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Abstract. Concerns surrounding privacy and data protection are a pri-
mary contributor to the hesitation of institutions to adopt new edu-
cational technologies. Addressing these concerns could open the door
to accelerated impact, but current state-of-the-art approaches centred
around machine learning are heavily dependent on (personal) data.
Privacy-preserving machine learning, in the form of federated learn-
ing, could offer a solution. However, federated learning has not been
investigated in-depth within the context of educational analytics, and it
is therefore unclear what its impact on model performance is. In this
paper, we compare performance across three different machine learning
architectures (local learning, federated learning, and central learning) for
three distinct prediction use cases (learning outcome, question correct-
ness, and dropout). We find that federated learning consistently achieves
comparable performance to central learning, but also that local learning
remains competitive up to 20 local clients. We conclude by introducing
FLAME, a novel metric that assists policymakers in their assessment of
the privacy-performance trade-off.
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1 Introduction

Driven by the promise of analytics to enable learning environment optimisa-
tion, education is now more datafied than ever [25]. The large-scale collection of
learner data raises concerns regarding ethics, privacy, fairness, and trustworthi-
ness [7,22]. Research tends to focus on the data protection measures educational
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institutions should implement to convince learners that they can be trusted as
data fiduciaries [11]. Examples of suggested measures are limiting the bound-
aries of access to student data, pseudonymisation and anonymisation of learner
records, and using automated bias mitigation. However, approaches that assume
that personal data has already been collected fail to address a fundamental ques-
tion: Did we have to collect the data in the first place?

It is not trivial to motivate which, if any, educational optimisations would
warrant an intrusion of student privacy. Institutes that hold student privacy
in high regard may believe that collecting personal learning data is never war-
ranted [18]. This puts educational analytics research in an uncomfortable posi-
tion, as methods and applications commonly rely heavily on personal data.
Machine learning models such as deep neural networks predicting learning out-
comes [23] and transformers facilitating student knowledge tracing [19] are deeply
dependent on the availability of large amounts of data. On the surface, it seems
that these data-hungry machine learning models are incompatible with a policy
of preserving privacy. However, in recent years we have seen the development of
machine learning architectures that promise the performance of machine learning
without the threats to privacy posed by institute access to personal data.

Privacy-preserving machine learning architectures such as federated learn-
ing [15], where only model parameters are shared with a centrally coordinating
party, offer a promising future direction for educational analytics. Along with
local learning, where nothing is shared, and central learning, where everything
is shared, federated learning is among the major machine learning architectures
to consider from a privacy perspective. We have recently seen the first studies
investigating the promise of federated learning for educational analytics [5,8].
However, to our knowledge, no study has systematically compared local learn-
ing, federated learning, and central learning across different datasets and use
cases. This is a significant gap in the literature when we consider that privacy-
preserving techniques could be the key to giving control back to students [4].

In this paper, we hope to take a first step in systematically investigating
the promise of federated learning for learning analytics, which we term ‘feder-
ated learning analytics’. We compare the performance of local learning, feder-
ated learning, and central learning across three distinct use cases: learning out-
come prediction, question correctness prediction, and dropout prediction. Our
methodology is geared at answering our main research question: How does the
privacy-performance trade-off for machine learning algorithms manifest itself in
different educational analytics use cases?

2 Background

Preserving the privacy of learners while actively collecting their data has long
been recognised as a major challenge. It is evident that students should never be
considered simply as sources of data, but rather as collaborators whose learning
and development we are trying to serve [20]. However, although the importance
of formulating and employing ethical and privacy principles was recognised early
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on, privacy concerns regularly played second fiddle due to the “enthusiasm for
the possibilities offered by learning analytics” [16]. New legislation surround-
ing data protection introduced new perspectives. Besides ethical and privacy
concerns, legal concerns began to drive decisions made at educational institu-
tions. In the educational privacy framework DELICATE [3], the section on legit-
imacy contains the question: “Which data sources do you have already, and are
they not enough?” Questions like these represented a major change of mindset.
Researchers and practitioners recognised that collecting particular types of data
is never warranted, and that “learning analytics is justifiable just to the extent
that it does indeed promote autonomy” [18].

Basic organisational and technical controls can help to preserve student pri-
vacy, but it is questionable whether this is sufficient to gain students’ trust.
Prinsloo and Slade [16] convincingly argue that “the power to harvest, anal-
yse and exploit data” lies completely with the educational institution, rather
than the student. The authors outline the importance of transparency towards
students and of giving students the possibility to access and update their own
information. The issue with these measures is that they still require the stu-
dent to entrust multiple stakeholders with their personal data, keeping alive the
privacy power imbalance between the student and the data fiduciary.

