparable outcomes to cleaning the entire dataset.
However, these methods require humans to design data-cleaning operations
applied to the dataset.

2. A small class of automatic data cleaning techniques aims to improve the
data quality automatically. It can be applied to various datasets and used
in AutoML frameworks (see Section 2.1.2.1 for an additional discussion).
Nevertheless, they are usually hard-coded and limited to a few specific
functions, such as handling data errors, missing values, redundant records,
invalid values, and outliers [22], [66], [67].

2.1.2 Automated Machine Learning Pipeline

This section’s topic is limited to supervised machine learning fields. This section
focuses on processes that do not involve humans. We first start by listing the
elements of a typical ML pipeline (Section 2.1.2.1). Second, we present the
standard evaluation measurement metrics (Section 2.1.2.2). The last sub-section
presents the common over-fitting problems when optimization approaches are
applied (Section 2.1.3).

2.1.2.1 Machine learning pipeline

A generic ML pipeline p : X → Y designed for problem solving P is a sequence
of operators that transforms a vector of features x ∈ X into a target value y ∈ Y
which can be, for example, a predicted value for a regression problem or a label
for a classification problem. Examples of possible pipeline operators depend on
problem P and can include data pre-processing, encoding, feature selection, and
resampling.
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2.1 Life Cycle of Machine Learning Development

In order to analyze this discussion, we need to use the notations introduced
and explained in Chapter 1. These notations are crucial for our ongoing analysis,
and we discussed them in detail in their original context in Chapter 1 to ensure a
better understanding. Let O = O1 × . . . ×Oz denote the sequence of operators
in the pipeline p, where each subsequent operator is applied to the output of the
previous operator starting from input x: p(x) = Oz(Oz−1(. . . (O1(x)) . . .)). Each
operator’s functionality can typically be delivered by one of the multiple available
ML algorithms: here we assume Oi∈{1,...,z−1} = {∅,A1

i , . . . ,Ani
i } for all operators

except the last and Oz = {A1
z, . . . ,Anz

z } for the last operator that defines the
learning algorithm – i.e., unlike the first z − 1 operators, the last operator Oz has
to be selected and cannot be ∅.

ML pipeline structure Although several AutoML frameworks have been re-
leased to date, there are no best practices for ML pipeline structures for all ML
problems in the literature. We only know that the learning algorithm must be at
the end of the pipeline. Thus, an AutoML framework creates an ML pipeline using
either a fixed structure based on the creator’s expertise or a variable structure
(the detailed discussion on ML pipeline structure search is given in Section 2.2).
We note that the number of operators is flexible, as it highly depends on the ML
problem (i.e., classification, regression), the underlying domain, and the input
data itself (e.g., image, text, and tabulator input require different preprocessing
algorithms).

The considered operators are usually grouped into two main phases:

1. Preprocessing phase includes several preprocessing tasks that can be seen
as an augmentation step adding to the data preparation phase, but it is
automatic. This step includes a sequence of optional steps. For example, a
typical preprocessing sequence for a classification problem includes missing-
value imputation, categorical encoding, data normalization, resampling,
feature extraction, feature generation, and feature selection. Generally
speaking, any data modification before utilizing a learning method is referred
to as the preprocessing step. Note that the input data might be changed
sequentially after processing via preprocessing operators.

2. Learning phase is the last operator in the ML pipeline. It aims to learn
the relation within the dataset D = {(x1, y1), . . . , (xm, ym)} output from
previous operator Oz−1 and able to predict those of unseen dataset Dunseen =
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2. Automated Machine Learning: An Overview

{(xm+1, ym+1), . . . , (xm+t, ym+t)}. More specifically, the learning algorithm
aims at finding a learning function f : X → Y by generalizing beyond D,
that maps inputs x ∈ X to outputs y ∈ Y, i.e., y = f(x). The learning
function f can be formed by any option from the set of possible learning
algorithms, e.g., linear models [68]–[70], tree-based models [71], [72], support
vector machines [21], k-nearest neighbors [20], etc.

2.1.2.2 Evaluation measurement metrics

Finding the optimal ML model for the target problem is the main task in ML
pipeline optimization. Hence, the vital questions are: How well does the model
perform? Moreover, what is the accuracy of the model? To do so, we need a
performance metric (or evaluation measure) to score the model’s quality. The
performance metric depends on the target problem, i.e., a classification problem or
regression problem. For instance, the accuracy rate is usually used in classification
problems [73]. However, when the classes are imbalanced, the geometric mean (GM)
and F-measure are highly recommended [47], [74], [75] because of their ability to
represent the minority class samples. In contrast, the Mean Absolute Error (MAE),
and Mean Squared Error (MSE) are typically used to score a regression model [76].
Hence, choosing a suitable performance metric is the task given to experts. In
this section, we will present the most commonly used performance metrics for
classification and regression problems. For unsupervised machine learning, we refer
the interested reader to other reviews of evaluation metrics for further discussions
on that domain [77].

Measurement metrics for classification problems Classification algorithms
stand for algorithms that predict label y ∈ Z, i.e., discrete/categorical value such
as Spam/Not Spam in Email Spam Filtering problem [78], based on a vector
of features x ∈ X. Therefore, the accuracy of an individual prediction is either
correct or incorrect by comparing the predicted value and the actual value. By
comparing the predicted and actual values, the accuracy of an individual prediction
is either correct or incorrect. The accuracy rate is most commonly used, as it
simply computes the ratio of the number of samples correctly predicted to the
total number of tested samples. However, the accuracy rate is not the sole metric
to evaluate a classification model. In this section, we will summarize a total of
seven performance metrics that are usually used for classification problems. This
discussion is restricted to binary-classification problems. We refer the interested
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Figure 2.2: Illustration of confusion matrix. The illustration is inspired by the
work of [79].

reader to Chapter 6 (Section 6.2.2) for multi-class classification problems and other
reviews of evaluation metrics for other types of classification problems [73], [75],
[80]. For binary classification problems, the performance metrics can be defined
based on the confusion matrix. For consistency throughout this section, we use
the confusion matrix example shown in Figure 2.2, as it can provide intuitive
classification results. The figure on the left shows the distributions of the predicted
and actual classes. The plot on the right shows a confusion matrix for this example.
Using the confusion metric in Figure 2.2, we summarized several commonly used
performance metrics in Table 2.1, including Accuracy rate, Error Rate, Specificity
(or True Negative Rate), Sensitivity (or Recall or True Positive Rate), Precision,
Balanced accuracy, Geometric mean1, Fβ-measure.

1The geometric mean mentioned here follows the work of [81], which is based on Sensitivity
(accuracy on positive examples) and Specificity (accuracy on negative examples). Some other
studies might be based on precision and recall.
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Name Formula Illustration Referring Description
to Figure 2.2

Accuracy
rate

T P +T N
T P +F P +T N+F N

2+5
2+5+5+7 = 0.37 The ratio of cor-

rect predictions
on tested samples

Error
Rate

F P +F N
T P +F P +T N+F N

5+7
2+5+5+7 = 0.63 The ratio of incor-

rect predictions
on tested samples

Specificity
/True
Negative
Rate
(T Nrate)

T N
T N+F P

5
5+5 = 0.5 The ratio of the

number of cor-
rectly predicted
negative samples
overall actual neg-
ative samples

Sensitivity
/Recall
/True
Positive
Rate
(T Prate)

T P
T P +F N

2
2+7 = 0.22 The ratio of the

number of cor-
rectly predicted
positive samples
overall actual pos-
itive samples

Precision T P
T P +F P

2
2+5 = 0.29 The ratio of ac-

tual positive sam-
ples among those
predicted as posi-
tive

continued on the next page

Table 2.1: Performance Metrics for Classification Evaluations.
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Name Formula Referring Description
to Figure 2.2

Balanced
accuracy Specificity+Sensitivity

2
0.5+0.22

2 = 0.36 The arithmetic
mean of class-
wise sensitivity,
i.e., Specificity
and Sensitivity

Geometric
mean

√
Specificity× Sensitivity

√
0.5× 0.22 = 0.33 The root of the

product of class-
wise sensitivity

Fβ-
measure

Fβ = (1 + β2) precision×recall
β2precision+recall The weighted har-

monic mean of
the precision and
recall .

F1 = (1 + 12) precision×recall
12precision+recall 2× 0.29×0.22

0.29+0.22 = 0.25 β = 1 is typ-
ically used (i.e.,
Fβ becomes F1),
also means the re-
call and the pre-
cision are equally
important. Other-
wise, recall is con-
sidered β times as
important as pre-
cision .

Table 2.1: Performance Metrics for Classification Evaluations – continued from
previous page
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Residual =|     -     | 

Predicted value
Actual value

Figure 2.3: Example of regression prediction. The illustration is inspired by the
work of [84].

Measurement metrics for regression problems Regression algorithms, as
opposed to classification algorithms, predict a specific numeric value, i.e., y ∈ R.
For instance, weather forecasting [82] and housing price forecasting [83]. Hence,
the accuracy of a prediction becomes the residual between the predicted value
ŷ and the actual value y, i.e., residual = |y − ŷ| (see Figure 2.3 for illustration).
The four common measurement metrics for regression problems are summarized in
Table 2.2. For consistency reasons throughout this sub-section, we use the example
shown in Figure 2.3, e.g., each method will be calculated base on that example. In
addition, notations are shared throughout this section: t denotes the total number
of tested samples.

30



2.1 Life Cycle of Machine Learning Development

Name Formula Referring Description
to Figure 2.3

Mean
Abso-
lute
Error
(MAE)

1
t

∑t

i=1 |yi − ŷi| 0.3+0.1+0.1
3 = 0.17 The average of the ab-

solute differences be-
tween the actual val-
ues and the predicted
values.

Mean
Squared
Error
(MSE)

1
t

∑t

i=1 (yi − ŷi)2 0.32+0.12+0.12

3 = 0.04 The average of the
squared differences be-
tween the actual val-
ues and the predicted
values.

Root
Mean
Squared
Error
(RMSE)

√
1
t

∑t

i=1 (yi − ŷi)2
√

0.04 = 0.2 The square root of
MSE

R2 score 1−
∑t

i=1
(yi−ŷi)2∑t

i=1
(yi−ȳ)2

ȳ = 0.5+0.25+0.35
3 = 0.37 The coefficient of de-

termination
ȳ = 1

t

∑t

i=1 yi R2 = 1− 0.11
0.03 = −2.67

Table 2.2: Performance Metrics for Regression Evaluations.
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(b) Good fit

Predicted value
Actual value

Predicted value

Training samples

Test samples

(a) Under-fitting

(c) Over-fitting

Actual value

True (unknown) model

Predicted model

Figure 2.4: Illustration of Under-fitting (a), Good fit (b), and Over-fitting (c). The
illustration is inspired by the work of [85].

2.1.3 Over-fitting and under-fitting

Generalization is a common problem in AutoML and hyperparameter optimiza-
tion[53], [86]. During the optimization process, the highest-performing configu-
ration is discovered through multiple trials on a training dataset. However, this
optimal configuration may not generalize well to new, unseen data, leading to
what is known as the over-fitting problem. Therefore, addressing over-fitting is an
important concern in AutoML optimization. This section will provide an overview
of the overfitting problem and highlight common practices to avoid overfitting in
AutoML. In supervised machine learning, we have to find the best form of the
function f that minimizes the difference between true value yi and predicted value
ŷi, i.e., yi ≃ f(xi),∀x ∈ X. Hence, the learning algorithm aims to produce a model
that fits the data. However, if the model is too fit to the training data, it may
result in the so-called over-fitting problem, in which the model performs well on
the known training set but performs poorly on the unknown test set. In other
words, the model does not have generalization ability. For clarification, Figure 2.4
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2.1 Life Cycle of Machine Learning Development

illustrates under-fitting, good fit, and over-fitting problems. Assuming we have 12
samples, the 6 stars denote training samples, the 6 dots are test samples, the black
colour indicates actual values, and the white colour indicates predicted values. The
dashed curved line indicates the actual model, and the solid curved line indicates
the predicted model. The plot in (a) shows an example of an underfitting. We can
see that the predicted and actual models are completely different; the performance
is poor for both the training and test samples. The predicted model in plot (b)
was similar to the actual model. In this case, the predicted model may be a good
fit. The last case is an example of over-fitting. The predicted model perfectly
models the training samples but lacks generalization ability. Consequently, the
model yielded poor predictions for the test samples. Under-fitting can easily be
detected via performance metrics (see Section 2.1.2.2).

k-fold cross
validation

1 2 k

Performance
metric

1st
  ca

ll

1 2 k

1 k2

ML pipeline configuration

 

2nd call

kth
  ca

ll

Function Evaluation

Function CallValidation fold

Training fold

Figure 2.5: k-fold cross validation.

A common technique for avoiding over-fitting is k−fold cross validation (see
Figure 2.5) in which the input data is randomly partitioned into k independent
folds (also called leave-one-out technique). The average of the k function calls,
computes the performance of one test case; a single fold is kept as a test set, while
the remaining folds are used as the training set. The term function evaluation
(green rounded-box) and function call (purple rounded-box) will be used in future
discussions in this thesis, e.g., Chapter.3. Aside from k−fold cross-validation, there
are several other techniques for preventing over-fitting, such as early stopping [68],

33



2. Automated Machine Learning: An Overview

regularization [87], [88]. We refer the interested reader to those studies for further
discussions on this topic.

Dataset

Training data

Validation 
data

Preprocessing

Data 
Preprocessing

Feature 
Preprocessing

Resampling

Learning

Data 
Preprocessing

Feature 
Preprocessing

Learning 
Algorithm

Model

Validation score

Figure 2.6: An example of calculating the validation performance of a typical
Machine Learning pipeline.

Finally, when training and validating a model, we usually use exactly the
same ML pipeline architecture for preprocessing and learning phases, for example,
encoding categorical data and normalizing data in the same way. However, some
operators in the preprocessing step must not be applied to the validation/test data.
Otherwise, all techniques for overcoming over-fitting are useless. In general, the
preprocessing can be grouped into two groups:

• Impact on the individual sample’s quality, e.g., missing value imputation, cat-
egorical encoding, normalization data, feature extraction, feature generation,
and feature selection.

• Changing the original distribution of the samples, for example, resampling
(e.g., under-resampling, over-resampling, combine-resampling techniques)
and removing outliers.

The first group has to stick to applying precisely the same (i.e., algorithms,
hyperparameter settings, and their order) to both the training and test/validation
sets. In contrast, the second group impacts the sample size to improve the
training model’s generalization and quality. Recall that a model’s test/validation
performance is based on the prediction values and actual values of the entire
test/validation dataset samples — no more or fewer samples. Hence, the quality
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2.2 ML pipeline architecture search

measurement is incorrect when we base it on more or fewer samples’ predictions
than the actual test/validation set.

In other words, no approach that impacts the integrity of samples can be
applied to the test/validation dataset. Figure 2.6 shows a workflow of a typical
ML pipeline when applied to the training and validation data.

2.2 ML pipeline architecture search

The first step in solving any ML problem is to find a suitable machine learning
pipeline structure. An ML pipeline includes several optional operators (e.g.,
imputation of missing data, encoding, scaling, feature extraction, and feature
selection) and a mandatory learning operator. The generic ML pipeline is shown
in Figure 2.7. The ML pipeline architecture search aims to answer the following
research question: How many operators are required in the pipeline? Moreover,
how are they ordered? The only known is the last operator, which is a learning
algorithm, that is, classification, regression, or clustering. However, there is no
fixed rule in the early steps, which confuses non-experts when creating their own
ML pipelines.

Machine Learning Pipeline

Figure 2.7: Prototypical ML pipeline architecture.

In addition, the performance of an ML pipeline is calculated based on its
prediction quality on test data, that is, we only evaluate an ML pipeline when the
input data are past all pipeline operators. Finally, every ML pipeline is unique [15],
i.e., any changes to the ML pipeline lead to a different ML pipeline, which might
change the final performance.

2.2.1 Fixed ML pipeline architecture

Many AutoML frameworks, such as Auto-Weka [40], [41], Hyperopt-sklearn [42],
H2O [89], ATM [90], Auto-Gluon [91], [92] do not directly solve ML pipeline
architecture search to reduce the complexity of determining ML pipeline structure.
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Instead, they have predefined a fixed structure, which closely resembles a well-
known linear sequence of operators recommended in literature or based on their
experiences. Figure 2.8 shows an example of a commonly used fixed ML pipeline
architecture for class-imbalanced problems, as used by [15], [37], [47], [74], [75]. A
possible disadvantage of this approach is that it might result in inferior predictive
performance for complex datasets requiring, e.g., multiple preprocessing steps.

Machine Learning Pipeline

Figure 2.8: Fixed ML pipeline architecture used by most imbalanced-class classifi-
cation studies.

2.2.2 Flexible ML pipeline architecture

In order to achieve the best performance for a given problem, human experts
usually build highly specialized ML pipelines, i.e., the ML pipeline is adaptable
to a specific task. An illustration on ML pipeline architecture search is shows in
Figure 2.9.

Machine Learning Pipeline

Figure 2.9: Flexible ML pipeline architecture, where the ML pipeline structure is
also searched for.

This flexibility is missing from the fixed ML pipeline structure approach. To
address this issue, one class of AutoML frameworks considers flexible ML pipeline
architecture. Auto-Sklearn [39], [45] can be seen as a semi-flexible approach.
Auto-Sklearn predefined a set of fixed structures for ML problems. For a given
ML problem, it generates a pipeline structure using meta-features of the input
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2.3 Meta Learning

AutoML tool Underlying technique domain

TPOT Genetic programming [102], [103]
AlphaD3M Reinforcement learning [104]
MLPlan Hierarchical task networks [105]
Mosaic MonteCarlo tree search [106], [107]
FEDOT Evolutionary algorithms [108]–[110]

Table 2.3: AutoML frameworks support ML pipeline architecture search

data, e.g., the structure for binary and multi-class classification problems might
be different. However, the same structure will be used for the same ML problem
domain. Apart from that if-else style, there is a class of AutoML frameworks that
support ML pipeline architecture search, including TPOT [43], AlphaD3M [93],
[94], ML-Plan [95], [96], and P4ML [97], Mosaic [98], FEDOT [99]. The main
idea of these approaches is to apply restrictions in the form of ad hoc configuration,
primitive taxonomies, or context-free grammars [100], [101]. Table 2.3 provided
the relevant techniques to these AutoML tools.

Lastly, a class of techniques based on meta-learning will be discussed in Sec-
tion 2.3.

2.3 Meta Learning

A typical ML pipeline optimization problem consists of three fundamental compo-
nents – a search space, an optimizer, and an objective function. The search space
describes the feasible search domain. The optimizer is used to discover the best
combination of algorithms over operators and their optimized hyperparameters,
thereby maximizing the performance of the objective function. Finally, the objec-
tive function is a child program that evaluates the settings of the ML pipeline,
resulting in a real-valued performance measures, such as accuracy, precision, and
recall rate. In other words, the ML pipeline optimization process aims to find the
most suitable solution from a predefined search space.

Usually, for optimizing a new (unknown) ML problem, the optimizer explores
the search space from scratch. In contrast, ML experts take advantage of previous
tasks (e.g., referring to literature and their experiences so far) to shorten the
optimization process and avoid wasting time on unpromising search areas. Inspired
by the behavior of human experts when dealing with a new ML task, meta-learning
is quite similar to learning from the experiments of previous ML tasks to increase
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the efficiency of the search. Meta-learning is the science of learning similar datasets,
which can be characterized by a set of meta-features [111], which might include:

1. Simple features includes the following: number of samples, number of features,
number of classes, number of missing values, number of instances with missing
values, number of numeric features, number of categorical features, number
of binary features.

2. Statistical features: mean, standard deviation, mean skewness, quarterlies.

3. Information-theoretic features: class entropy, mean mutual information.

4. Land-marking [112]: Performance evaluations of some simple classifiers on
the entire data or sub-set of data [113], e.g., performances evaluated by
k-nearest neighbor with 1 neighbor.

Search space
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Meta-Learning

Search space filtering 
& construction
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Figure 2.10: Applications of meta-learning. The illustration is inspired by the
work of [114], [115].

Meta-learning can be applied in many stages of the ML pipeline optimization
process (see Figure 2.10):
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• Search space filtering and reduction: The search space is usually predefined by
the AutoML owners, which is typically large with many possible algorithms
that have been integrated. Furthermore, the hyperparameters of the chosen
algorithms are set by a wide range of values. Nevertheless, the search space
is arbitrarily defined without referencing the given ML problem. Therefore,
meta-learning can be used to reduce the large search space, such as eliminating
unimportant hyperparameters, irrelevant algorithms (e.g., [116]–[121]), and
automatically construct a (minimal) search space (e.g., [101], [122]).

• ML pipeline architecture suggestion: Apart from the mentioned approaches for
flexible ML pipeline architecture in Section 2.2. Meta-learning is a promising
research domain for identifying ML pipeline synthesis. [101] proposed a data-
centric approach, called DSWIZARD, that learns from related ML tasks to
construct a suitable ML pipeline for the target problem. Similarly, predicting
the pipeline’s performance and favoring a good pipeline architecture to be
constructed was studied in [94], [97], [98], [111], [123], [124].

• Warm-start for optimizer : Traditionally, the optimization process often starts
from scratch. For example, the initialization step in Bayesian optimization
(Section 3.1.3) randomly selects some ML pipeline configurations without
any evaluation of the given dataset, that is, with the same random seed
– the optimizer generates the same set of initialization configurations for
any dataset. On the other hand, by learning from previous tasks, many
studies proposed to start from a set of the best configurations of the related
tasks [39], [120], [125]–[127]. In this manner, the underlying optimizer can
characterize the search space by focusing on promising areas for the given
data. Consequently, the optimizer maximizes the chance of finding the best
solution early. This is the general idea of a warm-start in ML pipeline
optimization.

Finally, we refer the interested reader to other reviews of meta-learning for
further discussions on this topic [114], [115].

2.4 Explainable and low-code for AutoML

AutoML and optimization studies have been applied in many industrial domains [7],
[128]–[130]. However, the current state of AutoML is only seen as a reference tool
for human experts in real-life application development [131]. From a practitioner’s
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perspective, AutoML is also seen as a black-box, i.e., optimization process, that
optimizes another black-box, i.e., objective function [11]. Also, different frameworks
might lead to different results and suggestions. Many studies have been noted that
users do not trust AutoML systems [12], [132]–[134]. Without understanding its
optimization behaviors, users might not confidently decide to use its suggestion
(i.e., the best-found ML pipeline). For instance, [12] has revealed that even though
AutoML might deliver high-quality solutions, practitioners refuse to use them as
they do not want to be held accountable for a model they do not understand. In
addition, [11] concluded that the main reason for the limited trust of practitioners
is the limited explanation and transparency of the outcome of AutoML.

Therefore, establishing trust in an AutoML system is an important motivation
for explainability [135], that is, explaining in a way that humans can understand
in a reasonable time [136].
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Figure 2.11: Requirements analysis of different user groups on their need for
ML explainability. Explainable AutoML is a sub-class of explainable AI that
targets ML high-skill user groups that can read/understand ML algorithms and
visualization techniques.

2.4.1 Stakeholders of AutoML

Stakeholders involved in a ML project can be grouped into three groups:
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• Direct stakeholders: Indicate actors who are directly involved in the whole
process of developing their final ML application with the day-to-day activities,
e.g., data scientists, domain experts, and software engineers.

• Indirect stakeholders: People are not affected by the project but may support
the project in some terms but not focused on the process of finishing it, such
as system infrastructure administrators who may prepare a suitable system
infrastructure and system configuration, legal advisors might be involved in
the term of making the end-users policies, managers who set the business
goals for the project, build the project team, customers (for an internal
project, and the customers can be the board of managers) might approve
the project results.

• End-users: They can be internal or external actors who will use the output
application for their daily work.

2.4.2 Components of an explainable AutoML

Each group of actors had different skill sets, knowledge, and demands. Thus,
the explanation is that adaptability is based on its properties. Figure 2.11 sum-
marizes the requirements analysis of different user groups on their need for ML
explainability. The co-badged guidance [137] defines the explainability of intelligent
systems as a combination of technical (information extraction) and non-technical
(communication method) considerations. Furthermore, recall that AutoML is a
combination of optimization and ML. Hence, the scope of explainable AutoML
includes both aspects. According to the relevant discussions on optimization [138]
and machine learning [51], we formulate the technical explainability requirements
for AutoML as three complementary approaches that form to increase trust and
transparency:

1. Global explanations on the optimization level aim to explain the decision-
making process of the optimizer. In addition, this level of explainability
provides helpful information on optimizer behavior to illustrate optimization
convergence and how it constructs the pipeline.

2. Global explanations on a particular model level aim to explain the general
model’s decision-making process. This level of explainability is about under-
standing how the model makes decisions and the distribution of the target
outcome based on the features.
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3. Local explanations for a single prediction: Global explainability is more useful
in the research and development phase as it helps project owners determine
how their data distribute and how the ML pipeline transforms the input
data to lead to the final result. The local explainability helps examine what
the model predicts for a particular sample and explains why/ why not.

Those applications of explanation are used for many demands, such as debugging
ML models [139], explaining medical decision-making [140], explaining predictions
for classification problems [141], and explain autonomous agent behavior [142],
[143].

2.4.3 Maturity Levels of Automation Tools

According to Figure 2.11, the optimization and programming phases necessitate a
high level of technical knowledge. The optimization phase requires data science
skills, and the programming phase aims to build the deliverable application, which
requires coding skills. Both target a goal that can be used by the layperson (lay
scientist/ developer). The levels of automation tools for AutoML are summarized
in Figure 2.12.

2.4.3.1 Tools for data scientist

To be able to understand and be accountable for the outcome of AutoML in
a real-world application, the practitioner usually investigates the optimization
behaviors and its final suggestions. For example, the practitioner may plot several
visualizations of how the data transformed through the pipeline or trace back the
optimizer’s decision-making process by plotting the necessary figures that they
can explain to others (i.e., non-technical users). However, the process of making
figures might be costly, as it depends on how familiar the data scientist is with the
platforms used. Hence, the practitioners must develop practice skills in ML and
coding [132]. That fact limits the usefulness of AutoML and misses the opportunity
to lead toward helping humans apply ML to real-life applications with limited ML
and statistics knowledge.

To overcome these limitations and save time for data scientists, some AutoML
platforms provide an additional set of visualizations to explain the decision-making
process. These can be classified into two main groups:
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Figure 2.12: Automation Maturity levels for AutoML. The Top-bottom arrows
show levels of explainability vs. the data science skill levels that can understand
the corresponding explanation related to data scientists. The left-right arrows
indicate the levels of automation in building an ML application vs. the needed
skill.

1. Command line based (CLB): This set of AutoML platforms provides visual-
izations via built-in functions. The user can plot figures by executing those
functions. However, the user must have a ready-to-use development tool,
such as Jupyter Notebook, Anaconda, or dot Net Visual Studio, as well as
basic coding skills (e.g., Python, R, C#). They mainly focus on satisfying the
global explanations of the optimization level. Their functions provide ways to
visualize historical data over the tuning process regarding the performance
(e.g., [45], [144]), the optimizer behavior for choosing hyperparameter values
(e.g., [144]–[146]), and comparing ML pipeline structures (e.g., [11], [147]).

2. Graphical user interface based (GUI): refers to a group of platforms that work
as standalone software or web apps and is aimed at users who do not have
coding skills. All steps, starting from importing the dataset to tuning and
visualization, are integrated into a single interface. Well-known platforms
are Google Vizier [145], HyperTuner [148], HyperTendril [149], IBM Watson
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Studio2, Microsoft Azure3, Databricks AutoML4, Rapid-Miner5. They signif-
icantly improved development speed. However, their main limitation is the
limited range of applicability, manageability, and flexibility than the others.

Lastly, visualization is an important component, but it is only considered a
support function in the value chain of AutoML. Therefore, some open-sourced
AutoML platforms might not be interested in developing that function. Fortunately,
several platforms add visualization functions on top of other platforms to create a
new platform that supports explainability well. AutoViz [150], for example, is
an extended version of AutoAI [131], ATMSeer [134] extends ATM [90], and
XAutoML [11] based on five other platforms are – Auto-Sklearn [39], [45],
DSWIZARD [101], Scikit-learn [151], FLAML [152] and Optuna [144]. While
Hyperopt [153] was used in Google Vizier [145], HyperTuner [148] and
HyperTendril [149].

2.4.3.2 Tools for software engineer

This section reviews the low-code technique used in AutoML products, mainly
supporting the programmer in producing the final ML product rather than the
scientist in the research phase. Low-code and no-code refer to software development
methodologies that indicate the concept of practitioners creating their solutions with
little (or no) technical skills. Technically, the no-code platforms consist of standard
pre-built components and a visual development tool that allows practitioners to use
a graphical interface to build their application in a drag-and-drop (e.g., Sway AI6)
or a wizard-based interface (e.g., Akkio7) styles. However, those platforms are
typically limited to some predefined problems, such as object detection in computer
vision (MakeML8), image classification (Lobe9). That is to say, the automation
ability (i.e., ready-to-use) is inversely proportional to the range of applicability.
Thus, AutoML platforms that target solving unlimited problems usually stop at
the basic level of low code as they only generate the relevant source code for the
ML model, e.g., Amazon SageMaker Autopilot [154] export ready-to-use Jupyter
notebooks for tested ML pipelines.

2https://www.ibm.com/cloud/watson-studio/autoai
3https://azure.microsoft.com
4https://databricks.com
5https://rapidminer.com/
6https://sway-ai.com
7https://www.akkio.com
8https://makeml.app/
9https://www.lobe.ai
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3
An In-Depth Review of AutoML Optimization
Approaches

This chapter introduces commonly used optimization approaches for AutoML
optimization problems. We note that our discussion in this chapter will rely heavily
on the problem definition and accompanying notations discussed in Chapter 1
(Section 1.1). These notations are crucial for the ongoing analysis, and we dis-
cussed them in detail in their original context in Chapter 1 to ensure a better
understanding.

All of the approaches presented in this study follow the same principle: finding
the best machine learning pipeline configuration p ∈M to maximize a measurement
performance1 for a given machine learning problem with the k-fold cross-validation
technique. They can be divided into two groups:

1. The performance of a particular configuration will be evaluated on all k-folds.

2. They intend to save computational cost by evaluating it on a subset of data,
e.g., on fewer folds, to infer performance on the entire data. Hence, we shall
use the term function call to indicate one-time access to a configuration on
one fold.

The term function evaluation indicates the average performance over k folds, i.e.,
a function call is k times cheaper than a function evaluation in terms of evaluating
data input. The difference between the term function call and function evaluation
in this thesis is shown in Figure 2.5.

3.1 Black-box optimization approaches

In general, both hyperparameter and AutoML optimization problems are typically
treated as black-box optimization problems for various reasons. For instance, we

1See Section 2.1.2.2.
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cannot access a gradient of the objective function concerning the hyperparameters,
or it is not possible to directly optimize the generalization performance as the
training datasets are of limited size [8]. Generally, every black-box optimization
approach can solve these problems. This section introduces three common opti-
mization approaches, grid search (Section 3.1.1), random search (Section 3.1.2),
and Bayesian optimization (Section 3.1.3). The working principles of these three
approaches are shown in Figure 3.1. As shown, grid search sequentially evaluates
points individually on a user-defined grid. On the other hand, a random search
evaluates points at random, as the name implies. Bayesian optimization (BO) is
a more complex technique based on advanced probabilistic models that makes it
intelligent for automatically finding suitable configurations in the search space.
In this example, we can see that BO can find more configurations with stronger
results than other approaches. That is, more samples in the purple-filled contours.
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Figure 3.1: An illustration between grid search (left), random search (middle), and
Bayesian optimization (right) for hyperparameter optimization on the McCormick’s
function f(x, y) = −1.5x + 2.5y + (x− y)2 + sin (x + y) + 1 with two continuous
parameters: x ∈ [−1.5, 4] and y ∈ [−3, 3]. All three approaches used a total of 66
functions evaluations. Purple-filled contours indicate regions with strong results,
whereas yellow ones show regions with poor results.

