
Information-theoretic partition-based models for
interpretable machine learning
Yang, L.

Citation
Yang, L. (2024, September 20). Information-theoretic partition-based models for
interpretable machine learning. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4092882

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4092882

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4092882

Chapter 5

Summarizing
Two-dimensional Data with
MDL-based Discretization
by Histograms

This chapter has been published as Yang, L, Baratchi, M, and van Leeuwen, M Unsupervised discretiza-

tion by two-dimensional mdl-based histogram. Machine Learning, 2023: 1-35.

103

Chapter Abstract
Unsupervised discretization is a crucial step in many knowledge discovery

tasks. The state-of-the-art method for one-dimensional data infers locally adap-
tive histograms using the minimum description length (MDL) principle, but the
multi-dimensional case is far less studied: current methods consider the dimen-
sions one at a time (if not independently), which result in discretizations based
on rectangular cells of adaptive size. Unfortunately, this approach is unable to
adequately characterize dependencies among dimensions and/or results in dis-
cretizations consisting of more cells (or bins) than is desirable.

To address this problem, we propose an expressive model class that allows
for far more flexible partitions of two-dimensional data. We extend the state of
the art for the one-dimensional case to obtain a model selection problem based
on the normalized maximum likelihood, a form of refined MDL. As the flexibil-
ity of our model class comes at the cost of a vast search space, we introduce a
heuristic algorithm, named PALM, which partitions each dimension alternately
and then merges neighboring regions, all using the MDL principle. Experiments
on synthetic data show that PALM 1) accurately reveals ground truth partitions
that are within the model class (i.e., the search space), given a large enough
sample size; 2) approximates well a wide range of partitions outside the model
class; 3) converges, in contrast to the state-of-the-art multivariate discretization
method IPD. Finally, we apply our algorithm to three spatial datasets, and we
demonstrate that, compared to kernel density estimation (KDE), our algorithm
not only reveals more detailed density changes, but also fits unseen data better,
as measured by the log-likelihood.

104

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

5.1 Introduction

Discretization, i.e., the transformation of continuous variables into discrete
ones, is part of numerous data analysis workflows, making it a crucial step for
a wide variety of applications in knowledge discovery and predictive modeling.
However, many different discretization methods exist and it is often not easy to
determine which method should be used. As a result, naïve methods such as equal-
length and equal-frequency binning are still widely used, often with the number of
bins chosen more or less arbitrarily, which can lead to suboptimal discretization.

A good discretization strikes a balance between the amount of preserved
information and the complexity of the representation of the discretized data, so
as to avoid discretizations that are either too coarse—resulting in severe loss of
information—or too fine-grained—resulting in a bin per data point in the extreme
case.

Achieving an optimal balance has been thoroughly studied for supervised
discretization, i.e., discretization using additional information from a target vari-
able. Optimal discretizations have been formalized using 1) statistical quantities,
e.g., Pearson’s chi-square (Boullé 2004), 2) information-theoretic scores based on
entropy or the minimum description length (MDL) principle (Fayyad and Irani
1993; Jin et al. 2009), and 3) Bayesian approaches (Boullé 2006).

In contrast, unsupervised discretization, which does not assume a target vari-
able, has long been understudied (Kotsiantis and Kanellopoulos 2006). It serves a
different purpose: supervised discretization aims to reduce the loss of information
about the distribution of the target variable conditioned on the features (Boullé
2004; Fayyad and Irani 1993; Kerber 1992), whereas unsupervised discretization
aims to preserve information about the probability distribution of the variable to
be discretized (Biba et al. 2007; Schmidberger and Frank 2005).