Levelling out the power balance is exactly what decentralised approaches have
attempted to do in recent years, by enabling the sharing of student data in a way
that can enhance both privacy and security. Students thus regain some ownership
over their data, helping to restore the power balance. Yet, using a decentralised
architecture also introduces challenges. The most prominent of these is how to
maintain performant algorithms when not all data is available in one central
data store. A study of several anonymisation and differential privacy techniques
found that in a GPA prediction task accuracy could drop from 76% to anywhere
between 45%–63% [9]. Novel methods such as deep learning and transformers
are notorious for requiring immense datasets to tune their parameters. How can
we continue using these machine learning architectures when we do not have the
data they so desperately need in one central location?

McMahan et al. (2017) [15] introduced the concept of federated learning,
where learning occurs over a federation of users, referred to as clients. Rather
than having to share data and parameters, clients train their model on local
data and only share the parameter values of their model with the coordinating
server. By averaging the parameters of all local clients, the resulting global model
obtains better performance than if local clients operated independently. Figure 1
visualises the scenarios of local learning, federated learning, and central learning.

Decentralised machine learning could be the key towards privacy-preserving,
trustworthy educational analytics [4]. Yet, few studies have investigated this
promising area. Guo and Zeng [8] use federated learning in the context of edu-
cational data analysis. They consider the task of dropout prediction in the KDD
Cup 2015 dataset, achieving accuracy within a couple of percentage points of the
central learning scenario. However, the authors do not make their code available
and do not report performance metrics other than a figure showing accuracy
progression over epochs. This concern about their work was voiced by a recent
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Fig. 1. Visualisation of various machine learning architectures (based on [24]). In the
local learning scenario, both data and parameters remain at the client. Federated learn-
ing only shares model parameters, whereas for central learning both data and param-
eters are shared with a centrally coordinating server.

federated learning paper using the KDD Cup 2015 dataset [5]. Fachola et al. [5]
achieve an accuracy of 81.7% for central learning and show that using federated
learning an accuracy of around 80% can be achieved, even when data is spread
over more than 50 clients. A downside is that the reported accuracy of 81.7% is
only two percentage points higher than the proportion of dropouts in the dataset
of 79.3%. Accuracy is not the right choice of metric for this dataset. If we want to
draw meaningful conclusions about the potential of federated learning analytics,
we need to consider multiple datasets and performance metrics.

3 Methodology

This section describes the metrics we used to compare the performance of differ-
ent models, the three datasets (OULAD, EdNet, and KDD Cup 2015) employed
in our experiments, and the details of our federated learning algorithm.

3.1 Metrics

Two commonly used metrics to evaluate model performance are accuracy and F1.
Accuracy represents the fraction of correctly predicted records. The F1 score is
the harmonic mean of precision (true positives divided by all predicted positives)
and recall (true positives divided by all actual positives). Both metrics should
be used with caution when dealing with imbalanced datasets, as they are heavily
influenced by whether the majority class is labelled as positive or negative.

A metric that is less explicitly sensitive to class imbalance is the Area Under
the ROC Curve (AUC). The curve in question is a plot of the true positive rate
(equal to recall) on the y-axis and the false positive rate (false positives divided
by all actual negatives) on the x-axis. The curve is drawn by determining the
true positive rate and the false positive rate at different classification thresholds,
meaning AUC requires the probability estimates of a model for its calculation.
Because AUC is based on probability outputs, rather than the 0–1 classification
output, it can provide more fine-grained insight into whether a model is truly
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learning to separate positive from negative instances. AUC does suffer from its
own issues, such as that it can be biased towards certain classifiers.

3.2 Datasets

The Open University Learning Analytics Dataset (OULAD) [12], contains demo-
graphic data on students and logs of student activity within a virtual learning
environment. The outcome variable of interest is the result a student achieved
for a course, which can be pass, distinction, fail, or withdrawal. OULAD forms
the basis for studies varying from the creation of predictive models identifying
at-risk students [10] to the investigation of the role of demographics in virtual
learning environments [17]. We use the work of Waheed et al. [23] as our base-
line for comparison, as the authors provide a detailed description of the features
they use, allowing us to conduct a replication that closely matches their process.
They turn the original classification problem with four potential outcomes into
four separate binary classification tasks (pass = 0 & fail = 1, pass = 0 & with-
drawn = 1, fail = 0 & distinction = 1, pass = 0 & distinction = 1). Table 1 reports
the accuracy and F1 score achieved for each of these tasks.