3.1.1 Grid Search

Grid search is the most basic optimization algorithm. Given a set of hyperparame-
ters, each of which has a (finite) set of values, for instance, continuous hyperparam-
eter, e.g., [0, 1] ∈ R, ordinal hyperparameter, e.g., [1, 10] ∈ Z, boolean hyperparam-
eter, e.g., [True, False], nominal hyperparameter, e.g.,[Linear, RBF, Poly, Sigmoid].

46



3.1 Black-box optimization approaches

We enumerate all combinations of these sets and create a list of all candidates. Grid
search evaluates each of these candidates and chooses the best configuration among
them – the number of function evaluations is precisely the number of configurations.
However, practitioners are usually restricted by a limited computational budget,
i.e., the number of function evaluations, for hyperparameter optimization and
AutoML optimization problems. Such a limited budget is typically much smaller
than the number of possible evaluation configurations. Thus, a limited budget
restricts the applicability of grid search.

3.1.2 Random Search

Unlike grid search, which assesses all configurations (for continuous hyperparam-
eters based on a sufficiently coarse-grained discretization), random search [30]
evaluates only a subset of available candidate configurations at random until the
given budget runs out and returns the best of the sampled configurations. The
random search for AutoML optimization is summarized in Algorithm 1, it consists
of the following two steps:

• Generate a set of random configurations (line 3): here we adapted random
sampling in unstructured HPO problem to AutoML optimization problem
based on the search space (i.e., operators and hyperparameters space) and
the number of needed configurations. The sampling algorithm is presented
in Algorithm 2.

• Evaluating and selecting configuration: Each setting pi ∈ {p1, . . . , pB} from
the previous step will be evaluated on the objective function f (line 5). Next,
the current best setting is updated (lines 6-9).

Lastly, when the optimization process is done, the best setting p∗ is reported.
Random Sampling used in Algorithm 1 is presented in Algorithm 2:

• Random selection of a sequence of operators: All operators O1,...,z ∈ O are
randomly sampled to have a sequence of algorithms (line 5).

• Sampling hyperparameters: The corresponding hyperparameters are sampled
randomly (lines 6-7), taking into consideration the selected algorithms in the
previous step. The result is returned as a complete ML pipeline setting p,
i.e., a sequence of ML algorithms and their hyperparameter settings.

• Lastly, the set of sampled configurations is returned.
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Algorithm 1: Random Search
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, B : number of iterations
Output: p∗: the best found configuration

1 p∗ ← ∅
2 ∆∗ ← 0
3 Θ = {p1, . . . , pB} ← Random Sampling (O, Λ, B) // see Algorithm 2
4 foreach pi ∈ {p1, . . . , pB} do
5 ∆i ← f(pi) // evaluate the configuration pi

6 if ∆i > ∆∗ then
7 p∗ ← pi

8 ∆∗ ← ∆i

9 end
10 end
11 return p∗, ∆∗ // return the best found setting

Recent studies [8], [13], [30], [47] have noted that random search can perform better
than grid search, particularly when only a few hyperparameters impact the perfor-
mance of the machine learning algorithm. Despite its simplicity, random search
remains a crucial benchmark for evaluating the effectiveness of new optimization
methods.

Algorithm 2: Random Sampling for AutoML optimization
Input: O: sequence of operators, Λ: hyperparameter spaces, T : number of

configuration
Output: Θ = {p1, . . . , pT }: set of T configurations

1 t← 1
2 Θ = ∅
3 while t ≤ T do
4 p← ∅
5 foreach Oi ∈ O do
6 Ani

i ← U(Oi) // randomly choose one algorithm for the ith

operator
7 λi ← U(Λni

i ) // randomly select a hyperparameter setting
for the selected algorithm Ani

i

8 p← p ∪ {Ani
i , λi}

9 end
10 Θ← Θ ∪ p // insert the new configuration p into Θ
11 t← t + 1
12 end
13 return Θ = {p1, . . . , pT } // return a set of T configurations
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3.1.3 Bayesian Optimization

As the AutoML optimization task is typically time-consuming, it is preferable
to devise/choose an optimizer that delivers a good ML pipeline setting with a
relatively small computational budget. Building upon surrogate models and the
expected improvement criterion, Bayesian Optimization (BO) [155] is designed for
such a scenario. Generally, BO iteratively updates a surrogate model P(f |H)which
aims to learn the probability distribution of the response value conditioned on
setting p, from the historical information, i.e., the so-far evaluated ML pipeline
settings and the corresponding objective function H = {(pi, ∆i)n

i=1}. The new
candidate ML pipeline is chosen by optimizing the acquisition function [156], [157],
which is defined over the surrogate model P and often balances the exploration and
exploitation of the search. A detailed outline of the BO is presented in Algorithm 3
and Figure 3.2.

Many variants have been proposed for BO, including the Sequential Model-
based Algorithm Configuration (SMAC) [25], Sequential Parameter Optimisation
(SPO) [27], Mixed-Integer Parallel Efficient Global Optimization (MIPEGO) [38],
and Tree-structured Parzen Estimator (Hyperopt) [24], [153], [158]. They differ
mostly in the initial sampling method, the probabilistic model, and the acquisition
function. Common choices for the probabilistic model are Random forests (RF) [72],
Gaussian process regression (GP) [159], and TPE [24]. As for the acquisition func-
tion, the Expected Improvement (EI), the Probability of Improvement (PI) [157],
and the Upper Confidence Bound (UCB) [160] are more frequently applied among
many other alternatives.

3.1.3.1 Probabilistic Regression Models

The central idea of BO is to construct a surrogate model from the observed data
points on real-valued objective function f . The surrogate model aims to predict the
performance of untested ML pipeline configurations by modeling the relationship
between the set of evaluated configurations Θ and their true response value ∆. In
the following, we will briefly introduce three commonly used surrogate models:
(1) Gaussian processes – the well-known traditional surrogate model, (2) Random
Forest, and (3) Tree-structured Parzen Estimator – two popular surrogate models
for AutoML optimization.
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Gaussian processes

Gaussian processes (GP) [159] is a traditional surrogate model for Bayesian op-
timization. Generally speaking, GP is a generalization of Multivariate Gaussian
distribution [161], where the mean vector µ and covariance matrix Σ are redefined
by a mean function µ(p) and a covariance kernel function K(p, p′) of any two
observations2. The objective function f (expensive) is modeled as a GP, and can

2Note that a function is an infinite vector.
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Algorithm 3: Bayesian Optimization for AutoML optimization
Input: O: sequence of operators, Λ: hyperparameter spaces f : objective

function, ninit: initial sample size,nei: number of samples to be
sampled in the maximize expected improvement (EI) step, eei:
number of samples to be suggested at each BO’ iteration,

Output: p∗: the best ML pipeline configuration
1 Θ← Init Sampling(O, Λ, ninit) // typically done via Random

sampling in Algorithm 2
// Evaluate all configurations on the given objective

function f, their performances are saved to ∆
2 P ← Train P(Θ, ∆)
3 while not terminate do
4 Θnew ← P.Maximize EI(nei, eei) // EI is Expected improvement
5 ∆new ← ∅
6 foreach pi ∈ Θnew do
7 ∆i ← f(pi)
8 ∆new ← ∆new ∪∆i

9 end
10 Θ← Θnew
11 ∆← ∆new
12 P ← Train P(Θ, ∆) // Re-train model
13 end
14 return p∗ ∈ Θ // return the best found configuration

be defined as f(p) ∼ GP(µ(p), K(p, p′)). In other words, for each sample p, a
Gaussian process defines a mean µ and standard deviation σ within a Gaussian
distribution. The squared exponential function is a commonly used kernel function:
K(p, p′) = σ2

f exp[ −(p−p′)2

2l2 ] where l denotes the length scale3 and σ2
f denotes the

output variance. Subsequently, the predictive distribution for an unseen configu-
ration P(fnew|Θ, ∆, pnew) follows a Gaussian distribution. Hence, the mean and
variance can be computed as follows:

µ(pnew) = k∗K−1∆; σ2(pnew) = k∗∗k∗K−1kT
∗ (3.1)

where the covariance matrices are calculated as k∗ = [k(p1, p∗), . . . , k(pt, p∗)],
K = [k(pi, pj)]∀i,j∈{1,...,t} and k∗∗ = k(pnew, pnew).

3The length scale establishes a point’s area of influence. inside the parameter space, where
the effect of an observation diminishes as one moves away from it.
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Random forests

Random forests (RF) [72], is an algorithm used in Machine Learning for regression
and classification. It is employed in SMAC [25] as the mere surrogate model4.
Fundamentally, RF can be considered as a collection of regression (decision) trees.
The historical data (Θ, ∆) were randomly divided into multi decision trees with
few features. The trees in the forest individually score the unseen configuration
candidate pnew (pnew ∈ M), and the final result is based on the majority of the
votes. A major limitation of RF is that it does not provide an estimate of the
variance in its predictions. When adopting it in the BO scenario, SMAC [25] uses
the empirical variance in the predictions of trees in the ensemble. Hence, mean µ

and variance σ2 for the new candidate pnew are computed as the empirical mean
and variance of each tree r in the forest of B trees:

µ(pnew) = 1
|B|

∑
r∈B

r(pnew); σ2(pnew) = 1
|B|−1

∑
r∈B

(r(pnew)− µ(pnew))2 (3.2)

where B denotes a set of trees, r denotes a tree in the forest, i.e., r ∈ B. r(pnew)
is the predicted value of the new (unseen) configuration pnew by a tree r.

Tree-structured Parzen Estimator

Tree-structured Parzen Estimator (TPE) [24] is another alternative to a GP, which
is a tree-based model by using the Parzen-window density estimators [162], [163].
Instead of modeling the distribution of the true objective function f , TPE models
the likelihood P(H|f) by using the parzen window kernel density estimator. In this
setting, the evaluated configurations are split into two density distributions of a well
l(p) and a badly g(p) performing set depending on whether its performance is below
or above a predefined threshold5 α. We note that l(p) and g(p) probability models
are usually represented by Gaussian Mixture Models (GMMs) or Kernel Density
Estimation (KDE) independently. Hence, we have two means, that is, µl(p) for the
mean of l(p) and µg(p) for the mean of g(p), and two variances, that is, σ2

l(p) for the
variance of l(p) and σ2

g(p) for the variance of g(p), the computation of these values
depend on the models used. For the detailed discussion and relevant formulas, we
refer the interested reader to [24] for further discussion on the Hyperopt framework,
a well-known implementation of TPE, [164] and [165] for further discussion on
KDE and GMMs.

4Note that the property of regression trees is supported conditional variables domains, while
GP family currently do not.

5By default, α = 25%.
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3.1.3.2 Acquisition Function

Bayesian optimization is designed to find a global optimum for an optimization
problem that may have many local optima. However, as noted in the previous
section, the surrogate model only approximates the true objective function, and
its estimations may be imperfect. This leads to the following question: Should we
exploit the most known search area or explore other areas that are less known? The
so-called Acquisition Function (AF, or infill-criterion) [155] is designed to answer
this question, aiming to achieve a trade-off between exploration and exploitation.
Generally, AF computes the expected improvement value from the mean and
covariance (uncertainty) estimated by a regression model. Therefore, we can
choose a new configuration candidate for evaluation by maximizing the expected
improvement values.

Although many acquisition functions have been proposed [38], [157], [160],
[166]–[172], the Expected improvement (EI) [156] is the most popular acquisition
function for BO and remains the default AF in BO packages, such as SMAC [25],
Spearmint [28], SPO [27] and TPE [24], [158]. EI balances the trade-off between
exploration and exploitation via the expectation of the improvement function over
the best-found value ∆∗

(t) at time step t as It(p) = max{0, f̂(p)−∆∗
(t−1)}, where

∆∗
(t−1) = max(∆0, . . . , ∆t−1) and f̂(p) denotes the predicted performance of the

setting p via surrogate model P. The EI is thus defined as:

E[It(p)] =
∫ ∞

0
It(p) dP (3.3)

Let us denote by z = z(t−1)(p) = µ(t−1)(p)−∆∗
(t−1)

σ(t−1)(p) , we obtain the closed-form AF
by taking the expectation via the improvement function It(p) as:

E[It(p)] = σ(t−1)(p)ϕ(z) + [µ(t−1)(p)−∆∗
(t−1)]Φ(z) (3.4)

where µ(p) and σ(p) denoted the mean and standard deviations; ϕ(.) and Φ(.) are
the probability density function (p.d.f) and the cumulative distribution function
(c.d.f) of the standard normal distribution. Hence, the next setting is selected by
maximizing the EI:

pnew = argmax
p∈M

E[It(p)] (3.5)

where M denotes the AutoML search space (see Section 1.1).
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3.2 Multi-fidelity approaches

As mentioned in Section 1.1, the k-fold cross-validation is typically used when eval-
uating a pipeline configuration to avoid the over-fitting problem (see Section 2.1.3).
However, if the performance of a particular configuration is poor when evaluated
on the first folds, it is likely to not perform well on the rest of the cross-validation
fold [173]. Hence, we should not invest further computational resources in this
configuration or redistribute the saved resources to the most promising configura-
tions. A class of optimization methods named multi-fidelity approaches intends to
save computational resources and speed up the optimizing process by evaluating
configurations on a subset of the input data [174], [175], limiting iterations [13], or
using a subset of features [8]. In this study, we use the term k-fold cross-validation
(see Figure 2.5 for reference), then the multifidelity limits the use of a few folds
of the cross-validation folds, that is, using i folds (i ≤ k). The configuration
candidates in this class of methods tend to be evaluated faster on fewer folds than
the approaches in Section 3.1. Hence, we use the term function call to indicate a
one-time access to a configuration on one fold.

This thesis reviews two commonly used classes of methods aiming at reducing
computational effort, namely: (1) Racing procedure approaches and (2) Bandit-
based approaches.

3.2.1 Racing procedure

Hoeffding Races [32], [173] were the first version of the racing procedure. It was
initially designed to find the best machine learning model for a set of problem
instances (here, we use the term k-folds instead) in the supervised machine learning
domain. To reduce the computational cost of poor configurations, a (pairwise)
statistical test (e.g., t-test, Friedman-test [176]) is used to determine poor configu-
rations to be terminated as soon as enough statistical evidence arises against them,
that is, the ones that are significantly worse than the best.

Although a number of racing procedure variants have been developed, such as
F-Race [177], [178], Sampling F-Race [179], and Iterated racing (irace) [33], [180],
[181] ; irace is the most the latest of this class. It is particularly well-suited for
Hyperparameter Optimization [13] and AutoML optimization [182]. Hence, we
present the irace algorithm in greater detail in the following section. For details
on other methods, we refer the reader to Birattari (2009) and the book chapter by
Hoos (2012).

54



3.2 Multi-fidelity approaches

3.2.1.1 Iterated racing (irace)

In contrast to Hoeffding Races, the later variants of the racing procedure add a
rank-based Friedman test (i.e., Friedman two-way analysis of variance by ranks)
to determine if there is any significant difference between configurations. If
any differences were found, pairwise comparisons were performed with the best
candidate. Irace also followed this procedure. The detailed outline of irace is
shown in Algorithm 4. Irace first initializes parameters (lines 1-2). The first
round uses the random sampling method in Algorithm 2, generates a set of
Nj(Nj = ⌊ Bj

T first+T each ⌋) configurations (line 5). A racing procedure (line 6) is used
to discard poorly performing configurations, based on their evaluated performance
on T first folds. This race relies on the Friedman test [176] and Conover post-hoc
test [183] with a significance level α6.

After the first race, a new race is initialized by taking the remaining budget
(B −Bused) and the number of remaining races (N iter − j + 1) (lines 11-12). Next,
EliteBasedSampling generates a set of Nj configurations by sampling the set
of surviving configurations Θ∗, from the previous race. For every new sample, the
sampling procedure repeats as follows:

1. One sequence of operators will be chosen as the parent sequence (A1, . . . ,Az)parent

(see Figure 1.2 for the used notation) for this new race, with a probability
ρparent that is based on its configuration pparent, (pparent = (A1,λ, . . . ,Az,λ)parent ∈
Θ∗) and its rank rparent over the surviving set Θ∗. The probability ρparent is
computed as follows:

ρparent = 2 · |Θ∗|−rparent + 1
|Θ∗|·(|Θ∗|+1) (3.6)

2. The corresponding hyperparameters λ to (A1, . . . ,Az)parent are sampled by
either a truncated normal distribution for numerical hyperparameters, or a
discrete distribution for categorical hyperparameters7.

3.2.2 Bandit-based approaches

The class of bandit-based approaches is similar to the racing procedure in that
they terminate the worst pipeline configurations early. However, compared with
the racing procedure, they differ in two ways:

6By default α = 0.05.
7Ordinal hyperparameters are considered as numerical.
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Algorithm 4: Iterated racing algorithm
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, I: set of problem instances (or set of k folds), T first: the
number of instances (folds) needed to do the first test, T each: the
number of instances (folds) to test on the later round (by default
T each = 1), B: total budget (maximum number of function calls)

Output: Θ∗: set of best configurations
1 Nparam ← |O|+|Λ| // number of parameter spaces equal to the

total number of operators and the total number of
algorithms’ hyperparameters

2 N iter ← ⌊2 + lognNparam⌋ // number of races to be executed
// THE FIRST RACE

3 j ← 1 // j = 1, . . . , Niter

4 Bj ← B
N iter // compute budget for the first round

5 Nj ← ⌊ Bj

T first+T each ⌋ // number of configuration to be sampled at

the first race
6 Θj ← Random Sampling(O, Λ, Nj) // see Algorithm 2
7 Θ∗ ← Race(Θj , Bj , T first, I) // determine the set of good

configurations
8 Bused ← Bj // used budgets

// LATER RACES
9 while not terminate do

10 j ← j + 1
11 Bj ← B−Bused

N iter−j+1 // compute budgets for the current race

12 Nj ← ⌊ Bj

T first+T each×min{5,j}⌋ − |Θ
∗| // number of configurations

to be sampled for the current race
13 Θj ← EliteBasedSampling(O, Λ, Nj , Θ∗)
14 Θj ← Θj ∪Θ∗

15 Θ∗ ← Race(Θj , Bj , T each, I) // determine the set of good
configurations

16 Bused ← Bused + Bj // update used budgets
17 end
18 return Θ∗

1. All configurations were compared directly based on their evaluated perfor-
mance instead of using a statistical procedure.

2. The number of rounds and budget can be estimated based on the input
budgets, that is, the budgets for each round are equally assigned, but later
rounds have fewer candidates than the previous rounds.
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In the following, we present Successive Halving [34] in more detail and outline its
limitations. Next, we discuss two variants of Successive Halving to overcome these
limitations [35], [36].

3.2.2.1 Successive Halving

Jamieson and Talwalkar (2016) introduced Successive Halving as a simple yet
efficient algorithm for multi-fidelity optimization. The outline of Successive Halv-
ing is summarized in Algorithm 5. Here, we slightly adapt the algorithm for
AutoML optimization. That is, we use the term AutoML search space instead of
hyperparameter space, and use it for the k-fold cross-validation scenario, that is,
at least one candidate will be assigned a sufficient budget to evaluate all k folds,
and no configuration can have more than that budget. It requires a budget (finite
value) B, i.e., the maximum number of function calls, the number of configurations
n, the maximum number of folds that can be used for a single configuration R.
The procedure pre-computes the number of rounds t to be executed (line 1). The
value of t is then recomputed by using line 2− 7 to find an appropriate value of t

for the provided budget B and n when using the discard ratio η. Next, a set of n

configurations is generated randomly and saved to Θr (line 3). For each round, the
budget for a configuration is computed in line 13, i.e., either a subset of data or
Br ∈ {1, . . . , k} folds (Br << k). Herein, we slightly modify to adapt to the above
mentioned scenario to ensure no configuration has more than R folds and less than
1 folds. Next, all configurations p ∈ Θr are assessed on Br folds. At the end of the
round, we only keep the top 1

η configurations8 based on their performances to go
to the next round (line 16). The successive procedure is then repeated until the
last round is done. Lastly, the best-found configuration is returned (line 19).

3.2.2.2 Hyperband

Successive Halving requires the number of configurations n and budgets B, e.g., the
number of function calls, as input parameters. Assume that we have a fixed budget
B, e.g., total number of function calls, the proportion of B

n leads to a consideration
of whether we should consider (1) more configurations (large n) in the race with
small average folds or (2) a small number of configurations (small n) with higher
average folds. [35] pointed out that in practice, the problem itself might have some
noise, i.e., the accuracy rate on folds might be significantly different. If the noise is

8We note that the default proportion discard of half was changed to one third with the recent
studies [35]–[37].
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Algorithm 5: Successive Halving algorithm
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, I: set of problem instances (or set of k folds), B: total
budget (maximum number of function calls), n: number of
configurations, η: Proportion discard ratio (η = 2 by default), R:
maximum number of instances (folds) that can be allocated to a
configuration (R = |I|, by default).

Output: Θt

1 t← logη(min{R, n}) // pre-compute the number of rounds based on
R, n and η

2 foreach t ≤ logη(min{R, n}) do
3 if nR(t + 1)η−t ≤ B then
4 Evaluate whether the given budget B are sufficient to
5 accommodate the number of rounds t.
6 return t // number of rounds to be executed
7 else
8 t← t− 1
9 end

10 end
11 Θr ← Random Sampling(O, Λ, n) // randomly create n

configurations using Algorithm 2
12 Rremain ← R // number of instances/folds remain unevaluated.
13 r ← 0
14 while r ≤ t do
15 Br ← min(max(⌊(Rηr−t⌋, 1), Rremain) // Budget for a surviving

configuration in the current round.
16 foreach p ∈ Θr do
17 Assess the configuration p on Br folds, which have not been
18 evaluated so far.
19 end
20 Θr+1 ← select top ⌊ |Θr|

η ⌋ in Θr // keep 1/η good configurations

in terms of their corresponding observed performances
21 Rremain, r ← Rremain −Br, r + 1
22 end
23 return p ∈ Θr // return the best found configuration

low, we can quickly determine the quality of the configurations on fewer folds. We
can select a large number of configurations to maximize the possibility of finding
the optimal solution. Otherwise, we should consider fewer configurations, but we
will evaluate them in more detail.

Exploiting this finding, [35] proposed to have an outer loop of Successive Halving,
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which will consider a different proportion of total budgets
number of configurations , where the number

of configurations on each outer loop is reduced. The complete algorithm is outlined
in Algorithm 6. The idea behind Hyperband is that it divides resources into
brackets, e.g., {N iter, N iter − 1, . . . , 0}, with different configurations and executes
Successive Halving as a sub-program, that is, the first loop executes Successive
Halving with many configurations, but most of them will validate fewer folds. In
contrast, the last loop handles fewer configurations but will be validated on most
folds. This outer loop is in lines 4− 13.

Algorithm 6: Hyperband algorithm
Input: O: sequence of operators, Λ: hyperparameter spaces, f : objective

function, I: set of problem instances (or set of k folds), B: total
budget (maximum number of function calls), η: Proportion discard
ratio (η = 3 by default), R: maximum number of instances that
can be allocated to a configuration (R = |I|, by default).

1 N iter ← ⌊logη(R)⌋
2 Θ← ∅ // set of configurations
3 Bremain ← B
4 foreach r ∈ {N iter, N iter − 1, . . . , 0} do
5 nr ← ⌈B

R ×
ηr

r+1⌉ // number configurations to be sampled
6 if r > 0 then
7 Br ← B

N iter // total budget for the current round
8 else
9 Br ← Bremain // total budget for the last round

10 end
11 Θ← Θ ∪ SuccessiveHalving(O, Λ, f, I, Br, nr, η, R)

// SuccessiveHalving (Algorithm 5) is used as a
subroutine.

12 Bremain ← Bremain −Br // remaining budget
13 end
14 return p∗ ∈ Θ // return the best found configuration

Finally, both Hyperband and Successive Halving are considered fast random
search methods owing to the use of random sampling for generating configurations.
Therefore, they also inherited the major limitation of random search for proposing
new configurations but were not improved to take information accumulated over
the search history into account, such as Evolutionary Strategies [108], Bayesian
Optimization [159], [184], which can propose configurations based on the assessed
points so far. Instead of randomly proposing new configurations, BOHB [36]
and DACOpt [37] proposed to use combine a Bandit approach and Bayesian

59



3. An In-Depth Review of AutoML Optimization Approaches

Optimization to maximize expected improvement. BOHB replaces the random
sampling step in Successive Halving by TPE at the step after the first round. In
contrast, DACOpt uses Successive Halving as an outer loop that can suggest good
search areas for Bayesian optimization.

60



ch
ap

te
r

4
Setup of Benchmark Experiments

This chapter aims to evaluate the robustness and general applicability of optimiza-
tion approaches empirically. It is worth noting that there are two common methods
typically used to compare AutoML approaches. The first approach is designed to
compare the underlying optimizers in a predefined scenario to identify the most
effective optimization approach for the AutoML problem. This experimental setup
aims to determine which optimizer can achieve the highest performance for a given
dataset, using a similar experiment setting within a finite budget. AutoML tools
are complex systems that incorporate meta-learning, pruning, early stopping, and
evaluation strategies to prevent overfitting. Typically, these tools are evaluated
based on their performance with unseen data. As a result, benchmark experi-
ments include both of the above approaches. We introduce two sets of benchmark
experiments to investigate the performance of AutoML optimization algorithms,
which will be used in the later chapters. In order to increase comparability, we use
agreed-on datasets, which are often different data sets, and standardized search
spaces for benchmarking purposes [22], [185]. We conduct the experimental setup
with a total of 117 benchmark datasets on two scenarios with optimization of 2
operators (Section 4.2) and 6 operators (Section 4.3).

The first scenario focuses on addressing the common problem in real-world
applications known as class imbalance. It involves 44 well-known binary imbal-
anced datasets from the Keel collection [186]. These datasets represent real-world
scenarios marked by imbalanced class distributions and are used in many class
imbalanced studies [47], [74], [75], [187], [188]. In addition to the selected datasets,
carefully crafted search spaces have been designed, including a collection of 21
options of resampling techniques thoughtfully combined with 5 commonly used
classification algorithms customarily used to solve class imbalanced problems, each
characterized by a carefully selected range of hyperparameters. The geometric
mean is employed as the performance metric.
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4. Setup of Benchmark Experiments

Simultaneously, the second dataset, drawn from the OpenML repository [189],
comprises 73 well-known datasets in the AutoML community. These datasets
come highly recommended by recent studies [22] and encompass a broad spectrum
of problem domains and complexities, making them valuable for comparing the
efficiency of AutoML optimization approaches. The second search space is directly
inspired by the influential reference [22], aligning seamlessly with prior AutoML
research. It includes the same trusted datasets, algorithmic selections, and their
corresponding hyperparameter configurations, ensuring a consistent benchmarking
framework. Furthermore, the performance metric follows the recommendations
from the same reference, reinforcing the credibility and relevance of the benchmark
experiments in contemporary AutoML investigations. These benchmark datasets
and their associated search spaces offer a robust foundation for comparing AutoML
optimization approaches.

4.1 Benchmarking methodology

Both benchmark experiments introduced in this chapter focus on AutoML opti-
mization problems for classification problems. The problem of AutoML is precisely
defined in Chapter 1 (Section 1.1). It is worth mentioning that we will use
the established notations and equations in this chapter. As a recap, consider-
ing a classification problem with a dataset D = {(x1, y1), . . . , (xm, ym)}, where
x = {x1, . . . , xk} is a vector of k features x and y represents a label. The general
problem in this chapter is to find the best ML pipeline p that trains on dataset D
to produces ML model P. This model is designed to transform a set of features
x ∈ X into a target value y ∈ Y. All experiments were repeated 10 times with
different random seeds to account for the nondeterministic effects of the involved
algorithms. The performance of each ML pipeline configuration was determined at
i(th) fold of the k-fold cross-validation, denoted as:

f(p,D(i)
train,D(i)

valid) = 1
|D(i)

valid|

|D(i)
valid|∑

j=1
R(ŷj , yj) (4.1)

where R(ŷ, y) denotes a metric that returns the accuracy of the value ŷ predicted
by the pipeline compared with the real value y. Then, f denotes the performance
of pipeline configuration p when trained on training dataset Dtrain and evaluated
on validation dataset Dvalid. The ML pipeline optimization problem is then used
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to determine the best setting p∗ that maximizes the objective function f with a
given accuracy metric, for example, the geometric mean, accuracy rate.

p∗ = argmax 1
k

k∑
i=1

f
(

p,D(i)
train,D(i)

valid

)
(4.2)

More precisely, the two scenarios were adapted from the experimental setups
of [47] and [22]. Furthermore, we follow the parameter settings of those studies,
including datasets, search space, k-fold cross-validation setup, train/test split, and
performance metric – all parameter settings are summarized in Table 4.1:

1. The first experiment is limited to exactly 500 iterations1. Our initial ex-
periments show no significant improvements before hitting this iteration
limit. The performance of each configuration is determined using a 5-fold
cross-validation technique, calculated as:

∆p = 1
k

k∑
i=1

∆(i)
p (4.3)

where ∆(i)
p denotes the performance of p for a function call (see Figure 2.5) on

the ith data fold, i.e., the performance of the ML model that uses configuration
p trained and evaluated on the ith data fold D(i)

train and D(i)
valid, correspondingly.

Therefore, when an optimization process is over, the performance of the
underlying optimizer is the highest ∆∗

p, and the corresponding configuration
is considered the best p∗. Because each optimizer had 10 independent runs,
each optimizer had 10 configurations (they might be different) at the end of
the experiment.

2. The second experiment is limited to 1 hour1. The dataset is split into a train-
ing dataset D(70%)

train for the optimization process and a test dataset D(30%)
test for

calculating the performance of the optimizer when the optimization process
is over. In other words, only D(70%)

train is involved during the optimization pro-
cedure. First, we do a similar procedure on D(70%)

train as the first experiment to
determine the best configuration within the tuning budget of 1 hour, except
k becomes 4 instead of 5, as we strictly follow the experiment procedure
of [22] for a fair comparison with this study.

1This dual approach is chosen because optimization methods are commonly compared in terms
of function evaluations, whereas AutoML tools are typically assessed based on their performance
within a specified wall-time budget.
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4. Setup of Benchmark Experiments

Table 4.1: Parameter settings

1st 2nd

experiment experiment

Optimizer parameters
- Total budgets 500 1

(func. eval.) (hour)

Experimental parameters
- Search space 2 operators 6 operators
- Number of datasets 44 73
- Performance metric Geometric Accuracy rate

mean (GM) (Acc)
- k-folds cross validation 5 4

(for optimization)
- Train/test split No train: 70%

test: 30%
* train set uses for the optimization process

test set uses to compute final result once the optimization process is done
- Final results Average GM over Accuracy rate

k-folds of the unseen
test set

Once the best configuration p∗ is found, we manually build an ML model
configured by p∗. The performance of the underlying optimizer is then
the performance of that ML model when trained on D(70%)

train and tested on
D(30%)

test . Consequently, at the end of the experiment, each optimizer has 10
configurations as 10 runs. We note that each run starts from the train/test
split step with a different random seed.

4.2 First experiment: class-imbalanced classifica-
tion problems with two operators

This problem is based on a machine learning pipeline optimization problem with
two operators:

• A collection of 21 options of resampling techniques, i.e., 20 resampling
algorithms belong to 3 groups– under-resampling, over-resampling, and
combine-resampling, and a "no resampling" option.

• A set of 5 commonly used classification algorithms customarily used to solve
class imbalanced problems, i.e., Support Vector Machines (SVM), Random
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operators

Forest (RF), k-Nearest Neighbors (KNN), Decision Tree (DT) and Logistic
Regression (LR).

• A set of 44 binary class imbalanced datasets from Keel collection [186].

In this section, we briefly introduce the datasets (Section 4.2.1) and resampling
techniques (Section 4.2.2) used in this work. We then specify the experimental
procedure (Section 4.2.3). Finally, detailed information on the hyperparameters
used is provided in Section A.1.1 of the Appendix.

4.2.1 Datasets

For this study, 44 binary class imbalanced datasets from the Keel repository [186]
are used. Their Imbalance Ratio (IR), i.e., the ratio of the number of majority
class instances to that of minority class instances, ranges here from 1.82 to 129.44.
Figure 4.1 shows the 44 examined datasets presenting the imbalance ratio (#IR)
on the x-axis and the number of samples (#samples) on the y-axis; where the
color of the symbols denotes the number of attributes for each dataset. A full list
of datasets is provided in Section (A.2) of the appendix.

