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Chapter 6

Interpretable Conditional
Mutual Information
Estimation with Adaptive
Histograms

This chapter has been published as Marx, A, Yang, L, and van Leeuwen, M Estimating Conditional Mu-

tual Information for Discrete-Continuous Mixtures using Multi-Dimensional Adaptive His-

tograms. In: Proceedings of the SIAM Conference on Data Mining 2021 (SDM’21), SIAM, 2021.
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Chapter Abstract
Estimating conditional mutual information (CMI) is an essential yet chal-

lenging step in many machine learning and data mining tasks. Estimating CMI
from data that contains both discrete and continuous variables, or even discrete-
continuous mixture variables, is a particularly hard problem. In this chapter, we
show that CMI for such mixture variables, defined based on the Radon-Nikodym
derivative, can be written as a sum of entropies, just like CMI for purely discrete
or continuous data. Further, we show that CMI can be consistently estimated for
discrete-continuous mixture variables by learning an adaptive histogram model.
In practice, we estimate such a model by iteratively discretizing the continuous
data points in the mixture variables. To evaluate the performance of our estima-
tor, we benchmark it against state-of-the-art CMI estimators as well as evaluate
it in a causal discovery setting.
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Chapter 6 Interpretable Conditional Mutual Information Estimation
with Adaptive Histograms

6.1 Introduction

In many research areas, such as classification (Lee and Kim 2013), feature
selection (Vinh et al. 2014), and causal discovery (Spirtes et al. 2000), estimating
the strength of a dependence plays a key role. A theoretically appealing way
to measure dependencies is through mutual information (MI) since it has several
important properties, such as the chain rule, the data processing inequality, and—
last but not least—it is zero if (and only if) two random variables are independent
of each other (Cover and Thomas 2012). For structure identification, such as
causal discovery, conditional mutual information (CMI) is even more interesting
since it can help to distinguish between different graph structures. For instance, in
a simple Markov chainX → Z → Y , X and Y may be dependent, but are rendered
independent given Z. Vice versa, a collider structure such as X → Z ← Y may
introduce a dependence between two marginally independent variables X and Y

when conditioned on Z.

While estimating (conditional) mutual information for purely discrete or con-
tinuous data is a well-studied problem (Cover and Thomas 2012; Darbellay and
Vajda 1999; Gao et al. 2016; Han et al. 2015; Paninski and Yajima 2008), many
real-world settings concern a mix of discrete and continuous random variables,
such as age (in years) and height, or even random variables that can individually
consist of a mixture of discrete and continuous components. Although several
discretization-based approaches that can estimate MI for a mix of discrete and
continuous random variables have recently emerged (Cabeli et al. 2020; Man-
dros et al. 2020; Suzuki 2016), so far only methods based on k-nearest neighbour
(kNN) estimation were shown to work on mixed variables, which may consist of
discrete-continuous mixture variables (Gao et al. 2017; Mesner and Shalizi 2020;
Rahimzamani et al. 2018).

Regardless of the success of kNN-based estimators, discretization-based ap-
proaches have attractive properties, e.g., with regard to global interpretation.
That is, a natural and understandable way to discretize a continuous random
variable is via creating a histogram model, where we cut the sample space of the
continuous variable in multiple non-overlapping parts called bins (Scott 2015), or
(hyper)rectangles for multi-dimensional variables. Within a bin, we consider the
distribution to be constant, which allows us to estimate the density function via
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Entropy for Mixed Random Variables

Riemann integration by making the bins smaller and smaller (Cover and Thomas
2012). This definition, however, is less straightforward when mixed variables are
involved.

In this chapter, we approach the problem as follows: we first extend the def-
inition of entropy for a univariate discrete-continuous mixture variable given by
Politis (Politis 1991) to multivariate variables. Using this definition, we show that
CMI for mixed random variables can be written as a sum of entropies that are
well-defined through the Radon-Nikodym derivative (see Section 6.2). Exploiting
this property, we propose a consistent CMI estimator for such data that is based
on adaptive histogram models in Section 6.3. To efficiently learn adaptive his-
tograms from data, in Section 6.4 we define a model selection criterion based on
the minimum description length (MDL) principle (Grünwald 2007). Subsequently,
we propose an iterative greedy algorithm that aims to obtain the histogram model
that minimizes the proposed MDL score in Section 6.5. We discuss related work
in Section 6.6 and in Section 6.7, we empirically show that our method performs
favourably to state-of-the-art estimators for mixed data and can be used in a
causal discovery setting.

6.2 Entropy for Mixed Random Variables

We consider multi-dimensional mixed random variables, of which any indi-
vidual dimension can be discrete, continuous, or a discrete-continuous mixture.
Further, we call a vector of such mixed random variables a mixed random vector.
For a mixed random vector (X,Y ), where X and Y are possibly multivariate, we
need to adopt the most general definition of mutual information (MI), i.e., the
measure-theoretic definition:

I(X;Y ) =

∫
X×Y

log dPXY

dPXPY

dPXY ,

where dPXY /(dPXPY ) is the Radon-Nikodym derivative, dPXY the joint measure,
and PXPY the product measure. It has been proven that PXPY is absolutely
continuous with respect to PXY (Gao et al. 2017), i.e., PXY = 0 whenever PXPY =

0; and therefore, such a Radon-Nikodym derivative always exists and I(X,Y ) is
well-defined. This measure-theoretic definition can be extended to CMI using the
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chain rule: I(X;Y |Z) = I(X; {Y, Z})− I(X;Z).
It is common knowledge that for purely discrete or continuous random vari-

ables, CMI can be written as a sum of entropies, i.e., I(X;Y |Z) = H(X,Z) +

H(Y, Z) − H(X,Y, Z) − H(Z). What is not clear, however, is if this formula
also holds when (X,Y, Z) contains discrete-continuous mixture random variables.
We investigate this problem in two steps. We first define the measure-theoretic
entropy for a (possibly multi-dimensional) discrete-continuous mixture random
variable and prove it to be well-defined, though previous work claimed the oppo-
site (Gao et al. 2017). Second, using this definition, we prove that (conditional)
MI for a mixed random vector can be written as the sum of measure-theoretic
entropies, just like purely continuous or discrete random vectors.

6.2.1 A Generalized Definition of Entropy

The measure-theoretic entropy is defined only for one-dimensional random
variables (Politis 1991). Building upon this definition, we give an explicit proof
that such a one-dimensional measure-theoretic entropy is well-defined, and then
extend this definition to the multi-dimensional case, which we prove is also well-
defined.

Generalized One-Dimensional Entropy

We start off by reviewing the existing definition for the one-dimensional
case (Politis 1991). Given a one-dimensional random variable X, entropy H is
defined as

H(X) =

∫
R

dPX(x)

dv(x)
log dPX(x)

dv(x)
dv(x), (6.1)

where v(·) is a measure defined on all one-dimensional Borel sets (Politis 1991).
If v(·) is the Lebesgue measure, which we denote as u(·), H(X) becomes the
differential entropy. Alternatively, if v(·) is a counting measure, H(X) becomes
the common (discrete) entropy.