This makes histograms well-suited to unsupervised discretization, and partic-
ularly adaptive histograms. An adaptive histogram is a probabilistic model that
approximates probability density by piecewise constant densities, partitioning the
data into bins such that 1) the probability density within each bin is approximately
uniform (otherwise finer bins are needed), and 2) probability densities of neigh-
boring bins are significantly different (otherwise they should be merged). Kon-
tkanen and Myllymäki (2007b) formalized this goal for one-dimensional adaptive

105

Introduction

histograms based on the minimum description length (MDL) principle (Rissanen
1978), which is now considered to be the state-of-the-art univariate discretization
method (Kameya 2011; Marx et al. 2021; Nguyen et al. 2014).

The MDL principle (Grünwald and Roos 2019; Rissanen 1978) is arguably
one of the best off-the-shelf approaches for model selection tasks such as selecting
a histogram model for given data, as it provides a means to naturally trade-
off goodness-of-fit with model complexity. It achieves this by defining the “best”
probabilistic model for given data as the model that results in the best compression
of data and model together, which has been widely used in data mining and
machine learning tasks (Galbrun 2020).

Flexible multi-dimensional discretization. Traditional discretization methods are
defined for one-dimensional (or univariate) data, and multi-dimensional (or multi-
variate) data is typically discretized by separately and independently discretizing
each dimension, which ignores any dependencies between the dimensions. Mul-
tivariate discretization methods aim to take such dependencies into account, but
they suffer from two problems. First, most methods focus on supervised dis-
cretization (Bay 2001; Ferrandiz and Boullé 2005; Kurgan and Cios 2004; Kwedlo
and Kretowski 1999). Second, existing methods produce an adaptive grid based
on the Cartesian product of the discretization results of individual dimensions.
This approach ignores that the density of one dimension may change more dras-
tically for certain values of another dimension; hence, appropriate binning of one
dimension may depend on the values of the other dimensions.

For instance, consider a two-dimensional synthetic dataset sampled from a
mixture of Gaussians as shown in Figure 5.1 (leftmost)1. To adequately discretize
data from this distribution, the binning of the x-axis should be different depend-
ing on whether y is above or below the black dashed line, in order to capture the
different density changes for the Gaussian distribution (above) and the Gaussian
mixture (below). Similarly, the binning of the y-axis should be different depend-
ing on whether x is left or right to the red dashed line. This motivates us to
consider partitions that are more flexible than adaptive grids: we consider all
partitions that can be obtained by clustering the “cells” of a fine-grained fixed-
grid. The remaining three plots in Figure 5.1 show the density plots obtained by

1For reproducibility, the data is generated by the mixture of N [
(

0
1

)
,
(

1 0
0 1

)
], N [

(
1.5
4

)
,
(

2 0
0 1

)
],

N [
(

3
0

)
,
(

1 0
0 1

)
], N [

(
7
2

)
,
(

1 0
0 1

)
] with all mixing coefficients 0.25; sample size is 40 000.

106

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

1) IPD (Nguyen et al. 2014), the state-of-the-art multivariate unsupervised dis-
cretization method, 2) the one-dimensional MDL-based histogram method (Kon-
tkanen et al. 1997) applied independently on each dimension, and 3) our method.
Our method produces the density estimation that most resembles the shape of the
original contour, as we allow the bins of one dimension to depend on the value of
another dimension.

Figure 5.1: Distributions of a two-dimensional dataset simulated from a mixture of
Gaussian distributions; from top-left to bottom-right: 1) true probability density contour,
2) partitioning by IPD (Nguyen et al. 2014), 3) partitioning by separately discretizing each
dimension with the MDL histogram (Kontkanen and Myllymäki 2007b), 4) flexible parti-
tioning by PALM, our algorithm.

Approach and contributions. We consider the problem of learning two-dimensional

107

Introduction

histogram models that enable far more flexible partitions than regular adaptive
grids. That is, we allow any partition that can be obtained by iteratively merging
adjacent cells of a fixed grid, which allows for learning models that provide accu-
rate density estimates while not having more bins than strictly necessary (thereby
avoiding overfitting and providing clear region boundaries, i.e., adjacent bins must
have different density estimates).