4.2.2 Resampling Algorithms

The resampling algorithms were designed to handle the class imbalance scenario by
producing balanced datasets. The resampling algorithms used in our experiments
can be arranged into three groups:

1. Over-resampling (7 algorithms): In the imbalanced learning domain, over-
resampling technique balances the class distribution via producing synthetic
minority samples. SMOTE is the most famous resampling technique and gen-
erates synthetic samples based on random interpolation between the chosen
minority samples and their k-nearest neighbors. Various SMOTE-based exten-
sions have been proposed to further improvement on the SMOTE basis. For
example, ADASYN [190] focused on the harder-to-learn samples and Border-
lineSMOTE [191] emphasized the borderline samples. Other over-resampling
approaches considered in this experiment are KMeansSMOTE [192], SMO-
TENC [17], SVMSMOTE [19] and RandomOverSampler [193].

2. Under-resampling (11 algorithms): In contrast, under-resampling approach
balances the class distribution by removing majority samples. A Tomek link
is defined as a pair of samples from different classes which are the nearest

65



4. Setup of Benchmark Experiments

102 103
100

101

102

3

4

5

7

8

9

10

13

18

19

#Instances

#I
m

ba
la

nc
e 

Ra
tio

 (I
R)

#Features

Figure 4.1: Overview of the characteristics of the datasets. The scatter plot shows
the Imbalance Ratio (#IR) and the number of samples (#Instances) for all 44
datasets on a logarithmic scale. The color indicates the number of attributes
(#Features).

neighbors for each other [194]. The undersampling method TomekLinks
removes the Tomek links in the dataset in order to produce a clear decision
boundary. OneSidedSelection [81] first removes noisy and borderline majority
samples, then removes the safe majority samples which have limited contribu-
tion for building the decision boundary with the CondensedNearestNeighbour
Rule [195]. Other under-resampling methods considered in this experiment are
CondensedNearestNeighbour, EditedNearestNeighbours [196], RepeatedEdit-
edNearestNeighbours [197], AllKNN [197], InstanceHardnessThreshold [198],
NearMiss [199], NeighbourhoodCleaningRule [200], ClusterCentroids [201],
and RandomUnderSampler [202].

3. Combine-resampling (2 algorithms): In order to balance the class distribu-
tion, the combine-resampling integrates both over-resampling and under-
resampling approaches, i.e., removing the majority samples and creating
synthetic minority samples. For example, SMOTETomek first oversamples
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4.2 First experiment: class-imbalanced classification problems with two
operators

Search space

LabelEncoder,
StandardScaler

Optimizer

Stratified k-Fold

Figure 4.2: Flowchart of the experimental setup. The process begins with data
pre-processing of the input dataset using LabelEncoder and StandardScaler. Next,
we apply the 5-fold cross-validation to overcome the overfitting problem. The
outcome is fed into the optimization phase, which has a budget of 500 function
evaluations. The optimizer handles the process by generating a new configuration
p ∈ M at each iteration. The objective function, in the rounded rectangle
consisting of resampling and classification algorithms, is then parameterized by p
and computes its performance, i.e., geometric mean, on {Dtrain,Dvalid}k

j=1. Lastly,
the performance ∆ ∈ R is returned to the optimizer as an extended input to
generate a new configuration.

the minority class using SMOTE, after which the Tomek links for the after-
sampled samples are removed. Similar to SMOTETL, SMOTEENN first
oversamples the minority class with SMOTE. Thereafter, the Wilson’s Edited
Nearest Neighbors (ENN) was used to remove the sample that has a different
class from at least two of its three nearest neighbors [203].

The setup also allows a “no resampling” option. The resampling algorithms
are implemented in the Python package imbalanced-learn2[48].

4.2.3 Implementation details

The overall structure of our implementation is summarized in Figure 4.2. The
process begins with data pre-processing of the input dataset. A 5-fold cross-
validation is then applied to overcome the overfitting problem. The outcome is fed
into the second phase, which consists of the resampling and classification processes.
The complete pseudo-code of this flowchart is elaborated in Algorithm 7.

Algorithm 7 consists of the following two steps:
2https://github.com/scikit-learn-contrib/imbalanced-learn (version 0.7.0)
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Algorithm 7: Experimental setup
Input: O = (Oresampler,Oclassifier): sequence of operators, Λ: hyperparameter

spaces, r: Random seed, k: Number of folds, B: Number of iterations
Output: p∗: the best configuration, ∆∗: GM achieved by p∗

Data: dataset D
1 D← DataPreProcess(D)

// DataPreProcess includes LabelEncoder, StandardScaler
2 {Dtrain,Dvalid}k

j=1 ← StratifiedK-fold(D, k, r)
3 Optimizer← Optimizer.init(O, Λ, f, r, {Dtrain,Dvalid}k

j=1) // initialize
optimizer

4 p∗, ∆∗ ← Optimizer.optimize()

• Preprocessing (line 1-2): We need to apply data preprocessing since machine
learning models require input and output data to be numeric. Thus, we used
the Label encoder3 to encode any categorical data to a number for the input
dataset. Then, we apply Standard Scaler3 on the encoded dataset to have
zero mean and a standard deviation of one (line 1). Next, stratified k-fold
cross-validation3 using k = 5, commonly used in the literature, is used.

• Hyperparameter optimization (line 3-4): All parameters of HPO are initialized
(line 3), taking values from the provided input including sequence of operators
O, hyperparameter spaces Λ, random seed r, number of iterations B, objective
function f and k folds of the examined dataset. The algorithm then optimizes
the problem until the number of function evaluations reaches 500.

The computation of the objective function is presented in Algorithm 8. It
elaborates further steps presented in the rounded rectangle in Figure 4.2. The input
is a parameter setting generated by the optimizer consisting of a random seed r and
ML pipeline configuration p. The configuration p consists of two parts: the choice
of resampler represented by pre0 , and classifier denoted by pcls0 , together with
their corresponding hyperparameter settings {pre1 , . . . , preq

} and {pcls1 , . . . , pclsp
}.

For a fold of the examined dataset, the computation of an evaluation has the
following steps:

• Step 1 (line 2-3): Resampler and classifier are initialized, using values of the
configuration p and random seed r.

3 Label encoder, Standard scaler and Stratified k-fold cross-validation are implemented in the
python library scikit-learn (version 0.23.2).
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Algorithm 8: Objective function
Input: Hyperparameter configuration p generated by the optimizer; r: Random

seed
// p= ( pre0 , pre1 , . . . , preq︸ ︷︷ ︸

Resampler

, pcls0 , pcls1 , . . . , pclsp︸ ︷︷ ︸
Classifier

)

Data: {Dtrain,Dvalid}k
j=1

1 foreach {D(j)
train,D(j)

valid} ∈ {Dtrain,Dvalid}k
j=1 do

// Build resampler and classifier models
2 Resampler← Parameterize Resampler pre0 with the hyperparameters

{pre1 , . . . , preq} and random seed r
3 Classifier← Parameterize Classifier pcls0 with the hyperparameters

pcls1 , . . . , pclsp and random seed r

4 D(j)
train ← Resampler(D(j)

train)
5 δj ← Classifier.Learn(D(j)

train).Evaluate(D(j)
valid)

6 return ∆← 1
k

∑k

j=1 δj

• Step 2 (line 4-5): The selected resampler is applied to the fold, followed by
the classifier, which is applied to the balanced result from the resampler.
The geometric mean δj for jth validation fold is then calculated (line 5).

The final value of the objective function, denoted as ∆, is an average geometric
mean of k folds (line 6).
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4.3 Second experiment: AutoML benchmark with
up to six operators

The second experiment is based on the search space used in the well-known AutoML
software, i.e., Auto-Sklearn [39], with up to 6 operators for classification prob-
lems on 73 AutoML benchmark datasets. In this section, we briefly introduce the
datasets (Section 4.3.1) and the experimental procedure (Section 4.3.2). Finally,
detailed information on the hyperparameters used is provided in Section A.3.2 of
the Appendix.

4.3.1 Datasets

This experiment is based on 73 datasets from OpenML [204] as described in
Figure 4.3. More precisely, all datasets from the AutoML benchmark [189]
suite and all datasets from the OpenML100 [205], OpenML-CC18 [206] suites
that require data preprocessing steps, for example, containing missing values, were
used. A full list of datasets is provided in Section A.3.1 in the Appendix. Finally,
categorical features of the selected datasets are transformed by one-hot encoding
implemented in Scikit-Learn [151], and datasets are shuffled to remove the
potential impacts of ordered data.

4.3.2 Implementation details

The overall structure of our AutoML experiment is summarized in Figure 4.4:

1. The process begins by downloading the corresponding dataset from OpenML
[204], [207] of the OpenML #Task ID (input by user).

2. The necessary metadata is extracted from the input dataset to generate a
suitable search space χ by the Auto-Sklearn search space generator. It is
worth noting that this search space generator is based on two aspects: the
machine learning problem, that is, binary classification, multiclass classifica-
tion, multilabel classification, regression, multioutput regression, and data
representation, that is, either dense or sparse representation. In practice, the
generated search space for a single ML problem is large and commonly has up
to 153 hyperparameters and six operators, i.e., categorical encoder, numerical
transformer, imputation transformer, re-scaling, feature pre-processor, and
learning operator.
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Figure 4.3: Overview of the characteristics of 73 AutoML benchmark datasets. The
scatter plot shows the number of features (#Features) and instances (#Instances)
on a logarithmic scale. The symbols indicate the number of classes and the
color indicates the number of samples that contain missing values (#Incomplete
instances).

3. The search space χ is converted to our search space M of the corresponding
optimizer. Meanwhile, the input dataset is preprocessed and split into two
independent sets Dtrain and Dtest, with the original data preprocessing and
train/test split techniques used in [22], i.e., 30% for testing and the remaining
for training. Next, 4-fold cross-validation was applied to Dtrain to avoid
overfitting. The later optimization phase takes k-folds and search space M.
For a fair comparison, the optimization time is only counted after this step.

4. The optimizer optimizes the given problem until the wall-time reaches 1 hour
and returns the best-found pipeline setting p∗, consisting of a sequence of
operators and their optimized hyperparameter settings.

5. Once the optimization process is done, the best-found pipeline setting p∗ is
used to initialize the corresponding machine learning model. Subsequently, it
learns on Dtrain and predicts on Dtest. Lastly, the test performance measure
on Dtest was calculated.
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Figure 4.4: Flowchart of the second experimental setup.

4.3.3 Parameter setting

For a fair comparison, we used computational resources similar to those in [22].
For clarification, all experiments were conducted using our available computational
clusters, namely The Distributed ASCI Supercomputer 5 (DAS5) [208], where each
computation node (32 cores) runs 4 experiments in parallel, that is, fixing 8 cores
for one experiment. All experiments were repeated 10 times with different random
seeds, limited by a soft limit of 1 hour4 and a hard-limit of 1.25 hours5. The
performance evaluation of a single configuration is limited to 10 min with 4-fold
cross-validation on the training data, that is, the evaluation of a fold is allowed to
take up to 150s. The evaluation of a configuration is aborted and returns zero if
any fold has an error, for example, infeasible configuration and timeout.

4Soft-limit: the timeout’ parameter set to the optimizer.
5Hard-limit: The optimization process will be manually aborted after 1.25 hours for any

unexpected technical reasons. Thus, the configuration that achieves the highest performance is
known as the best configuration for the run.
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5
An Empirical Investigation Comparing CASH
Optimization Approaches for Class Imbalance
Problems

This imbalanced classification problem is relevant to both academic and industrial
applications. The task of finding the best machine-learning model to use for a
specific imbalanced dataset is complicated because of the large number of existing
algorithms, each with its own hyperparameters. In this chapter, we study ML
pipeline optimization in detail in the class imbalance domain, where the best
combination of resampling techniques and classification algorithms is searched for,
together with their optimized hyperparameters. The Combined Algorithm Selec-
tion and Hyperparameter Optimization (CASH) has been introduced to solve ML
pipeline optimization problem by converting the problem into a hyperparameter
optimization problem. We experimented with the first experiment (see Section 4.2),
i.e., a search space of 5 classification algorithms, 21 resampling approaches and
64 relevant hyperparameters. Moreover, we investigated the performance of two
well-known optimization approaches: random search and the Tree Parzen Esti-
mator approach, which is a type of Bayesian optimization. For comparison, we
also performed a grid search for all combinations of resampling techniques and
classification algorithms with their default hyperparameters. The remainder of
this chapter is organized as follows. First, Section 5.1 shows the motivation and
provides a brief introduction to our work. In Section 5.2, the relevant background
knowledge on imbalance classification and hyperparameter optimization are pro-
vided, and Section 5.3 outlines the experimental setup. Experimental results are
discussed in Section 5.4. Finally, the chapter is concluded, and further work is
outlined in Section 5.5.
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5. An Empirical Investigation Comparing CASH Optimization
Approaches for Class Imbalance Problems

5.1 Introduction

The imbalanced classification problem has garnered increasing attention from both
academic and industrial fields. Technically, any dataset with an unequal class
distribution is imbalanced. However, only datasets with a significantly skewed
distribution are traditionally regarded as imbalanced in the learning domain [209].
Academic researchers aim to propose novel algorithms to handle imbalanced
classification problems in different scenarios, for example, resampling techniques
and algorithm-level approaches, whereas industrial researchers focus on improving
imbalanced classification performances for specific real-life applications, such as
fault diagnosis or anomaly detection [210], [211].

The combination of resampling techniques and classification algorithms is the
most commonly used approach for handling imbalanced data [74], [212]. This
leads to a challenge for an imbalanced classification problem on how to choose
the best model (i.e., a combination of a resampling method) and a classifier (the
so-called model selection problem or algorithm selection problem [213]) and their
optimized hyperparameters [74] to achieve the best performance. This is a case of
ML pipeline optimization where two tasks have to be considered in this chapter:
model selection (MS) and hyperparameter optimization (HPO). Typically, these
tasks are addressed separately and sequentially [14], [46], where the practitioner
can choose to handle either task first. Generally, practitioners proceed by tuning
the hyperparameters for each modeling algorithm separately and then choosing
the best model. However, this approach is considerably more expensive due to a
high number of possible combination operations.

Alternatively, the practitioner can select a suitable model by training all models
with their default hyperparameters or based on experience, and then tune the
hyperparameters only for the best model. This approach might get stuck in a local
optimum of the model that was initially chosen based on the default hyperparameter
setting. On the other hand, instead of sequentially solving these problems, they
can be combined into a single problem and solved simultaneously. This approach is
commonly referred to as the Combined Algorithm Selection and Hyperparameter
Optimization (CASH) [40] or Full Model Selection (FMS) [44] approach.

Approaches for tackling the CASH problem have been widely proposed in
the machine learning domain, particularly in the context of automated machine
learning (AutoML), such as, Auto-Weka [40], [41] and Auto-Sklearn [39],
[41], TPOT [43], HyperOpt-Sklearn [42]. In addition, [14] demonstrated that
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the CASH approach is competitive with the sequential approach and requires less
computational effort. However, the CASH approach has not yet been studied in
detail in the context of learning from unbalanced data.

Hence, in this study, we introduce CASH in the context of optimizing the
machine learning pipeline of combined classification algorithms and resampling
techniques for the class imbalance problem. We are particularly interested in
studying which optimization approach for handling the CASH problem yields the
best classification performance.

In the first experiment (see Section 4.2), we use two well-known optimization
approaches – Random search and Bayesian optimization. Furthermore, we experi-
ment with dropping the hyperparameter tuning and carrying out only the model
selection (MS) part, as sometimes done by practitioners. Our results suggest the
inferiority of such an approach and demonstrate that applying CASH optimization
yields better performance, for all test cases considered. Moreover, we observe that
the Bayesian optimization approach produces better results than Random search.
Hence, we recommend using this approach for handling the CASH problem for the
class-imbalanced classification problem.

5.2 Related Works

In this section, we first provide a brief introduction to imbalanced classification
(Section 5.2.1) and the CASH problem (Section 5.2.2) studied in this chapter.

5.2.1 Imbalanced Classification

The main problem in imbalanced classification is that the number of samples of
one class is much lower than that of other classes [209]. Herein, the one or more
classes being underrepresented are called minority class(es) and the other class(es)
are called majority classes.

It has been shown that both the data-level (resampling) approaches and
algorithm-level approaches are efficient in handling class-imbalance problems [214].
The data-level approaches focus on producing balanced datasets based on the
unbalanced original data, whereas the algorithmic-level approaches concentrate
on adjusting classification algorithms to make them appropriate for the imbal-
anced datasets. In the imbalanced learning domain, resampling techniques can be
further divided into three groups: under-resampling, over-resampling, and combine-
resampling. Under-resampling balances the class distribution by removing majority
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samples, for example, the TomekLinks [194], while over-resampling balances the
class distribution via producing synthetic minority samples, e.g., SMOTE [17].
The combine-resampling integrates both removing the majority samples and cre-
ating synthetic minority samples in order to balance the class distribution, e.g.,
SMOTETomek [18].

Owing to recent developments in data storage and management, it has become
possible for industry and engineering practitioners to collect a large amount of
data in order to extract knowledge and acquire hidden insights. An application
example may be illustrated in the field of computational design optimization [215],
where product parameters are modified to generate digital prototypes and the
performance is usually evaluated through numerical simulations which often require
minutes to hours of computation time. Here, some parameter variations (minority
number of designs) would result in effective and producible geometric shapes, but
the given constraints are violated in the final step of optimization. In this case,
applying proper imbalanced classification algorithms to the design parameters may
save computation time.

The family of evolutionary under-resampling techniques (EUS) has proven to
be powerful in handling instance reduction [216]. An EUS algorithm attempts to
optimize the selected samples in the majority class by performing a binary search
guided by an evolutionary algorithm [108], [110]. Results of the EUS and the most
recent research studies in this family consist of EUS-Windowing (EUSW) [217],
clustering-based surrogate model for EUS (EUSC) [218] and hybrid surrogate
model for EUS (EUSHC) [187] are also compared with our approach in the followed
section.

In the class imbalance domain, it is widely known that accuracy is a deceptive
estimate of performance [74], [219]. Instead of accuracy, other metrics such as
the area under the receiver operating characteristic (ROC) curve, F-measure, or
geometric mean (GM) are commonly used to measure performance [220]. For
comparison with previous studies [187], [218], we use GM as the performance
evaluation metric (see Section 2.1.2.2).

5.2.2 The Combined Algorithm Selection and Hyperparam-
eter Optimization (CASH) Approach

The Combined Algorithm Selection and Hyperparameter Optimization (CASH)
[40] is a commonly used approach for solving the ML pipeline optimization problem
by converting it into a hyperparameter optimization (HPO) problem. As we delve
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into the ongoing discussion, it is essential to reference Chapter 1 (Section 1.1.2),
where the CASH is extensively discussed. Throughout the ongoing discussion,
we consistently employ the notations and problem definition introduced in that
section for a comprehensive understanding. In the context of optimization, HPO
is generally viewed as a black-box optimization problem, which aims at finding
the global optimum λ∗ of the hyperparameters, with respect to a real-valued
loss function f . As a reminder, the CASH approach incorporates an additional
hyperparameter λ0 to model the choice of algorithms for each operator.

As mentioned in Section 5.1, we use a combination of resampling and classifica-
tion algorithms to handle the class-imbalanced problem. Hence, the search space
includes a set of resampling techniques, a set of classification algorithms, and their
hyperparameters. Let λ0

res = {A1
res, . . . ,Anr

res,∅} and λ0
cls = {A1

cls, . . . ,Anc

cls}
denote sets of possible choice of resampling and classification algorithms, cor-
respondingly. In practice, the use of a resampling technique is optional, we
hence add a choice of not using any resampler, i.e., represented by ∅. Let
Λres = λ0

res ∪ Λ1
res ∪ . . . ∪ Λnr

res and Λcls = λ0
cls ∪ Λ1

cls ∪ . . . ∪ Λnc

cls represent the
hyperparameter spaces of resampling and classification operators. Hence, the
entire search space for this particular problem is denoted by Λ, which includes Λres

and Λcls. The ML pipeline optimization problem becomes the HPO maximizing
problem:

λ∗ = arg max
λ∈Λ

f(λ) , (5.1)

Note that in practice, most HPO methods can handle the CASH problem by
modeling the choice of algorithms as a categorical hyperparameter. Each algorithm
is mapped to its locally dependent hyperparameters by the so-called conditional
parameter (see hierarchical hyperparameter in Table 7.1).

The HPO algorithms chosen in this study include Grid Search (see Section 3.1.1),
Random Search (see Section 3.1.2) and a Bayesian optimization variant, namely
Tree Parzen Estimators approach (TPE) (see Section 3.1.3).

5.3 Experimental Setup

This study reports and discusses the first experiment that has been introduced
in detail in Section 4.2 including the search space, datasets and ML algorithms.
Therefore, we only provide some additional information.
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Random search and Bayesian optimization algorithms implemented in the
Python package HyperOpt1 are used as HPO algorithms. Based on the initial
experiments, we set the number of iterations of HPO to 500, after which the
algorithms have shown no significant improvements.

Moreover, to study the effectiveness of the HPO algorithms, we evaluated all
possible combinations of classification and resampling algorithms with their default
hyperparameter settings, i.e., dropping hyperparameter tuning and carrying out
only the model selection part, as sometimes done by practitioners. For each dataset,
we reported the combination with the highest GM value. The considered search
space includes 5 classification algorithms and 21 resampling techniques, resulting in
5× 21 = 105 combinations. Evaluating these combinations individually is referred
to as “Grid-Def” here (grid search HPO algorithm).

The experiment scripts for the reproducibility of the reported results are
provided in a git-repository2.

5.4 Results and discussion

In this section, we report the results and discuss our insights. The experimental
results are summarized in Table 5.1 to illustrate the performance differences
between the three integrated optimization approaches used, i.e., TPE, Random
search (RS) and Grid-Def (Grid), and to compare them with the state-of-the-art
Evolutionary under-resampling (EUS) methods [218]. In this table, our results
are presented in the corresponding columns on the left side (not shaded) and
the results from [218] are presented on the right side (grey shaded) for EUS,
EUSW, EUSC and EUSHC. In both groups, the highest performance for each
dataset is highlighted in bold font. In our experimental results, the methods that
perform significantly worse than the best according to the Wilcoxon signed-rank
test with α = 0.05 are underlined. A value labeled with ∗ indicates that our results
outperform those of [218] for the corresponding dataset. Additionally, an extra
column to the right summarizes the method that achieved the highest GM for the
corresponding dataset.

The results allow the following insights:

• HPO approaches exhibit better performance compared to the Grid-Def
approach which uses static default hyperparameters. Moreover, according

1https://github.com/hyperopt/hyperopt (version 0.2.5).
2https://github.com/ECOLE-ITN/NguyenDSAA2021
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Table 5.1: Average geometric mean (rounded to 4 decimals) over 10 repetitions for
the 44 datasets, ordered by increasing IR value.

Dataset #IR Our experimental Evolutionary algorithms Overall
results [218] Winner

TPE RS Grid EUS EUSW EUSC EUSHC
glass1 1.82 ∗0.7989 0.7763 0.7793 0.7773 0.7010 0.7941 0.7367 TPE
ecoli-0_vs_1 1.86 ∗0.9864 ∗0.9864 ∗0.9864 0.9583 0.9312 0.9581 0.9615 TPE | RS | Grid
wisconsin 1.86 ∗0.9814 ∗0.9807 ∗0.9788 0.9690 0.9652 0.9600 0.9590 TPE
pima 1.87 ∗0.7711 ∗0.7651 ∗0.7599 0.6943 0.6749 0.6957 0.7145 TPE
iris0 2.00 1 1 1 1 1 1 1 -
glass0 2.06 ∗0.8749 ∗0.8588 ∗0.8719 0.8009 0.6176 0.8047 0.6595 TPE
yeast1 2.46 ∗0.7324 ∗0.7304 ∗0.7183 0.6533 0.6501 0.6600 0.6600 TPE
haberman 2.78 ∗0.7025 ∗0.6926 ∗0.6678 0.5475 0.5635 0.5521 0.5497 TPE
vehicle2 2.88 ∗0.9915 ∗0.9874 ∗0.9895 0.9259 0.9175 0.9265 0.9173 TPE
vehicle1 2.90 ∗0.8658 ∗0.8429 ∗0.8333 0.6729 0.6624 0.6512 0.6926 TPE
vehicle3 2.99 ∗0.8482 ∗0.8231 ∗0.8108 0.7280 0.7142 0.7165 0.7204 TPE
glass-0-1-2-3 3.20 0.9559 0.9505 0.9483 0.9525 0.9385 0.9647 0.9546 EUSC
_vs_4-5-6
vehicle0 3.25 ∗0.9863 ∗0.9809 ∗0.9766 0.9164 0.9027 0.9103 0.9016 TPE
ecoli1 3.36 ∗0.9047 ∗0.8966 ∗0.8999 0.8634 0.8306 0.8554 0.8424 TPE
new-thyroid1 5.14 ∗0.9969 ∗0.9966 ∗0.9944 0.9882 0.9809 0.9859 0.9653 TPE
new-thyroid2 5.14 ∗0.9978 ∗0.9966 ∗0.9910 0.9865 0.9773 0.9831 0.9746 TPE
ecoli2 5.46 ∗0.9361 ∗0.9337 ∗0.9361 0.9000 0.8663 0.9034 0.8772 TPE | Grid
segment0 6.02 ∗0.9993 ∗0.9990 ∗0.9965 0.9881 0.9870 0.9876 0.9858 TPE
glass6 6.38 ∗0.9524 ∗0.9516 ∗0.9381 0.8889 0.9071 0.9156 0.9054 TPE
yeast3 8.10 ∗0.9428 ∗0.9395 ∗0.9290 0.8728 0.8740 0.8752 0.8550 TPE
ecoli3 8.60 ∗0.9061 ∗0.9023 ∗0.9044 0.8348 0.8153 0.8500 0.8097 TPE
page-blocks0 8.79 ∗0.9456 ∗0.9422 ∗0.9401 0.9117 0.9038 0.9096 0.9085 TPE
yeast-2_vs_4 9.08 ∗0.9559 ∗0.9474 ∗0.9401 0.9042 0.8774 0.9156 0.8930 TPE
yeast-0-5-6 9.35 ∗0.8212 ∗0.8063 ∗0.7938 0.7685 0.7663 0.7901 0.7535 TPE
-7-9_vs_4
vowel0 9.98 0.9581 0.9483 0.9427 0.9897 0.9719 0.9877 0.9831 EUS
glass-0-1-6_vs_2 10.29 ∗0.8498 ∗0.8216 ∗0.7904 0.6383 0.6164 0.6651 0.5815 TPE
glass2 11.59 ∗0.8516 ∗0.8271 ∗0.7903 0.7194 0.6525 0.7262 0.6173 TPE
shuttle-c0-vs-c4 13.87 ∗1 ∗1 ∗1 0.9960 0.9968 0.9960 0.9960 TPE | RS | Grid
yeast-1_vs_7 14.30 ∗0.8028 ∗0.7926 ∗0.7979 0.7176 0.7079 0.7068 0.6669 TPE
glass4 15.46 ∗0.9323 ∗0.9244 ∗0.9318 0.8700 0.8513 0.8613 0.8531 TPE
ecoli4 15.80 ∗0.9727 0.9551 0.9415 0.8984 0.9362 0.8857 0.9645 TPE
page-blocks 15.86 ∗0.9925 ∗0.9877 ∗0.9884 0.9674 0.9399 0.9471 0.9294 TPE
-1-3_vs_4
abalone9-18 16.40 ∗0.8889 ∗0.8752 ∗0.8536 0.7269 0.6772 0.7224 0.6559 TPE
glass-0-1-6_vs_5 19.44 ∗0.9567 ∗0.9530 0.9304 0.9214 0.9151 0.9160 0.9501 TPE
shuttle-c2-vs-c4 20.50 ∗1 ∗1 ∗1 0.9577 0.6449 0.9414 0.7365 TPE | RS | Grid
yeast-1-4 22.10 ∗0.7035 ∗0.6874 ∗0.6650 0.6569 0.6088 0.6604 0.6149 TPE
-5-8_vs_7
glass5 22.78 ∗0.9637 0.9555 0.9438 0.8105 0.9076 0.9600 0.9103 TPE
yeast-2_vs_8 23.10 ∗0.8231 ∗0.8031 ∗0.7945 0.7931 0.7496 0.7656 0.7668 TPE
yeast4 28.10 ∗0.8803 ∗0.8664 ∗0.8585 0.8050 0.7799 0.8288 0.7970 TPE
yeast-1-2 30.57 ∗0.7459 ∗0.7402 ∗0.7289 0.6721 0.6078 0.6704 0.6500 TPE
-8-9_vs_7
yeast5 32.73 ∗0.9803 ∗0.9790 ∗0.9788 0.9634 0.9494 0.9455 0.9653 TPE
ecoli-0-1 39.14 ∗0.9095 ∗0.8770 ∗0.9091 0.6700 0.7048 0.6625 0.6865 TPE
-3-7_vs_2-6
yeast6 41.40 ∗0.8972 ∗0.8905 ∗0.8840 0.8357 0.8080 0.8034 0.8031 TPE
abalone19 129.44 ∗0.7967 ∗0.7942 ∗0.7579 0.6258 0.6061 0.7214 0.6556 TPE
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to the results of the Wilcoxon signed-rank test, TPE was always the best
method: it significantly outperforms the Grid-Def in 32/44 datasets, whereas
it significantly outperforms RS in 26/44 tested cases

• Overall, TPE shows the highest GM for most of the datasets, 41/44. Other
compared methods win on different datasets, for example, EUSC and EUS
achieve the highest GM on “glass-0-1-2-3_vs_4-5-6” and “vowel0”, respec-
tively. All approaches obtained the maximum GM on dataset “iris0”.

• Furthermore, based on our experimental results, we conclude that TPE wins
over the methods from [218] on 41/44 datasets, RS – on 38/44 datasets and
Grid-Def – on 37/44 datasets. This is surprising because the number of
function evaluations used in our experiment is much smaller than in [218]: 500
function evaluations for TPE and RS, 105 function evaluations for Grid-Def vs
10.000 function evaluations for each method in [218]. A possible explanation
for this might be that [218] employed a simple KNN rule with k = 1 as the
mere classifier, whereas more complicated classification algorithms were used
in our study. More precisely, according to our experimental results, the tuned
KNN wins only in 11% (TPE), 13% (RS), and 9% (Grid-Def) of all cases.

To investigate the tuning behavior of the methods, we plot single runs of TPE and
RS on the dataset “abalone9-18” in Figure 5.1. The scatter plots on the left show
the observed GM values over 500 function evaluations. The six stacked histogram
plots to the right describe the distribution of the observed values, in which the first
plot shows all observed values, and the five last plots indicate the distributions for
each of the classification algorithms, such as SVM, RF, KNN, LR and DT. We
conclude that:

• Configurations generated by TPE can avoid infeasible parameters better
than RS3. In this run, the number of errors occurring in the TPE and RS
runs are 14 and 22, respectively. Based on all datasets and repetitions, the
number of infeasible configurations encountered by TPE and RS are 4.4%
and 5.9%, respectively.

• Apart from zero values, the GM values of TPE are mostly in the range from
0.8 to 0.9, while the GM of RS are distributed in the range from 0.6 to 0.7.

3Evaluations with infeasible combinations of parameters are marked in the figure as black
dashes with GM = 0.
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5.5 Conclusions and Future Work

Based on the highest results obtained by TPE, Figure 5.2 shows the final combi-
nation of choices of classification algorithms and resampling approaches once the
optimization run is over. Clearly, no dominant algorithm exists over many datasets
but different datasets benefit from different classification algorithms. For example,
“glass0”, “yeast1”, “yeast3”, “haberman”, “vehicle2”, “ecoli1” and “page-blocks0”
achieve the best results with SVM, “vehicle0”, “vehicle1”, “vehicle3” with KNN,
whereas “abalone19” always results in LR.

Besides, 98% of runs yield the best performance by using a resampling tech-
nique. Particularly, over-resampling, under-resampling and combine-resampling
obtain 182, 199, 50 wins over 44× 10 = 440 runs. Additionally, there is no classi-
fier/resampler combination providing the best classification performance over all
datasets. Specifically, RF and SVM obtain 206 and 84 wins, while other algorithms
(LR, KNN, DT) find the best performance in 73, 48 and 29 runs.