Table 1. Descriptive statistics of the three datasets we investigate in this paper:
OULAD, EdNet, and KDD Cup 2015. We additionally indicate state-of-the-art (SOTA)
results for each, where the OULAD metrics are divided into PF (pass-fail), PW (pass-
withdrawn), FD (fail-distinction), and PD (pass-distinction).

OULAD [23] EdNet [19] KDD Cup 2015 [6]

Use case learning outcome question correctness dropout

# Students 32,593 784,309 200,902

# Records 10,655,280 95,293,926 13,545,124

% Pos. class PF: 31% fail 66% correct 79% dropout

PW: 40% withdrawn

FD: 30% distinction

PD: 20% distinction

SOTA PF: Acc. = 0.845 F1 = 0.719 Acc. = 0.725 F1 = 0.929

PW: Acc. = 0.947 F1 = 0.943 AUC= 0.791 AUC= 0.909

FD: Acc. = 0.864 F1 = 0.770

PD: Acc. = 0.805 F1 = 0.749

EdNet is a knowledge tracing dataset containing data from users of a self-
study platform [2]. Rather than having a single outcome variable per user,
EdNet involves predicting for each completed multiple-choice question whether
a user answered it correctly. The prediction task of EdNet is temporal in nature,
explaining why papers tackling this dataset tend to employ time-series machine
learning models such as transformers [1]. We use the SAINT+ transformer
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model [19] as our baseline for comparison, as this is the model with the current
state-of-the-art performance. The authors use a version of EdNet with newer user
data that is not publicly available. Yet, since the prediction task and features
are identical, their results can still serve as a useful benchmark.

The final dataset we consider was used for the KDD Cup 2015 challenge.
This dataset contains information on student interactions within a Massive Open
Online Course (MOOC) environment. The goal is to predict student dropout,
with a distinguishing characteristic being that 79% of the enrolled students
dropped out. The dataset is thus highly imbalanced, explaining why KDD Cup
2015 papers tend to focus on reporting AUC and F1 scores, rather than accu-
racy [6,13].

3.3 Federated Learning

Federated learning was proposed as a communication-efficient way to use all
available data on individual devices to train a global model, without users hav-
ing to share their personal data [15]. Another common use case for privacy-
preserving machine learning is that of a group of hospitals working together
to create better predictive models for the detection of illnesses [24]. The sensi-
tivity of health data, along with the extensive legislation limiting data sharing
in medical settings, provides a clear motivation for the need for a parameter-
sharing infrastructure without a centrally coordinating party. A recent study
in the educational field investigated a transfer learning approach and voiced
concerns regarding the relevance of decentralised approaches for education [7].
Hence, we should ask to what extent decentralised machine learning contexts
appear in educational environments.

Guo and Zeng [8] and Fachola et al. [5] envision a network of schools that
are part of a federation sharing model parameters. These schools are part of the
same governing body, but have separate physical locations, possibly in differ-
ent countries. From a legal and privacy perspective, it can then be worthwhile
to employ federated learning to obtain optimal insight into student behaviour
without needing to share student data across schools. The use case considered
in both papers is dropout prediction using the KDD Cup 2015 dataset, meaning
each student has a single outcome variable per course. Federated learning on
the level of the classroom or the individual is likely not realistic here, since the
majority of students have fewer than five course outcomes. For the KDD Cup
2015 dataset, we will therefore investigate federated learning performance up to
a maximum of 100 local clients, corresponding to roughly 2,000 students per
client. OULAD is comparable to the KDD Cup 2015 dataset, with the exception
that it also contains demographic information. For OULAD, we similarly analyse
up to 100 local clients, corresponding to roughly 300 students per client.

For the EdNet setting, where a single student can answer thousands of ques-
tions in their self-study process, federated learning with individual students as
local clients is more realistic. Nevertheless, since single users potentially have
only one answered question within EdNet, it is not algorithmically practical to
have local clients comprising one user. In our experiments, we will investigate
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the performance of local and federated learning up to a maximum of 100 local
clients, corresponding to around 100 users per client when working with a ran-
domly selected subset of 10,000 students.

4 Results

The Python code used to produce the outcomes of this section and detailed
results per dataset are available on GitHub1. Our federated learning code adheres
to the FedAvg algorithm of McMahan et al. (2017) [15]. Central learning exper-
iments were conducted using the machine learning library scikit-learn and the
gradient boosting libraries XGBoost and CatBoost. We used Pytorch as the
deep learning library for our federated learning algorithm and exclusively used
XGBoost with default settings as our local learning classifier.

4.1 Central Learning

Table 2 presents our central learning results using 10-fold cross-validation with
an 80-20 train-test split. Our best results were achieved using CatBoost (OULAD
and KDD Cup 2015) and XGBoost (EdNet). Table 2 shows that we managed to
achieve comparable performance to the current state-of-the-art.