We formalize the two-dimensional histogram construction problem as a model
selection task using the MDL principle. For this we build on the one-dimensional
MDL-based histogram selection problem as introduced in the seminal work by
Kontkanen and Myllymäki (2007b), because it is both theoretically elegant and
practically fast. Specifically, it adopts the normalized maximum likelihood (NML)
encoding scheme, a form of refined MDL (Grünwald 2007; Grünwald and Roos
2019) that provides minimax regret, and employs a fast dynamic programming
algorithm to find the optimal solution.

The existing approach for one-dimensional histograms cannot be trivially
extended to multiple dimensions though, hence we make a number of technical
contributions.

First, we solve the challenge of computing the so-called parametric complexity
(Grünwald and Roos 2019) for the multi-dimensional case.

Second, we observe that efficiently finding the MDL-optimal two-dimensional
histogram is infeasible and propose PALM, a heuristic algorithm for learning two-
dimensional histograms. PALM combines top-down (partition) and bottom-up
(merge) search strategies by 1) first partitioning the data by iteratively splitting
regions, and 2) then iteratively merging neighboring regions if their densities are
similar. In each step, the MDL principle is used as decision criterion; as a result,
our algorithm requires neither hyper-parameters2 nor any pre-defined stopping
criterion to be specified. It automatically adapts to both local density structure,
as shown in the example in Figure 5.1 and, later, in Sections 5.7 and 5.8.

Third, we make several improvements to the dynamic programming algorithm
used for the one-dimensional MDL histogram, which we use as a building block
for our algorithm. Specifically, as described in Section 5.5, we 1) correct a minor
theoretic flaw related to computing the code length that is needed to encode the
histogram model, and 2) reduce the time complexity by simplifying the dynamic

2The precision with which the data is recorded can be used to set the granularity of the initial base grid.

108

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

programming recursion.
We perform extensive experiments to show that our algorithm 1) accurately

recovers ground truth histograms, 2) approximates well ground truth partitions
that are not within the model class, and 3) outperforms IPD (Nguyen et al. 2014),
the state-of-the-art algorithm for unsupervised multi-dimensional discretization.
Further, case studies on spatial data show that, compared to kernel density esti-
mation (KDE), our algorithm not only reveals more detailed density changes, but
also fits unseen data better, as measured by the log-likelihood.

We restrict the scope of this chapter to two-dimensional data for three rea-
sons. First, two-dimensional discretization methods have many potential applica-
tions in the domain of spatial data analysis, e.g., using GPS data, where ad-hoc
discretization methods are still widely used (Cao et al., 2014). The case studies
demonstrate that our method can successfully reveal interesting patterns from
GPS data. Second, as our approach uses more flexible partitions than adaptive
grids, the search space is very large even for two-dimensional data. Our algo-
rithm for the two-dimensional case should be regarded as a step towards solving
the algorithmic challenge for higher dimensions, but does not solve it completely.
Third, focusing on the two-dimensional case allows us to more easily examine the
results empirically, e.g., to verify desired properties such as adaptivity to sample
size and local density structure.

5.2 Related work

We briefly review previous work concerning discretization methods, histogram
models, and tree-based models for density estimation.

Unsupervised univariate discretization. Most unsupervised univariate dis-
cretization methods are rather straightforward and concern equal-width or equal-
frequency binning, which in practice usually involve ad-hoc choices for the number
of bins or for the frequency in each bin.

Clustering techniques such as k-means (Friedman et al. 2001) or Bayesian
clustering (Kontkanen et al. 1997) are also used in discretization; however, they ig-
nore the possible heterogeneity within the cluster and choices of hyper-parameters
are usually required.