5.5 Conclusions and Future Work

In this study, we applied a special type of Bayesian Optimization approach,
the Tree Parzen Estimators to optimize the combined algorithm selection and
hyperparameter optimization problem to improve the performance of classification
algorithms for class imbalance problems. In other words, we propose an automated
CASH optimization approach for imbalanced classification problems. Our approach
automatically selects the best set of algorithms, i.e., the resampling technique and
classification algorithm, together with their optimized hyperparameter settings for
an arbitrary imbalanced dataset. The numeric results show significantly improved
performance with respect to the state-of-the-art techniques in the imbalanced
classification domain over 44 examined datasets.

Four main conclusions can be drawn from our experimental results:

1. Use of HPO clearly improves the classification performance compared to
using static default parameters.

2. TPE outperforms the Random search on 91% of the tested datasets, while
equal performance is found on the remaining cases.

3. Overall, the TPE approach produces the best results among other competitors
in various scenarios. Hence, we recommend using TPE for handling CASH
optimization in imbalanced classification problems.
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4. Another finding was that 98% of runs yield the best performance with the
help of resampling techniques. Thus we recommend to use resampling to
handle class imbalanced problems.

There are several interesting research directions for extending this work. First,
we intend to apply other Bayesian optimization variants such as SMAC, SPO, and
MIPEGO, to study the performance of variants in this domain. Second, the scope
of this study was limited in terms of classification problems; therefore, our future
studies might extend the research for regression problems. Third, in addition to
GM, other commonly used performance evaluation metrics in this domain will be
investigated in our future work, including the Area Under the ROC Curve (AUC),
F-measure, and recall. Fourth, the penalty-based methods, e.g., penalized-SVM,
themselves can efficiently handle imbalanced datasets in several cases. Thus, we
plan to study their effectiveness in the context of CASH optimization. Additionally,
instead of applying hyperparameter tuning on the level of an individual dataset, we
are interested in studying the behavior of HPO approaches when tuning for a set
of datasets. Finally, besides Bayesian optimization, we shall extend our research
with other state-of-the-art HPO approaches such as iRace [33] and Hyperband [35]
for the class-imbalanced problem.
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On the use of AutoML optimization in real-
world applications

Accurate classification of multiple classes is crucial in industrial applications,
especially in identifying surface defects in the steel industry. Quality of surface of
steel products is among the most significant contributors to their overall quality.
Therefore, it is of vital importance to detect and classify various surface defects
correctly. While established quality control measures implemented at various
production stages successfully warrant against the high number of defects, they
complicate further defect detection due to the high imbalance in the occurrence
of defects vs defect-free cases. The situation is further complicated by a wide
range of possible types of surface defects, with a heavily imbalanced distribution
among them. In addition, setting appropriate hyperparameters of new classification
methods to obtain a stable and accurate classification performance is far from
straightforward given their strong interdependence. A hyperparameter optimizer is
typically applied to identify the best Machine Learning (ML) model by evaluating
its performance based on standard metrics such as accuracy rate, recall, precision,
etc. However, some classes are more important in many real-world applications.
Thus, to accommodate the latter, we propose an approach for penalizing existing
classification performance metrics with a user-defined class importance matrix. We
demonstrate the proposed approach on a highly imbalanced instance of multi-class
classification of steel surface defects. We solve the Combined Algorithm Selection
and hyperparameter optimization (CASH) problem to identify the best ML model.
Such optimization is done by means of a competitive Bayesian optimization method
in a search space of 21 resampling techniques and 5 classification algorithms (and
their corresponding hyperparameter settings) for three commonly used multiple-
class classification techniques (Multi-class direct classification, One vs. One and
One vs. Rest). The results of our experiments show that the proposed approach
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improves the performance significantly on the considered classification problem
compared to the current classification system at TATA Steel (TATA).

The remainder of this chapter is organized as follows. The motivation, intro-
duction and problem formulation are provided in Section 6.1. In Section 6.2, the
relevant background knowledge on imbalance classification and hyperparameter
optimization are provided, and Section 6.3 lays out the experimental setup. Addi-
tionally, experimental results are discussed in Section 6.3.3. Finally, the chapter is
concluded in Section 6.4.

6.1 Introduction

The appearance of surface of a steel product is one of the significant quality
aspects [49]. While established quality control measures already implemented at
various production stages successfully warrant against the high number of defects
in the resulting products, they complicate further defect detection due to the high
imbalance in the occurrence of defects vs defect-free cases. The situation is further
complicated by a wide range of different types of surface defects, with a heavily
imbalanced distribution among these defect kinds. Additionally, setting appropriate
hyperparameters of new classifiers to obtain a stable and accurate classification
performance is far from straightforward given their strong interdependence. To
maximize the classification performance, practitioners need to find a fine-tuned ML
pipeline out of an extensive portfolio made up of a range of suitable algorithms with
their complex hyperparameter settings. The practical surface defects classification
problem faces two main challenges: (i) unequal/imbalanced distribution of defects
across classes, (ii) unequal importance between classes (some imperfections are
more severe than others).

The imbalanced classification problem can be solved by applying a well-
performing combination of a resampling technique and a classification algorithm [74].
Finding such a well-performing combination of methods and the setting of their hy-
perparameters falls within the problem domain Combined Algorithm Selection and
hyperparameter (CASH) optimization problems which can be solved effectively [47]
via the Bayesian optimization [153].

Inside the optimization, the assessment method is critical in evaluating clas-
sification performance to choose the suitable classification model for the given
problem. The performance metrics usually assume that all classes are equally
important. However, users might want to stipulate preferences over classes. To
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illustrate this, Figs. 6.1a, 6.1b show two classification outcomes that are indistin-
guishable from standard performance metrics. In practice, the practitioner will
prefer the first outcome if class 2 is more important than class 1. Therefore,
the existing classification performance metrics are not able to evaluate and rank ML
models for unequal class importance values. Consequently, the automatic machine
learning approaches (such as Hyperparameter Optimization, CASH optimization,
and AutoML optimization), which are mainly focused on selecting the ML model
with the best predictive performance, are not able to solve the problem efficiently
in case of unequal class importance values.

To solve that unequal importance classes problem, the assessment method has
to be adjusted to reward correct predictions of important classes while penalizing
incorrect predictions of those classes. Since almost all performance metrics are
built on the confusion metric [221], we propose a novel approach that adjusts the
confusion matrix by combining the confusion matrix with a user-defined penalty
matrix (see Figure 6.1c), which contains different weights for predictions over
classes. The general performance metric is then computed based on the penalized
confusion matrix, potentially helping the optimizer solve the unequal importance
classes efficiently.

Based on the formulation of the target objective function (Equation 1.2) given in
Section 1.1, let α(ŷi, yi) denote a penalty value of ŷi and yi, that can be extracted
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Figure 6.1: Examples of two confusion matrices with misclassifications in class 0
(left and middle figures, where true and predicted labels are shown vertically and
horizontally, respectively). A corresponding example of proposed penalty matrix
(right figure) indicating that class 2 is more important than class 0 and class
1. Numbers in the penalty matrix indicate the misclassification severity weights
per predicted-true label pair (e.g. a sample of class 2 misclassified as class 0
will be multiplied by 3).
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from the pre-defined penalty matrix PM × M of M classes (see Figure 6.1c for
illustration, for example, α(0, 2) = 3). Adding α(ŷi, yi) to the Equation 1.2, to
punish wrong or reward correct prediction on class i. Then, the Equation 1.2 to
compute the overall performance of the ML model p when trained on Dtrain of n

samples and evaluated on Dvalid of (m− n) samples, can be adapted to:

f(p,Dtrain,Dvalid, PM × M) = 1
m− n

m−n∑
j=1

R(ŷn+j , yn+j , α(ŷn+j , yn+j)) (6.1)

where ŷ is the predicted class, y is the true class and R indicates a measure metric.
Referring back to the discussion on CASH approach in Chapter 1 (Section 1.1.2)

and search space for class imbalance problem in Chapter 5 (Section 5.2.2), the ML
model p is structured as p = {(Ares, λres,Acls, λcls)|Ares ∈ λ0

res,Acls ∈ λ0
cls, λres ∈

{Λ1
res, . . . , Λnr

res}, λcls ∈ {Λ1
cls, . . . , Λnc

cls}}. Hence, the CASH optimization can be
defined as:

p∗ = arg max
p∈Λ

f(p,Dtrain,Dvalid, PM × M) , (6.2)

where f(p,Dtrain,Dvalid, PM × M) denotes the penalized performance accuracy of
the ML pipeline p when trained on Dtrain, evaluated on Dvalid, and penalized by
the penalty matrix PM × M.

6.2 Background

In this section, we review some background knowledge. We first provide a brief
introduction of multi-class classification approaches (Section 6.2.1), the commonly
used performance metric in the field of multi-classes imbalanced learning (Sec-
tion 6.2.2) is presented.

6.2.1 Multi-Class Imbalance Learning

Most studies on the classification problem are devoted to the two-class classification
scenario. However, a significant number of real-world applications contain more
than two classes, for instance, image classification, protein classification, and medi-
cal diagnosis. The increasing number of classes poses new challenges for learning
from multi-class imbalanced problems. First of all, more decision boundaries need
to be defined during the multi-class classification process. Another challenging
issue is that the imbalance among classes becomes more complicated as there
will be multi-majority and multi-minority classes [222]. The data complexity, an
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important cause of the degradation in binary case [220], is more sophisticated.
Several solutions designed for imbalanced binary classification are extended to
multi-class scenarios.

Class decomposition is an intuitive method to deal with multi-class classification
problems [223]. After transforming the multi-class problem into multiple subsets,
the existing approaches for handling the binary scenarios can be applied directly.
Unlike the class decomposition approaches, multi-class direct classification [224]
aims to solve the multi-class problem directly without reducing the problem to
multiple binary classification tasks. This section first reviews two commonly
used decomposition strategies: One vs. Rest (OvR) and One vs. One (OvO), see
Sections 6.2.1.1and 6.2.1.2, respectively. Lastly, the multi-class direct classification
method is given in Section 6.2.1.3.

6.2.1.1 One vs. Rest approach

Suppose there are M classes in the multi-class imbalanced problem. In the OvR
decomposition, each of the M classes is trained against the remaining (M−1)
classes [225]. In other words, an M-class classification problem is decomposed into
M binary classification problems. When predicting the final label for a test sample,
each binary classifier provides a prediction with confidence, and the prediction with
the highest confidence is usually determined as the final label for this test sample.
While OvR provides the convenience of treating multi-class scenarios as binary
scenarios, it also brings further imbalance into the binary subsets. In addition,
all the individual classifiers are trained with the complete dataset, ensuring no
information is dropped in the training procedure. However, this also preserves
the overlapping regions, a factor leading to the degradation of the classification
performance [220].

6.2.1.2 One vs. One approach

In the OvO decomposition, each of the M classes is trained against one of the
remaining classes [226]. Thus, an M-class classification problem is decomposed into
M(M−1)/2 binary problems, i.e. M(M−1)/2 classifiers will be built. The final
predictions are usually determined via the majority voting among the M(M−1)/2
classifiers. Each binary classifier is only trained with pairs of classes; this makes
the decision boundaries much simpler and properly addresses the overlapping
issue. However, when pairing the classes, the number of binary classifiers increases
quadratically in M [227]. The training time can be long if M is large.
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6.2.1.3 Multi-class direct classification

The class decomposition methods are typically time-consuming as they transform
the single multi-class problem into multiple binary problems, i.e., decomposing
the input data into smaller parts or features. The multi-class direct classification
(direct method) indicates the approach using a single classification algorithm to
map input features to output (multi) classes directly, making it faster compared to
the class decomposition approaches [228]. Hence, this approach only applies to the
classification algorithms that can be modified, e.g., [229], [230] proposed to adjust
the decision function in support vector machines, or are naturally designed to be
applicable to multi-class problems. For examples, decision trees [71], [231], support
vector machines [21], [232], k-nearest neighbors [233]–[235], logistic regression [236],
and random forest [72], are suitable algorithms.

6.2.2 Performance Metrics

Table 6.1: Confusion matrix for a multi-class classification problem

Predicted Class
A B . . . M

T
ru

e/
A

ct
ua

l
C

la
ss

A TPA EA,B . . . EA,M
B EB,A TPB . . . EB,M
. . . . . . . . . . . . . . .
M EM,A EM,B . . . TPM

The assessment method is key in evaluating a classification performance to
choose the right classification model for the given problem. In a classification
problem, the confusion matrix is a common method to determine the performance
of a classifier, as it can provide classification results. For instance, Table 6.1
shows the confusion matrix for a multi-class classification problem with M classes
(A, B, . . . , M). As shown, TPA is the number of True Positive (TP) samples in
class A, and EA,B is the number of samples from class A that were incorrectly
predicted as class B. Hence, the number of False Negatives in class A (FNA) is the
sum of EA,B to EA,M, i.e., FNA = EA,B + . . . + EA,M, which indicates the sum of
all class A samples that were misclassified. Whereas the number of False Positives
(FP) in class A is the sum of all samples that were misclassified as class A, i.e.,
FPA = EB,A + . . . + EM,A.
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Performance metrics for multi-class classification are usually decomposed into
multiple single-class performance metrics by converting the confusion matrix in
Table 6.1 into multiple 2× 2 confusion matrices:[TPA FPA

FNA TNA

]
, . . . ,

[TPM FPM
FNM TNM

]
The common per-class measurement metrics are presented in Table 2.1.

To compute an overall performance, the scores per class can be averaged to
obtain a single score [227], [237]. There are three ways:

• Macro approach averages all per-class scores using the arithmetic mean of
those values without considering the sample size difference between classes.

• Weighted approach is similar to the macro process but takes the sample
size rate of classes, e.g., the sample size rate of class A is the number of
samples of class A over the total number of samples.

• Micro approach computes the corresponding performance metrics by count-
ing the sums of the True Positives (TP), False Negatives (FN), True Negatives
(TN), and False Positives (FP).

In this chapter, we use the penalized geometric mean micro (GMP
micro) as the

objective function to maximize, calculated as:

GMP
micro =

√
SpecificityP

micro × SensitivityP
micro

=

√ ∑M
i=1 TNP

i∑M
i=1 TNP

i +
∑M

i=1 FPP
i

×
∑M

i=1 TPP
i∑M

i=1 TPP
i +

∑M
i=1 FNP

i

(6.3)

where TPP
i , TNP

i , FPP
i , FNP

i denote the number of penalized true positives, penal-
ized true negatives, penalized false positives and penalized false negatives samples
in class i, i ∈ M classes, respectively. Those values are based on the proposed
penalized confusion matrix.

Based on the input (standard) confusion matrix CM × M and a penalty matrix
PM × M (defined by user). We take the Hadamard product, i.e., the pairwise
product, of the two matrices, i.e., (C ′

M × M)ij = (CM × M)ij · (PM × M)ij , where C ′

denotes the penalized confusion matrix.

6.3 Experiments

In this section, we briefly introduce the dataset (Section 6.3.1) and the experimental
procedure (Section 6.3.2).
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6.3.1 Datasets

Bottom-side camera

Defect images

Existing image processing & 
feature extraction system

Defect library

Top-side camera

C
ap

tu
re

C
ap

tu
re

Expert

Top-side camera

Figure 6.2: Schematic explanation of how the defect images are captured. Defect
images are taken from TATA’s official website1, for illustration.

The appearance of the surface of a steel product is one of the major quality
aspects. Therefore, surface defects should be avoided or at least known. A camera-
based Surface Inspection System (SIS) is used in various process lines to identify
those defects in the industry [238]. Grey value images taken from the surface
by the SIS contains information on the defects. These images of various defects
occurring in production are assessed and gathered in defined classes within a
so-called defect library. Figure 6.2 shows a diagram, illustrating how the defect
images are captured in the production process. The defect library is used to
train and test classifiers, and these classifiers are finally used to identify the new
surface defects from production. Thus, stable, accurate, and high classification

1https://automation.tatasteel.com/products/rolling-mills/
squins-surface-quality-inspection-system/
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Figure 6.3: The distribution of samples over classes for the top-side (left) and
bottom-side (right) camera datasets. The top-side dataset contains 23 classes and
5578 samples, while the bottom-side dataset contains 18 classes and 6908 samples
(158 attributes in both cases).

performance is a must in the quality control procedure. However, the imbalance
in the number of various defect types makes it challenging to obtain a stable and
accurate classification performance.

The images captured by the SIS cameras are processed in the feature extraction
module. Then, relevant defect features, e.g., geometrical, textural, and moment
features, are extracted for classification. Both the images and information after
extraction are stored in the defect library. The surface defects dataset used in
this chapter is taken from a defect library after a specific selection was made (for
confidentiality reasons). The library is split into two datasets with 158 features:
the top-side camera and the bottom-side camera dataset. The top-side dataset
contains 5578 samples distributed in 23 classes. The bottom-side dataset contains
6908 samples distributed in 18 classes. The distribution of the classes on surface
defects data used for the experiments is given in Figure 6.3.

6.3.2 Experimental procedure

In this chapter, we experiment with two datasets (top- and bottom-side, see
Section 6.3.1) with three multi-class classification strategies, i.e., One vs. Rest
(OvR), One vs. One (OvO), and direct method (see Section 6.2.1). TPE as
implemented in the Python package HyperOpt2 (version 0.2.5) is used as the mere
CASH optimization algorithm with a budget of 500 function evaluations. We
reuse the search space identical to Section 4.2, with 5 classification algorithms
(Support Vector Machines (SVM), Random Forest (RF), k-Nearest Neighbors

2https://github.com/hyperopt/hyperopt
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Standard
Scaler

Figure 6.4: Flowchart of the experimental setup.

(KNN), Decision Tree (DT) and Logistic Regression (LR)) and 21 choices of
resampling techniques.

In this study, we set up three independent experiments, each representing a
different approach mentioned in Section 6.2.1, i.e., One vs. Rest, One vs. One
and Direct method. Our experiments aim to compare the current classification
system (current system in figures and tables below) used by TATA3. We use the
same training and test datasets as the current system for a fair comparison. The

3For reasons of confidentiality, since proprietary software of a supplier is used by the industrial
partner, no details about the algorithmic approach taken by the currently used system are
available.
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Table 6.2: Average penalized geometric mean (micro), rounded to 5 decimals over
10 repetitions for the 2 datasets. Boldface highlights the best-performing method
per dataset and underline indicates results that are significantly different from the
best method in that group according to a Wilcoxon signed-rank test (p < 0.05).

Dataset Direct OvO OvR Current
method system

Top side 0.88293 0.88475 0.88729 0.81308
Bottom side 0.90990 0.91275 0.91245 0.79811

current system executes 10 times on each of the tested datasets. For each execution,
the considered dataset is randomly split into training (80%) and test (20%) sets.
The prediction performances are reported in Section 6.3.3, and the train/test
sets are exported to use in our experiments. i.e., we have 2 × 10 = 20 different
train/test sets in total. The overall structure of our implementation is summarized
in Figure 6.4. The experimental process begins with a data normalization step by
applying the so-called Standard Scaler4 function to the input dataset, i.e., resulting
in zero mean and a standard deviation of one. Then, the training and test datasets
are fed into the optimization phase.

During the optimization process, the training dataset is used for the ML pipeline
proposed by the optimizer. The ML pipeline is then measured by evaluating
its prediction performance on the test dataset. We note that the performance
is computed based on the penalized confusion matrix that is recomputed by
multiplying values in the standard confusion matrix with the corresponding values
in the penalty matrix, which is defined by TATA’s domain experts (see Figure 6.5).
The final evaluation value is calculated by computing the geometric mean (micro)
on that penalized confusion matrix. Lastly, the reported result of each method for
an individual dataset is averaged over 10 executions.

6.3.3 Results

In this section, we report the results and discuss our insights. The experimental
results are summarized in Table 6.2 to illustrate the performance differences between
the three classification strategies used: Direct method and two decomposition
approaches, i.e., One vs. One (OvO) and One vs. Rest (OvR), and to compare
them against the classification approach used in the current system. The highest
performance for each dataset is highlighted in bold. The methods performing

4Standard scaler is implemented in the python library scikit-learn (version 0.23.2).
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Figure 6.5: Penalty matrix used in our experiments

significantly worse than the best according to the Wilcoxon signed-rank test with
α = 0.05 are underlined.

Additionally, the distribution of the used performance metric, i.e., the penalized
geometric mean (micro), over 10 repetitions for the two tested datasets, is visualized
in Figure 6.6. Each box plot represents 10 repetitions. The horizon inner line
shows the median. The whiskers show the lowest and the highest observed value5.
The color dots show the observed values, and the dots outside the whisker represent
the outliers. The box covers the first to the third quantiles.

The results allow the following insights:
5whisker scale is set as 1.5.
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Figure 6.6: Box plots showing the distribution of classification results over 10
repetitions for two examined datasets.

• According to the results of the Wilcoxon signed-rank test, our experimental
approaches significantly outperform the current approach used at TATA
(current system). Additionally, from Figure 6.6, the median and whiskers of
our three approaches are higher than those of the current system.

• Overall, the decomposition approaches produce the highest performance for
both tested cases. More precisely, OvO shows the highest result on the
"Bottom side camera" dataset, while OvR achieves the highest result on the
"Top side camera" dataset.

• Additionally, according to our experimental results, Direct method does not
outperform decomposition approaches but is not significantly worse than any
decomposition approaches over all tested cases.

As mentioned in Section 6.2, the decomposition approaches are more expensive
than the direct classification approach. To investigate this in more detail, we
provide Figure 6.7 to show the running time of 10 executions for the 3 experimental
approaches. The colour box shows the running time for 1 execution of 500 function
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Figure 6.7: Running time over 500 function evaluations over 10 repetitions for two
examined datasets.

evaluations. The box covers the first to the third quantiles. The horizon inner
line shows the median. The whiskers show the fastest and the slowest execution.
We can observe that the direct method is the fastest of the three experimental
approaches. Notably, the average running time of the OvO and OvR on the "Top
side camera" dataset is slower than the direct classification approach, approx 372%
and 464%, respectively. In the same computation way on the "Bottom side camera",
they are 811% and 643%. This is consistent with our presupposition, because the
two decomposition approaches, i.e., OvO and OvR, convert the original multi-
class dataset into multiple binary-class datasets, resulting in increased resource
consumption for each iteration.

Figure 6.8 shows the results of 7 measurement metrics (i.e., F1 (weight), F1
(Micro), F1 (Macro), GM (Weight), GM (Macro), GM (Micro) and Accuracy rate)
with and without penalization, by re-evaluating these metrics on the best-found
ML pipelines once optimization processes are over. The results are shown for
each of the ten runs performed. The dashed line with the dots marker shows the
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Figure 6.8: Comparisons between standard vs. penalized version of 7 measurement
metrics on two datasets for three proposed vs. current approaches.
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value of those standard metrics, i.e., without penalization. The solid line with the
diamond marker shows those measurement metrics with our penalization approach.
Penalized values are always lower than the corresponding standard values. A
possible explanation is that the ML model misclassifies samples of the important
classes. Lastly, we can observe that the penalized and the corresponding values of
the used 7 measurement metrics are strongly correlated.

To investigate the predictive performance for the important classes (i.e., class
130 and 140), we provide Figure 6.9 to show recall and precision for those two
important classes of 10 executions for the two tested datasets (i.e., Figure 6.9a for
the top-side camera dataset and Figure 6.9b for the bottom-side camera dataset).
Each box plot represents 10 repetitions. The box covers the first to the third
quantiles. The horizontal inner line shows the median. The whiskers show the
highest and the lowest values. The colour dots show the observed values, and
the dots outside the whisker denotes the outliers. We can observe that the three
CASH approaches produce better precision and recall scores for the two important
classes on the two examined datasets.

6.4 Conclusion

In this chapter, we proposed an efficient approach to solving the steel surface
defect classification, where the defect classes are (1) imbalanced and have (2)
unequal importance. Firstly, we applied Bayesian Optimization (BO) to optimize
the Combined Algorithm Selection and Hyperparameter Optimization (CASH)
problem (i.e., the combination of resampling and classification algorithms, with
their hyperparameter setting), to improve the classification performance for this
class imbalance problem. Second, we propose a novel penalization approach
to compute the classification performance metrics for unequal importance of
classes. Based on our experimental results (Figure 6.6) and the running time
analysis (Figure 6.7), we observed that the CASH approach clearly improves
classification performance compared to the current classification system in use by
TATA. Additionally, the direct classification method is much cheaper than the two
experimented decomposition approaches (i.e., One vs. One and One vs. Rest) and
not significantly worse than any of those in both test cases. Hence, we recommend
to use the direct classification method to deal with similar problems. Lastly, the
penalized performance metrics are strongly correlated to the standard metrics and
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efficient in measuring the important misclassified cases. Finally, future work will
apply the proposed penalty approach to other industries.
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7
Efficient AutoML via Combinational Sampling

In the previous chapter, the CASH approach converted the ML pipeline opti-
mization problem into a hyperparameter optimization (HPO) problem, where the
choice of algorithms was modelled as an additional categorical hyperparameter.
In this manner, algorithms and their local hyperparameters are referred to at the
same level. Consequently, this approach renders the resulting initial sampling less
robust. Unlike the CASH approach, in this study, we used a new hyperparameter
class to model the choice of the algorithm under the operator. Additionally, we
propose a novel initial sampling approach to maximize the coverage of the AutoML
search space to help BO construct a robust surrogate model. We experimented
with both experimental scenarios of AutoML with two operators and six operators
over 117 benchmark datasets, as introduced in Section 4. The results of our
experiments demonstrate that the performance of BO is significantly improved
using our sampling approach.

The remainder of this chapter is organized as follows. First, the motivation and
introduction are provided in Section 7.1. Next, our contributions are highlighted in
Section 7.2, Section 7.3 lays out the experimental setup. The experimental results
are discussed in Section 7.4. Finally, the chapter is concluded, and further work is
outlined in Section 7.5.

7.1 Introduction

Recall that existing AutoML approaches (e.g., [39], [40]) can be considered as
optimization processes for which the best ML pipeline is searched. Each pipeline
includes an architecture and a set of hyperparameter settings.

Bayesian Optimization (BO) is a commonly used approach in AutoML as it has
been successfully used in hyperparameter optimization (HPO) problems and plays
a role of an optimizer in many AutoML frameworks, e.g., Auto-Sklearn [39],
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7. Efficient AutoML via Combinational Sampling

Auto-Weka [40], and Hyperopt-sklearn (HPsklearn) [42]. BO is an efficient global
optimization approach (in terms of the number of function evaluations) in which
the trade-off between local exploitation and global exploration is well handled.
Therefore, in this work, we focus on improving the BO by using it to solve the
AutoML optimization problem. Traditionally, the AutoML optimization problem is
treated as a HPO process, where the optimizer is inherited from the HPO domain.
As HPO was originally developed to find the best hyperparameter setting from a
single algorithm, it naturally does not consider the choice of algorithm. The choice
of algorithm is then modelled as an extra categorical hyperparameter. Consequently,
this HPO-based approach in handling the choice of algorithm mismatches the
nature of the AutoML optimization problem.

The search space in the AutoML approach is largely owing to the many possible
algorithm choices for pipeline operators. However, including many algorithms in
the search space naturally leads BO to slow convergence or to get stuck in a local
optimum [30], [31], [35]. One reason is that the initial sampling step in AutoML
is typically restricted to a small budget, which is much smaller than the number
of possible pipelines that can be constructed in the search space. The reason for
this setting is that the effectiveness of BO becomes evident mainly in the later
stages of optimization when it learns to produce better configurations. Many
well-known sampling approaches, for example, the discrepancy-based quasi-random
(quasi-random) sampling [30], the Latin Hypercube (LHD) sampling [239], have
been employed for the initial sampling in this optimization context. However, they
have shown themselves to be insufficiently robust [31], [240], [241] because they
have been used in conjunction with the traditional approach of solving an AutoML
optimization problem, which, as explained above, consists of converting it to a
HPO, thus rendering obscure the differences between the choice of an algorithm
and the choice of the algorithm’s parameters.

Additionally, to construct a robust surrogate model, BO requires good coverage
of the search space [31], but as the number of algorithms increases, the number
of samples required to cover the search space increases exponentially. Previous
studies [46], [47] pointed out that some algorithms can be grouped based on their
technical behaviors.

To assess this theory, in this chapter, we propose a new two-fold approach to
improve BO used in AutoML optimization:

• Group the similar operator algorithms when allocating initial sampling
budget, e.g., the grouping of linear classifiers vs. the grouping of rule-based

104



7.1 Introduction

Ta
bl

e
7.

1:
H

yp
er

pa
ra

m
et

er
ty

pe
s

an
d

fu
nc

tio
ns

us
ed

in
ou

r
im

pl
em

en
ta

tio
n

H
yp

er
p

ar
am

et
er

A
n

n
ot

at
io

n
D

es
cr

ip
ti

on
C

on
ti

nu
ou

s
F

lo
at

P
ar

am
(m

in
,
m

a
x

)
C

ho
os

e
a

flo
at

va
lu

e
in

ra
ng

e
of

[m
in

,
m

a
x

]∩
R

O
rd

in
al

In
te

ge
rP

ar
am

(m
in

,
m

a
x

)
C

ho
os

e
a

in
te

ge
r

va
lu

e
in

ra
ng

e
of

[m
in

,
m

a
x

]∩
Z

N
om

in
al

C
at

eg
or

ic
al

P
ar

am
(C

1
,
.
.
.
,
C

n
)

C
ho

os
e

a
va

lu
e

in
se

t
{C

1
,
.
.
.
,
C

n
}

∗
A

lg
or

it
hm

A
lg

or
it

hm
C

ho
ic

e(
A

1
,
.
.
.
,
A

n
)

C
ho

os
e

a
va

lu
e

in
se

t
{A

1
,
.
.
.
,
A

n
}

H
ie

ra
rc

hi
ca

l
C

on
di

ti
on

al
P

ar
am

(P
a

r
e
n

t,
{P

v
a

lu
e
},

{C
h

il
d

1
,
.
.
.
,
C

h
il

d
n

})
w

he
n

a
H

yp
er

P
ar

am
ha

s
ch

ild
re

n
In

fe
as

ib
le

Fo
rb

id
de

nP
ar

am
((

P
a

r
a

m
1
,
{P

1 v
a

lu
e

(s
)}

),
(P

a
r

a
m

2
,
{P

2 v
a

lu
e

(s
)}

))
w

he
n

th
e

co
m

bi
na

ti
on

of
P

a
r

a
m

1
an

d
P

a
r

a
m

2
is

fo
rb

id
de

n

∗
G

ro
up

in
g

H
yp

er
P

ar
am

({
va

lu
e1 1

,
.
.
.
,
va

lu
e1 v

1
}

︸
︸

gr
ou

p
1

,
.
.
.
,
{v

al
ue

n 1
,
.
.
.
,
va

lu
en v

n
}

︸
︸

gr
ou

p
n

)
ea

ch
gr

ou
p i

ca
n

be
of

an
y

ty
pe

:
{C

o
n

ti
n

u
o

u
s
,
O

r
d

in
a

l,
N

o
m

in
a

l,
A

lg
o

r
it

h
m

}

105



7. Efficient AutoML via Combinational Sampling

classifiers [46]. Table 7.1 summarises different hyperparameter classes with
their semantics in our work.

• Building on top of other sampling approaches, we propose a novel sampling
method that aims to allocate reasonable budgets for each set of algorithms
to maximize the coverage of sampling areas in terms of the grouping of
algorithms to provide a robust surrogate model. In other words, our pro-
posed approach is complementary to other sampling approaches, rather than
competitive, with the aim of optimizing the performance of the search space
of AutoML.

7.2 The Proposed Approaches for Automated Ma-
chine Learning

In this section, we first introduce our proposed combination-based sampling ap-
proach for increasing the efficiency and robustness of AutoML. Next, we introduce
a new BO Python library for AutoML optimization and an AutoML framework
that implements this paradigm.

7.2.1 Novel combination-based initial sampling for Bayesian
optimization for AutoML optimization

The central idea of our approach is to provide optimized coverage of the algorithm-
hyperparameter search space already during the initial sampling of BO in order to
characterize the response surface more accurately.