If, however, X is a discrete-continuous mixture variable, v is defined as fol-
lows. We split R into three disjoint subsets s.t. R = Sd ∪ Sc ∪ So. First, So is the
subset of R on which X has zero probability measure, i.e., PX(So) = 0. Second,
the set Sd contains all discrete points, i.e., Sd is countable and ∀x ∈ Sd, PX(x) > 0.
Third, Sc covers the continuous points, hence PX(Sc) + PX(Sd) = 1 and for any
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Entropy for Mixed Random Variables

Borel set A ⊆ Sc satisfying u(A) = 0, we have PX(A) = 0. Based on these three
subsets Sd, Sc, and So, we can define v as

v(A) = u(A ∩ Sc) + |A ∩ Sd| , (6.2)

where |A ∩ Sd| is the cardinality of this intersection.
To show that the generalized one-dimensional entropy is well-defined, we need

to prove that the Radon-Nikodym derivative dPX/dv always exists. This we show
in the following lemma.

Lemma 1. Given a one-dimensional discrete-continuous random variable X with
probability measure PX , PX is absolutely continuous w.r.t. v, i.e., PX = 0 when-
ever v = 0, and hence dPX/dv always exists.

We provide the proof of Lemma 1, as well as for Lemmas 2 and 3 in Supple-
mentary Material 6.9.1.

Generalized Multi-Dimensional Entropy

In the following, we extend the measure-theoretic entropy definition to a
mixed k-dimensional random vector W = (W1, . . . ,Wk). For each Wi, we define
Si
d, S

i
c, S

i
o and measure vi as above, and also define the product measure v for the

k-dimensional random vector as v = v1 × . . . × vk. Then, define the entropy for
W as

H(W ) =

∫
Rk

dPW (w)

dv(w)
log dPW (w)

dv(w)
dv(w). (6.3)

To prove that such entropy is well-defined, we show that dPW/dv always exists.

Lemma 2. Given a mixed k-dimensional random vector W = (W1, . . . ,Wk) with
probability measure PW , dPW/dv always exists.

Last, based on Lemma 1 and 2, we can prove that just like for a purely
continuous or discrete random vector, conditional mutual information for a mixed
random vector can be written as a sum of entropies.

Lemma 3. Given a mixed random vector (X,Y, Z) with joint probability measure
PXY Z , we can write I(X;Y |Z) = H(X,Z)+H(Y, Z)−H(Z)−H(X,Y, Z), where
each entropy can be defined as in Equation (6.3).
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As a direct implication of the above proof, it follows that mutual information
can also be written as the sum of entropies, since it is a special case of CMI with
Z = ∅. With this generalized definition, we can now show how to estimate CMI
using adaptive histogram models.

6.3 Adaptive Histogram Models

Adaptive histogram models have been thoroughly studied for continuous ran-
dom variables (Scott 2015); however, to the best of our knowledge, there exists
no rigorous definition of histograms for mixed random variables. Thus, to use
histogram models as a foundation to estimate the measure-theoretic (conditional)
MI, we need to rigorously define histograms for mixed random variables. We start
with the one-dimensional case.

6.3.1 One-Dimensional Histogram Models

A histogram model is typically defined based on a set of consecutive intervals
called bins (Scott 2015). However, to deal with discrete-continuous mixture ran-
dom variables, we define the set of bins, denoted as B, such that each bin is either
an interval or a set containing only a single point. That is, B = B′ ∪ B′′, where
B′ and B′′ are sets of subsets of R, with B′ consisting of countable consecutive
intervals and B′′ consisting of countable single point sets. Last, we define the
“width” of a bin using the measure v as defined in Equation 6.2, i.e., for a bin
Bj ∈ B we have

v(Bj) = u(Bj ∩B′) + |Bj ∩B′′| . (6.4)

As any Bj ∈ B′′ contains only a single discrete point, v(Bj) = 1 for all Bj ∈ B′′.
Further, we define a histogram model M as a set of bins equipped with a

parameter vector of length K, where K = |B| is the number of bins. That is,
a histogram model M is a family of probability distributions PX,θ, parametrized
by the vector θ = (θ1, . . . , θK). Each element of θ represents the Radon-Nikodym
derivative (or density) of each bin. Note that this definition generalizes to purely
continuous random variables when B′′ = ∅ and also to discrete random variables
if B′ =  ∅. For the latter case, the histogram model degenerates to a multinomial
model.
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Adaptive Histogram Models

6.3.2 Multi-Dimensional Histograms

First, we define the set of multi-dimensional bins. For a mixed k-dimensional
random vector W = (W1, . . . ,Wk), we define the set of bins for each Wi as in
Section 6.3.1, denoted as Bi. Consequently, we can define a set of k-dimensional
bins, denoted B, by the Cartesian product B = B1 × . . .×Bk.

Since each Bi is countable, B is also countable, and we can hence assume
B is indexed by j. Then, we split B in a similar way as in the one-dimensional
case, i.e., B = B′ ∪ B′′, where B′′ contains only discrete values. That is, for any
k-dimensional bin Bj ∈ B′′, each dimension of Bj is a set that contains a single
one-dimensional point. Note that, however, for any Bj ∈ B′, each dimension
of Bj can either be a one-dimensional interval or a one-dimensional single-point
set. Further, we define the volume of a multi-dimensional bin Bj ∈ B using the
product measure v(Bj) (see Section 6.2.1).

Similar to one-dimensional histograms, a multi-dimensional histogram model
M can be described by a probability distribution PW,θ parametrized by the vector
θ = (θ1, . . . , θK), where K is the number of bins and θi is the Radon-Nikodym
derivative for each bin.

6.3.3 Maximum Likelihood Estimator

Given a possibly multi-dimensional histogram with K bins, we denote the
Radon-Nikodym derivative dPW,θ/dv as fh

θ and its maximum likelihood estimator
as fh

θ̂
. Observe that for any parameter θj ∈ θ, the product θjv(Bj) follows a multi-

nomial distribution. Thus, given a dataset D = {Di}i=1,...,n, with Di representing
a row, the maximum log-likelihood is denoted as and equal to

lM (D) = log fh
θ̂(D)

(D) = log
K∏
j=1

(
cj

n · v(Bj)

)cj

, (6.5)

where cj and v(Bj) are respectively the number of data points and the bin volumes
of bin j ∈ {1 . . .K}. Notice that this maximum likelihood generalizes to the purely
discrete case (i.e., multinomial distribution) where all v(Bj) = 1, and to the purely
continuous case (Scott 2015) where v becomes the Lebesgue measure.
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6.3.4 Conditional Mutual Information Estimator
Combining all previous theoretical discussions, we can now estimate condi-

tional mutual information for three (possibly multivariate) random variables X,Y

and Z by
Ih(X;Y |Z) = Hh(X,Z)+Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z) .

