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Summary

The importance of interpretability is widely accepted in machine learning
tasks in which humans are responsible for making a decision for taking action.
In such scenarios, it is crucial for domain experts to trust the machine learning
model. As a result, research on interpretable machine learning has received a
lot of attention in recent years. This dissertation contributes to this area by
proposing intrinsically interpretable and transparent methods for supervised and
unsupervised tasks, both for predictive modeling and for knowledge discovery.

In this Chapter we provide our conclusions.

7.1 Summary

Truly Unordered Rule Sets. In the field of rule set models, we considered
the problem of increasing the interpretability of rule set models by removing the
ad-hoc schemes for handling conflicts caused by overlaps of rules, in which an
overlap refers to a subset of instances covered by multiple rules simultaneously.
In order to achieve this goal, we first considered allowing overlaps for express-
ing uncertainty and exception, which eliminated the need for imposing implicit
orders among rules. Building upon it, we next formally defined truly unordered
rule set (TURS) models, which informally only “allow” rules with similar outputs
to overlap. Lastly, we showcased through a case study with patient data collected
at Leiden University Medical Center that our TURS model paves the way to in-
teractive rule learning. That is, the rule set model can be automatically updated

with feedback from domain experts.

Multi-dimensional MDL-based Histograms. We studied multi-dimensional
MDL-based histograms, which can be used as a transparent tool for various tasks
in machine learning and data mining, including density estimation, explanatory
data analysis, discretization, entropy estimation, and conditional mutual informa-
tion estimation. With a series of papers, we first extended the one-dimensional
MDL-based histogram to the two-dimensional case and showcased its use for ana-
lyzing spatial datasets. Secondly, we extended MDL-based histograms for analyz-
ing multi-dimensional and mixed-type datasets (with discrete-continuous mixture
variables), specifically for analyzing its dependency structures via conditional mu-

tual information estimation.
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7.2 Answers to Research Questions

In the following, we revisit the proposed research questions and provide our

answers and a discussion for each of them.

Research Question 1: How can we formalize rule sets as probabilistic models such
that rules are independent of each other? Further, how to learn such a model from
data?

A set of rules, when put together, can form a global model for the whole
dataset. While defining a single rule as a local probabilistic model is straightfor-
ward (given that the target variable is discrete for classification tasks), defining
a global model for a rule set is far more complicated, mostly due to the nuisance
caused by overlaps, i.e., one instance covered by multiple rules at the same time.

To remove implicit and explicit orders among rules, we treated rules equally,
i.e., one rule does not have a higher “quality” than the other. We started by
considering the informal implication of an overlap of two rules; i.e., what is the
implication of the overlap in the sense that why the instances covered by the
intersection of these two rules cannot form a rule on itself (by concatenating
the conditions of the two rules)? This leads to our justification of the overlap:
if the class probabilities of the instances covered by the overlap are not very
different from those of the instances covered by each single rule respectively, it is
not desirable to separate the instances in the overlap to nether of the two rules.
Informally, this can be caused by close class probability estimates and/or by a
small sample size of the overlap (which leads to a large variance). In this case, we
interpret overlaps as “uncertainty”, in the sense that we do not have enough data
to decide that the instances covered by the overlap “belong” to a single rule.

Thus, our first answer to Research Question 1 is that we treat over-
lap as uncertainty when formalizing rule sets as probabilistic models.
This approach is very different from previous methods, which either minimize the
size of overlaps or takes post-hoc conflict resolving schemes.

Further, when regarding an overlap as uncertainty, an overlap of two rules,
e.g., rule S; and rule S;, can be interpreted as “instances that are covered by the
overlap “belong” to rule S; or rule S;”, in which the “or” represents uncertainty.
This intuition motivated us to consider taking the union of rules for modeling

instances covered by the overlap, which leads to our second answer to the proposed
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research question.

Our second answer to Research Question 1 is that we formally de-
fine a probabilistic model for any given rule set that may have overlaps,
i.e., the truly unordered rule set (TURS) model. The key innovation

is to define
P(Y =y|X =2) = P(Y{X € US;}),Vz € NS,.

In this way, the likelihood of a TURS model incorporates how different the
class probability estimates of rules that form an overlap are. Thus, we now only
“allow” overlaps that have similar class probability estimates by penalizing the
situation when two rules with very different class probability estimates overlap.

Lastly, as learning a TURS model from data requires taking into consideration
modeling overlaps, existing formalizations of the problem of learning rules from
data cannot be applied to learning a TURS model. Also, existing rule learning
algorithms cannot be used directly or with modification easily.

Therefore, our third answer to Research Question 1 is that we
formally defined the problem of learning a TURS model as an MDL-
based model selection problem, and we developed a novel heuristic
algorithm for finding good models.