To properly analyze this discussion, we need to utilize the notations that were
introduced in Chapter 1 (Section 1.1.1). These notations are crucial for our ongoing
analysis and were discussed in detail in their original context in Chapter 1 to
ensure a better understanding. Given a search space denoted by M includes the
sequence of z operators O = O1 × . . .×Oz and its corresponding hyperparameter
spaces Λ = ΛO1 ∪ . . . ∪ ΛOz , as defined in Section 1.1.1 of Chapter 1.

A grouping of algorithms of operator Oi assumes that the set of all algorithms
{∅,A1

i , . . . ,Ani
i } available to be employed for operator1 Oi can be partitioned

into gi non-empty and non-overlapping subsets, according to their inner workings2:
{G1

i , . . . , Ggi

i }, gi ≤ ni + 13. Such partitioning is called a grouping of algorithms.
1if i < z or {A1

z , . . . , Anz
z } if i = z.

2or any other user-defined logic.
3if i < z and gz < nz otherwise.
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7.2 The Proposed Approaches for Automated Machine Learning

The operator can then be represented as Oi = {G1
i , . . . , Ggi

i }. According to
our proposed combination-based initial sampling method (see Algorithm 9), the
sequence of pipeline operators O = O1 × . . .×Oz should be sampled in BO from
the domain space of sets {G1

1, . . . , Gn1
1 } × . . .× {G1

z, . . . Gnz
z } and the total initial

sampling budget should be split equally per group. The main idea behind such
sampling budget reallocation is the potential exploitation of similarities between
algorithms within the group: sampling fewer of the same algorithms frees up
the budget to be distributed to other (different) algorithms, thus improving the
coverage of algorithm-hyperparameter search space at an earlier stage of BO.

As an input parameter for our method, we require a number of data points Binit

for the initial sampling and a maximum number of combinations K, K ≤ Binit. If
K exceeds the maximum number of possible combinations computed from the input
operation steps k =

∏z
i=1|Oi|, then we use Algorithm 10 to randomly regroup

algorithms in operators to ensure k ≤ K. The proposed sampling algorithm,
presented in Algorithm 9, consists of the three following steps:

1. Generate the list of combinations: List all k possible combinations of groups
for all z operators; apply RandomRegrouping until k is small enough
(k ≤ K) (lines 2− 4).

2. Allocate budget to combinations: first allocate budget to all combinations
based on the number of algorithms and hyperparameters behind (lines 5
- 10). Then, if there is any remaining budget Bremain, randomly allocate
Bremain to the top k

η combinations ordered by their size (i.e. the number of
algorithms and hyperparameters in the combination). We take the size of
the combinations into account to give larger combinations a higher chance of
getting a larger budget.

3. Sampling configurations: for each combination s, an existing sampling ap-
proach (e.g., LHD, quasi-random, here we use quasi-random) is used to
generate a trial sequence sj = (G1, . . . , Gz) (lines 12 − 16); Lastly, the
generated configurations must be verified by CheckForbidden4.

Lastly, the generated configurations are shuffled to remove a potential impact
of grouped configurations based on combinations. This is highly recommended

4 An external function that verifies a combination of algorithms/a configuration with the
forbidden rules defined by the user.
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7. Efficient AutoML via Combinational Sampling

Algorithm 9: Combination-based sampling
Input: O: sequence of operators, Λ: hyperparameter spaces, Binit: number of

initial samples, K: maximum number of combinations of grouping of
algorithms over operators, η = 2: proportion of combinations to be
chosen to assign more budget if any remaining budgets are available.

Output: Θ: set of configurations
// 1–Generating combinations

1 k =
∏z

i=1|Oi| // maximum number of possible combinations
2 if k > K then
3 (O, k) = RandomRegrouping(O, K) // Algorithm 10

// Create a list s of all possible combinations from O
4 s = {s1, . . . , sk} = {G1

1, . . . , Gg1
1 } × . . .× {G1

z, . . . , Ggz
z }

// 2–Allocate budgets to k combinations
5 lc = Binit

k
// number of inital samples per combination

6 m = 1
k

∑k

i=1 (|Λsi |+|si|) // |si| is the number of all unique algorithms
and |Λsi | is the number of hyperparameters

7 Θ = ∅ // set of initial configurations
8 foreach j ∈ {1, . . . , k} do
9 lj = ⌊lc ×

|Λs(j)|+|sj |
m

⌋// lj is the number of samples for the
combination sj

10 lj =
{

1, if lj = 0.
lj , otherwise.

11 if Bremain = Binit −
∑k

j=1 lj > 0 then
// Randomly allocate Bremain to the top k

η
combinations based on

the number of algorithms and hyperparameters

// 3–Sampling Configurations
12 foreach j ∈ {1, . . . , k} do
13 Θj = ∅ // feasible configurations in the jth combination
14 while |Θj |≤ lj do
15 Θj = Θj ∪ Sampling(sj , Λj , lj − |Θj |)

// Sampling is done via an existing approach, here we choose
quasi-random sampling with minor adjustments

16 foreach λ ∈ Θj do
17 if CheckForbidden(λ) then
18 Θj = Θj \ λ

19 Θ = Θ ∪Θj
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7.2 The Proposed Approaches for Automated Machine Learning

Algorithm 10: Random Regrouping

Input: O =
(
{G1

1, . . . , Gg1
1 } × . . .× {G1

z . . . Ggz
z }

)
: sequence of operators, K:

number of combinations
Output: Onew: new sequence of operators, k: new number of combinations

1 k = K // number of all possible combinations
2 S = ∅ // split solutions
3 C1 = {1, . . . , g1}, . . . , Cz = {1, . . . , gz} // set of possible groupings of

Oi∈{1,...,z}
// List out all split solutions

4 Create a list of all possible splits H = {hi} where hi = (c1, . . . , cz) : cj ∈ Cj∀j
// Select split solutions which can produce k combinations, k ≤ K

5 while S = ∅ do
6 S = {h = (c1, . . . , cz) ∈ H :

( ∏
j

cj

)
= k}

7 if S = ∅ then
8 k = k − 1

9 schosen ∼ U(S)// randomly choose one solution
10 Onew = (∅1, . . . ,∅z), i = 1
11 foreach ci ∈ schosen do

// ci is the number of groups to be created
12 ni = |Oi| // number of groups in the ith operator
13 if ci = ni then
14 Oi = {{G1

i }, . . . , {Gni
i }} // when ci = ni

15 else if ci = 1 then
16 Oi = {G1

i , . . . , Gni
i } // merging all predefined groups

17 else
18 G = ∅, O0 = Oi

19 while ni > 0 do
20 G0 = ∅, nsize = ⌈ni

ci
⌉

21 if ni > nsize then
22 G0 ={Random pick nsize items in O0}
23 else
24 G0 = {O0}
25 G = G ∪G0, O0 = O0 \G0, ni = |O0|
26 Oi = {G}

27 O(i)
new = Oi, i = i + 1

28 return Onew, k
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since, in some cases, the computational optimization budget, i.e., the run time
limit, can run out before finishing this initialization step.

The RandomRegrouping method used in Algorithm 9 is presented in Al-
gorithm 10. For a sequence of operators that consists of multiple groupings of
algorithms, it produces, via a regrouping, k combinations of operators (k ≤ K)
using the following steps:

1. Step 1 (lines 3− 9): Based on the number of the grouping in operators, we
list out all possible solutions of regrouping to have k combinations.

2. Step 2 (line 10): Randomly choose one solution schosen = (c1, . . . , cz) where
ci is the number of groupings to be created for the operator Oi.

3. Step 3 (lines 11− 27): For each operator Oi, we randomly group algorithms
into ci groups.

7.2.2 A New Optimization Library for AutoML Optimiza-
tion

To take advantage of the new sampling approach introduced in Section 7.2.1, we
introduce a BO library for AutoML optimization, named BO4ML5, where the
new sampling approach is implemented. In this work, we use the Tree-structured
Parzen Estimator (TPE) implemented in Hyperopt [153] for the surrogate model
and Expected improvement (EI) [156] for the acquisition function.

7.3 Experimental Setup

This study examines the two experiments introduced in Chapter 4 (Section 4.2
and Section 4.3). In both scenarios, we compare the performance of Bayesian
optimization (see Chapter 3. Section 3.1.3) with and without our proposed initial
sampling approach.

The first experiment uses similar parameter settings as in Chapter 5; we select
two different values of the initial sample size 20 and 50. We use a budget of
500 function evaluations. The 5-fold cross-validation approach and the averaged
geometric mean values over 10 repetitions are reported. The selected classification
algorithms are not grouped together. The resampling techniques are grouped into

5 The library is published at https://github.com/ECOLE-ITN/NguyenSSCI2021.
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four groups "Over-resampling", "Under-resampling", "Combine-resampling", and
"No-sampling", as suggested in [47], [48].

In the second experiment, we used a budget of 50 samples for the initial
sampling. All the experiments performed 10 runs with different random seeds,
with a time limit of 1 hour. The performance of a single configuration is limited to
10 minutes with 4-folds cross-validation on training data, i.e., the evaluation of a
fold is allowed to take 150 seconds. The evaluation of a configuration is aborted
and returns zero if any folds have an error, for example, due to an infeasible
configuration or timeout. Then, the average accuracy values for the test data over
10 runs are reported. Finally, the selected algorithms are grouped, according to
the suggestions in [46], [151].

The implementation of the proposed methods is published in a git-repository5

and PyPi-repository6. The experiment scripts for the reproducibility of the reported
results are provided in a git-repository7.

7.4 Results and Discussion

In this section, we report and discuss the results obtained from using the above
experimental setups. Our experiments has two objectives. First, we compare the
performance of Bayesian optimization with the help of our proposed sampling
approach with that without our contributions in terms of AutoML optimization
for class-imbalance problems, with a search space of two operators. Second, we
compared them against state-of-the-art AutoML frameworks with a search space
of six operators.

7.4.1 First experimental results

The results of the first experiment are presented in Table 7.2 to illustrate the
performance of BO with and without the help of our proposed approach for two
different initial sample sizes, that is, 20 (left, not shaded) and 50 (right, gray
shaded). In both scenarios, the best performance for the corresponding dataset
is highlighted in bold. A method that performs significantly worse than the best
method according to the Wilcoxon signed-rank test with α = 0.05 is underlined.
A value labeled ∗ indicates the best result obtained for the corresponding dataset.
The two extra rows at the end display the additional summaries. The first extra

6https://pypi.org/project/BO4ML.
7https://github.com/ECOLE-ITN/NguyenSSCI2021/tree/assets/SSCI-Experiments.
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Table 7.2: Average geometric mean (rounded to 4 decimals) based on two different
initial sampling settings, i.e., the Hyperopt approach and our approach (BO4ML), over
10 repetitions for the 44 examined datasets, ordered by increasing imbalance ratio (#IR)
value. The two extra rows display summaries for each scenario, i.e., 20 and 50 initial
samples: (1) Highest performance shows the number of times the optimizer achieved
the highest value. (2) Significantly better performance shows the number of times the
optimizer was significantly better than the competitor.

Dataset #IR 20 initial samples 50 initial samples
Hyperopt BO4ML Hyperopt BO4ML

glass1 1.82 0.7935 0.7944 ∗0.7970 0.7944
ecoli-0_vs_1 1.86 0.9864 0.9864 0.9864 ∗0.9868
wisconsin 1.86 0.9814 0.9817 0.9818 ∗0.9819
pima 1.87 ∗0.7712 0.7696 0.7703 0.7707
iris0 2 ∗1 ∗1 ∗1 ∗1
glass0 2.06 0.8777 0.8748 0.8740 ∗0.8853
yeast1 2.46 0.7319 0.7332 0.7321 ∗0.7345
haberman 2.78 ∗0.7049 0.7012 0.6991 0.7040
vehicle2 2.88 0.9908 ∗0.9927 0.9912 0.9918
vehicle1 2.9 0.8690 0.8684 0.8713 ∗0.8735
vehicle3 2.99 0.8463 0.8486 0.8416 ∗0.8506
glass-0-1-2-3_vs_4-5-6 3.2 ∗0.9567 0.9539 0.9534 0.9553
vehicle0 3.25 ∗0.9876 0.9867 0.9867 0.9867
ecoli1 3.36 0.9038 ∗0.9053 0.9050 0.9043
new-thyroid1 5.14 0.9980 0.9972 ∗0.9983 0.9966
new-thyroid2 5.14 ∗0.9972 0.9964 0.9952 0.9966
ecoli2 5.46 0.9363 0.9353 ∗0.9365 0.9360
segment0 6.02 ∗0.9993 0.9992 0.9992 0.9992
glass6 6.38 0.9488 0.9514 ∗0.9518 0.9511
yeast3 8.1 0.9423 0.9421 0.9427 ∗0.9441
ecoli3 8.6 0.9038 0.9059 0.9064 ∗0.9072
page-blocks0 8.79 ∗0.9475 0.9472 0.9464 0.9457
yeast-2_vs_4 9.08 0.9549 0.9542 ∗0.9554 0.9531
yeast-0-5-6-7-9_vs_4 9.35 0.8245 0.8177 ∗0.8261 0.8193
vowel0 9.98 0.9567 ∗0.9593 0.9525 0.9561
glass-0-1-6_vs_2 10.29 0.8404 0.8421 0.8334 ∗0.8460
glass2 11.59 ∗0.8504 0.8461 0.8462 0.8471
shuttle-c0-vs-c4 13.87 ∗1 ∗1 ∗1 ∗1
yeast-1_vs_7 14.3 0.7991 0.8013 ∗0.8033 0.8010
glass4 15.46 ∗0.9390 0.9230 0.9299 0.9324
ecoli4 15.8 0.9712 0.9694 0.9632 ∗0.9737
page-blocks-1-3_vs_4 15.86 0.9931 0.9874 0.9917 ∗0.9944
abalone9-18 16.4 ∗0.8899 0.8829 0.8856 0.8859
glass-0-1-6_vs_5 19.44 0.9494 ∗0.9571 0.9564 0.9565
shuttle-c2-vs-c4 20.5 ∗1 ∗1 ∗1 ∗1
yeast-1-4-5-8_vs_7 22.1 0.6989 0.7024 ∗0.7052 0.7045
glass5 22.78 0.9589 0.9558 0.9591 ∗0.9595
yeast-2_vs_8 23.1 0.8136 ∗0.8348 0.8136 0.8150
yeast4 28.1 0.8764 0.8788 0.8782 ∗0.8788
yeast-1-2-8-9_vs_7 30.57 0.7500 0.7489 0.7397 ∗0.7538
yeast5 32.73 ∗0.9802 0.9798 ∗0.9802 0.9800
ecoli-0-1-3-7_vs_2-6 39.14 ∗0.9265 0.9076 0.9113 0.8982
yeast6 41.4 0.8953 0.8918 0.8939 ∗0.8955
abalone19 129.44 0.7958 0.7974 0.7992 ∗0.7998

Highest performance 15 8 12 19
Significantly better performance 0 2 0 4

112



7.4 Results and Discussion

No
 R

es
am

pl
in

g 
(1

)

Un
de

r R
es

am
pl

in
g 

(1
1)

Co
m

bi
ne

 R
es

am
pl

in
g 

(2
)

Ov
er

 R
es

am
pl

in
g 

(7
)

SVM
RF

DTC
KNN

LR

Ra
nd

om
 sa

m
pl

in
g

(H
yp

er
op

t)

No
 R

es
am

pl
in

g 
(1

)

Un
de

r R
es

am
pl

in
g 

(1
1)

Co
m

bi
ne

 R
es

am
pl

in
g 

(2
)

Ov
er

 R
es

am
pl

in
g 

(7
)

SVM
RF

DTC
KNN

LR

Ou
r a

pp
ro

ac
h

Number of samples: 20 Number of samples: 50
1

2

3

4

5

6

7

Figure 7.1: Illustration of the number of samples allocated to different combinations
of methods in random sampling implemented in Hyperopt (top rows) vs. our
proposed approach (bottom rows). The cases with 20 (left) and 50 (right) samples
are shown.

row shows the number of times each scenario achieved the highest value over 44
datasets. The last extra row indicates the number of times each approach was
significantly better than the others in the group. From the table, we can observe
the following.

• In 20 initial samples scenario, Hyperopt achieved the best results on 28/44
cases, and our approach on 20/44 cases. However, our approach significantly
wins on 2 tested cases, i.e., "ecoli3" and "yeast-2_vs_8" and is not significantly
worse than Hyperopt in any tested cases.

• In the second scenario, our approach achieves the highest value on 31/44 cases
and Hyperopt- on 16/44 cases. Similarly, our approach is not significantly
worse than Hyperopt in any tested cases but significantly better on 4 examined
datasets, i.e., "glass0", "yeast1", "ecoli4", "yeast-1-2-8-9_vs_7".

To investigate the sampling behavior of both approaches for the initial sample
sizes, we provided two plots: Figure 7.1 shows the distributions of the samples and
Figure 7.2 shows the distributions at the level of the individual algorithms. In both
plots, the case with 20 samples is shown on the left and 50 on the right of the plot,
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Figure 7.2: Illustration on the distribution of samples obtained via initial sampling
methods on the level of individual methods, i.e., under resampling has 11 algorithms,
combine resampling has 2 algorithms, over resampling has 7 algorithms and no
resampling. The left part shows the case with 20 samples, while the case with 50
samples is shown on the right.

respectively. Looking at these figures, we observe that our approach samples all
combinations of groupings over two operators for both sample sizes. By contrast,
the sampling strategy used in the Hyperopt samples has less coverage in terms
of these combinations. This is because we consider the choice of algorithms in
operators to be different from categorical parameters, whereas Hyperopt does not.
The plots clearly explain why BO performs better with the help of our approach.

7.4.2 Results of second experiment

The results of the second experiment are presented in Table 7.3. The third and
fourth columns show our experimental results, i.e., TPE with and without our
sampling approach. The remaining columns contain the results obtained using other
AutoML frameworks according to [22]. This table reports the average accuracy over
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7.4 Results and Discussion

Ta
bl

e
7.

3:
Av

er
ag

e
ac

cu
ra

cy
(r

ou
nd

ed
to

5
de

ci
m

al
s)

ov
er

10
re

pe
tit

io
ns

fo
r

th
e

73
O

pe
nM

L
da

ta
se

ts
,o

rd
er

ed
by

#
Ta

sk
id

.

O
p

en
M

L
ID

s
O

u
r

E
xp

er
im

en
ts

E
xi

st
in

g
A

u
to

M
L

fr
am

ew
or

ks
[2

2]
#

T
as

kI
D

D
at

as
et

T
P

E
w

it
h

T
P

E
w

it
ho

ut
A

u
to

-s
kl

ea
rn

H
P

sk
le

ar
n

T
P

O
T

A
T

M
H

2O
N

am
e

(#
ID

)
ou

r
sa

m
pl

in
g

ou
r

sa
m

pl
in

g
S

M
A

C
R

an
d

om
(R

ob
u

st
A

u
to

M
L

)
(A

u
to

-H
yp

er
op

t)
3

kr
-v

s-
kp

(3
)

0.
99

65
6

0.
99

51
0

0.
98

98
6

0.
99

06
2

0.
99

05
1

0.
99

43
1

0.
99

32
6

0.
99

42
6

12
m

fe
at

-f
ac

to
rs

(1
2)

0.
98

41
7

0.
98

11
7

0.
97

76
7

0.
97

63
3

0.
94

75
8

0.
97

33
3

0.
98

17
8

0.
97

43
3

15
br

ea
st

-w
(1

5)
0.

97
95

2
0.

97
04

8
0.

96
87

5
0.

95
87

3
0.

96
00

0
0.

96
57

1
0.

98
47

4
0.

96
28

6
23

cm
c

(2
3)

0.
57

28
5

0.
55

15
8

0.
54

63
8

0.
53

26
2

0.
53

04
7

0.
55

88
2

0.
58

10
0

0.
53

73
3

24
m

us
hr

oo
m

(2
4)

1
1

1
0.

99
99

3
1

1
1

0.
99

84
8

29
cr

ed
it

-a
pp

ro
va

l
(2

9)
0.

88
74

4
0.

86
52

2
0.

87
28

9
0.

85
50

7
0.

85
95

6
0.

86
37

7
0.

89
13

3
0.

86
18

4
31

cr
ed

it
-g

(3
1)

0.
76

60
0

0.
72

73
3

0.
73

43
3

0.
72

40
0

0.
70

12
1

0.
74

40
0

0.
76

57
8

0.
74

86
7

41
si

ck
(4

2)
0.

95
17

1
0.

92
87

8
0.

91
95

4
0.

91
91

1
0.

92
58

5
0.

92
73

2
0.

94
50

4
0.

93
12

2
53

so
yb

ea
n

(5
4)

0.
86

45
7

0.
83

85
8

0.
82

00
8

0.
81

96
9

0.
75

78
7

0.
81

81
1

0.
81

52
2

0.
82

71
7

20
79

ve
hi

cl
e

(1
88

)
0.

69
50

2
0.

66
01

8
0.

63
88

6
0.

62
67

0
0.

64
07

2
0.

65
56

6
0.

64
19

0
0.

65
57

0
30

21
eu

ca
ly

pt
us

(3
8)

0.
99

15
2

0.
98

73
7

0.
98

28
8

0.
98

55
0

0.
97

43
8

0.
98

74
6

-
0.

98
41

9
35

43
ir

is
h

(4
51

)
1

1
0.

99
01

9
0.

99
08

1
0.

99
40

4
0.

99
09

1
1

0.
97

96
7

35
60

an
al

ca
td

at
a_

dm
f

(4
69

)
0.

23
04

2
0.

21
12

5
0.

20
36

5
0.

20
38

2
0.

19
13

9
0.

20
83

3
0.

27
02

8
0.

19
54

2
35

61
pr

of
b

(4
70

)
0.

63
11

9
0.

64
75

2
0.

65
68

7
0.

64
56

3
0.

63
76

2
0.

66
83

2
0.

71
22

1
0.

71
08

9
39

04
jm

1
(1

05
3)

0.
82

40
4

0.
81

39
3

0.
81

34
4

0.
81

12
6

0.
80

99
8

0.
81

81
0

0.
82

10
0

0.
74

81
9

39
17

kc
1

(1
06

7)
0.

87
39

3
0.

85
97

2
0.

85
11

8
0.

85
34

0
0.

84
04

4
0.

86
01

9
0.

86
85

6
0.

80
86

9
39

45
K

D
D

C
up

09
_

ap
pe

te
(1

11
1)

0.
98

32
3

0.
98

19
7

0.
98

24
4

0.
98

22
8

0.
98

18
9

0.
98

18
2

-
0.

96
55

5
39

46
K

D
D

C
up

09
_

ch
ur

n
(1

11
2)

0.
92

90
1

0.
92

62
4

0.
92

72
5

0.
92

58
6

0.
92

59
9

0.
92

62
4

-
0.

78
80

2
39

48
K

D
D

C
up

09
_

up
se

ll
(1

11
4)

0.
94

34
5

0.
94

11
6

0.
95

09
4

0.
95

03
0

0.
95

06
8

0.
95

08
5

-
0.

93
41

5
75

92
ai

rl
in

es
(1

59
0)

0.
86

25
1

0.
85

76
9

0.
86

93
8

0.
87

01
3

0.
86

72
7

0.
87

08
9

0.
85

44
8

0.
86

65
6

75
93

ba
nk

-m
ar

ke
ti

ng
(1

59
6)

0.
70

27
8

0.
80

90
2

0.
96

39
5

0.
89

14
3

0.
95

22
7

0.
94

54
2

0.
66

39
0

0.
92

90
8

99
10

bl
oo

d-
tr

an
sf

us
i

(4
13

4)
0.

80
10

7
0.

78
07

3
0.

78
89

0
0.

77
76

2
0.

77
79

8
0.

80
24

9
0.

77
08

7
0.

80
04

4
99

52
cn

ae
-9

(1
48

9)
0.

91
31

9
0.

90
82

6
0.

89
71

6
0.

89
20

5
0.

89
27

3
0.

90
45

0
0.

89
96

3
0.

89
20

5
99

55
fir

st
-o

rd
er

-t
he

(1
49

2)
0.

67
16

7
0.

65
14

6
0.

65
17

2
0.

62
79

5
0.

54
66

7
0.

61
14

6
0.

61
09

7
0.

56
43

5
99

77
no

m
ao

(1
48

6)
0.

96
52

5
0.

95
92

4
0.

96
90

3
0.

96
65

6
0.

96
89

1
0.

97
02

6
0.

96
05

5
0.

97
14

6
99

81
ph

on
em

e
(1

46
8)

0.
95

09
3

0.
94

22
8

0.
94

16
7

0.
93

11
7

0.
94

01
2

0.
94

78
4

0.
96

04
9

0.
95

21
6

99
85

on
e-

hu
nd

re
d-

pl
a

(1
47

5)
0.

61
02

9
0.

59
85

3
0.

59
69

5
0.

58
60

1
0.

58
29

3
0.

61
29

1
0.

60
27

2
0.

61
65

6
10

10
1

ad
ul

t
(1

46
4)

0.
80

66
7

0.
76

57
8

0.
76

66
7

0.
77

77
8

0.
78

04
4

0.
78

71
1

0.
81

95
6

0.
73

37
8

14
95

2
co

ve
rt

yp
e

(4
53

4)
0.

97
09

4
0.

96
62

3
0.

96
59

0
0.

96
24

4
0.

96
96

4
0.

96
91

3
0.

96
46

4
0.

97
16

0
14

95
4

B
io

re
sp

on
se

(6
33

2)
0.

83
64

2
0.

81
11

1
0.

79
01

2
0.

76
17

3
0.

76
66

7
0.

81
00

9
0.

81
70

1
0.

78
33

3
14

96
5

A
m

az
on

_
em

pl
oy

ee
(1

46
1)

0.
90

30
7

0.
90

00
7

0.
90

44
7

0.
90

39
8

0.
90

45
1

0.
90

70
5

0.
89

95
7

0.
90

06
0

14
96

7
P

hi
sh

in
gW

eb
si

te
(2

33
80

)
1

1
0.

98
26

5
0.

99
84

1
0.

97
13

1
1

-
1

14
96

8
G

es
tu

re
P

ha
se

Se
g

(6
33

2)
0.

83
58

0
0.

80
43

2
0.

77
35

3
0.

77
05

8
0.

75
82

3
0.

81
17

3
0.

79
15

5
0.

80
00

0
14

96
9

M
ic

eP
ro

te
in

(4
53

8)
0.

64
00

1
0.

61
86

4
0.

67
73

3
0.

65
00

4
0.

67
27

2
0.

67
58

6
0.

66
21

7
0.

70
16

5
34

53
8

cy
lin

de
r-

ba
nd

s
(4

55
0)

1
0.

99
90

7
1

0.
99

90
7

0.
99

98
3

1
1

1
34

53
9

cy
lin

de
r-

ba
nd

s
(4

13
5)

0.
94

82
5

0.
94

55
7

0.
94

76
1

0.
94

44
4

0.
94

75
0

0.
94

89
1

0.
94

60
6

0.
95

11
4

12
59

20
cj

s
(2

33
81

)
0.

63
13

3
0.

56
20

0
0.

56
66

7
0.

55
55

6
0.

56
84

4
0.

56
86

7
0.

66
97

8
0.

58
40

0

co
nt

in
ue

d
on

th
e

ne
xt

pa
ge

115
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7.4 Results and Discussion

1 2 3 4 5 6 7 8

RobustAutoML
TPOT

Auto-sklearn
H2O ATM

Auto-Hyperopt
HPsklearn
Random

CD

Figure 7.3: Comparison of all approaches against each other with the Nemenyi
test with 5% significance level.

10 repetitions to illustrate the performance differences between the two implemented
approaches in our AutoML framework8, i.e., TPE with (RobustAutoML) and
without (Auto-Hyperopt) our sampling approach, to compare them against other
well-known AutoML frameworks, i.e., Auto-sklearn-SMAC (Auto-sklearn) and
Auto-sklearn-Random search (Random), HPsklearn, TPOT, ATM, and H2O.
Values in bold indicate the highest values in the corresponding dataset. Underline
values indicate significantly different results from the best method according to
a Wilcoxon signed-rank test with p < 0.05. The two extra rows at the end show
the additional summaries. The first extra row shows the number of times each
approach achieved the highest performance over 73 examined datasets. The last
row presents the number of cases in which these methods significantly outperformed
the other compared methods.

The results allow the following insights:

• Comparing the results of approaches using the search space of Auto-
Sklearn includes our two approaches, Auto-Sklearn and Random Search.
First, it is not surprising that all Bayesian optimization approaches perform
better than random search in most tested cases. This has been demonstrated
in other studies [40], [47]. Second, Auto-Sklearn won more tested cases
than Auto-Hyperopt with the same search space. A possible explanation
for this might be that Hyperopt lacks support for k-fold cross-validation
yet, while SMAC, the BO variant used in Auto-Sklearn, uses racing algo-
rithms to skip performing on unnecessary folds. Consequently, within the

8For readability, RobustAutoML stands for TPE with our sampling approach, and Auto-
Hyperopt stands for the original version of TPE implemented by Hyperopt without our improve-
ment.
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7. Efficient AutoML via Combinational Sampling

same budget of time, Auto-Hyperopt evaluated a much smaller number
of configurations than Auto-Sklearn. Lastly, the experimental results
clearly indicate that the performance of TPE with the help of our sampling
approach significantly improves.

• From the results of three approaches using TPE, we can observe that: Firstly,
comparing the two approaches that do not use our sampling, i.e., HPsklearn
vs. Auto-Hyperopt, we can conclude that the search space of Auto-
Sklearn does not improve the final performance of TPE. Secondly, the
results clearly demonstrate that significant improvement was achieved with
the help of our sampling approach. Our approach outperforms others 23
times, significantly winning Auto-Hyperopt in 16 cases and HPsklearn
in 20 cases. Furthermore, in all 3 cases where Auto-Hyperopt achieves
the highest results, e.g., tasks 24, 3543, and 14967, both our approach and
Auto-Hyperopt get maximum accuracy in those cases. On the other hand,
HPsklearn got the highest results in 3 cases, e.g., tasks 24, 146607, 189355,
but never performed significantly better than our approach in any of those.

• Overall, our proposed approach shows the best results in more cases than all
other approaches compared, namely 28/73. Moreover, according to the results
of the Wilcoxon signed-rank test, our approach also significantly outperforms
other compared approaches in 23/73 test cases. However, Auto-Hyperopt,
without our improvement, does not win for any of the datasets.

When all approaches are compared, Friedman’s test reveals a significant difference
in average accuracy with p = 6.35 · 10−11. Thus, we performed a post-hoc
multiple comparison test with the Nemenyi test (α = 0.05), shown in Figure 7.3.
Approaches that have a distance higher than CD9 are considered significantly
different. According to this figure, we conclude that RobustAutoML is better
than both TPE-based approaches and better than five other AutoML frameworks,
such as, H20, ATM, Auto-Hyperopt, HPSklearn, and Random Search.

7.5 Conclusions and Future Work

In this chapter, we formulated AutoML as an optimization process for the machine
learning pipeline. Then, we built on this paradigm, we proposed a new class for
modeling the choice of algorithms and the concept of grouping algorithms. Second,

9Critical Difference, here CD=1.2288.
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7.5 Conclusions and Future Work

a robust sampling approach for Bayesian optimization for AutoML optimization
problems was introduced; Third, a BO approach for AutoML optimization was
presented, where our proposed sampling approach and new hyperparameter classes
were implemented. Lastly, a robust AutoML framework was presented which takes
advantage of the proposed BO approach mentioned above.

The experimental results demonstrate the effectiveness of our approaches in two
independent experiments over 117 datasets. The results clearly show significant
improvement achieved by using our approach.