The corresponding measure-theoretic entropies are estimated from k-dimensional
data over (X,Y, Z), where kX , kY and kZ are the corresponding number of di-
mensions of X,Y and Z. We estimate the entropies as

Hh(X,Y, Z) = −
∫
Rk

fh
θ̂
(x, y, z) log(fh

θ̂
(x, y, z))dv

Hh(X,Z) = −
∫
RkX+kZ

fh
θ̂
(x, z) log(fh

θ̂
(x, z))dv

Hh(Y, Z) = −
∫
RkY +kZ

fh
θ̂
(y, z) log(fh

θ̂
(y, z))dv

Hh(Z) = −
∫
RkZ

fh
θ̂
(z) log(fh

θ̂
(z))dv

(6.6)

in which fh
θ̂
(x, y, z) is the maximum likelihood estimator given the data, while we

obtain fh
θ̂
(x, z), fh

θ̂
(y, z), and fh

θ̂
(z) via marginalization from fh

θ̂
(x, y, z). Next,

we will prove that Ih is a strongly consistent estimator for conditional mutual
information on mixed data.

Theorem 1. Given a mixed random vector (X,Y, Z) with probability measure
PXY Z ,

lim
v′→0

lim
n→∞

Ih(X;Y |Z) = I(X;Y |Z)

almost surely, where n refers to the sample size and v′ refers to the maximum of
the histogram volumes for bins in B′ (defined in Section 6.3.2).

The proof is provided in Supplementary Material 6.9.1. Informally, our proof
is based on the following key aspects: 1) All volume-related terms in Ih cancel
out, 2) discrete empirical entropy converges to the true entropy almost surely
(Antos and Kontoyiannis 2001), and 3) in the limit, differential entropy can be
obtained by discretizing a continuous random variable into “infinitely” small bins
Cover and Thomas 2012, Theorem 8.3.1. Notably, the order of the double limit
in Theorem 1 inherently indicates that n should grow faster than the number of
bins (Rudin et al. 1964), which is also required for histograms on purely continuous
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data to converge (Scott 2015).

6.4 Learning Adaptive Histograms from Data
To efficiently estimate a histogram model that inherits the consistency guar-

antees from Theorem 1 we need to consider the following requirements. First of
all, we need to ensure that we learn a joint histogram model over (X,Y, Z). This
is due to the fact that we obtain the lower-dimensional entropies such as Hh(X,Z)

by marginalization over the likelihood estimator fh
θ̂
(x, y, z). If we would not learn

a joint model, the volume-related terms in Hh(X,Y, Z),Hh(X,Z),Hh(Y, Z), and
Hh(Z) would not cancel out. In addition, we need to make sure that the number
of bins is in o(n) and increases if we were to increase the number of samples n,
while at the same time the size of the bins decreases.

One way to achieve those properties would be to fix the bin width or the
number of bins depending on the number of samples. However, such an ap-
proach is not very flexible and does not allow for variable bin widths. To allow
for a more flexible model, we formally consider the problem of constructing an
adaptive multi-dimensional histogram as a model selection problem and employ
a selection criterion based on the minimum description length (MDL) principle
(Rissanen 1978). MDL-based model selection has been successfully used for learn-
ing one-dimensional (Kontkanen and Myllymäki 2007b) and two-dimensional his-
tograms (Kameya 2011; Yang et al. 2023), demonstrating adaptivity to both local
density changes and sample size.

We now briefly introduce the MDL principle and define the MDL-optimal
histogram model. Specifically, while previous work (Kameya 2011; Kontkanen
and Myllymäki 2007b; Yang et al. 2023) only considers purely continuous data (or
more precisely, data with arbitrarily small precision), we apply the MDL principle
to mixed-type data, based on our rigorous definition of histogram models for mixed
random variables. On top of that, we empirically show that our score fulfils the
desired properties—i.e. the number of bins grows as o(n).

6.4.1 MDL and Stochastic Complexity

The minimum description length principle is arguably one of the best off-
the-shelf model selection criteria (Grünwald 2007), which has been successfully
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applied to many machine learning and data mining tasks. The general idea is to
assign a code length to data D compressed by a model M , e.g., a histogram model.
Given a collection of candidate models, denoted as M, MDL selects the model
M∗ that minimizes the joint code length of the model and the data. Formally,
our goal is to find

M∗ = arg min
M∈M

L(D|M) + L(M), (6.7)

where L(D|M) denotes the code length1 of the data given the model, while L(M)

denotes the code length needed to encode the model.
The optimal way of encoding data D given M , in the sense that it will

result in minimax regret, is to use the normalized maximum likelihood (NML)
code (Grünwald 2007). Accordingly, the code length of the data is called stochas-
tic complexity (SC), which is defined as the sum of the negative log-likelihood
−lM (D), defined in Equation 6.5, and the parametric complexity (also called re-
gret) logR(n,K) (Grünwald 2007). The parametric complexity of a histogram
model with K bins is given by (Kontkanen and Myllymäki 2007b; Yang et al.
2023)

R(n,K) =
∑

c1+···+cK=n

n!

c1! · · · cK !

K∏
i=1

(ci
n

)ci
,

and can be computed in sub-linear time (Mononen and Myllymäki 2008).

6.4.2 Code Length of the Model

Given a dataset D with n rows and k individual columns Dj , we now define
the model class M. First, we create fixed bins according to B′′ (as defined in
Section 6.3.2) per discrete value that occurs inDj . Next, we enumerate all possible
bins for B′ with fixed precision ϵ. To this end, denote the remaining non-discrete
data points in Dj as Dc

j . If Dc
j is empty Dj corresponds to a discrete variable

and we can stop here. Otherwise, we create all possible cut points for Dc
j as C0

j =

{min(Dc
j),min(Dc

j)+ϵ, . . . ,max(Dc
j)}. By selecting a subset of cut points Cj ⊆ C0

j ,
we get a valid solution for B′. We can enumerate all possible segmentations by
enumerating each Cj ⊆ C0

j .
By repeating this process for each dimension, we obtain our model classM.

1The code length L denotes the number of bits needed to describe the given object. Hence, all logarithms
are to base 2 and 0 log 0 = 0.
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Further, we get the code length for a model M ∈M by encoding all combinations
of cut points for each dimension (Kontkanen and Myllymäki 2007b), i.e.,

L(M) =
∑

j∈{1,...,k}

L(Cj) =
∑

j∈{1,...,k}

log
(
|C0

j |
|Cj |

)
. (6.8)

This completes the definition of our final optimization score L(D|M) + L(M).
To proof consistency for this score, we need to show that the number of

selected bins grows at rate o(n). Since the theoretical analysis is rather difficult,
we instead empirically demonstrate this property for Gaussian distributed data in
Supplementary Material 6.9.3. In the next section, we present an iterative greedy
algorithm that optimizes our MDL score.

6.5 Implementation

In this section, we describe our algorithm to estimate the joint entropy
H(X1, . . . , Xk) for a k-dimensional discrete-continuous mixture random vector.