Introducing the MDL principle removes the regularization parameter for con-
trolling the model complexity. Setting such regularization parameters in an ad-
hoc way reduces the algorithm transparency, while tuning it with cross-validation
can be time-consuming. Moreover, our algorithm is equipped with several al-
gorithmic innovations, including 1) taking “patience” into account, 2) using a
dual-beam, and 3) using a look-ahead strategy based on a MDL-based local test.
Our algorithm is shown to have competitive predictive performance and simple
model complexity; further, more importantly, the TURS models learned by our
algorithm are shown to be empirically “truly unordered”, in the sense that the
predictive performance is hardly affected by randomly chosen rules for making

predictions for instances covered by overlaps.

Research Question 2: How can we construct parameter-free two-dimensional his-

tograms with transparent and informative patterns (bins)?

Eliminating user-defined parameters for controlling the bin sizes of histograms
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increases the transparency of how a histogram model is obtained from data.
Hence, the ambiguity to data analysts caused by different histograms showing
different data summarization is removed.

In order to remove parameters that control the bin sizes of histograms, we
formalize the problem of learning such histogram models as an MDL-based model
selection problem. That is, we adopted the MDL principle to define the “optimal”
model for such an unsupervised task and formalized the best model as the one
that leads to the best compression of data and model together.

In addition, to obtain more interpretable bins (patterns) in the sense that
1) instances within each bin can be considered to have homogeneous density,
and 2) neighboring bins have different densities, we proposed a greatly flexible
model class that includes any data partition formed by unions of disjoint rect-
angles. Lastly, we developed an efficient algorithm that combines top-down and
bottom-up search, and showcased that the learned two-dimensional histograms
carry meaningful patterns that generalize well to unseen data, both on simulated
datasets with known ground truth and real-world case study datasets.

Thus, our answer to Research Question 2 is to formalize the prob-
lem of learning a two-dimensional histogram based on the MDL prin-
ciple, and to obtain more informative patterns (bins) by 1) considering
dependencies between dimensions and 2) using more flexible data par-

titions.

Research Question 3: How can we construct a multi-dimensional adaptive histogram-
based model for interpretable CMI estimation?

Learning dependency structure via estimating the conditional mutual infor-
mation (CMI) is a challenging task, especially when the data contains mixed types
(discrete, continuous, and possibly also discrete-continuous mixtures).

To construct histograms for mixed type data, we first formalized the problem
of estimating CMI for mixed type data. Specifically, we adopted measure-theoretic
tools to prove that the CMI for mixed-type data can be written as the sum of
four entropy terms, just like the CMI for purely continuous and discrete data.

Further, we proposed an entropy estimator based on multi-dimensional his-
togram models, and consequently a plug-in estimator for CMI. Next, we for-
malized the problem of learning a multi-dimensional adaptive histogram as an

MDL-based model selection task. Leveraging the MDL principle reduced the
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hyper-parameters to be set and hence increased the transparency of how a model
is obtained. Lastly, we proposed an alternating algorithm for learning such a
multi-dimensional histogram from data and showcased the effectiveness of such
an approach by benchmarking against competitor methods in various tasks that
involve CMI estimation.

In conclusion, our answer to Research Question 3 is 1) to adopt
the MIDL principle to formalize the learning problem, 2) to leverage
the measure-theoretic definition of entropy for mixed-type of data, and
3) to design an alternating algorithm for learning such a histogram

form data.

7.3 Future Work

We conclude this chapter by discussing a few possible future work directions
following this dissertation.

First, we consider a crucial problem to formally define human comprehensibil-
ity as a measure in interpretable machine learning, which characterizes how easy a
machine learning model can be comprehended by a human. Notably, the concept
of human comprehensibility may be defined both for intrinsically interpretable
models and explainable artificial intelligence (XAI) methods that provide post-
hoc explanations for black-box models. One key challenge is to properly define
the “required level” of human comprehension, which can be different for various
machine learning tasks.

Second, it is a fundamental research question to formalize as an optimization
problem the task of automatic model updating given human feedback, which is the
cornerstone of any interactive machine learning system. One potential approach
is to borrow the idea from the subjective interestingness in information-theoretic
data mining (De Bie 2011a,b). However, subjective interestingness in data mining
is, informally, about maximizing the “surprisingness” to the data miner based on
their prior “beliefs” about the dataset. Thus, the goal is to search the pattern with
the maximum amount of information in the data that the user does not know. In
contrast, to formalize automatic human-guided model updating, the goal could be
set as searching for a model that maximizes the “trust” from human users. As an

example, such a model could be a probabilistic rule set that contains rules that
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the user knows or considers trustworthy.

Third, further research about how to develop a flexible interactive data explo-
ration system may be another crucial component for human-in-the-loop machine
learning systems. It may be useful for building trust between humans and models
if we allow human users to explore subsets of datasets with the help of specific
types of machine learning models, including examining the statistical characteris-

tics of (subsets of) datasets.
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