There are several interesting research directions for extending this study. First,
we intend to apply the proposed sampling approach to other AutoML frameworks.
Additionally, we plan to apply some pruning approaches such as Hyperband [35]
and racing algorithm to reduce the time for evaluating configurations that are not
promising by evaluating fewer folds.
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8
An Efficient Contesting Procedure for AutoML
Optimization

Classical AutoML-based Bayesian Optimization approaches often integrate all
operator search spaces into a single search space. However, one drawback of this
strategy is that it can be less robust when initialized randomly than optimizing
each operator-algorithm combination individually. To overcome this issue, a novel
contesting procedure, Divide And Conquer Optimization (DACOpt), is proposed
in this chapter to make AutoML more robust. The DACOpt partitions the
AutoML search space into a reasonable number of sub-spaces based on algorithm
similarity and budget constraints. Furthermore, throughout the optimization
process, DACOpt allocates resources to each sub-space to ensure that (1) all areas
of the search space are covered and (2) more resources are assigned to the most
promising sub-space. Two extensive sets of experiments on 117 benchmark datasets
demonstrate that DACOpt is significantly better than its competitors. Furthermore,
an experiment in surface defect classification in steel manufacturing indicated that
the proposed contesting procedure significantly improved the performance of BO
in real-world applications. The remainder of this chapter is organized as follows.
The motivation and introduction are provided in Section 8.1. Section 8.2 presents
the relevant background knowledge Divide and Conquer techniques and early-stop
strategies. Our contributions are highlighted in Section 8.3, whereas Section 8.4
outlines the experimental setup. Experimental results are discussed in Section 8.5.
Next, an investigation of the use of DACOpt in real-world applications is discussed
in Section 8.6. Finally, the chapter is summed up and further work is outlined in
Section 8.7.

121



8. An Efficient Contesting Procedure for AutoML Optimization

8.1 Introduction

In this study, we evaluated BO-based approaches for solving the AutoML optimiza-
tion problem. The AutoML optimization (AO) problem is typically considered as a
single optimization problem in the BO-based method by merging the optimization
space for all algorithms of all operators – this approach is typically refer to as
integrated approach [14]. The Combined Algorithm Selection and Hyperparameter
Optimization (CASH) approach [40] is a commonly used technique, where the AO
problem is treated as a hyperparameter optimization (HPO) problem. However,
HPO was initially developed to optimize hyperparameters of a single algorithm,
where the considered search space is typically smaller, lower-dimensional, and less
(even non)-structured than the AutoML search space. Hence, the HPO-based
approach is not ideal for handling the AO problem. In order to alleviate the
above limitation, we formulate the AO problem as a ML pipeline optimization
problem, which is proposed by [15]. This can be seen as a generalization of
the CASH approach, where the parameter classes for operator’s algorithms, and
hyperparameters in an algorithm were clearly identified.

As an alternative to the integrated approach, [241] proposed the so-called CASH-
oriented Multi-Armed Bandits (MAB) approach to solve the model selection and
hyperparameter optimization problem for the classification problem (i.e., selecting
a classification algorithm and tuning the hyperparameters, simultaneously) by
applying HPO to each classifier separately. However, this might not be applicable
to AutoML scenarios, because the number of combinations of algorithms over
operators can be up to thousands. Fortunately, [15], [46], [47], [74] have pointed
out that operator algorithms can potentially be grouped and that different groups
of algorithms perform better on different types of problems, for example, a group
of linear classification algorithms performs best on linear classification tasks.

Hence, this study attempts to further improve BO performance for the AO
problems by applying the Divide and Conquer (DAC) strategy: the AutoML
search space is divided into multiple sub-spaces based on their similarity1, and
each sub-space is solved independently by a separate BO process (candidate). The
budget is then allocated to each candidate using a novel competing mechanism,
depending on its performance. Consequently, the most promising candidates have
a larger tuning budget than the least promising candidates. Therefore, the worst
candidates will be ‘terminated’ as soon as ample evidence against them has been

1see grouping approach proposed in [15]
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gathered, saving computation time and resources for future assessments in those
search areas.

Notably, as our approach handles BO2 processes independently, it allows
multiple optimization processes to be executed simultaneously without affecting
the performance. In other words, our technique achieves the same numerical results
in both parallel and sequential settings, with the exception of different execution
times.
Our contributions: We summarize our main contributions, which are the follow-
ing:

• We propose a novel contesting procedure, namely DACOpt, to solve the
AutoML optimization problem efficiently, which is complementary to the
existing BO approaches.

• DACOpt efficiently allocates resources to each sub-space to ensure that (1)
all areas of the search space are covered and (2) more resources are assigned
to the most promising sub-space. In addition, we provide a proof that our
approach fixes the existing gap between serial and parallel BO execution (see
Section 8.3.3).

• Two independent empirical studies on a range of AutoML optimization
problems with 2 and 6 operators on a total of 117 benchmark datasets
demonstrate the superiority of the proposed approaches.

• An empirical experiment on a real-world application of surface defect classifica-
tion in steel manufacturing indicated that our proposed approach significantly
improved BO’s performance.

8.2 Background

In this chapter, we review the relevant techniques to the proposed contesting
procedure (Section 8.2.1), and early-stop strategies (Section 8.2.2). Other related
research to Bayesian Optimization and AutoML optimization can be found in
Section 3.1.3.

2BO (a.k.a., Sequential model-based optimization) was originally intended as a sequential
approach [25], [36].
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8.2.1 Contesting procedure for AutoML optimization

AutoML optimization typically is a high-dimensional mixed-variables (continuous,
discrete, nominal) optimization problem. In order to handle such a challenge
by a BO approach, three facts are considered: (1) BO performs better for low-
dimensional problems [242], (2) AO problems have low effective dimensionality [30],
[31], and (3) the complexity of AO problem not only comes from its dimensionality,
but also from the number of possible combinations of algorithms within the ML
pipeline [15].

Divide and Conquer (DAC) [243] is a well-known strategy for handling large
problems via decomposing the target problem into c small-scale and low-dimensional
sub-problems. Consider an AO problem p∗ = argmaxp∈M f(p). For applying DAC,
the approach has to first decompose the AutoML search space into c sub-spaces,
and then solve each sub-space by an optimizer. Assuming that we can split the
AutoML search space M into c smaller spaces {M1, . . . ,Mc}, the DAC approach
can be formulated as:

p∗ = (argmax
p∈M1

f(p), . . . , argmax
p∈Mc

f(p)) = (p∗
1, . . . , p∗

c) (8.1)

where p∗
i is the global optimum of sub-space Mi and p∗ is the global optimum

of the original search space M.
The existing DAC studies typically treat elements of the input search space

on the same level and decomposed by complementing [244]. That is, variables
corresponding to sub-space Mi can change freely while the remaining |M \Mi|
dimensions are set to some fixed values. However, such approaches cannot be
used for the AutoML search space where dimensions are hierarchical and, thus,
dependent. As a result, two challenges are faced when using DAC to solve AutoML
problems: (1) how to divide the AutoML space M onto a set of c sub-spaces
efficiently; (2) how to optimize resources during the ‘conquer’ phase, since some
sub-spaces’ performance might be significantly worse than others. To answer the
above questions, we propose (1) a splitting approach based on the combination of
groups of operator algorithms [15], (2) adopting efficient early-stop strategies based
on the theoretical guarantees (see our discussion in Section 8.2.2) for optimizing
resources for the ‘conquer’ phase.

In addition, since the number of algorithms (and therefore, the number of sets
of their parameters) is smaller in the DAC-formulation of the AutoML problem in
Equation 8.1 compared to the original formulation in Equation 1.4, the proposed
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contesting procedure also concurs the assumption [30], [31] that the AO problem
has low effective dimensionality.

8.2.2 Early-stop strategies

As we discussed in Section 1.1, the k-fold cross-validation is usually applied to the
AutoML optimization problem to prevent the over-fitting problem as described
in Equation 1.4. For readability, let p denote p(A1,λ,...,Az,λ). The Equation 1.4 is
then formulated as:

p∗ = argmax
p∈M

1
k

k∑
j=1

f
(

p,Dj
t ,Dj

v

)
(8.2)

where f
(

p,Dj
t ,Dj

v

)
is performance of the pipeline setting p when trained and

evaluated on the jth cross-validation data fold Dj
t and Dj

v, correspondingly. As a
consequence of using cross-validation, every function evaluation becomes k times
more expensive. An early stop strategy, e.g., [32]–[36], [173] allows limiting this
issue, since it avoids wasting time and resources on evaluating worse settings over
all k folds.

An important concept is to stop investigating a setting as soon as sufficient
information indicates that it is ineffective. A setting will only be examined in a few
folds in this manner; an iterative elimination function will analyze its performance
on the evaluated folds to compare it to other evaluated settings and determine
how many folds should be utilized for the considered setting.

The elimination function in racing procedure approaches (see Section 3.2.1) is
based on a statistical test procedure, i.e., Friedman test [176], whereas bandit-based
approaches (see Section 3.2.2) compare the setting performance directly to the
best-known setting. In a number of case studies, both strategies performed well [14],
[33], [35], where the task of proposing new settings was commonly handled by
a random search (see Section 3.1.2). Unfortunately, the inconsistencies in how
settings are assessed may provide additional noise for BO, making it less reliable
in suggesting subsequent settings. This means that such approaches should not be
used directly and should be adopted only at the level of search sub-spaces, via the
termination of unpromising sub-spaces (the detailed discussion on the termination
functions is given in Section 8.3.1).
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8.3 Proposed approach

We now discuss our proposed contesting procedure for AutoML optimization
problems based on the Divide And Conquer strategy, which we call DACOpt.

8.3.1 Algorithm description

We reformulate the AutoML optimization problem in Equations 1.4, 8.1 and 8.2
into the following:

p∗ = argmax
p∈M

(p∗
1, . . . , p∗

c) (8.3)

s.t. p∗
i = argmax

pi∈Mi

1
k

k∑
j=1

f
(

pi,Dj
t ,Dj

v

)
(8.4)

where Mi = Oi ∪Λi denotes the ith sub-space. Oi = O(i)
1 × . . . × O(i)

z denotes
the possible sequence of operators in Mi, herein ∀i ∈ {1, . . . , c}, O(i)

l∈{1,...,z} =
{A1

l , . . . ,Anl

l } denotes a set of algorithms of the lth operator ∀|O(i)
l |≤ |Ol|, and a

set of the corresponding hyperparameters of O(i)
l : Λ(i)

l∈{1,...,z} = Λ1
l ∪ . . . ∪ Λnl

l and
f

(
pi,D(j)

t ,D(j)
v

)
denotes performance of the setting, similar to Equation 8.2.

The overall proposed structure of the contesting procedure is summarized in
Figure 8.1. The process begins with a Splitter function to be applied on the input
AutoML search space M to produce c possible sub-spaces. Here, we extend our
work from the previous chapter with improvements (a detailed discussion on this
function is given in Section 8.3.2). Then, c BO processes are initialized (in the
following discussion, the BO processes shall be called candidates). The whole
contest is controlled by the Controller function, which allocates budgets to each
candidate per contest round based on the feedback from the Elimination function
that decides which candidates will survive into the next round based on their
performances so far. As mentioned in Section 8.2.2, we adopt two possible settings
for the early-stop functionality. Therefore, two versions of DACOpt are provided,
which differ mainly w.r.t. the elimination criteria: (1) based on highest performance
(Section 8.3.1.1) and (2) based on a statistical procedure (Section 8.3.1.2).

8.3.1.1 Elimination criteria based on the highest performances

In BO (Section 3.1.3), the acquisition function maximizes the best-found value
∆∗

(t) up to time step t. Due to the fact that the goal of AutoML optimization
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Figure 8.1: The workflow of the contesting procedure.

is to find the setting that achieves the highest performance on the target ML
problem, we consider the highest performance as a suitable comparison criterion.
Furthermore, the way of computing the budget, step size, and the number of
rounds follow the Successive Halving (Chapter 3. Section 3.2.2.1) and Hyperband
(Chapter 3. Section 3.2.2.2) approaches with minor adjustments: input parameters
of our procedure include the maximum number of sub-spaces to be split c, total
optimizing budget B, and the ratio of candidates discarded in each round3 η. The
number of rounds in the contest is then calculated as: Rmax = ⌊logη(c)⌋. Each
round has the same budget Br = B

Rmax
. That is, each of m surviving candidates at

the round can have a budget of b = ⌊Br

m ⌋. At the end of the round, the Elimination
function keeps ⌈m

η ⌉ candidates for the following round. Therefore, the surviving
candidate has η times the budget from the previous round.

Our approach is elaborated in Algorithm 11 which requires the maximum
3η = 3, can be changed by user.
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8. An Efficient Contesting Procedure for AutoML Optimization

number K of sub-spaces to be split and the ratio of candidates discarded in each
round, η, as input parameters. This approach consists of the following steps:

• Initialize: Split the original search space into c (c ≤ K) sub-spaces (line 1).
Next, initialize c corresponding Bayesian optimization candidates (lines 2-3).
Next, the number of contest rounds is calculated, Rmax = ⌊logη(c)⌋ (line 4).

• Parameter for each round: Based on the number of surviving candidates
from the previous round, the number of candidates cr for the current round r

is computed in line 8 for the first round and in line 11 for subsequent rounds.
The elimination function discards candidates labeled as badly performing
and returns a set of cr good candidates (line 11). Herein, we simply select
the top cr candidates based on their best-found values. A reasonable budget
for each candidate is computed based on the remaining budget, remaining
rounds, and the number of surviving candidates (lines 13-14). All the above
steps (lines 10-14) are repeated every round, except the first round. In the
first round, all candidates survive and are given a budget of b = binit (lines
7-9).

• Finally, using value b obtained in the previous step, all surviving candidates
continue their optimization processes (lines 15-19).

8.3.1.2 Elimination criteria based on a statistical procedure

As mentioned in Section 8.2.2, our second option was the approach of racing
procedures to determine well and badly-performing candidates. This approach
also requires a maximum number of sub-spaces K and a level of significance α.
Since the effectiveness of BO is mostly seen in the later phases of optimization
when it learns to produce better settings, we only consider the best-found value of
the initial sampling step for further statistical tests. Unlike the first elimination
criteria method, this method does not compute the number of rounds or budget
for each round since it completely depends on the statistical results; instead, we
use a step size4 γ to limit budget per round. At the end of the round, a Friedman
test [176] is performed to verify whether there is a significant difference between
the pair of candidates. If it is the case, a Holm post-hoc test [245]5 is applied to
compare the highest-ranked candidate to others. Any candidate that fails the test

4γ = 1, can be changed by user.
5Following the recommendations by [246], [247].
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Algorithm 11: DACopt based on the highest performance
Input: M: Search space, K: number of sub-spaces to be split, f :

objective function, B: maximal number of evaluations, binit:
number of evaluations for the initial step in each of c BO processes,
η: ratio controlling the proportion of candidates discarded in each
round

Output: p∗: the best pipeline setting, ∆∗: the best value
1 ({M1, . . . ,Mc}, c)← Splitter(M, K) // divide the input search

space into c sub-spaces
Initialization : Initialization phase

2 for Mi ∈ {M1, . . . ,Mc} do
3 (BOi,Hi)← BayesianOptimizer(Mi, f, binit) // Initialize BOi

and its historical data Hi = {(pn, ∆n)evaluated
n=1 }. (p, ∆)

represent configuration and performance.
Initialization : Contesting phase

4 Rmax ← ⌊logη(c)⌋ // Rmax: number of rounds
5 r ← 0 // r: round number
6 while r ≤ Rmax do
7 if r = 0 then
8 cr ← c; (BO1, . . . , BOcr

)← RandomPermute(BO1, . . . , BOc)
// Note: at the first round cr = c, but the order of
candidates are shuffled.

9 b← binit // all candidates have an equal budget binit
10 else
11 cr ← ⌈

cprevious
η ⌉ // number candidates for rth round

12 (BO1, . . . , BOcr
)← Eliminate((BO,H)i∈{1,...,c}, cr) // Select

good cr candidates, ordered by performance/rank

13 Br ← ⌊ B
Rmax − r ⌋ // Br:total budget for rth round

14 b← ⌊Br
cr
⌋ // Br:budget per candidate

15 for BOi ∈ {BO1, . . . , BOcr} do
16 BOi .AddBudget(b) // Add budget b to BOi

17 (BOi,Hi)← BOi .optimize() // Continues BOi process
18 B ← B − b// Update the remaining budgets
19 cprevious ← cr; r ← r + 1
20 Return p∗, ∆∗ = argmaxp,∆ {H}i∈{1,...,c};

is removed from the list of surviving candidates. This loop is repeated until the
best candidate is found. This process, summarized in Algorithm 12, consists of
the following steps:

• Initialize: Using the same split function as Algorithm 11, to produce c

(c ≤ K) sub-spaces (line 1). All candidates are initialized with the minimum
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required budget binit (line 2-3).

• The main operates in the contesting phase: maintain a set of surviving
candidates6. A statistical test is performed at each round to determine if
there are any pairs of candidates that are significantly different (lines 7-10).
If the null hypothesis is false, we first perform a rank test, e.g., the Wilcoxon
signed rank test, to detect the highest-ranked candidate (line 12). Next, a
post-hoc test is applied to the pair of every candidate and the highest-ranked
candidate (line 13). Any candidate that fails the test is removed from the
set of surviving candidates (line 14). Next, a budget γ is added to each
candidate in the survived set (line 18) and continues the tuning process with
the added budget (line 19). This procedure is repeated until the total budget
runs out.

Lastly, both options naturally support parallel implementation. We require the
number of maximum available threads τ, (τ ≥ 1), as an extra input parameter for
the parallel mode. The parallel mode will be discontinued when the best sub-space
is found. In both algorithms, parallel mode is applied to execute the BO processes.

6Note for the contesting phase: Since the effectiveness of BO is mainly determined during
the initial sampling step as it learns to produce better settings. Therefore, we consider only
the best-found value from the initial sampling step for further statistical tests, and we perform
statistical tests only when the sample size exceeds 2.
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Algorithm 12: DACOpt based on the statistical test
Input: M: Search space, K: number of sub-search spaces, f : objective

function, B: maximal number of evaluations, binit: minimum
evaluations per sub-search space, γ = 1: step size, α = 0.05: level
of significance

Output: p∗: the best pipeline setting, ∆∗: the best value
1 {M1, . . . ,Mc}, c← splitter(M, K) // divide the input search

space into c sub-spaces, c ≤ K
// BEGINNING OF INITIAL PHASE

2 for Mi ∈ {M1, . . . ,Mc} do
3 (BOi,Hi)← BayesianOptimizer(Mi, f, binit) // Initialize BOi

and its historical data Hi = {(pn, ∆n)evaluated
n=1 }. (p, ∆)

represent configuration and performance.
// BEGINNING OF CONTESTING PHASE

4 {(BOi,Hi)}
survive

i=1 ← {(BOi,Hi)}
c

i=1// All candidates survive
5 cr ← c // cr number of surviving candidates
6 while B ≥ 0 do
7 if cr < 3 then
8 stac←WilcoxonTest() // Init WilcoxonTest if cr < 3
9 else

10 stac← FriedmanTest() // Init FriedmanTest if cr ≥ 3
// Performs the chosen statistical test with α to detect if

there is at least one pair of candidates that are
significantly different

11 if (¬stac({Hi}survive
i=1 , α)) & cr > 1 then

12 Hi∗ = argmax Ranking({Hi}survive
i=1 ) // detect the highest

ranked Hi∗ among the surviving candidates based on a
ranking test, e.g., Wilcoxon signed rank test

13 {(BOi,Hi)}survive
i=1 ← Holm_post_hoc_test// detects

candidates not significantly worse than Hi∗

14 cr ← number of surviving candidates
15 else if cr = 1 then
16 γ ← B// If cr = 1, allocate the remaining budget
17 for BOi ∈ {BOi}survive

i=1 do
18 BOi .AddBudget(γ) // Add budget γ to the selected BOi

19 (BOi,Hi)← BOi .optimize() // Continues BOi process.
20 B ← B − γ // Update the remaining budgets

21 Return p∗, ∆∗ = argmaxp,∆ {H}i∈{1,...,c}
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8.3.2 The Splitting approach

In this section, we briefly describe of the splitting function (line 1 of the Algorithm 11
and Algorithm 12). The AutoML search space is complex owing to the number of
operators and their choice of algorithms. In practice, the search space can lead to
thousands of algorithm combinations over operators. Because the tuning budget is
relatively small compared to a large number of possible pipelines over operators,
we propose grouping them based on their similarities with the assumption that a
good choice for one algorithm in the group can also serve as a good choice for other
algorithms in the group. Consequently, the sampler can maximize the coverage of
the search space by sampling at the group level instead of at the algorithm level.

The concept of grouping is similar to that done in Chapter 7. However, it
mainly focused on initial sampling, where the budget was typically much smaller
than the number of combinations of algorithm’s groups. As a result, the group’s
level is limited to only 1, i.e., the group’s item is a specific choice for the algorithm.
In this study, we consider a scenario in which a set of algorithms under a group
might be slightly different. For example, while the RandomOverSampler and
SMOTE algorithms are both oversampling techniques (see the bottom plot in
Figure 8.2), they differ significantly: RandomOverSampler randomly generates
more data for minority classes, whereas SMOTE is based on interpolation. To
account for the possible hierarchical groupings of the algorithms, we extended
Algorithm 10 to allow any group at any level to contain child groups. Therefore,
the required groups are produced by downing (or upping) the levels to minimize
randomness. Consequently, the resulting subspaces are purer, that is, the difference
between items in a group is minimized, representing their actual relationship.
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8.3.3 Fixing the gap between serial and parallel BO

Bayesian optimization, called otherwise the Sequential model-based optimization
(SMBO), is naturally sequential. However, most modern optimizer-based BO
approaches include a parallelized version in addition to the original BO method.
AutoML-based BO is typically parallelized by either assessing in parallel (1) cross-
validation folds or (2) multiple settings, e.g., [26], [38], [248]. While the first
approach focuses on parallelizing evaluations inside the objective function, it does
not affect BO, however, it is efficient when k is less than the available resources.
The second approach might lead to inefficient solutions proposed by BO, in terms
of the number of function evaluations. Since the objective function is expensive, we
have to choose a configuration that might perform best. In the following, we discuss
how parallelized BO can lead to poorer results compared to serial approaches.

Let us consider a noiseless function f : M ⊂ Rd → R and its real-valued
surrogate model f̂ = {P(pi, ∆i)t

i=1} for time step t. At a new step t + 1, a
sampling approach (randomly) generates a set of solutions {p̂1, . . . , p̂n}. Those
later will be estimated by the surrogate model f̂ and used to propose one setting
pt+1 ∈ {p̂1, . . . , p̂n} by maximizing the acquisition function in Eq. 3.5. The set
of m next settings from the time step t of the sequential approach is {p/t+1 =
argmaxp∈M E[I(pt)], . . . , p/t+m = argmaxp∈M E[I(pt+m)]}. In contrast, the paral-
lel approach proposes a set of solutions {pq1

t+1, . . . , pqm
t+1} ∈ argmaxp∈M E[I(pt)].

Let p = |f(p)− f̂(p)| denote the difference between the performance of the setting
p on the true objective function f and its surrogate f̂ . Clearly, the quality of BO in
suggesting new solution(s) is highly dependent on f̂ and the statistical property of
f̂ (i.e., uncertainty) at time t, which significantly increases as more historical data
is collected. Thus,

∑m
j=1 p/t+j ≥

∑m
j=1 p

qj

t+j . Hence, the quality of m additional
time steps in the sequential method may be more robust than those in the parallel
technique. Thus, there is a discrepancy between the current serial and parallel
BOs.

For the reasons above, we use sequential BO to solve each search sub-space. For-
tunately, BO processes in our proposed procedure are independent (see Figure 8.1).
Therefore, we introduce a partly-parallel approach instead of fully parallel. Instead
of proposing a set of future solutions from a single search area like the fully parallel
technique does, in order to ensure the best performance of BO at every iteration,
DACOpt proposes a set of next setting solutions as sequential approach from
multiple independent search areas: p/i

t+1 = argmaxp∈Mi
E[I(pt)],∀i ∈ {1, . . . , c}.

134



8.4 Experimental Setup

Table 8.1: Proposed DACOpt approaches compared in this study

Name Contesting procedure BO variant
Highest Statistical BO4ML Hyperopt

DAC-HB ✓ ✓
DAC-HH ✓ ✓
DAC-SB ✓ ✓
DAC-SH ✓ ✓

Thus, p/i
t+1 in either serial or parallel situations are exactly the same. For parallel

computing, a parallel pool of m available workers will be repeated ⌈ c
m⌉ times to

finish c processes. The last iteration of that parallel pool is partly parallel if (c
mod m) > 0 and fully parallel otherwise. As a result, our approach holds the same
effectiveness in both cases.
The key benefits of our DACOpt approach are as follows:

• Based on the performance of the related BO process, the budget adaptively
redistributes to the search area7. As a result, the budget is distributed
effectively.

• As a partly-parallel BO variant, the proposed approach has parallel efficiency
without harming BO performance.

• BO performance and robustness can be increased since each BO process
optimizes a relatively small low-dimensional search space independently.

8.4 Experimental Setup

In order to evaluate the robustness and general applicability of our proposed
approach, we compare it to other state-of-the-art AutoML optimization approaches.
We reproduce the experimental setup with a total of 117 benchmark datasets on
two scenarios with optimization of 2 operators (Section 4.2) and 6 operators
(Section 4.3). In both scenarios, we compare the performance of BO-based variants
with the TPE surrogate model BO4ML (Chapter 7) and Hyperopt [153], with the
two proposed contesting procedures against those without such procedure (see
Table 8.1). Our local parameter settings are summarized in Table 8.2.

Both experiments used similar parameter settings as Chapter 7. All approaches
use an initial sample size of 50 function evaluations.

7In this thesis, we use the term search area to refer to an area (subset) of the search space.
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Table 8.2: Parameter settings

1st 2nd

experiment experiment

Total budgets (Bmax) 500 1
(func. eval.) (hour)

DACOpt parameters
- Number of candidates (K) 10 10
- Initial sample size per 5 5
candidate (Binit)
- DAC variants used

DAC-HB ✓ ✓
DAC-HH ✓ ✓
DAC-SB ✓ ✓
DAC-SH ✓ ✓

HyperOpt parameters
- Initial sample size per 50 50

BO4ML parameters
- Number of candidates (K) 10 10
- Initial sample size per 5 5
candidate (Binit)

The first experiment used a budget of 500 function evaluations. The 5-fold cross-
validation approach and the averaged geometric mean values over 10 repetitions
were reported. The selected classification algorithms were not grouped together.
The resampling techniques were grouped by a hierarchical graph as shown on the
right-hand side of Figure 8.2, following the suggestion in [48].

In the second experiment, all experiments are based on 10 runs with different
random seeds, and a time limit of 1 hour. The performance evaluation of a single
configuration is limited to 10 minutes with 4-folds cross-validation on training data,
i.e., the evaluation of a fold is allowed to take 150 seconds. The evaluation of a
configuration will be aborted and returned to zero if any of the folds have an error,
for example, infeasible configuration or timeout. The average accuracy values for
the test data over 10 runs were reported. Finally, the selected algorithms used a
hierarchical tree of similarity of algorithms8.
Reproducibility and Open Science: The implementation of the proposed meth-
ods is published in a git-repository9 and PyPi-repository10. The experiment scripts

8based on the hierarchy used in [151] and discussed in [46].
9https://github.com/ECOLE-ITN/NguyenIEEEAccess2022

10https://pypi.org/project/DACOpt
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8.5 Results and Discussion

for the reproducibility of the reported results are provided in a git-repository11.

8.5 Results and Discussion

In this section, we report and discuss the results obtained from the two experimental
setups introduced above. Generally speaking, we target three goals: (1) to compare
the performance of our two contesting procedures in terms of number of function
evaluations and wall-time limit; (2) to compare the performance of BO with and
without the proposed contesting procedures; (3) to compare those against the
current state-of-the-art AutoML frameworks.

The first experiment’s results are provided in Table 8.3, and the second in
Table 8.4. Both tables highlight the highest performance for the corresponding
dataset/task in bold. According to the Wilcoxon signed-rank test, the method
that performs significantly worse than the best with α = 0.05 is underlined. Two
extra rows at the end of the corresponding table display additional summaries.
The first extra row shows the number of times each scenario got the highest value
over tested datasets/tasks. The last extra row indicates the number of times each
approach was significantly better than the other in a group.

For each tested case, the method that achieved the highest performance was
counted as winning, provided that its performance was significantly better than
that of all other methods. The method that performed significantly worse than
the best was counted as a loss. They are considered equal if there is no significant
difference in performance between the two methods. The method is counted as
performing well if it either achieves the best performance or is not significantly
worse than the best-found method in the corresponding case.

11https://github.com/ECOLE-ITN/NguyenIEEEAccess2022/tree/main/Experiments
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Table 8.3: Average geometric mean (rounded to 4 decimals) based on six approaches,
i.e., DAC-HB, DAC-HH, DAC-SB, DAC-SH, BO4ML and Hyperopt, over 10
repetitions for the 44 examined datasets, ordered by increasing imbalance ratio
(#IR) value.

Dataset #IR DAC-HB DAC-HH DAC-SB DAC-SH BO4ML Hyperopt
glass1 1.82 0.8015 0.8004 0.804 0.7945 0.7922 0.7968
ecoli-0_vs_1 1.86 0.9864 0.9864 0.9864 0.9864 0.9868 0.9864
wisconsin 1.86 0.9813 0.9816 0.9813 0.9814 0.9814 0.9819
pima 1.87 0.769 0.7725 0.768 0.7719 0.7694 0.7705
iris0 2.0 1 1 1 1 1 1
glass0 2.06 0.876 0.8777 0.8736 0.8757 0.8736 0.8745
yeast1 2.46 0.7332 0.7333 0.7322 0.7321 0.7335 0.7325
haberman 2.78 0.7057 0.701 0.7023 0.6974 0.6968 0.7012
vehicle2 2.88 0.9903 0.991 0.9902 0.9898 0.9912 0.991
vehicle1 2.9 0.8709 0.8707 0.8512 0.8445 0.862 0.8701
vehicle3 2.99 0.84 0.8476 0.8166 0.8202 0.848 0.8461
glass-0-1-2-3_vs_4-5-6 3.2 0.9571 0.9568 0.9545 0.9572 0.9562 0.9514
vehicle0 3.25 0.9865 0.9868 0.9837 0.9837 0.9864 0.9855
ecoli1 3.36 0.9034 0.9047 0.9036 0.9029 0.9031 0.9047
new-thyroid1 5.14 0.9975 0.9986 0.9966 0.9972 0.9972 0.9978
new-thyroid2 5.14 0.9975 0.9978 0.9972 0.9972 0.9975 0.9978
ecoli2 5.46 0.9375 0.9375 0.9365 0.9362 0.9361 0.9358
segment0 6.02 0.9993 0.9993 0.9992 0.9992 0.9991 0.9993
glass6 6.38 0.952 0.9547 0.9516 0.9503 0.9489 0.9524
yeast3 8.1 0.9436 0.9437 0.9422 0.942 0.9428 0.9425
ecoli3 8.6 0.9075 0.9079 0.907 0.9072 0.9054 0.9091
page-blocks0 8.79 0.9471 0.9467 0.9468 0.9463 0.948 0.9472
yeast-2_vs_4 9.08 0.9535 0.952 0.9533 0.951 0.9538 0.9533
yeast-0-5-6-7-9_vs_4 9.35 0.8145 0.8258 0.8146 0.8169 0.8238 0.8195
vowel0 9.98 0.9628 0.9569 0.9598 0.9554 0.9564 0.9555
glass-0-1-6_vs_2 10.29 0.8515 0.8424 0.845 0.8359 0.8436 0.8342
glass2 11.59 0.8593 0.8546 0.8601 0.8534 0.8578 0.856
shuttle-c0-vs-c4 13.87 1 1 1 1 1 1
yeast-1_vs_7 14.3 0.8017 0.8043 0.8003 0.8026 0.8017 0.8001
glass4 15.46 0.9355 0.9372 0.9291 0.935 0.9192 0.9334
ecoli4 15.8 0.9743 0.9709 0.9701 0.9637 0.9661 0.9698
page-blocks-1-3_vs_4 15.86 0.9944 0.9889 0.9929 0.9882 0.9901 0.99
abalone9-18 16.4 0.8951 0.8864 0.8834 0.8846 0.8873 0.8838
glass-0-1-6_vs_5 19.44 0.9655 0.9535 0.9588 0.9597 0.9681 0.9644
shuttle-c2-vs-c4 20.5 1 1 1 1 1 1
yeast-1-4-5-8_vs_7 22.1 0.7166 0.7037 0.7155 0.7011 0.6979 0.7011
glass5 22.78 0.9716 0.9699 0.9659 0.96 0.9625 0.96
yeast-2_vs_8 23.1 0.8242 0.8259 0.8135 0.8117 0.828 0.8254
yeast4 28.1 0.8794 0.8812 0.8694 0.8726 0.8708 0.8773
yeast-1-2-8-9_vs_7 30.57 0.7515 0.7546 0.7416 0.7459 0.7391 0.7429
yeast5 32.73 0.9801 0.9806 0.9795 0.9796 0.9801 0.9798
ecoli-0-1-3-7_vs_2-6 39.14 0.866 0.8799 0.8892 0.9035 0.9034 0.9057
yeast6 41.4 0.9007 0.9018 0.8994 0.9003 0.897 0.9004
abalone19 129.44 0.8059 0.8031 0.8022 0.8003 0.8049 0.8021

Cases achieved the 14 18 5 4 11 7
highest values

Significant wins over 10 8 1 1 4 0
other approaches
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Figure 8.3: Overview of the results over 10 repetitions for the 44 binary imbalanced
benchmark datasets.