6.5.1 Algorithm

To discretize a one-dimensional random variable X, we first create bins for
the discrete values of X and then discretize the continuous values. We detect
discrete data points by checking if a single value x in the domain X of X occurs
multiple times. If a user-defined threshold t, e.g., 5 is reached, we create a bin for
this point. To discretize the remaining continuous values, we start by splitting
X into Kinit equi-width bins, which we can safely choose from the complexity
class o(

√
n) (see Supplementary Material 6.9.3). Using dynamic programming,

we compute the variable-width histogram model M that minimizes L(D,M) in
quadratic time w.r.t. Kinit (Kontkanen and Myllymäki 2007b).

Since the runtime complexity to compute the optimal variable-width his-
togram over a multi-dimensional random variable would grow exponentially w.r.t.
k, we opt for an iterative greedy algorithm (we provide the pseudocode in Sup-
plementary Material 6.9.2). We start by initializing the optimization: for every
dimension, we fix bins for the discrete values and put the remaining continuous
values into a single bin. Then, in each iteration, we compute a candidate dis-
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cretization for each dimension and keep the discretization of that dimension that
provides the highest gain in compression. To compute a candidate discretization
for a dimension Xj , we extend the one-dimensional algorithm described above.
That is, we determine those cut points for Xj that provide the highest gain in
L(D,M), while keeping the bins for the remaining dimensions fixed. We repeat
this until the maximum number of iterations imax is reached or we cannot further
decrease L(D,M).

6.5.2 Complexity

The complexity of discretizing a univariate random variable is in O(Kmax ·
(Kinit)

2) and depends on the number of initial bins Kinit and the maximum num-
ber of bins Kmax, which we typically chose as a fraction of Kinit (both in o(

√
n)).

In a multi-dimensional setting we have to multiply this complexity by the current
domain size of the remaining variables, since we have to update each bin condi-
tioned on those. In the worst case, this number is equal to (Kmax)

k−1. Overall,
we apply this procedure—if all variables are continuous—imax · k times.

6.6 Related Work

We discuss related methods for adaptive histograms and (conditional) mutual
information estimation.

Both theoretical properties and practical issues of density estimation us-
ing histograms have been studied for decades (Scott 2015). Various algorithms
have been proposed for the challenging task of constructing an adaptive one-
dimensional histogram, among which the MDL-based histogram (Kontkanen and
Myllymäki 2007b) is considered to be the state-of-the-art, as it is self-adaptive
to both local density structure and sample size and does not have any hyperpa-
rameters. Learning adaptive multivariate histograms is even harder due to the
combinatorial explosion of the search space. One approach is to resort to the
dyadic CART algorithm (Klemelä 2009); various methods designed for specific
tasks also exist (Kameya 2011; Weiler and Eggert 2007). Our algorithm is similar
to that of Kameya (Kameya 2011), but they only consider the two-dimensional
case.
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For discrete data, (conditional) mutual information estimation is a well-
studied problem (Cover and Thomas 2012; Han et al. 2015; Marx and Vreeken
2019; Paninski 2003; Valiant and Valiant 2011) and it has been shown that mutual
information can be estimated using the 3H principle (Han et al. 2015). An im-
portant observation is that for discrete data, the empirical estimator for entropy
is sub-optimal (Paninski 2003), which encouraged the design of more efficient en-
tropy estimators with sub-linear sample complexity (Han et al. 2015; Valiant and
Valiant 2011).

For estimating (conditional) mutual information on continuous data or a mix
of discrete and continuous data, three classes of approaches exist. The first class
concerns kernel density estimation (KDE) methods (Gao et al. 2016; Paninski and
Yajima 2008), which perform well on continuous data; however, no KDE-based
MI and CMI estimation methods exist that are designed for discrete-continuous
mixture random variables. Moreover, bandwidth tuning for KDE can be com-
putationally expensive, which becomes even worse for mixed data, as different
bandwidths may be needed for discrete random variables. The second class of
methods relies on k-nearest neighbour (kNN) estimates (Frenzel and Pompe 2007;
Kozachenko and Leonenko 1987; Kraskov et al. 2004), which have been established
as the state of the art (Gao et al. 2017; Rahimzamani et al. 2018). kNN approaches
can be applied not only to a mix of discrete and continuous variables, but can
also be used as consistent MI (Gao et al. 2017) and CMI (Mesner and Shalizi
2020; Rahimzamani et al. 2018) estimators for discrete-continuous mixtures. The
third class of methods first discretizes the continuous random variables and then
calculates mutual information from the discretized variables (Cover and Thomas
2012; Darbellay and Vajda 1999; Suzuki 2016). Two recent approaches based
on adaptive partitioning for mixed random variables have been proposed (Cabeli
et al. 2020; Mandros et al. 2020). While Mandros et al. (2020) focus on mutual
information and its application to functional dependency discovery, Cabeli et al.
(2020), similar to us, build upon an MDL-based score to estimate MI and CMI, to
which we compare in Section 6.7. The key difference is that Cabeli et al. (2020)
compute I(X;Y |Z) as (I(X; {Y, Z})− I(X;Z) + I(Y ; {X,Z})− I(Y ;Z))/2 and
maximize each of the four terms (with penalty terms) directly, while we first learn
a joint histogram.

To the best of knowledge, we are the first to propose a CMI estimator for
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discrete-continuous mixture variables based on discretization or histogram den-
sity estimation. Our method can consistently estimate CMI on mixed random
variables containing discrete-continuous mixtures. We focus on histogram-based
models instead of kNN estimation, since histograms are more interpretable (Scott
2015) and do not require tuning of the parameter k, which can have a large impact
on the outcome.

6.7 Experiments
In this section, we empirically evaluate the performance of our approach.

First, we will benchmark our estimator against state-of-the-art CMI estimators
on different data types. After that, we evaluate how well our estimator is suited to
test for conditional independence in a causal discovery setup. For reproducibility,
we make our code available online.2

6.7.1 Mutual Information Estimation

On the mutual information estimation task, we compare our approach to the
state-of-the-art MI estimators. In particular, we compare against FP (Frenzel and
Pompe 2007), RAVK (Rahimzamani et al. 2018) and MS (Mesner and Shalizi
2020), which all rely on kNN estimates, and MIIC (Cabeli et al. 2020), which is
a discretization-based method. All of those can be applied to our setup, but only
the authors of RAVK and MS specifically consider discrete-continuous mixture
variables. We apply MIIC using the default parameters and use k = 10 for
all kNN-based approaches.3 For our algorithm, we set the maximum number of
iterations and the threshold to detect discrete points in a mixture variable to 5, set
Kinit = 20 logn and Kmax = 5 logn. To comply with the literature, we compute
all entropies in this section using the natural logarithm.