More advanced criteria rely on density estimation and specifically construct-

109

Related work

ing adaptive histograms. Apart from the MDL-based histogram (Kontkanen and
Myllymäki 2007b) already mentioned in Section 5.1, Schmidberger and Frank
(2005) proposed to construct adaptive histograms by recursive binary partition
with cross-validation. A local heuristic is used to decide the cut point, and cross-
validation is used to choose the number of intervals; in contrast, the MDL-based
histogram (Kontkanen and Myllymäki 2007b) uses a global score with a dynamic
algorithm that optimizes the cut points and the number of bins simultaneously.
Moreover, an adaptive histogram can also be selected as the one whose density
estimation result is closest to the result of kernel density estimation (Biba et al.
2007), where cross-validation is used to prevent overfitting. As the true density
is apparently not known, cross-validation is performed by Monte Carlo sampling-
based methods. However, cross-validation is known to be computationally ex-
pensive, and the influence of choosing different kernels on discretization is not
reported.

Bayesian approaches have been widely used in adaptive histograms (Gasparini
1996; Liu and Wong 2014; Lu et al. 2013; Scricciolo 2007; Van Der Pas and
Rocková 2017). These methods treat all possible histograms as the model class and
put a prior distribution on it, and the resulting posterior distribution is directly
used for density estimation (by calculating the marginal distribution). Therefore,
although these Bayesian approaches often provide theoretic guarantees as density
estimation methods, they do not provide an individual adaptive histogram that
can be used for discretization.

Unsupervised multivariate discretization. Since discretizing each dimension
of multivariate data independently will ignore the dependencies among different
dimensions, some methods attempt to reduce the dependencies by PCA- or ICA-
based methods (Kang et al. 2006; Mehta et al. 2005)3. However, as both methods
are based on linear transformation of the random vector, they may fail to eliminate
nonlinear dependencies. Note that extending these methods to nonlinear PCA or
nonlinear ICA may not be suitable for unsupervised discretization tasks, as the
uniform distribution is not invariant under nonlinear transformation, and hence we
cannot obtain an adaptive histogram of the original data by inversely transforming
the adaptive histogram constructed on the nonlinearly transformed data.

3Note that the ICA-based method (Kang et al. 2006) is designed for supervised discretization, but we
noticed that the ICA transformation there is not restricted to supervised discretization only.

110

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Lud and Widmer (2000) proposed the so-called “relative unsupervised dis-
cretization”. The core of this method is to perform clustering on an individual
dimension, using different subsets of values. These different subsets are obtained
by filtering the dataset using other dimensions, in order to keep the dependency
among different dimensions. However, this method does not control the infor-
mation loss about the probability distribution of the dimension that is to be
discretized.

Further, methods trying to optimize the discretization of all dimensions si-
multaneously exist. One approach is to start from a very fine grid, and merge
neighboring subintervals for each dimension if the multivariate probabilities of
the data within these two consecutive subintervals are similar (Bay 2001; Nguyen
et al. 2014). These methods are based on certain choices of similarity metrics, and
require explicit specification of the similarity threshold. We empirically show in
Section 5.7 that IPD, the method by Nguyen et al. (2014) that is also based on the
MDL principle and is considered the state-of-the-art multivariate discretization
method, does not converge in practice.

Finally, Kameya extended the one-dimensional MDL-histogram (Kameya
2011) specifically for time series data, who proposed to discretize time series data
by iteratively adjusting the cut points on each dimension until convergence, using
the coordinate descent optimization approach.

All these multivariate discretization methods try to optimize the adaptive grid
and produce (hyper)rectangular regions. Our method, in contrast, is proposed to
produce far more flexible segmentation, which allows the binning of one dimension
to be dependent on the values of other dimensions.

Density estimation tree. Algorithmically, our method is very similar to meth-
ods using tree models for density estimation (Liu and Wong 2014; Ram and Gray
2011; Yang and Wong 2014), as partitioning the data space by iteratively par-
titioning each dimension is identical to growing a tree. However, these density
estimation trees were developed by adapting the scores used in growing, stopping,
and pruning (supervised) decision and regression trees. That is, while our algo-
rithm employs a consistent MDL-based framework for selecting the best model,
these density estimation trees use separate optimization scores respectively to fit
the model and to control the model complexity, often with user-specified hyper-
parameters and/or computationally expensive cross-validation.