8.5.1 First experiment results

The results of the first experiment are presented in Table 8.3 to illustrate the
performance between 2 BO variants based on TPE surrogate model with and
without proposed contesting procedures using 2 elimination criteria – highest
performance and statistical test procedure, i.e., DAC-HB, DAC-SB, DAC-HH,
DAC-SH compared to BO4ML and Hyperopt. Additionally, these results are
summarized in Figure 8.3. This figure is based on the average geometric mean
over a 5-fold cross-validation over 44 imbalanced binary benchmark datasets. We
make the following observations:

• Comparing two methods that use the highest performance as the elimina-
tion criteria (highest value-based contest), DAC-HH achieved the highest
performance more times than DAC-HB (18 vs. 14). However, DAC-HB
significantly won on more tested cases than DAC-HH. Additionally, DAC-HB
loses on fewer cases than DAC-HB (1 vs. 5).

• Compared to the contesting procedures that used statistical tests as the
elimination criteria (statistical-based contest), two methods, i.e., DAC-SH
and DAC-SB, achieved similar performance.
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Figure 8.4: Illustration of the contesting process on dataset abalone9-18. This
figure shows the optimization convergence plots of DAC-HB (top-left), DAC-SB
(top-right), DAC-HH (bottom-left) and DAC-SH (bottom-right) approaches. All
approaches are initialized with the same random seed. The colors represent BO
processes on sub-spaces.

• Overall, DAC-HB performs well in most of the tested cases. More precisely,
over 44 tested dataset, DAC-HB loses only on dataset pima, where DAC-HH
is the winner.

Lastly, another point worth mentioning is that we expected the statistical-based
approaches, i.e., DAC-SB and DAC-SH, to perform better than the highest-
based approaches, i.e., DAC-HB and DAC-HH. However, the experimental results
contradict our assumptions. To investigate their optimizing behavior, we plot
a single run of these approaches on the dataset abalone9-18 in Figure 8.4. The
two plots on the left show the convergence behavior of the highest-based contests
and the statistical-based contests are shown on the right. All approaches used a
total budget of 500 function evaluations, and the search space was split into 10
sub-spaces. The colors represent BO processes on sub-spaces. The dashed-grey
vertical lines indicate a contest round cutoff point, i.e., the end of the round where
the elimination function is called. The extra dashed-red vertical line on the two left
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plots shows the most extended sequence of the corresponding underlying optimizer.
The statistical-based approach maintained more candidates throughout the contest
than the highest-based approach. Consequently, the best candidate was found late
with less budget than the best candidate in the competitor approach.
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Figure 8.5: Overview of the results over 10 repetitions for the 73 AutoML bench-
mark datasets.

8.5.2 Second experimental results

In this experiment, we compare all approaches used in the first experiment to
the current state-of-the-art AutoML frameworks, i.e., Auto-sklearn-SMAC (Auto-
sklearn) and Auto-sklearn-Random search (Random), HPsklearn ([42], TPOT [43],
ATM [90], H2O [89]), based on the results obtained by [22]. The detailed results
of the second tested scenarios are presented in Table 8.4. We note that entries
with missing values in the last 6 columns indicate arbitrary fails reported by [22].
Additionally, the results of the second experiment are summarized in Figure 8.5.
This figure is based on the accuracy of the test dataset over 10 repetitions to show
the performance differences between the two BO variant-based TPE surrogate
models, namely BO4ML and Hyperopt, to compare both with and without the
proposed contesting procedure, as well as with two elimination criteria, namely
the highest value and a statistical procedure (see Table 8.1).

• First, when comparing the three approaches that use Hyperopt as the un-
derlying optimizer, i.e., DAC-HH, DAC-SH, and Hyperopt, we observed
that both proposed contesting procedures won on more tested cases than
Hyperopt. More precisely, DAC-HH, DAC-SH, and Hyperopt significantly
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8.5 Results and Discussion

outperformed others in 8, 3, and 2 cases, respectively. However, in these
tested cases of Hyperopt, it is never significantly better than both DAC-SH
and DAC-HH; DAC-SH and DAC-HH are not significantly different. In
contrast, correspondingly, DAC-HH and DAC-SH significantly outperform
Hyperopt in 5 and 1 cases. Therefore, we can conclude that (1) both contest-
ing procedures significantly improve the performance of BO, (2) DAC-HH
won against Hyperopt in more cases compared to DAC-SH.

• Secondly, we analyze the results of three approaches that use BO4ML as the
underlying optimizer, i.e., DAC-HB, DAC-SB, and BO4ML. We observe that:
(1) all three approaches performed well on 73%, 67%, and 55% tested cases,
respectively; (2) DAC-HB achieved the highest performances on most of the
tested cases, followed by BO4ML and DAC-SB. In 11 cases where BO4ML
significantly outperformed others, it was not significantly better than any of
the competitors in this comparison. DAC-SB was significantly better than
BO4ML on 1 tested case, i.e., task 146821, but it never won DAC-HB. In
comparison, DAC-HB outperformed DAC-SH and BO4ML on 3 and 7 cases,
correspondingly.

• Comparing the results of 8 approaches using the search space of Auto-sklearn,
i.e., our four approaches, BO4ML, Hyperopt, Auto-sklearn, and Random
search, we can observe that: First, all BO-based approaches performed better
than random searches over all tested cases. Random search achieves the high-
est result in 1 case (#ID:24), in which all competitors perform equally (no
win). Second, it can be seen that DAC-HB won in most tested cases, followed
by BO4ML, DAC-HH, Auto-Sklearn, DAC-SH, DAC-SH, Hyperopt, and
Random search. We conclude that the proposed approach clearly improves
the efficiency of BO in solving AutoML optimization problems. This finding
may be explained by the fact that the HPO-based approach does not consider
the relationship between algorithms under operators; thus, it requires more
resources to cover a large and complex search space in this experiment. In
contrast, by grouping similar algorithms together and splitting the original
search space into smaller independent subspaces, the proposed approach bet-
ter utilizes the given budget. Consequently, the search space can be covered
within a relatively small budget, and the most promising subspace can be
identified early. As a result, resources are efficiently distributed. Additionally,
BO is known to perform better for low-dimensional problems [31], [241], [242].
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8. An Efficient Contesting Procedure for AutoML Optimization

Our approach transfers the original high-dimensional problem of AutoML
into multiple low-dimensional problems, thus improving the performance of
BO.

• Additionally, when comparing all contesting variants, it can be seen that
DAC-HB won on more tested cases than others. The contesting procedure
based on the highest performance, i.e., DAC-HH, DAC-HB, won on more
cases than those based on the statistical procedure, i.e., DAC-SH, DAC-
SB. This finding may be explained by the fact that executing a statistical
method adds to the overall computational cost of the procedure. As a result,
the contesting technique that used statistical procedures examined fewer
configurations in the same amount of time as the others.

• Finally, Figure 8.5 shows that the proposed contesting procedures performed
well on up to 73% and at least 53% of all tested cases, when compared to
Random Search -8% of all cases, Hyperopt - 11% of all cases, AutoSklearn -
21% of all cases, TPOT - 27% of all cases, ATM - 30% of all cases and H2O
- 37% of all cases.

8.6 Application on Surface Defect Classification
in Steel Manufacturing
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Figure 8.6: Illustration on the distribution of 500 samples across a search space
of 5 classifiers and 21 resampling techniques of the three optimization algorithms,
namely TPE, BO4ML, DACOpt. In this run, different approaches explore specific
combinations of algorithms (cells in the figure) to find the combination that can
achieve the best performance. BO4ML and DACOpt cover more combinations of
algorithms (cells in the figure) than TPE. Specifically, TPE, BO4ML, and DACOpt
have 35, 13, and 8 combinations with no samples (white cells color in the figure),
respectively.
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In this section, we present an application of DACOpt in a real-world application
for surface classification in steel manufacturing. This multi-class imbalance problem
was introduced in Chapter 6. We have two main objectives in this section:

• Firstly, we aim to enhance the performance of the current classification system
used for surface defect detection at our industry partner, TATA, by applying
AutoML optimization. This study will use a standard performance metric,
i.e., geometric mean (micro), as the objective function. This is different from
Chapter 6.

• Secondly, we apply our new method, DACOpt, to the real-world application
for surface classification in steel manufacturing. As presented in Section 8.5.1
and Section 8.5.2, the experimental results show that DAC-HB won on more
test cases compared to other variants of DACOpt. Thus, we use DAC-HB
as the mere variant of DACOpt in this study. Additionally, we aim to
investigate the efficiency of DACOpt as compared to BO4ML (Chapter 7)
and TPE [158]. The difference between the three optimization approaches
is illustrated in Figure 8.6. The illustration shows the sample distribution
of 500 samples across the search space of 5 classification and 21 resampling
algorithms. The TPE algorithm is shown in Fig. 8.6a, while the our two
optimization algorithms are BO4ML (Fig. 8.6b) and DACOpt (Fig. 8.6c).
The height and color of each bar represent the number of samples. The white
cell shows unexplored algorithm combinations. The figure shows that TPE
has more unexplored combinations than the other algorithms, indicating that
some ML algorithm combinations were never explored.

In the remainder of this section, we present the experimental setup (Section 8.6.1)
followed by the experimental results and discussion (Section 8.6.2).

8.6.1 Experimental setup

As mentioned, this study reuses the experimental setup introduced in Chap-
ter 612, which includes the search space (Section 6.3), experimental procedure
(Section 6.3.2), and datasets (Section 6.3.1). As a reminder, the search space
includes five classification algorithms, namely Support Vector Machines (SVM),
Random Forest (RF), k-nearest Neighbors (KNN), Decision Tree (DT), and Lo-
gistic Regression (LR), along with 3 commonly used multiple-class classification

12The experiment scripts for the reproducibility of the reported results are provided in a
git-repository :https://github.com/anh05/AutoML-Multiclass-Imbalanced
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8. An Efficient Contesting Procedure for AutoML Optimization

techniques (Multi-class direct classification (Direct), One-vs-One (OvO), and One-
vs-Rest (OvR)). We direct interested readers to Chapter 6 (Section 6.2) for a
detailed discussion of the relevant background. Additionally, there are 21 options
for resampling techniques, including the option of not using any resampler, leading
to a total of 84 hyperparameters in the search space. We have improved the
practicality of selected resampling techniques in tackling multi-class imbalanced
problems by introducing a hyperparameter called sampling strategy. It offers a
range of values including {majority/minority13, not minority, not majority,
all, auto}. We use the geometric mean micro (GMmicro) as the objective function
to maximize. For M classes (A, B, . . . , M) in a multi-class classification problem,
we calculate the GMmicro as:

GMmicro =
√

Specificitymicro × Sensitivitymicro

=

√ ∑M
i=1

TNi∑M
i=1

TNi +
∑M

i=1
FPi

×

∑M
i=1

TPi∑M
i=1

TPi +
∑M

i=1
FNi

(8.5)

where TPi, TNi, FPi, FNi denote the number of true positives, true negatives, false
positives and false negatives samples in class i ∈ M, respectively.

For this particular study, we conducted 9 optimization processes for a given
dataset using different classification strategies and optimizers. To be specific,
for each optimization approach, we set up three independent experiments, each
representing a different approach– One vs. Rest (OvR), One vs. One (OvO), and
Direct classification (Direct) strategies. Therefore, we had 3× 3 = 9 optimization
processes for a dataset. All 9 optimization processes have a budget of 500 for
function evaluations. Additionally, our experiments aim to compare the current
classification system (current system) used by our industry partner14. We use
the same training and test datasets as the current system for a fair comparison.
The current system executes 10 times on each of the tested datasets. For each
execution, the considered dataset is randomly split into training (80%) and test
(20%) sets. Those train/test sets are exported to use in our experiments, i.e., we
have 2× 10 = 20 different train/test sets in total.

13majority is an option for under resampling, minority is for over/combine resampling tech-
niques

14For reasons of confidentiality, since proprietary software of a supplier is used by the industrial
partner, no details about the algorithmic approach taken by the currently used system are
available.
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8.6.2 Experimental results and discussion

In this section, we present our findings and insights. We have summarized the
experimental results in Table 8.5 to showcase the performance differences between
three optimization algorithms, namely TPE, BO4ML, and DACOpt. For each
optimizer, we have provided their optimization performance with the use of three
classification strategies, namely multi-class direct classification (Direct), One
vs. One (OvO), and One vs. Rest (OvR). This results in 9 experimental outcomes
for each dataset. We have compared these results against the classification approach
used in the current system. The highest performance for each dataset is highlighted
in bold. The methods performing significantly worse than the best according to
the Wilcoxon signed-rank test with α = 0.05 are underlined. Additionally, the

Table 8.5: Average geometric mean (micro), rounded to 5 decimals over 10 rep-
etitions for the 2 datasets. Boldface highlights the best-performing method per
dataset and underline indicates results that are significantly different from the best
method in that group according to a Wilcoxon signed-rank test (p < 0.05).

Dataset Current TPE BO4ML DACOpt

system Direct OvO OvR Direct OvO OvR Direct OvO OvR

Top side 0.87269 0.92068 0.91957 0.92394 0.92076 0.91982 0.92474 0.92115 0.92069 0.92554
Bottom side 0.86064 0.94085 0.94175 0.94146 0.94096 0.9198 0.94165 0.94137 0.94247 0.94176

distribution of geometric mean micro over 10 repetitions for the two tested datasets,
is visualized in Fig. 8.7. Each box plot represents 10 repetitions. The horizontal
inner line shows the median. The whiskers show the lowest and the highest observed
value15. The color dots show the observed values, and the dots outside the whisker
represent the outliers. The box covers the first to the third quantiles. The results
allow the following insights:

• According to the results of the Wilcoxon signed-rank test, our experimental
approaches significantly outperform the current approach used at our industry
partner (current system). Additionally, from Fig. 8.7, the median and
whiskers of all optimization approaches on three classification scenarios are
higher than those of the current system. In other words, our procedure has
successfully enhanced the performance of the current classification system
used by our industry partner.

15The whisker scale is set as 1.5.
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Figure 8.7: Box plots showing the distribution of classification results for two
examined datasets.

• Overall, DACOpt achieved the best classification performance on both
datasets that were examined. Specifically, for the SIS top-side dataset,
the DACOpt approach using the OvR classification strategy outperformed
TPE in all experiments. It also significantly outperformed BO4ML in two
cases of direct classification and OvO strategies. For the SIS bottom-side
dataset, the DACOpt method with the OvR classification strategy also
achieved the highest result. It significantly outperformed TPE with the
direct classification strategy.

• We conducted a Friedman’s Test on all three strategies to determine the
most effective classification strategy among direct classification, OvO, and
OvR when used with AutoML optimization approaches. Surprisingly, the
results showed no significant difference in the average GM (micro) with a
p-value of 0.13169. It is surprising because the decomposition approach is
the most commonly recommended for dealing with multi-class problems from
literature, as it converts the multi-class problem into multiple binary-class
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Figure 8.8: Illustration of the different combinations of resampling and classification
algorithms generated by the best ML pipeline resulting from the optimization
processes conducted by TPE, BO4ML, and DACOpt. Within each of the 9
optimization approaches (3 for each method), 3 distinct classification strategies,
namely Direct classification (Direct), One-vs-One (OvO), and One-vs-Rest (OvR).
The optimization process is repeated ten times on two examined datasets.

problems, which makes the classifier work more efficiently. However, our
finding indicates that applying AutoML optimization performs similarly for
three classification strategies.

We have presented Fig. 8.8 to investigate the final combination of choices for
resampling and classification algorithms of all optimization methods. Our findings
indicate that SVM and RF are the algorithms most frequently selected, while
other classification algorithms have not been chosen in any of the test cases. SVM
wins in 61% and 99% of cases for the SIS Top-side and SIS Bottom-side datasets,
respectively. RF obtains 39% wins on the SIS Top-side dataset, but only one win
in the SIS Bottom-side dataset by BO4ML with the OvR classification strategy.
Regarding the usefulness of resampling techniques, 81% of the runs yield the
highest results using some form of resampling technique. Over resampling, under
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1 2 3

DACOpt
BO4ML

TPE

CD

Figure 8.9: Comparison of all optimization algorithms compared to each other
using Nemenyi test with a 5% significance level.

resampling, and combined resampling obtain 109 (61%), 34 (19%), and 3 (2%)
wins over (2 datasets×3 classification strategies×3 optimizers)×10 repetitions =
180 runs. At the same time, 34 (19%) runs yield the highest performance without
using any resampling techniques.

Based on the results of Friedman’s test in average GM (micro), we found
significant differences among all optimization approaches, with a p-value of 9.8e-4.
As a follow-up, we performed post hoc multiple comparison tests using the Nemenyi
test at a significance level of 0.05, as shown in Fig. 8.9. Approaches with a distance
greater than CD16 are considered significantly different. Upon analyzing the figure,
we can conclude that DACOpt outperforms all competitors, while BO4ML and
TPE perform similarly.

Based on the results of our experiment, we have arrived at four main conclu-
sions:

1. Our experiments demonstrated that AutoML optimization approaches signif-
icantly improved classification performance compared to the current system.

2. In addition, we found that our new approach, DACOpt, outperforms the two
competitors, i.e., BO4ML and TPE. Therefore, we recommend the use of the
DACOpt method for AutoML optimization.

3. Resampling techniques are recommended to deal with multi-class imbalanced
problems, as 81% of runs yield the best performance using them.

4. Lastly, our findings indicate that applying AutoML optimization to direct
classification yields similar performance compared to using it in OvO and OvR
strategies. Therefore, we highly recommend using the direct classification
approach to address similar problems, as it is much more cost-effective than
OvO and OvR.

16Critical Difference, here CD=1.353
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8.7 Conclusions and future work

It is worth noting that our study focuses solely on enhancing the current
classification component of the surface defect detection system used by our industry
partner. Moving forward, we plan to expand our research to cover the entire
surface defect detection system, including image processing and feature extraction.
Additionally, we may look into utilizing deep learning and convolutional neural
networks.

8.7 Conclusions and future work

In this study, we proposed a novel contesting procedure for the AutoML opti-
mization problem, namely DACOpt, which is complementary to the existing BO
approaches. DACOpt partitions the AutoML search space into multiple relatively
small sub-spaces based on algorithm similarity and budget constraints. Next, BO
approaches are employed to optimize these sub-spaces independently. The budget
is then adaptively distributed to the search area based on the performance of the
corresponding BO processes. The proposed contesting procedure has two different
variants of elimination criteria – based on the highest performance and a statistical
procedure. Additionally, we presented a partly parallel approach to using BO
to address AutoML optimization problems with provably theoretical guarantees.
Two extensive experiments on a total of 117 benchmark datasets demonstrated
the superiority of our novel contesting procedures over the current state-of-the-art
AutoML optimization approaches. Additionally, an experiment was conducted
on surface defect classification in steel manufacturing. It was concluded that our
proposed approach significantly improves BO’s performance. In future studies,
we intend to incorporate meta-learning approaches to identify search areas that
may perform well in the early stages. Finally, the scope of this study was limited
to the AutoML optimization problem; we plan to extend our research to Neural
Architecture Search (NAS) problems in the future.
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9
Conclusions

Automated Machine Learning (AutoML) has emerged as an effective approach to
streamline the machine learning development process for real-world applications.
This thesis provides a comprehensive exploration of AutoML and its various
important aspects. The research conducted in this thesis encompasses several
significant contributions to the field.

To conclude the thesis, in this chapter, we provide a summary of the content of
this thesis. We begin by highlighting the main contributions made in this research
and addressing the research questions posed. This is presented in Section 9.1,
where we summarize the key findings and achievements of this thesis.

Section 9.2 is dedicated to discussing potential avenues for future research. We
outline these potential directions and offer insights into how they can contribute
to advancing the state-of-the-art in AutoML.

9.1 Summary

Chapter 1 begins with a brief introduction and motivation to Automated Ma-
chine Learning (AutoML). It is attempted to give fundamental formulations of
optimization approaches to address the AutoML optimization problem (i.e., HPO-
based and ML pipeline optimization approach). Furthermore, the chapter outlines
the significant contributions of the thesis within the AutoML domain, highlights
the specific research questions and provides an overview of each chapter’s main
contributions and methodologies. Lastly, this chapter also provides a roadmap for
the reader and establishes the overall organization and structure of the thesis.

Chapter 2 discusses the life cycle of machine learning (ML) application
development and provides a comprehensive literature review on key technical
aspects of ML. It explores the different stages involved in the ML application
development process, from data preparation, data preprocessing, ML pipeline
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optimization, model evaluation and application development. The chapter also
discusses the challenges and considerations specific to each stage, highlighting
the importance of an efficient and automated approach to streamline the ML
development process. Building upon the ML life cycle, the discussion in this
chapter expands to encompass various functions and techniques offered by existing
AutoML products. The chapter also examines the underlying techniques and
methodologies employed by the existing AutoML products, shedding light on the
potential implications for ML application development.

Chapter 3 focuses on providing a thorough literature review of AutoML
optimization approaches, with a specific emphasis on adapting hyperparameter
optimization (HPO) approaches to address the AutoML optimization problem.
The chapter begins by presenting a comprehensive review of common black-box
optimization approaches employed in AutoML, including Grid search, Random
search, and Bayesian optimization. These approaches serve as the foundation for
understanding the evolution and advancements in AutoML optimization. Follow
up with a literature review of optimization algorithms of the two well-known
multi-fidelity approaches – racing procedure and bandit learning.

Throughout the literature review, the chapter provides insights into the the-
oretical foundations, algorithmic frameworks, and practical implementations of
these optimization approaches in the context of AutoML. This chapter aims to
establish the theoretical background and set the stage for the original contributions
and research conducted in the subsequent chapters of the thesis.

Chapter 4 provides two benchmark experiments repeatedly used in this thesis.
Detailed information about the two experiments is introduced in this chapter,
where each includes a search space, examined datasets and a detailed experiment
procedure. The first benchmark experiment is designed for class-imbalanced
problems, where a set of 44 binary class-imbalanced benchmark datasets and
a suitable search space are provided. The datasets are taken from the Keel
collection [186]. The search space includes 21 resampling techniques and five
classification algorithms, where algorithms and their hyperparameters are selected
based on related work recommendations. Moreover, this experimental design is
successfully used in Chapters [5-8] that demonstrate its usefulness for imbalanced
classification problems. This study also answers RQ1 on how to handle class
imbalance problems.

The second set of benchmark experiments is identical to [22], which includes
73 classification benchmark datasets from OpenML [189], and the search space
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is extracted from Auto-sklearn [45]. This set of experiments is later used in the
works of chapter 7 and chapter 8.

Chapter 5 investigates the effectiveness of the commonly used HPO optimiza-
tion approaches – Random search and Bayesian optimization (BO), to solve the
CASH problem for the binary class imbalance classification problems. This investi-
gation is to answer RQ2 in which approach is most effective for optimizing the
ML pipeline in addressing class imbalance problems. Besides, we are particularly
interested in how CASH improved classification performance compared to using
static default hyperparameters (i.e., try all combinations of resampler and classifier
without hyperparameter tuning). The key findings from this indicate the follow-
ing. We observed that CASH optimization significantly improves classification
performance compared to using static default hyperparameters. Moreover, the
experimental results indicate that BO is always the best method found. This study
concludes that BO outperforms other approaches in answering RQ2. Additionally,
98% of runs yield the best performance by fine-tuned ML pipelines that contain a
resampling and a classification algorithm, demonstrating the experimental design’s
usefulness as well as supporting our answer to RQ1.

Chapter 6 presents our new method to compute performance for classification
problems where the distribution between classes is imbalanced and has unequal
class importance. In ML, the assessment method is critical in evaluating an ML
model’s performance and choosing the suitable ML model that works well on the
given problem. Many performance metrics, such as F1, geometric mean, recall,
and precision, can be used in class imbalanced learning. However, these methods
do not consider the unequal class problem.

Built on top of standard performance metrics, we propose a new performance
metric incorporating unequal class importance into the standard performance
metrics. More precisely, we propose to compute the classification performance
based on the new penalized confusion matrix based on the actual confusion matrix
and a user-defined penalty matrix. The domain experts define the penalty matrix,
which contains the penalty values between actual and predicted classes. The
penalized confusion matrix is then produced by multiplying every element of the
actual confusion matrix with the corresponding element in the penalty matrix. The
final classification performance is later calculated via the new penalized confusion
matrix instead of the actual one, as usual. Our approach solves RQ3 in handling
the dual problem of class imbalanced and unequal importance between classes.
Moreover, we also investigate the correlation of assessment values between the
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new method and the standard one. Our finding indicates that the performance
computed by the new approach and the standard metrics are strongly correlated.
That is to say, our approach incorporates unequal class importance into the
standard performance metrics and does not change their purposes (e.g., metrics
for imbalanced problems).

Chapter 7 researches improving BO performance for AutoML optimization
problems via maximizing coverage of search space already during the initial sam-
pling of BO to characterize the response surface more accurately. The initial
sampling step is the first step of BO to utilize the first response surface. It is
typically restricted to a small budget since the effectiveness of BO becomes evident
mainly in the later stages of optimization when it learns to produce better configu-
ration. Considering how to improve coverage over AutoML search space within a
limited budget, we propose the novel combination-based sampling approach for the
initial sampling stage of BO. Our proposed initial sampling approach is as follows.
We first attempt to group algorithms with similar technical behaviours as in the
literature, where one can represent the rest of the group. Then, we reallocate
the sampling budget to explore the potential of similarities between algorithms
within the group: sampling fewer of the same algorithms frees up the budget to
be distributed to other (different) algorithms, thus optimizing the coverage of
algorithm-hyperparameter search space.

To investigate the potential of our proposed approach in AutoML optimization
scenarios, we compare the performance of BO with and without using it on the two
AutoML benchmark experiments (see Chapter 4) over 117 classification problems.
The key findings from this indicate the following. In the first set of benchmark
experiments, we evaluated them on two scenarios of initial sample sizes – 20
and 50 iterations. With our improvement, the performance of BO significantly
improved in several cases and did not significantly worst in any tested cases. In
the second experiment, we also compared the two experimented BO approaches
against the other six well-known AutoML products (i.e., Auto-sklearn (BO and
Random search), H2O, TPOT, ATM and Hyperopt-sklearn). The experimental
results indicate that the BO using our initial sampling approach produces the
best results and significantly outperforms others in more cases than all compared
approaches. In contrast, the experimented BO without our improvement does not
significantly win in any tested cases.

In conclusion, the experimental results answer RQ4: Our approach, which
maximizes the coverage of algorithm-hyperparameter search space during the initial
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sampling stage of BO, clearly improved BO performance in solving the AutoML
optimization problems.

Chapter 8 introduces a novel contesting procedure algorithm, Divide And
Conquer Optimization (DACOpt), to efficiently solve AutoML optimization. Mo-
tivated by the fact that BO performs better for low-dimensional problems [31],
while AutoML is typically high-dimensional mixed variables. This causes BO to
be less robust for solving AutoML. To limit this issue, we first partition the search
space into a reasonable number of sub-spaces based on algorithm and budget
constraints. Then, multiple BO performs on every sub-space independently (i.e.,
sub-process) to optimize BO performance. Due to their independence, this also
allows them to be explored in parallel. Additionally, we adopt the ideas of the two
well-known multi-fidelity approaches (i.e., bandit learning and racing procedure)
into our procedure to eliminate ineffective sub-processes to free up the budget to
be distributed to the better one, thus optimizing the budget usage.

Generally speaking, the contesting procedure is complementary to the existing
BO approaches to handle their limit when optimizing the AutoML problems. The
proposed approach is constructed of three main components:

• The splitter function to partition the search space into multiple sub-spaces.
Then, an existing BO approach is employed to optimize those sub-spaces inde-
pendently, leading to a corresponding number of optimization sub-processes.

• The elimination function decides to stop poorly performing sub-spaces (i.e.,
terminate the corresponding sub-processes). This function also addresses
RQ5, which concerns when we should stop tuning in a particular area (sub-
space) of the search space. To summarize, we can stop tuning in an area when
it demonstrates significantly worse results compared to the most promising
area.

• The controller function allocates budgets adaptively for tuning each sub-
space based on the performance of the corresponding optimization processes.
This function provides an answer to RQ6 on how to allocate computational
resources over the search space. In simple terms, we conduct multiple
competitions over the available resources, which are calculated based on the
input computation resources and the number of areas. After each race, several
areas are eliminated, and the remaining areas share the saved resources of
the race. This ensures that the most effective area stays longer and has the
most tuning resources.
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Lastly, we compare the performance of BO with and without our contesting
procedures on the two AutoML benchmark experiments Chapter 7. We use
Hyperopt [153] and BO4ML [15] as the underlying BO. Besides, the proposed
procedure has variants of the elimination function (i.e., it adopts bandit learning
and racing procedure). Thus, we have four variants in total. The key findings from
this indicate the following.

• First, in both experimental scenarios, both BOs with our contesting procedure
significantly perform better than one without using it. Overall, the contesting
procedure that used BO4ML achieved more best results than any other
competitors. This finding again demonstrated the effectiveness of BO4ML
(i.e., also providing an answer to RQ4) for solving AutoML problems.

• Comparing the two adopted elimination functions, the one that adopted
bandit learning performs better than the competitor. Thus, we recommend
that researchers use the bandit learning variant for AutoML problems.

• Lastly, we also compared the proposed approaches against the six state-
of-the-art AutoML products (i.e., Auto-sklearn (BO and Random search),
H2O, TPOT, ATM and Hyperopt-sklearn), in the second scenario. The
proposed contesting procedure produces the best results, performs well (i.e.,
either achieved the best performance or not significantly worse than the
best-found method) and significantly outperforms others in more cases than
all compared approaches (i.e., our best contest procedure produces 28 highest,
53 well-performing and 26 significantly outperforms values over 73 tested
cases).

In conclusion, the experimental results demonstrated the effectiveness of our new
contesting procedures in solving AutoML optimization problems. They notably
enhanced BO’s performance, and the AutoML, using our proposed contesting
procedure as an optimizer, won over the current state-of-the-art AutoML tools,
such as H2O, Auto-sklearn, ATM, Hyperopt-sklearn, and TPOT, in a wide range
of benchmark tests.

9.2 Future work

This thesis has focused on conducting research in the field of Automated Machine
Learning (AutoML) and has presented significant achievements and insights. How-
ever, numerous future works within AutoML still require further investigation
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and development. In this section, we outline some potential directions for future
research and provide insights into how they can contribute to advancing the state-
of-the-art in AutoML. In the following discussion, we will explore potential future
research directions to extend the work presented in this thesis.

9.2.1 Combination-based sampling

The combination-based sampling approach, introduced in Chapter 7, aims to
maximize the coverage of algorithm-hyperparameter samples in the search space.
This approach improves the accuracy of characterizing the response surface during
the initial sampling stage of the historical-based optimization approach. Here are
several potential future research directions for extending this work:

• The combination-based sampling is initially incorporated for Tree Parzen
Estimators [153]). It would be interesting to exploit the potential of applying
the proposed sampling approach to other BO variants (e.g., SMAC [25],
MIPEGO [38]) and historical-based approaches, such as evolutionary strate-
gies [108] and genetic algorithms [103]. By extending the evaluation of
our sampling approach to different optimization techniques, we can assess
its generalizability and potential for improving the performance of various
optimization algorithms. This exploration may provide a comprehensive
understanding of how the initial sampling effect to the later stage of historical-
based optimization approaches.