Experiment I-IV

As a sanity check, we start with an experiment on purely continuous data.
That is, for Experiment I, letX and Y be Gaussian distributed random variables

2https://github.com/ylincen/CMI-adaptive-hist.git
3We evaluated all approaches with k = 5, 10, 20. Since k = 10 had the best trade-off and is close to

k = 7 as used by Mesner and Shalizi (Mesner and Shalizi 2020), we report those results.
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with mean 0, variance 1, and covariance 0.6. Consequently, the correlation ρ

betweenX and Y is 0.6 and true MI can be calculated as I(X;Y ) = − 1
2
log(1−ρ2).

In Experiment II,X is discrete and drawn from Unif(0,m−1), withm = 5 and Y

is continuous with Y ∼ Unif(x, x+ 2) for X = x. Therefore, I(X;Y ) = log(m)−
(m−1) log 2

m
(Gao et al. 2017). Next, for Experiment III, X is exponentially

distributed with rate 1 and Y is a zero-inflated Poissonization of X—i.e., Y = 0

with probability p = 0.15 and Y ∼ Pois(x) for X = x with probability 1− p. The
ground truth is I(X;Y ) = (1− p)(2 log 2− γ −

∑∞
k=1 log k · 2−k) ≈ (1− p)0.3012,

where γ is the Euler-Mascheroni constant (Gao et al. 2017). Last, in Experiment
IV, we generate the data according to the Markov chain X → Z → Y (see
Mesner and Shalizi (Mesner and Shalizi 2020)). In particular, X is exponentially
distributed with rate 1

2
, Z ∼ Pois(x) for X = x and Y is binomial distributed with

size n = z for Z = z and probability p = 1
2
. Due to the Markov chain structure,

the ground truth I(X;Y | Z) = 0.
For each of the above experiments, we sample data with sample size n ∈

{100, 200, . . . , 1 000} and generate 100 data sets per sample size. We run each of
the estimators on the generated data and show the mean squared error (MSE) of
each estimator in Figure 6.1. Overall, our estimator performs best or very close to
the best throughout the experiments and reaches an MSE lower than 0.001 with
at most 1 000 samples. The best competitors are MS and MIIC; however, both
are biased when we consider discrete-continuous mixture variables, as we show in
Experiment V.

Experiment V

Next, we generate data according to a discrete-continuous mixture (Gao et al.
2017). Half of the data points are continuous, with X and Y being standard Gaus-
sian with correlation ρ = 0.8, while the other half follows a discrete distribution
with P (1, 1) = P (−1,−1) = 0.4 and P (1,−1) = P (−1, 1) = 0.1. In addition, we
generate Z independently with Z ∼ Binomial(3, 0.2). Hence the ground truth is
equal to I(X;Y ) = I(X;Y | Z) = 0.4·log 0.4

0.52
+0.1·log 0.1

0.52
− 1

4
log(1−0.82) ≈ 0.352.

In Figure 6.2 (top) we show the mean and MSE for this experiment. We see
that our estimator starts by overestimating the true value, but its average quickly
converges to the true value, while the competing estimators seem to have a slightly
positive or negative bias. Especially FP and MIIC, which were not designed for
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Figure 6.1: Synthetic data with known ground truth. Ordered from top-left to bottom-
right, we show the MSE for Experiments I-IV, for our estimator and competing algorithms
MS, RAVK, FP and MIIC.

this setup, have a clear bias even for 1 000 data points. The same trend can be
observed for MSE.

Experiment VI

Last, we test how sensitive our method is to dimensionality. We generate X

and Y as in Experiment II, but fix n to 2 000 and add k independent random
variables, Zk ∼ Binomial(3, 0.5).

Figure 6.2 (bottom) shows the mean and MSE. Our estimator recovers the
true CMI up to a negligible error up to k = 2. After that, it starts to slowly
underestimate the true CMI. This can be explained by the fact that the model
costs increase linearly with the domain size and hence, we will fit fewer bins to
the continuous variable for large k. We validated this conjecture by repeating the
experiment for n = 10 000. On this larger sample size, the MSE for our estimator
remained below 0.001 even for k = 4. While MIIC is slightly more stable for
k ≥ 3, the competing kNN-based estimators deviate quite a bit from the true
estimate for higher dimensions.

Overall, we are on par with or outperform the best competitor throughout Ex-
periments I–VI. Especially on mixture data, which is our main focus, our method
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Figure 6.2: Top row: Experiment V, where we show the mean of the estimators (left)
with the true CMI as a dashed gray line and the MSE (right). Bottom row: Experiment VI,
where the sample size is constant at 2 000 and the x-axis refers to the number of dimensions
of Z. We show the mean (left) and MSE (right). The color coding is chosen as in Figure 6.1.

is the only one that converges to the true estimate.

6.7.2 Independence Testing

In theory, two random variables X and Y are conditionally independent given
a set of random variables Z, denoted as X ⊥⊥Y | Z, if I(X;Y | Z) = 0. Vice
versa, X and Y are dependent given Z, if I(X;Y | Z) > 0. In practice, we cannot
simply rely on our estimator to conclude independence: due to the monotonicity
of mutual information, i.e., I(X;Y ) ≤ I(X;Y ∪Z), estimates will rarely be exactly
zero in the limited sample regime, but only close to zero (Marx and Vreeken 2019;
Vinh et al. 2014). To address this problem, we use our algorithm to discretizeX,Y

and Z, and compute IC(X;Y |Z) := max{0, In(Xd;Yd|Zd)+Cn(Xd;Yd|Zd)}, where
Cn is a correction term calculated from the discretized variables, which is negative.
In the following, we evaluate our estimator with two different correction criteria.
The first one is a correction for mutual information based on the Chi-squared
distribution, with Cn equal to −Xα,l/2n (Vinh et al. 2014), where Xα,l refers to
the critical value of the Chi-squared distribution with significance level α and
degrees of freedom l. We can compute the degrees of freedom l from the domain
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G

E F

C D

A B

Figure 6.3: Synthetic network with continuous (white), discrete (gray) and mixed
(shaded) random variables consisting of different causal structures, such as colliders, a chain
(C → E → G), and a fork (C ← B → D).

sizes of the discretized variables for the conditional case as l = (|X | − 1)(|Y| −
1)|Z| (Suzuki 2019), and for the unconditional case as l = (|X | − 1)(|Y| − 1).
For the second correction, we replace each empirical entropy in In(Xd;Yd|Zd)

with its corresponding stochastic complexity term as defined in Section 6.4.1.
If we subtract the regret terms for Hn(Xd, Yd, Zd) and Hn(Zd) from those for
Hn(Xd, Zd) and Hn(Yd, Zd), we are guaranteed to get a negative value, thus a
valid regret term (Marx and Vreeken 2019). In the following, we refer to the
test using the Chi-squared correction as IX 2 and to the one based on stochastic
complexity as ISC.