Table 2. Comparison of our central learning results to the results of Table 1, where
the value between brackets represents the performance difference with earlier work.

OULAD EdNet KDD Cup 2015

Acc F1 Acc AUC F1 AUC

PF 0.862 (+0.017) 0.751 (+0.032) 0.720 (–0.005) 0.757 (–0.035) 0.925 (-0.003) 0.881 (–0.028)

PW 0.933 (–0.014) 0.914 (–0.011)

FD 0.893 (+0.029) 0.820 (+0.050)

PD 0.810 (+0.005) 0.199 (–0.551)a

aThe precision and recall figures for the pass-distinction case reported in Table 3 of
Waheed et al. [23] are incommensurate with their reported accuracy. We contacted the
authors for clarification in August 2023, but have not received a response. Since the
accuracy reported by Waheed et al. [23] is lower than ours, it is surprising that their
reported precision and recall, and thus their F1 score, are significantly higher.

Since Waheed et al. [23] extensively describe the features they engineered, we
were able to reproduce these features and use them as input for OULAD classi-
fication. For the EdNet prediction task, we created lag features for previous user
question correctness to turn the time series prediction task into a classification
task. This enabled us to utilise the regular machine learning and gradient boost-
ing libraries we used for OULAD and KDD Cup 2015. For the KDD Cup 2015
dataset, we designed student activity features similar to those of OULAD.
1 https://github.com/MaxvanHaastrecht/Federated-Learning-Analytics.

https://github.com/MaxvanHaastrecht/Federated-Learning-Analytics
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4.2 Local Learning and Federated Learning

For our local and federated learning scenarios, we divided students randomly
over clients. For OULAD federated learning, we used a neural network with two
hidden layers of sizes 30 and 10, a learning rate η of 0.02, a cross-entropy loss
function with the Adam optimiser, the number of communication rounds R set
to 50, the number of local epochs per round E = 2, and a batch size of 64.
Figure 2 shows that both federated learning and local learning perform worse
than the central learning scenario. However, whereas local learning accuracy
drops significantly as we progress from 10 to 100 local clients, federated learning
accuracy remains roughly constant.

Fig. 2. Plot of the bootstrapped mean accuracy for varying numbers of clients, showing
comparisons of our local learning, federated learning, and central learning results.

Figure 3 summarises the results from our EdNet and KDD Cup 2015 exper-
iments. For KDD Cup 2015, we used the exact same federated learning settings
as with OULAD. For EdNet, we changed the batch size to 128, as is used in
earlier work [1], and lowered the number of communication rounds R from 50 to
20. We additionally used hidden layer sizes of 16 and 8, rather than 30 and 10,
since EdNet feature engineering resulted in fewer input features for the network.
Since the EdNet dataset is comparatively large, it is common practice to work
with a random subset of the dataset in experimental settings such as our feder-
ated learning context [14,26]. We work with a random subset of 10,000 students
and indicate the AUC of our best central learning model in Fig. 3.

4.3 Federated Learning Analytics Metric (FLAME)

Our numerical results provide an indication of the performance of federated
learning compared to local learning and central learning. However, our results
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Fig. 3. Plot of the bootstrapped mean AUC for varying numbers of local clients, show-
ing comparisons of our central learning EdNet and KDD Cup 2015 AUC results to
local learning and federated learning.

are not directly usable by policymakers in education deciding whether to opt for a
federated learning architecture. Questions remain regarding the optimal number
of local clients in each scenario and how much performance we are willing to
trade off for an improved preservation of privacy. To ease the decision-making
process, we propose the federated learning analytics metric (FLAME). The idea
behind FLAME is to capture the trade-off between privacy and performance in
a single metric, such that comparisons across scenarios, datasets, and numbers
of local clients become more tenable. We define FLAME as:

FLAME =
1 − 1

K

1 + (pc − pf )
=

privacy gain
1 + performance loss

,

where K is the number of local clients, pc is the central learning performance,
and pf is the federated learning performance. For institutions considering to
move from central learning to federated learning, pc will be a known quantity.
For institutions that do not have a centralised architecture, pc can be estimated
based on the literature or through simulations. FLAME is suited to be used for
performance metrics ranging between [0,1], such as accuracy, F1, and AUC. The
numerator captures the gain in privacy achieved by employing an architecture
with local clients. The denominator captures the loss in performance.