• It would be interesting to explore how the combination-based sampling ap-
proach, introduced in our work, performs during the sequential sampling stage
of BO. By maximizing the coverage of algorithm-hyperparameter samples in
the search space, the candidate configurations proposed at each iteration may
exhibit better exploration and exploitation properties. This could potentially
lead to more efficient and effective sampling. This research direction can
potentially enhance the optimization process, improve the quality of candi-
date configurations, and provide valuable guidelines for selecting suitable
sampling strategies for historical-based optimization approaches to address
AutoML problems.

9.2.2 Contesting procedures

The contesting procedures algorithm introduced in Chapter 8, serves as an efficient
approach for addressing AutoML optimization problems. This algorithm offers
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promising results, but several potential avenues for future research can further
enhance and expand on this work. The following are some of the possible research
directions discussed:

• As part of the proposed contest procedure, the algorithmic hierarchy attribute
allows organizing the choice of algorithms in the search space in a hierarchical
manner, with one algorithm in a branch potentially representing multiple
other algorithms. Due to the large set of possible combinations of algorithms
over operators (i.e., functional algorithms in ML pipeline structures), it is
not possible to try every combination in practice. Hence, the algorithmic
hierarchy is a realistic way to identify ineffective combinations. However, we
acknowledge that the algorithmic hierarchy is currently constructed based on
the experiences of practitioners in the field. As such, the resulting structure
of the search space may not be optimized. It would be highly advantageous
to explore methods to optimize the hierarchical structure using historical
data from experiments. Advanced techniques such as clustering methods
can be applied to automatically identify patterns and relationships among
algorithms, enabling the creation of an optimized algorithmic hierarchy.
This data-driven approach would enhance the efficiency and effectiveness of
AutoML by incorporating empirical insights in a systematic and automated
manner, reducing the reliance on manual construction.

• Moreover, it is worth considering the integration of meta-learning approaches
to identify promising search areas at an early stage. By leveraging meta-
learning techniques, we can leverage prior knowledge or learned patterns to
guide the optimizer. This can help accelerate the optimization process by
focusing on areas that have shown promising performance in previous similar
tasks. We believe that the incorporation of meta-learning can enhance the
efficiency and effectiveness of the optimizer, enabling them to make informed
decisions and prioritize exploration in the search areas likely to yield favorable
results.

9.2.3 Benchmarking methods and application domains

Indeed, an important concern in evaluating AutoML optimization algorithms is the
inconvenience and high cost associated with using a wide range of real datasets.
This process can be time-consuming, resource-intensive, and financially burdensome.
While benchmarking with synthetic test functions is a common strategy in
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optimization studies due to their closed-form representation and efficient evaluation,
the existing synthetic test functions are not suitable for AutoML benchmarking [22].
This is primarily because they do not simulate categorical hyperparameters, pure
categorical hyperparameters, or algorithm choice hyperparameters, nor do they
account for structured search spaces. An interesting direction for future research
is the development of synthetic test functions specifically designed for AutoML
benchmarking. These test functions should accurately represent the complexities
and characteristics of real-world AutoML problems, including the incorporation
of categorical hyperparameters and structured search spaces. By defining such
synthetic test functions, researchers and practitioners can evaluate and compare
AutoML optimization algorithms in a more controlled, cost-effective, and efficient
manner. This would enable the systematic analysis of algorithm performance and
facilitate advancements in the field of AutoML.

Empirical Performance Models (EPMs), as an alternative to synthetic
test functions, introduced by [249]–[252], provide a surrogate representation of the
response surface of a specific performance metric. These models aim to capture
the empirical performance characteristics of a real dataset, offering a means to
theoretically evaluate algorithms in AutoML scenarios. It is important to note
that existing empirical performance models (EPMs) are not tailored for AutoML
scenarios, as mentioned in previous studies [22], [253]. This raises the need for
further investigation and assessment of its suitability within the AutoML context.
Exploring the applicability of EPMs in AutoML can lead to valuable advancements
in the evaluation and benchmarking of AutoML algorithms.

These future works to AutoML benchmarking approaches would drive progress
and advancements in the field, promoting the development of robust and efficient
AutoML solutions for a wide range of practical applications.

Lastly, in this thesis, we have conducted comprehensive investigations into
AutoML, focusing primarily on supervised machine learning problems. However, it
would be beneficial to expand the discussion to include other domains of machine
learning as well. Exploring studies and research in unsupervised machine
learning, reinforcement learning, and deep learning can provide valuable
insights and a broader understanding of the topic. This would allow for a more
holistic analysis of AutoML’s applications and effectiveness across various ML
domains.
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A
Appendix

A.1 Additional information for the first experi-
ment

A.1.1 Parameter setting

In this section, we present detailed information of the hyperparameters used in the
classification algorithms1 and resampling algorithms2 that we used in our experi-
ment. The entire Python code project can be found at https://github.com/ECOLE-
ITN/CASH4IMBALANCE.

The detailed information on hyperparameters is listed in Table A.1, Table A.2,
and Table A.3.

A.2 Imbalance datasets

In this section, we present 44 examined datasets taken from the KEEL reposi-
tory [186] in Table A.4. For each dataset, we include the Imbalance Ratio (IR),
which is the ratio of the number of majority class instances to that of minority
class instances.

1All classification algorithms are implemented in the Python package scikit-learn(version
0.23.2) [151].

2All resampling algorithms are implemented in the Python package imbalanced-learn(version
0.7.0) [48]
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Table A.1: Hyperparameters of Classification Algorithms

Algorithm Hyperparameter Range

S
u

p
p

or
t

V
ec

to
r

M
ac

h
in

es max_iter 10000
cache_size 700 (Megabyte)
probability [True, False]
C [0.55,100]
kernel [linear, rbf, poly, sigmoid]
gamma [auto, value, scale]
gamma_value [3.1e-05,8]
coef0 [ -1.0, 1.0]
degree [2, 5]
shrinking [True, False]
tol [1e-05, 1e-01]

R
an

d
om

F
or

es
t n_estimators [1, 150]

criterion [gini, entropy]
max_features [1, sqrt, log2, None]
min_samples_split [2, 20]
min_samples_leaf [1, 20]
class_weight [balanced, balanced_subsample, None]
bootstrap [True, False]

K
-N

ea
re

st
N

ei
gh

b
or

s

n_neighbors [1, 51]
weights [uniform, distance]
algorithm [auto, ball_tree, kd_tree, brute]
p [0, 20]
metric · p = 0 → metric = chebyshev

· p = 1 → metric = manhattan
· p = 2 → metric = euclidean
· p > 2 → metric = minkowski

D
ec

is
io

n
T

re
e

criterion [gini, entropy]
max_depth [2,20]
max_features [1, sqrt, log2, None]
min_samples_split [2, 20]
min_samples_leaf [1, 20]

L
og

is
ti

c
R

eg
re

ss
io

n C [1, 150]
criterion [0.55, 100]
tol [1e-05, 1e-01]
l1_ratio [1e-09, 1]
(penalty, solver) [(l1, liblinear), (l1, saga), (l2, lbfgs),

(l2, newton-cg), (l2, liblinear),
(l2, sag), (l2, saga), (elasticnet, saga),
(none, newton-cg), (none, lbfgs),
(none, sag), (none, saga)]
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A.2 Imbalance datasets

Table A.2: Hyperparameters of Resampling techniques (part I)

Group. Hyperparameter Range

U
n

d
er

re
sa

m
p

li
n

g

CondensedNearestNeighbour
sampling_strategy default
n_neighbors [1, 50]
n_seeds_S [1, 50]
EditedNearestNeighbours
sampling_strategy default
n_neighbors [1, 20]
kind_sel [all, mode]
RepeatedEditedNearestNeighbours
sampling_strategy default
n_neighbors [1, 20]
kind_sel [all, mode]
AllKNN
sampling_strategy default
n_neighbors [1, 20]
kind_sel [all, mode]
allow_minority [True, False]
InstanceHardnessThreshold
sampling_strategy default
estimator none, decision-tree, adaboost

knn, linear-svm, gradient-boosting
cv [2, 10]
OneSidedSelection
sampling_strategy default
n_neighbors [1, 20]
n_seeds_S [1, 20]
RandomUnderSampler
sampling_strategy default
replacement [True, False]
TomekLinks
sampling_strategy default
NearMiss
sampling_strategy default
version [1,3]
n_neighbors [1, 20]
n_neighbors_ver3 [1, 20]
NeighbourhoodCleaningRule
sampling_strategy default
n_neighbors [1, 20]
threshold_cleaning [0.0, 1.0]
ClusterCentroids
sampling_strategy default
estimator [KMeans, MiniBatchKMeans]
voting [hard, soft]
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A. Appendix

Table A.3: Hyperparameters of Resampling techniques (part II)

Group. Hyperparameter Range

C
om

b
in

e
re

sa
m

p
li

n
g SMOTENN

sampling_strategy default
SMOTETomek

sampling_strategy default

O
ve

r
re

sa
m

p
li

n
g

SMOTE
k_neighbors [1, 10]
sampling_strategy default
BorderlineSMOTE
sampling_strategy default
k_neighbors [1, 10]
m_neighbors [1, 10]
kind [borderline1, borderline2]
SMOTENC
sampling_strategy default
categorical_features True
k_neighbors [1, 10]
SVMSMOTE
sampling_strategy default
k_neighbors [1, 10]
m_neighbors [1, 10]
out_step [0.0, 1.0]
KMeansSMOTE
sampling_strategy default
k_neighbors [1, 10]
cluster_balance_threshold [1e-2, 1]
ADASYN
sampling_strategy default
n_neighbors [1, 10]
RandomOverSampler
sampling_strategy default
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A.2 Imbalance datasets

Table A.4: The number of positive, negative classes, attributes (#Att) and the
imbalance ratio (IR) of the KEEL Datasets, ordered by increasing IR value.

Data Sets # Negative # Positive #Att IR
glass1 138 76 9 1.82
ecoli-0_vs_1 77 143 7 1.86
wisconsin 444 239 9 1.86
pima 500 268 8 1.87
iris0 100 50 4 2
glass0 144 70 9 2.06
yeast1 1055 429 8 2.46
haberman 225 81 3 2.78
vehicle2 628 218 18 2.88
vehicle1 629 217 18 2.9
vehicle3 634 212 18 2.99
glass-0-1-2-3_vs_4-5-6 163 51 9 3.2
vehicle0 647 199 18 3.25
ecoli1 259 77 7 3.36
new-thyroid1 180 35 5 5.14
new-thyroid2 180 35 5 5.14
ecoli2 284 52 7 5.46
segment0 1979 329 19 6.02
glass6 185 29 9 6.38
yeast3 1321 163 8 8.1
ecoli3 301 35 7 8.6
page-blocks0 4913 559 10 8.79
yeast-2_vs_4 463 51 8 9.08
yeast-0-5-6-7-9_vs_4 477 51 8 9.35
vowel0 898 90 13 9.98
glass-0-1-6_vs_2 175 17 9 10.29
glass2 197 17 9 11.59
shuttle-c0-vs-c4 1706 123 9 13.87
yeast-1_vs_7 429 30 7 14.3
glass4 201 13 9 15.46
ecoli4 316 20 7 15.8
page-blocks-1-3_vs_4 444 28 10 15.86
abalone9-18 689 42 8 16.4
glass-0-1-6_vs_5 175 9 9 19.44
shuttle-c2-vs-c4 123 6 9 20.5
yeast-1-4-5-8_vs_7 663 30 8 22.1
glass5 205 9 9 22.78
yeast-2_vs_8 462 20 8 23.1
yeast4 1433 51 8 28.1
yeast-1-2-8-9_vs_7 917 30 8 30.57
yeast5 1440 44 8 32.73
ecoli-0-1-3-7_vs_2-6 274 7 7 39.14
yeast6 1449 35 8 41.4
abalone19 4142 32 8 129.44
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A. Appendix

A.3 Additional information for the second experi-
ment

A.3.1 Datasets used in the second experiment

In this section, we present 73 examined datasets taken from OpenML reposi-
tory [204] in Table A.5. For each task, we include the OpenML ID (#task id)
and the corresponding dataset (#ID, Name) together with the number of classes
(#Class), the number of instances(#Sample), the number of features for one
instance (Total features, number of numeric and categorical features), the number
of missing values (#Missing values), the number of instances with missing value
(#Incomplete sample).

A.3.2 Search space

Detailed information on the operators, algorithms and hyperparameters used in
the second experiment is given in Table A.6. The search space was extracted from
Auto-sklearn [45].
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A.3 Additional information for the second experiment

Table A.6: List of hyperparameters extracted from Auto-sklearn [39] for Classi-
fication problems

Operator Hyperparameter Type Range

C
la

ss
ifi

ca
ti

on

AdaboostClassifier (sklearn.ensemble.AdaBoostClassifier)
n_estimators Integer [50,500]
learning_rate Float [0.01,2]
algorithm Categorical [SAMME.R, SAMME]
max_depth Integer [1,10]
BernoulliNB (sklearn.naive_bayes.BernoulliNB)
alpha Float [0.01,100]
fit_prior Categorical [True, False]
DecisionTree (sklearn.tree.DecisionTreeClassifier)
criterion Categorical [gini, entropy]
max_depth_factor Float [0,2]
min_samples_split Integer [2,20]
min_samples_leaf Integer [1,20]
min_weight_fraction_le Constant [0]
max_features Constant [1]
max_leaf_nodes Constant [None]
min_impurity_decrease Constant [0]
ExtraTreesClassifier (sklearn.ensemble.ExtraTreesClassifier)
criterion Categorical [gini, entropy]
max_features Float [0,1]
max_depth_factor Constant [None]
min_samples_split Integer [2,20]
min_samples_leaf Integer [1,20]
min_weight_fraction_le Constant [0]
max_leaf_nodes Constant [None]
min_impurity_decrease Constant [0]
bootstrap Categorical [True, False]
GaussianNB (sklearn.naive_bayes.GaussianNB)
Default hyperparameters
GradientBoostingClassifier (sklearn.ensemble.HistGradientBoostingClassifier)
loss Constant [auto]
learning_rate Float [0.01,1]
min_samples_leaf Integer [1,200]
max_depth Constant [None]
max_leaf_nodes Integer [3,2047]
l2_regularization Float [0.0000000001,1]
early_stop Categorical [off, train, valid]
tol Constant [0.0000001]
scoring Constant [loss]
n_iter_no_change Integer [1,20]
validation_fraction Float [0.01,0.4]
KNearestNeighborsClassifier (sklearn.neighbors.KNeighborsClassifier)
n_neighbors Integer [1,100]
weights Categorical [uniform, distance]
p Categorical [1, 2]
LDA (sklearn.discriminant_analysis.LinearDiscriminantAnalysis)
shrinkage Categorical [None, auto, manual]
shrinkage_factor Float [0,1]
n_components Integer [1,250]
tol Float [0.00001,0.1]

continued on the next page
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A. Appendix

Table A.6: List of hyperparameters extracted from Auto-sklearn [39] for Classi-
fication problems – continued from the previous page

Operator Hyperparameter Type Range

C
la

ss
ifi

ca
ti

on

LinearSVC (sklearn.svm.LinearSVC)
penalty Categorical [l1, l2]
loss Categorical [hinge, squared_hinge]
dual Constant [False]
tol Float [0.00001,0.1]
multi_class Constant [ovr]
fit_intercept Constant [True]
LibSVM_SVC (sklearn.svm.SVC)
kernel Categorical [rbf, poly, sigmoid]
degree Integer [2,5]
gamma Float [0.000031,8]
coef0 Float [-1,1]
shrinking Categorical [True, False]
tol Float [0.00001,0.1]
max_iter Constant [-1]
MultinomialNB(sklearn.naive_bayes.MultinomialNB)
alpha Float [0.01,100]
fit_prior Categorical [True, False]
PassiveAggressive (from sklearn.linear_model import PassiveAggressiveClassifier)
loss Categorical [hinge, squared_hinge]
tol Float [0.00001,0.1]
average Categorical [True, False]
QDA (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis)
reg_param Float [0,1]
RandomForest (sklearn.ensemble.RandomForestClassifier)
criterion Categorical [gini, entropy]
max_features Float [0,1]
max_depth Constant [None]
min_samples_split Integer [2,20]
min_samples_leaf Integer [1,20]
min_weight_fraction_le Constant [0]
max_leaf_nodes Constant [None]
min_impurity_decrease Constant [0]
bootstrap Categorical [True, False]
SGD (sklearn.linear_model.SGDClassifier)
loss Categorical [hinge, log, modified_huber]
penalty Categorical [l1, l2, elasticnet]
alpha Float [0.0000001,0.1]
l1_ratio Float [0.000000001,1]
fit_intercept Constant [True]
tol Float [0.00001,0.1]
epsilon Float [0.00001,0.1]
learning_rate Categorical [optimal, invscaling, constant,]
eta0 Float [0.0000001,0.1]
power_t Float [0.00001,1]
average Categorical [True, False]

continued on the next page
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A.3 Additional information for the second experiment

Table A.6: List of hyperparameters extracted from Auto-sklearn [39] for Classi-
fication problems – continued from the previous page

Operator Hyperparameter Type Range

F
ea

tu
re

P
re

p
ro

ce
ss

in
g

ExtraTreesClassifier (sklearn.ensemble import ExtraTreesClassifier)
n_estimators Constant [100]
criterion Categorical [gini, entropy]
max_features Float [0,1]
max_depth Constant [None]
min_samples_split Integer [2,20]
min_samples_leaf Integer [1,20]
min_weight_fraction_leaf Constant [0]
max_leaf_nodes Constant [None]
min_impurity_decrease Constant [0]
bootstrap Categorical [True, False]
FastICA (sklearn.decomposition.FastICA)
n_components Categorical [10,2000]
algorithm Categorical [parallel, deflation]
whiten Categorical [True, False]
fun Categorical [logcosh, exp, cube]
FeatureAgglomeration (sklearn.cluster.FeatureAgglomeration)
n_clusters Integer [2, 400]
affinity Categorical [euclidean, manhattan, cosine]
linkage Categorical [ward, complete, average]
pooling_func Categorical [mean, median, max]
KernelPCA (sklearn.decomposition.KernelPCA)
n_components Integer [10,2000]
kernel Categorical [poly, rbf, sigmoid, cosine]
gamma Float [3.05E-05,8]
degree Float [-1,1]
RandomKitchenSinks (sklearn.kernel_approximation.RBFSampler)
gamma Float [3.05E-05,8]
n_components Float [50,10000]
LibLinear (sklearn.svm.LinearSVC)
penalty Constant [l1]
loss Categorical [hinge, squared_hinge]
dual Constant [False]
tol Float [1E-05 1E-01]
C Float [0.03125, 32768]
multi_class Constant [ovr]
fit_intercept Constant [True]
intercept_scaling Constant [1]
No Preprocessing

continued on the next page
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A. Appendix

Table A.6: List of hyperparameters extracted from Auto-sklearn [39] for Classi-
fication problems – continued from the previous page

Operator Hyperparameter Type Range

F
ea

tu
re

P
re

p
ro

ce
ss

in
g

Nystroem(sklearn.kernel_approximation.Nystroem)
kernel Categorical [poly, rbf, sigmoid, cosine]
gamma Float [3.05E-05,8]
n_components Integer [50, 10000]
degree Integer [2,5]
coef0 Float [-1,1]
PCA(sklearn.decomposition.PCA)
keep_variance Float [0.5, 0.9999]
whiten Categorical [True, False]
Polynomial(sklearn.preprocessing.PolynomialFeatures)
degree Integer [2,3]
interaction_only Categorical [True, False]
include_bias Categorical [True, False]
RandomTreesEmbedding(sklearn.ensemble.RandomTreesEmbedding)
n_estimators Integer [10,100]
max_depth Constant [2,10]
min_samples_split Integer [2,20]
min_samples_leaf Integer [1,20]
min_weight_fraction_leaf Constant [0]
max_leaf_nodes Constant [None]
bootstrap Categorical [True, False]
SelectPercentile(sklearn.feature_selection.SelectPercentile)
percentile Float [1,99]
score_func Categorical [chi2, f_classif, mutual_info]
score_func Constant [chi2]
SelectRates(sklearn.feature_selection.GenericUnivariateSelect)
alpha Float [0.01,0.5]
score_func Constant [chi2]
score_func Categorical [chi2, f_classif]
mode Categorical [for, fdr, fwe]
TruncatedSVD(sklearn.decomposition.TruncatedSVD(algorithm=’randomized’))
target_dim Integer [10,256]

continued on the next page
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A.3 Additional information for the second experiment

Table A.6: List of hyperparameters extracted from Auto-sklearn [39] for Classi-
fication problems – continued from the previous page

Operator Hyperparameter Type Range
Balancing(Additional hyperparameter to classification algorithms)

strategy Categorical [none, weighting]
Categorical encoding

NoEncoding (No hyperparameter)
OneHotEncoder
use autosklearn.pipeline.implementations.SparseOneHotEncoder for spare data and
sklearn.preprocessing.OneHotEncoderfor dense data

Categorical Imputation (sklearn.impute.SimpleImputer)
strategy Constant [constant]
fill_value Constant [2]
copy Constant [False]

Numerical Imputation (sklearn.impute.SimpleImputer)
copy Constant [False]
strategy Categorical [mean, median, most_frequent]

Minority
Coalescense

NoCoalescence (No hyperparameter)
MinorityCoalescer (autosklearn.pipeline.implementations.MinorityCoalescer)
minimum_fraction Float [0.0001,0.5]

Rescaling

MinMaxScaler (sklearn.preprocessing.MinMaxScaler)
copy Constant [False]
None (No hyperparameter)
QuantileTransformer (sklearn.preprocessing.QuantileTransformer)
n_quantiles Integer [10, 2000]
output_distribution Categorical [uniform, normal]
RobustScaler (sklearn.preprocessing.RobustScaler)
q_min Float [0.001, 0.3]
q_max Float [0.7, 0.999]
StandardScaler (sklearn.preprocessing.StandardScaler)
copy Constant [False]

Variance Threshold (sklearn.feature_selection.VarianceThreshold)
threshold Constant [0.0]
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English Summary

AutoML has attracted community attention due to its success in shortening the
machine learning development cycle for real-world applications. Optimization
plays a crucial role in AutoML frameworks by helping to identify a fine-tuned ML
pipeline that suits a given practical problem. Several state-of-the-art optimization
approaches, including Bayesian optimization, Bandit learning, and Racing proce-
dures, have been proposed to enhance the performance of AutoML. However, the
existing studies often formulate the AutoML optimization as a Hyperparameter
Optimization (HPO) problem using the Combined Algorithm Selection and Hyper-
parameter Optimization (CASH) approach. This limited perspective can restrict
their effectiveness in addressing the underlying problem effectively.

In this thesis, we comprehensively address this limitation by formulating Au-
toML optimization, covering the entire ML pipeline synthesis, as discussed in
Chapter 1. Specifically, we introduce a novel class of hyperparameter, called
"algorithm choice", which enables the modeling of algorithm selection. This class
incorporates a unique attribute that allows for the hierarchical organization of
algorithms based on their technical similarities. Notably, to our best knowledge,
this is the first attempt to visualize the relationship between algorithms.

Next, a comprehensive investigation to provide a holistic understanding of
AutoML and its optimization is provided in Chapters 2 and 3. Chapter 2 compre-
hensively investigates AutoML and its integral concepts and aspects. It delves into
the foundations of AutoML, exploring the motivations behind its development and
its significance in shortening the machine learning development cycle for real-world
applications. Chapter 3 focuses specifically on AutoML optimization. This chapter
delves into various optimization techniques and algorithms that are employed
to improve the performance and efficiency of AutoML frameworks. It explores
approaches such as Grid search, Random search, Bayesian optimization, Bandit
learning, and Racing procedures, providing an in-depth analysis of their principles,
strengths, and limitations in the context of AutoML optimization.
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Another point of concern is benchmarking to evaluate the robustness and general
applicability of optimization approaches empirically. Chapter 4 presents two sets
of benchmark experiments. These benchmarks consist of 117 agreed-on datasets
that may require processing through an ML pipeline of multiple operators such as
encoding, normalization, resampling, and classification. The chosen datasets may
contain categorical data, incomplete instances, or have an imbalanced distribution.
Furthermore, the benchmarks comprise standardized search spaces along with an
experimental methodology and setup for benchmarking purposes.

In Chapter 5, we conducted a detailed study on the effectiveness of AutoML
optimization in handling class imbalance problems. Our findings suggest that
BO is a highly efficient approach to tackle this problem. This finding enabled us
to focus on improving BO to solve AutoML optimization problems confidently.
Consequently, we were able to create two effective optimization algorithms based
on BO in Chapter 7 and Chapter 8, as well as successfully implement the AutoML
optimization approach to a real-world application in Chapter 6.

Another key contribution is the development of a performance metric specifically
designed to address the dual challenges of class imbalance and unequal importance
problems. This metric, discussed in Chapter 6, offers a comprehensive evaluation
framework for assessing the performance of ML models in such scenarios.

In addition to the mentioned contributions, this thesis presents two novel
AutoML optimization approaches. In Chapter 7 of this thesis, we presented
a combinational sampling method that efficiently solves AutoML optimization
problems through Bayesian optimization. Our approach is designed to maximize
the coverage of ML algorithm samples in the search space, which results in a robust
surrogate model for BO. We conducted experiments on 117 benchmark datasets
and found that using our sampling approach significantly improves BO performance
when compared to BO without our approach. In addition to the proposed sampling
approach, we have also introduced an optimization software known as BO4ML
in this chapter. This software is implemented based on the proposed sampling
approach and can be used for optimization. Moving on to Chapter 8, we proposed
an improved AutoML optimization technique known as DACOpt, which is an
efficient contesting procedure. This innovative method aims to allocate tuning
resources for optimizers over search areas more effectively. Specifically, DACOpt
rewards resources to areas that show promise while terminating the optimizing
process on areas that are less likely to yield desired results. Our experiments on
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117 benchmark datasets indicate that our proposed approach offers a significant
performance advantage over BO for AutoML optimization problems.
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Nederlandse Samenvatting

Automatische machine learning technieken (AutoML) zijn sterk in opkomst van-
wege het success van deze technieken in het reduceren van de ontwikkelingscyclus
in praktische toepassingen. Optimalisatie speelt een cruciale rol in AutoML-
frameworks door te helpen bij het identificeren van een nauwkeurig afgestelde
ML-pijplijn die geschikt is voor een bepaald praktisch probleem. Er zijn verschil-
lende geavanceerde optimalisatiebenaderingen voorgesteld, waaronder Bayesiaanse
optimalisatie, Bandit-leren en raceprocedures, om de prestaties van AutoML te
verbeteren.

De bestaande studies formuleren de AutoML-optimalisatie echter vaak als een
Hyper Parameter Optimalisatie (HPO)-probleem met behulp van de Combined
Algorithm Selection and Hyperparameter optimalisatie (CASH)-benadering. Dit
beperkte perspectief kan hun effectiviteit bij het aanpakken van het onderliggende
probleem beperken.

In dit proefschrift gaan we uitvoerig in op deze beperking door AutoML-
optimalisatie te formuleren, die de volledige ML-pijplijnsynthese omvat, zoals
besproken in Hoofdstuk 1. Specifiek introduceren we een nieuwe klasse hyperpa-
rameter – genaamd "algorithm choice", die het modelleren van algoritmeselectie
mogelijk maakt. Deze klasse bevat een uniek attribuut dat de hiërarchische organ-
isatie van algoritmen mogelijk maakt op basis van hun technische overeenkomsten.
Voor zover wij weten, is dit de eerste poging om de relatie tussen algoritmen te
visualiseren.

Vervolgens vindt u in de hoofdstukken 2 en 3 een uitgebreid onderzoek om
een holistisch begrip van AutoML en de optimalisatie ervan te bieden. Hoofd-
stuk 2 onderzoekt AutoML en zijn integrale concepten en aspecten uitgebreid.
Het diept in de fundamenten van AutoML, onderzoekt de motivaties achter de
ontwikkeling ervan en draagt bij aan het verkorten van de ontwikkelingscyclus van
machine learning voor toepassingen in de echte wereld. Hoofdstuk 3 richt zich
specifiek op AutoML-optimalisatie. Dit hoofdstuk gaat dieper in op verschillende
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optimalisatietechnieken en algoritmen die worden gebruikt om de prestaties en
efficiëntie van AutoML-frameworks te verbeteren. Het onderzoekt benaderingen
zoals rasterzoeken, willekeurig zoeken, Bayesiaanse optimalisatie, Bandit-leren en
raceprocedures, en biedt een diepgaande analyse van hun principes, sterke punten
en beperkingen in de context van AutoML-optimalisatie.

Een ander punt van zorg is benchmarking om de robuustheid en algemene toepas-
baarheid van optimalisatiebenaderingen empirisch te evalueren. In Hoofdstuk 4
worden twee sets benchmarkexperimenten gepresenteerd. Deze benchmarks bestaan
uit 117 overeengekomen datasets die verwerking vereisen via een ML-pijplijn van
meerdere operatoren, zoals codering, normalisatie, hersteekproeven en classificatie.
De gekozen datasets kunnen categorische gegevens bevatten, onvolledige instanties
hebben, of een onevenwichtige distributie hebben. Verder omvatten de benchmarks
gestandaardiseerde zoekruimtes, samen met een experimentele methodologie en
opstelling voor benchmarkdoeleinden.

In Hoofdstuk 5 hebben we een gedetailleerde studie uitgevoerd naar de effec-
tiviteit van AutoML-optimalisatie bij het omgaan met problemen van klassenon-
evenwichtigheid. Onze bevindingen suggereren dat Bayesiaanse Optimalisatie
(BO) een zeer efficiënte aanpak is om dit probleem aan te pakken. Deze ont-
dekking stelde ons in staat om ons te concentreren op het verbeteren van BO
om AutoML-optimalisatieproblemen op te lossen. Als gevolg daarvan konden we
twee effectieve optimalisatiealgoritmen creëren op basis van BO in Hoofdstuk 7 en
Hoofdstuk 8, evenals succesvol de AutoML-optimalisatiebenadering implementeren
in een praktische toepassing in Hoofdstuk 6.

Een andere belangrijke bijdrage is de ontwikkeling van een prestatie-metriek die
specifiek is ontworpen om de dubbele uitdagingen van klassenonevenwichtigheid
en ongelijke belangrijkheidsproblemen aan te pakken. Deze metriek, besproken
in Hoofdstuk 6, biedt een uitgebreid evaluatiekader voor het beoordelen van de
prestaties van ML-modellen in dergelijke scenario’s.

Naast de genoemde bijdragen presenteert deze scriptie twee nieuwe AutoML-
optimalisatiebenaderingen. In Hoofdstuk 7 hebben we een combinatie sampling
methode gepresenteerd die AutoML-optimalisatieproblemen efficiënt oplost via
Bayesiaanse optimalisatie. Onze aanpak is ontworpen om de dekking van ML-
algoritme-monsters in de zoekruimte te maximaliseren, wat resulteert in een robuust
surrogaatmodel voor BO. We hebben experimenten uitgevoerd op 117 benchmark-
datasets en ontdekt dat het gebruik van onze sampling benadering de prestaties
van BO aanzienlijk verbetert in vergelijking met BO zonder onze aanpak. Naast

208



de voorgestelde sampling benadering hebben we ook een optimalisatiesoftware
geïntroduceerd met de naam BO4ML in dit hoofdstuk. Deze software is geïm-
plementeerd op basis van de voorgestelde sampling benadering en kan worden
gebruikt voor optimalisatie. Verder, in Hoofdstuk 8, hebben we een verbeterde
AutoML-optimalisatietechniek voorgesteld, bekend als DACOpt, een efficiënte con-
currerende procedure. Deze innovatieve methode beoogt het effectiever toewijzen
van afstemmingsbronnen aan optimalisatoren over zoekgebieden. Specifiek beloont
DACOpt middelen aan gebieden die belofte tonen, terwijl het optimalisatiepro-
ces wordt beëindigd in gebieden die minder waarschijnlijk gewenste resultaten
opleveren. Onze experimenten op 117 benchmarkdatasets geven aan dat onze
voorgestelde aanpak aanzienlijke prestatievoordelen biedt ten opzichte van BO
voor AutoML-optimalisatieproblemen.
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