To test how well IX 2 and ISC perform on mixed-type and continuous data, we
benchmark both against state-of-the-art kernel-based tests RCIT and RCoT (Strobl
et al. 2019), as well as JIC (Suzuki 2016), and MIIC (Cabeli et al. 2020), which
are both discretization-based methods using a correction based on stochastic com-
plexity.4 To apply RCIT and RCoT on mixed data, we treat the discrete data
points as integers. In the following, we evaluate the performance of each test in a
causal discovery setup. In addition, we provide a more detailed description of the
data generation and experiments on individual collider and non-collider structures
in Supplementary Material 6.9.3.

Causal Discovery

To evaluate our test in a causal discovery setting, we generate data according
to a small synthetic network—shown in Figure 6.3—that consists of a mixture of
generating mechanisms that we used in experiments I-IV and includes continuous

4Note that MIIC calculates stochastic complexity based on factorized NML and JIC uses an asymptotic
approximation of stochastic complexity, while we use quotient NML for ISC (Marx and Vreeken 2019;
Silander et al. 2018).
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Figure 6.4: Precision (left) and recall (right) on undirected graphs inferred using the PC-
stable algorithm equipped with the corresponding independence test. The data is generated
from the graph shown in Figure 6.3.

and discrete (ordinal) random variables and one mixture variable, which is par-
tially Gaussian and partially Poisson distributed (for details see Supplementary
Material 6.9.3). To evaluate how well the ground truth graph can be recovered,
we apply the PC-stable algorithm (Colombo and Maathuis 2012; Spirtes et al.
2000) equipped with the different independence tests, where we use α = 0.01 for
IX 2 , RCIT and RCoT.

Fig 6.4 shows recovery precision and recall for the undirected graph, averaged
over 20 draws per sample size n ∈ {100, 500, 1 000, 2 000, 5 000, 10 000}.

We see that overall IX 2 performs best and is the only method that reaches
both a perfect accuracy and recall. While JIC also reaches a perfect recall, it finds
too many edges leading to a precision of only 80%. Although also MIIC, RCIT
and RCoT have a perfect precision, their recall is worse than for IX 2 . Neither
of the kernel-based tests manages to recall all the edges even for 10 000 samples.
After a closer inspection, this is due to the edge E → G that involves the discrete-
continuous variable G. If we compare IX 2 to ISC, we clearly see that the latter is
too conservative, which leads to a bad recall.

6.8 Conclusion

We proposed a novel approach for the estimation of conditional mutual infor-
mation from data that may contain discrete, continuous, and mixture variables.
To be able to deal with discrete-continuous mixture variables, we defined a class
of generalized adaptive histogram models. Based on our observation that CMI
for mixture-variables can be written as a sum of entropies, we presented a CMI
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estimator based on such histograms, for which we proved that it is consistent.
Further, we used the minimum description length principle to formally define

optimal histograms, and proposed a greedy algorithm to practically learn good
histograms from data. Finally, we demonstrated that our algorithm outperforms
state-of-the-art (conditional) mutual information estimation methods, and that it
can be successfully used as a conditional independence test in causal graph struc-
ture learning. Notably, for both setups, we observe that our approach performs
especially well when mixture variables are present.

6.9 Supplementary Material

The supplementary material is structured as follows. First, we provide proofs
for all lemmas and theorems. After that, we provide the pseudocode for our algo-
rithm. Last, we provide additional experiments and details for the data generation
for the causal discovery experiment.

6.9.1 Proofs

Proof of Lemma 1

Proof. Given a Borel set A ⊆ R such that v(A) = u(A ∩ Sc) + |A ∩ Sd| = 0, we
have u(A∩ Sc) = 0 due to non-negativity of any measure, as well as |A∩ Sd| = 0.
Since A ∩ Sc ⊆ Sc, by the definition of Sc we have P (A ∩ Sc) = 0. It remains to
show that A ∩ Sd = ∅, which we do by contradiction. Assume that A ∩ Sd ̸= ∅,
then there exists x ∈ A ∩ Sd s.t. for a set containing only x, |{x}| = 1. Then
|A ∩ Sd| ≥ |{x}| = 1, which contradicts |A ∩ Sd| = 0. Thus, we must have
A ∩ Sd = ∅ and then PX(A) = 0.

Proof of Lemma 2

Proof. Given a k-dimensional Borel set A, there exist one-dimensional Borel sets
A1, . . . , Ak such that A = A1 × . . . × Ak. If v(A) = 0, then there exists at least
one vi, i ∈ {1, . . . , k}, such that vi(Ai) = 0. Thus, by Lemma 1, PWi

(Ai) = 0 ⇒
PW (R× . . .× R× Ai × R× . . .× R) = 0⇒ PW (A) = 0, as A = A1 × . . .× Ak ⊆
R× . . .× R×Ai × R× . . .× R.
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Proof of Lemma 3

Proof. We first proof the statement for Z ̸= ∅, for which we can write I(X;Y |Z) =

I(X; {Y, Z})− I(X;Z) by the chain rule for mutual information. Thus, it suffices
to prove that I(X;Z) = H(X) + H(Z) − H(X,Z) and I(X; {Y, Z}) = H(X) +

H(Y, Z) − H(X,Y, Z). Next, denote v as the product measure defined based
on (X,Z), where v = v1 × . . . × vkXZ , and kXZ is the number of dimensions of
X plus that of Z; then by Lemma 2, we also have PXZ ≪ v. Then, we show
that PXPZ ≪ v. For some kXZ-dimensional Borel set A = A1 × . . . × AkXZ

satisfying v(A) = 0 there exists vi ∈ {v1, . . . , vkXZ} such that vi(Ai) = 0. Hence,
PXPZ(A) = 0 because 0 ≤ PXPZ(A) = PXPZ(A1 × . . . × AkXZ

) ≤ PXPZ(R ×
. . .R×Ai×R . . .×R) = Pi(Ai) = 0, where Pi is the marginalization of the product
measure PXPZ to the ith dimension and Pi(Ai) = 0 is because vi(Ai) = 0 by the
definition of v.

Finally, by the chain rule of the Radon-Nikodym derivative we have that

I(X;Z) =

∫
log dPXZ

dPXPZ

dPXZ (6.9)

=

∫
log dPXZ/dv

dPXPZ/dv
(dPXZ/dv)dv (6.10)

= H(X) +H(Z)−H(X,Z) . (6.11)

The proof for I(X; {Y, Z}) is equivalent. If Z = ∅, CMI reduces to I(X;Y ), for
which we can prove the statement in the same manner.

Proof of Theorem 1

To proof Theorem 1 we need several intermediate results. Lemma 6 shows
that a histogram results in a valid discretization as all terms corresponding to
volumes in Ih cancel out, and hence Ih can be written as a sum of plug-in estima-
tors of discrete entropies. Then, Lemma 4 shows a classic result that the plug-in
estimator of discrete entropies will converge to the true entropy almost surely.
Further, we show in Lemma 5 that as the volumes of histogram bins containing
continuous values go to 0, the true entropies of discretized variables (which are
discretized by the histogram) converges to the true entropy of original variables.