111

Problem Statement

Moreover, these density estimation trees, as is like most supervised tree
models, only do binary partitioning in a greedy manner. On the contrary, our
method can split a dimension into multiple bins (from 1 to a pre-determinedKmax)
instead of just two, which is not only more flexible, but also more interpretable,
as after partitioning on a certain dimension, within each bin the data points on
that dimension can be regarded as approximately uniform.

Finally, our method has an additional merging step, which creates much
more flexible partitions of data, resulting in models that are more informative for
pattern mining and exploratory data analysis.

Supervised discretization. When discretization is needed for a supervised
task such as classification, we can use supervised discretization, which means that
the target variable is used to assess how much information on the target the
discretization maintains. Several criteria can be put in this category, which are
mostly based on statistical hypothesis testing or entropy, as summarized in the
survey paper by Kotsiantis and Kanellopoulos (2006). The MDL principle has
also been used for supervised discretization (Fayyad and Irani 1993; Ferrandiz
and Boullé 2005; Gupta et al. 2010; Pfahringer 1995; Zhang et al. 2007), but
all of them use the so-called crude MDL principle (Grünwald 2007), which is
theoretically suboptimal.

5.3 Problem Statement

Informally, we consider the problem of inferring the best two-dimensional
histogram for a given sample of continuous data. To make this problem precise,
we start off by introducing our notation and definitions. Note that all log(·) should
be read as log2(·) unless specified otherwise.

5.3.1 Notation and definitions of data, model, and model class

Consider as data a vector of length n, i.e., xn = (x1, ..., xn), sampled inde-
pendently from a random variable X.

The sample space of X, denoted as S, is a bounded subset of R2. Although
the sample space of a random variable, e.g., a Gaussian, can be infinite in theory,
we always assume it to be a bounded “box” when dealing with a given dataset.

112

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

The task of estimating S from the data directly is another research topic, usually
referred to as “support estimation” in statistical literature (Cuevas, Fraiman, et
al. 1997), and hence is out of the scope of our main focus in this article.

Conceptually, a histogram—no matter whether it is one- or multi-dimensional—
is a partition of the sample space S, denoted by S̃ and parametrized by a vector
f⃗ = (f1, . . . , fK). A partition S̃ is defined as a set of disjoint subsets of S,
and the union of all these subsets is S itself, i.e., S̃ = {S1, S2, . . . , SK}, where
∀j ∈ {1, . . . ,K}, Sj ⊆ S,

⋃K
j=k Sj = S, and ∀j, k ∈ {1, . . . ,K}, Sj ∩ Sk = ∅. We

also call these subsets, i.e., elements of S̃, as regions.
Next, we assume that the probability density of X, denoted by f(X), is given

by
f(X) =

∑
j∈{1,...,K}

1Sj
(X)fj , (5.1)

where 1{·}(·) is the indicator function. Each fj is a constant and f⃗ satisfies∑K
i=1 fj |Sj | = 1, where |Sj | denotes the geometric area of Sj , i.e., when X ∈ Sj ,

f(X) = fj . We refer to any partition S̃ as a histogram model that contains a
family of probability distributions; i.e., ∀f⃗ ∈ RK , we denote a single probability
distribution by S̃f⃗ .

We denote the model class as M, representing all possible partitions with K

regions that can be obtained by clustering cells of a fixed grid covering S, where
K ∈ {1, . . . ,Kmax}. The granularity of the grid, denoted as ϵ, and Kmax are fixed
in advance, but note that they can be set arbitrarily small and large, respectively.

Geometrically, this is equivalent to drawing inner boundaries within S along
the fixed grid. In practice, ϵ can represent the precision up to which the data
is recorded or that is useful for the given task. Although the model class we
consider only has inner boundaries consisting of line segments, we will show that
such a model class is flexible enough to approximate curved inner boundaries in
Section 5.7.