Figure 4 shows the FLAME values for EdNet and KDD Cup 2015, where
AUC is the relevant performance metric. FLAME values for the local learn-
ing scenario are also shown, which can be calculated by replacing the federated
learning performance in the FLAME formula with local learning performance.
Taking EdNet as an example, we observe that for federated learning FLAME
peaks at 50 clients, whereas for local learning FLAME peaks at 20 clients. By
more explicitly incorporating the privacy-performance trade-off, FLAME there-
fore clarifies differences between algorithms in a way the pure AUC scores of
Fig. 3 cannot.
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Fig. 4. FLAME values for EdNet and KDD Cup 2015, where AUC is the performance
metric. In the case of 50 local clients, AUC loss must be less than 0.0315 to achieve a
FLAME higher than 0.95.

5 Discussion

Our results demonstrate the potential of federated learning to preserve privacy
and performance in educational contexts. For OULAD, we observed that our
federated learning algorithm achieved comparable accuracy to earlier results for
three out of four scenarios considered, even when the number of local clients
was set to 100. For the KDD Cup 2015 dataset, federated learning matched our
best results, again up to 100 local clients. Federated learning also significantly
outperformed local learning for all three datasets. When dividing data over 100
local clients, the average accuracy gain for OULAD was 4.32% and the average
AUC gains for EdNet and KDD Cup 2015 were 0.1017 and 0.0518, respectively.

Our FLAME values in Fig. 4 demonstrated that local learning and federated
learning warrant serious consideration in settings where dividing data over 20
or more clients is realistic. However, the answer to student privacy concerns can
never be purely technological. Federated learning is promising, but it carries with
it additional security risks and questions whether student’s perceptions of these
technologies are as positive as their theoretical benefits. Yet, given the increas-
ing tensions between the datafication of education and the privacy concerns of
students, privacy-preserving machine learning architectures may offer the path
of least resistance towards a bright future for educational analytics.

Federated learning is perhaps the most commonly used privacy-preserving
machine learning strategy, but certainly not the only one. We did not cover
other paradigms within this paper, such as split learning [21], swarm learn-
ing [24], and transfer learning [7]. In future work, it will be crucial to compare
the privacy-performance trade-off for various approaches. We should be aware
that in contexts where performance takes precedent, combining strategies (e.g.,
federated learning and split learning [21]) might be the optimal choice, whereas in
contexts where privacy is paramount, a local learning approach that fosters stake-
holder trust could provide the perfect fit. Regardless of the privacy-preserving
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paradigms considered, insights regarding the privacy-performance trade-off pro-
vided by FLAME can serve as a useful starting point for discussion.

A limitation of our work is that all benchmarking datasets had drawbacks.
OULAD is extensively documented and publicly available, but is comprised of
scenarios with imbalanced classification tasks where the metrics currently used
in the literature (accuracy and F1) are inadequate for thorough comparisons of
model performance. EdNet is publicly available, but recent work has relied on
a version of the dataset that is not publicly available [19], or has worked with
subsets of the full dataset that hinder replicability [14,26]. The KDD Cup 2015
dataset is not publicly available from a dedicated website, and the most relevant
publications covering this dataset in recent years only report model accuracy
[5,8], when this is a highly imbalanced dataset with 79% of students dropping
out. These drawbacks are not ideal, but we strongly believe these datasets offer
an accurate representation of currently available benchmarks. Still, we require
better benchmark datasets and accompanying research in the future.

6 Conclusion and Future Work

With education becoming more datafied than ever, researchers interested in opti-
mising learning environments are increasingly faced with questions regarding
ethics, privacy, fairness, and trustworthiness. Decisions to intrude on student
privacy should be taken with the utmost caution. There are legitimate concerns
whether any type of optimisation warrants the collection of sensitive learner
data. Within this context, privacy-preserving machine learning that respects
privacy while maintaining model performance is an intriguing recent develop-
ment. However, until now, we lacked rigorous investigations of the impact of
privacy-preserving architectures on educational analytics model performance.

We compared algorithm performance across three architectures (local learn-
ing, federated learning, central learning) for three different prediction use cases
(learning outcome, question correctness, dropout). In doing so, we provided a
comprehensive image of what can be achieved with privacy-preserving architec-
tures. We found that even when dividing data over 100 clients, federated learning
can compete with state-of-the-art results. A major finding was that although for
50 or more clients federated learning outperformed local learning, differences
were often not significant when dividing data over 20 or fewer clients. This
points to the importance of considering local learning as a privacy-preserving
strategy for educational analytics. Future work will need to investigate how stu-
dents, teachers, and other stakeholders view federated learning, since the relative
complexity of privacy-preserving machine learning may diminish trust. Never-
theless, the datafication of education combined with the clear wish of students
to preserve privacy signal a promising future for federated learning analytics.
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