Definition 1. Given discrete random variables Xd, Yd, Zd (possibly multi-dimensional),
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with support SX
d , SY

d , SZ
d , and given dataset D = (xi, yi, zi)i∈{1,...,n} with sample

size n, the plug-in estimator of discrete entropy H is denoted and defined as

Hn(Xd, Yd, Zd) = −
∑

j∈SX
d ×SY

d ×SZ
d

p̂(j) log p̂(j)

with probability estimates

p̂(j) =
|{(xi, yi, zi)i∈{1,...,n} : (xi, yi, zi) = qj}|

n
,

where | · | represents the cardinality of a set, and qj is the jth element in SX
d ×

SY
d × SZ

d .

Lemma 4. Given a discrete random vector (Xd, Yd, Zd), limn→∞Hn(Xd, Yd, Zd) =

H(Xd, Yd, Zd) almost surely (Antos and Kontoyiannis 2001).

Lemma 5. Given a random vector (X,Y, Z) that contains discrete-continuous
mixture random variables, with bins B = B′ ∪ B′′ and the resulting discretized
random vector (Xd, Yd, Zd), where B′′ contains discrete data points (of which
every dimension has a discrete value) and B′ = B \B′′, we have

lim
v′→0

H(Xd, Yd, Zd) = H(X,Y, Z) ,

where v′ = maxBj∈B′(v(Bj)).

Proof. Firstly, it is well-known that this result holds if (X,Y, Z) is a continuous
random vector (Cover and Thomas 2012); then, if (X,Y, Z) contains mixture
variables,

H(X,Y, Z) = lim
v′→0

∑
Bj∈B′

PXdYdZd

v(Bj)
log PXdYdZd

v(Bj)
(6.12)

+
∑

Bj∈B′′

PXdYdZd

v(Bj)
log PXdYdZd

v(Bj)
(6.13)

= lim
v′→0

H(Xd, Yd, Zd) , (6.14)

which concludes the proof.

Definition 2. Given a random vector (X,Y, Z) that contains mixture variables,
and an adaptive grid B, we define the discretized random variable Xd, Yd, Zd, with
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probability measure (probability mass function)

PXd,Yd,Zd
((j1, j2, j3)) =

∫
Bj

dXY Z

dv
dv ,

where Bj denotes the jth bin of B.

Lemma 6. Given a k-dimensional random vector (X,Y, Z) that contains mixture
variables with an unknown probability measure PXY Z , a dataset D = (xi, yi, zi)i∈{1,...,n}

generated by PXY Z , a histogram model M , and corresponding discretized random
vector (Xd, Yd, Zd), we have Ih(X,Y |Z) is equal to

Hn(Xd, Zd) +Hn(Yd, Zd)−Hn(Xd, Yd, Zd)−Hn(Zd) .

That is, the terms corresponding to volumes in Ih cancel out and our histogram
model results a valid discretization.

Proof. Denote the adaptive grid of histogram model M as BXY Z , which is the
Cartesian product of bins defined on X,Y, Z—i.e. BXY Z = BX ×BY ×BZ , and
denote the corresponding MLE of histogram density function as fh

θ̂XY Z
. Further,

define a function vX , such that for each xi in D, vX(xi) = v(BX
j ) if xi ∈ BX

j ,
where BX

j is a bin of BX and v is defined based on the random variable X. Then,
define vY , vZ , vXZ , vY Z , vXY Z similarly.

By the definition Ih(X,Y |Z) is equal to

Hh(X,Z) +Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z) .

First consider Hh(X,Z). We write BXZ = BX × BZ , with marginal density
function fh

θ̂XZ
. W.l.o.g. suppose that BXZ consists of K bins, denoted as BXZ

j , j ∈
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{1, . . . ,K}. Then,

Hh(X,Z) = −
∫
RkX+kZ

fh
θ̂XZ

log fh
θ̂XZ

dv

= −
K∑
j=1

∫
BXZ

j

fh
θ̂XZ

log fh
θ̂XZ

dv

= −
K∑
j=1

cj log
(

cj
nv(Bj)

)

= −
K∑
j=1

cj log
(cj
n

)
+

n∑
i=1

log(vXZ(xi, zi))

= Hn(Xd, Zd) +
n∑

i=1

log(vXZ(xi, zi)) ,

(6.15)

where cj is the number of data points in Bj and vXZ(xi, zi) = vX(xi)vZ(zi). The
remaining entropies can be calculated similarly. Hence, Ih(X,Y |Z) = Hn(Xd, Zd)+

Hn(Yd, Zd)−Hn(Xd, Yd, Zd)−Hn(Zd), as the sum of the volume related terms

n∑
i=1

log(vXZ(xi, zi)) +
n∑

i=1

log(vY Z(yi, zi)) (6.16)

−
n∑

i=1

log(vXY Z(xi, yi, zi))−
n∑

i=1

log(vZ(zi)) (6.17)

is equal to zero.

To proof Theorem 1, we link the above results:

lim
v′→0

lim
n→∞

Ih(X;Y | Z)

= lim
v′→0

lim
n→∞

(Hh(X,Z)+Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z))

= lim
v′→0

lim
n→∞

(Hn(Xd, Zd)+Hn(Yd, Zd)−

Hn(Xd, Yd, Zd)−Hn(Zd))

= lim
v′→0

(H(Xd, Zd)+H(Yd, Zd)−H(Xd, Yd, Zd)−H(Zd))

=I(X;Y | Z) .

(6.18)
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6.9.2 Implementation Details

As discussed in Section 6.5, our goal is to find that discretization that min-
imizes the joint entropy over a set of k random variables via an iterative greedy
algorithm. We provide the pseudocode in Algorithm 6. As input, we are given
a dataset D = {D1, . . . , Dk} consisting of n rows and k columns, representing
a sample of size n from a k-dimensional random vector X, and a user-specified
parameter imax specifying the maximum number of iterations. First, we initialize
the discretization Xd (line 1) by creating single bin histograms for the continuous
points in Dj and a bin with bin-width 1 per discrete point. To detect the latter,
we check if there exist |{x ∈ Xj | Dj = x}| ≥ t, where t is a user-defined thresh-
old. After that, we iteratively update the discretization for that Xj providing the
highest gain in stochastic complexity, until either the score cannot be improved or
the maximum number of iterations has been reached (lines 3 – 13). To update the
discretization of a variable Xj we call the function refine (line 6), which receives
as input the data Dj and the discretization after iteration i. It then re-discretizes
Xj using an extension of the dynamic programming algorithm by Kontkanen and
Myllymäki (2007b). In essence, instead of simply discretizing Xj independently
of the remaining variables, we keep the discretizations for all Xi ̸= Xj fixed and
find the optimal histogram model M∗ over Xj s.t. the overall score L(D,M) is
minimized.

6.9.3 Data Generation and Additional Experiments

In the following, we first provide an empirical analysis on how the number
of bins depends on the number of samples, then we give the details of the data
generation for the experiments carried out on the synthetic causal network and
last we provide additional experiments to evaluate IX 2 and ISC.

Sample Size and Number of Bins

As discussed in Section 6.3, an important requirement to ensure consistency
is that the number of bins grows as a sub-linear function w.r.t. the number
of samples. We demonstrate that MDL-optimal histograms have this desirable
property when learned on one-dimensional Gaussian distributions in Figure 6.5:
the number of bins K grows with n, but slower than

√
n. In addition, for multi-

174



Chapter 6 Interpretable Conditional Mutual Information Estimation
with Adaptive Histograms

Algorithm 6: Discretization of a Mixture Model
Input: Data D = {D1, . . . , Dk} representing a sample from a

k-dimensional random vector X, maximum number of iterations
imax

Output: Discretization Xd

1 Xd ← init(D) ▷ Initialize the discretization;
2 i← 1;
3 while Xd changes ∧ i ≤ imax do
4 Xi

d ← Xd;
5 for j ∈ {1, . . . , k} do
6 Xij

d ← refine(Dj | Xd) ▷ Refine discretization;
7 if Score(Xij

d ) < Score(Xi
d) then

8 Xi
d ← Xij

d ;

9 Xd ← Xi
d;

10 i← i+ 1;

11 return Xd ▷ Return final discretization;

dimensional data, for which we can only approximate the histogram model that
minimizes L(D,M), we observe that if the number of dimensions increases, the
average number of bins per dimension decreases if we keep n fixed.

Synthetic Network

Here, we describe the data generation for the synthetic network shown in
Figure 6.3. The source nodes of the network are A and B. A is generated as
A ∼ Exp(1) and B ∼ Unif(0, 4) (discrete). To get B → C we generate C as
C ∼ Binom(b, 0.5) for B = b, for B → D we sample D as D ∼ N(b − 2, 1) for
B = b and E is sampled is exponentially distributed with rate 1

c+1
for C = c. F is

generated as a function of C and D. First, we generate C ′ by rounding the values
of C and then we write F as F = D

C′
2 +N(0, 1). Last, we generate G as the zero

inflated Poissonization of A. Let E′ = sign(E−1)+1
2

, which ensures that E′ is either
zero or one dependent on the value of E. Then G ∼ N(a, 1) if E′ = 0 and A = a,
and G ∼ Poisson(a) for A = a if G = 1.
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Figure 6.5: Left: Average number of bins k to discretizeX ∼ N(0, 1) for increasing sample
sizes (20 repetitions). Right: Per dimension of a multivariate Gaussian distribution with
Xi⊥⊥Xj and Xi ∼ N(0, 1), we show the average number of bins (n = 2000, 20 repetitions).

Detecting Collider and Non-Collider Structures

To evaluate how well IX 2 and ISC can identify conditional (in)dependencies,
we evaluate both variants on various generating mechanisms that involve collider
and non-collider structures. Those structures are at the core of causal discovery,
since collider structures can be inferred by detecting conditional dependencies,
while non-collider structures impose conditional independencies. As in the causal
discovery experiment, we set α = 0.01 for IX 2 , RCIT and RCoT.

Collider Structures We generate data according to a collider structure, which
can be represented by a directed acyclic graph as, e.g., X → Z ← Y . Accord-
ing to this structure, we model X and Y by some distribution and write Z as a
non-deterministic function of X and Y . We generate data for different generating
mechanisms, including two continuous and four mixed settings.

1. X ⊥⊥Y and X,Y are either drawn from N(0, 1) or Uniform(−2, 2). Z is an
additive function of polynomials up to degree three or the tangent function
plus additive noise N ∼ N(0, 0.1)—e.g. Z = X3 + tan(Y ) + N . We pick
the type of the distribution of X,Y , as well as the function type, uniform at
random.

2. X,Y are drawn from a standard Gaussian distribution, with X ⊥⊥Y and
Z = sign(X · Y ) · Exp(1/

√
2).

3. X,Y ∼ N(0, 1) with X ⊥⊥Y and Z = sign(X ·Y ), where we randomly assign
a z ∈ Z to 10% of the values in Z to make the function non-deterministic.
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Figure 6.6: Accuracy for detecting continuous (left) and mixed-type (right) dependen-
cies in collider structures (top) and independencies in non-collider structures (bottom) for
different sample sizes.

4. X ∼ N(0, 1), Y ∼ Poisson(λ), with parameter λ selected uniformly at
random from {1, 2, 3}. We generate Z as X modulo Y and assign 10% of
the data points randomly.

5. X,Y are unbiased coins. Z ′ = X ⊕ Y , where ⊕ denotes the xor operator.
From Z ′ we calculate Z as N(0, 0.1) if Z ′ = 0 and Poisson(5) · N(0, 0.1)

under the condition that Z ′ = 1.

6. We generateX,Y and Z ′ as above, but this time we generate Z as Poisson(5)+
N(0, 0.1) if Z ′ = 1 and as N(0, 0.1) if Z ′ = 0.

For each generating mechanism, including two purely continuous and four mixed
mechanisms, we generate 100 data sets and report the averaged results, separately
for the continuous and mixed data, in Figure 6.6 (top). On the continuous data,
both of our approaches perform on par with RCIT and JIC for more than 400

data points, whereas MIIC has a slightly better performance and RCoT is not
able to detect the dependence for the sign function and hence has an accuracy of
about 50%. Since the functions for mixed data include an xor and the modulo
operator, it is difficult to treat all discrete variables as ordinal and hence RCIT
only reaches up to 80% accuracy—which is mostly due to an xor determining the
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scaling of a Gaussian distributed variable. On the other hand, both of our tests
perform very well and only need 400 samples to obtain an accuracy close to 100%.
JIC and MIIC perform on par with our tests.

Non-Collider Structures Similar to collider structures, there also exist non-
collider structures of the form X → Z → Y or X ← Z → Y . In both cases, the
ground truth is that X ⊥⊥Y | Z. To simulate data according to these graphs,
we consider two continuous mechanisms based on polynomial functions and two
mixed generating mechanisms.

1. X ∼ N(0, 1), Z is an additive noise function of X and Y is an additive noise
function of Z. The functions can be polynomials up to degree three or the
tangent function.

2. Z ∼ N(0, 1), X and Y are independent additive noise functions of Z, as
defined above.

3. X,Y and Z are generated as in Experiment IV.

4. X and Y are generated according to Experiment II and Z ∼ N(µ, x) for
X = x and µ ∈ [−4, 4].

In essence, Figure 6.6 (bottom) shows that both our tests obtain almost perfect
accuracies for the continuous and mixed data, whereas RCIT and RCoT fail to
detect up to 20% of the independencies for continuous data, MIIC does not detect
up to 11% and JIC seems to generally overestimate dependencies for those test
cases. If we consider these results in comparison to the results for detecting depen-
dencies for the collider setting, we suspect that both MIIC and JIC have a larger
tendency to falsely detect dependencies, while our approach is more conservative
and hence needs more samples to detect true dependencies.
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