5.3.2 Histogram model selection by the MDL principle

We now formally define the task of two-dimensional data discretization as an
MDL-based model selection task, using histogram models as the model class.

The MDL principle is arguably one of the best off-the-shelf model selec-

113

Problem Statement

tion methods and has been successfully applied to many machine learning tasks
(Grünwald 2007; Hansen and Yu 2001). It has solid theoretical foundations in in-
formation theory and naturally prevents overfitting as the optimization criterion
always includes the model complexity, defined as the code length (in bits) needed
to encode that model (Grünwald 2007).

The basic idea is to losslessly encode the model and data together, by firstly
encoding the model and then compressing the data using that model. The model
resulting in the shortest total code length is defined to be MDL-optimal, i.e.,

S̃∗ = argmin
S̃∈M

L(xn, S̃) = argmin
S̃∈M

(L(S̃) + L(xn|S̃)), (5.2)

where L(S̃) and L(xn|S̃) are respectively the code length of the model and the
code length of the data compressed by that model. Note that L(·|·) denotes the
conditional code length (Grünwald 2007); informally, L(A|B) represents the code
length of the message a decoder needs to receive in order to be able to losslessly
reconstruct message A after having already received message B.

We will show in Section 5.4 that properly encoding the model and calculating
its corresponding code length L(S̃) turns out to be very difficult. As a result, we
unfortunately cannot regard our model selection task simply as an optimization
problem.

To alleviate this, we divide the model selection task into two steps, namely
1) partitioning alternately and 2) merging.

Figure 5.2: An illustration of the partitioning and merging steps. From left to right:
alternatively partitioning each region until compression cannot be further improved, and
finally merging some of the neighboring regions to further improve compression.

First, we alternately split each region within partition S̃ (initially S̃ = {S})
in one of the two dimensions, then update S̃ accordingly, and repeat the process.
In other words, in each iteration we further split each region within S̃ in one
dimension (i.e., horizontally or vertically), which is equivalent to selecting the
best set of horizontal or vertical cut lines.

Denote the subset of data points within a certain region S′ ∈ S̃ as {xn ∈ S′}.

114

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

We formally define the task of selecting the set of MDL-optimal cut lines set as

C∗
S′ = arg min

CS′∈CS′
L({xn ∈ S′}, CS′)

= arg min
CS′∈CS′

(L(CS′) + L({xn ∈ S′}|CS′)),
(5.3)

where CS′ are all possible sets of cut lines, containing K = {0, 1, . . . ,Kmax} cut
lines, for the certain region S′ ∈ S̃ in one certain dimension (i.e., horizontal or
vertical), and Kmax is predetermined a priori to be “large enough” given the task
at hand.

In Section 5.5, we will show that searching for the MDL-optimal cut lines
for (a subset of) two-dimensional data is the same as searching for the MDL-
optimal cut points for the one-dimensional data that is the projection of the
two-dimensional data onto the x- or y-axis.

The partitioning step will automatically stop once for each region the MDL-
optimal set of cut lines is the null set, i.e., no further partitioning is needed.

Second, we search for all possible clusterings of neighboring regions gained in
the previous partitioning step, in a greedy manner. In other words, we consider all
possible clustering of regions of the partition gained by the previous partitioning
step, which is actually a subset of the full model class M as defined in Section
5.3.1. We denoted this constrained model class by Mc, and we formally define the
merging step as selecting the MDL-optimal model within Mc, i.e.,

S̃∗
merge = arg min

S̃∈Mc

L(xn, S̃) = arg min
S̃∈Mc

(L(S̃) + L(xn|S̃)). (5.4)

Figure 5.2 shows an illustrative example of the partitioning and merging process.

5.4 Calculating the code length

We now discuss the details of the code length (in bits) needed to encode the
data and the model.

We first show the calculation of code length of data given a histogram model,
encoded by the normalized maximum likelihood (NML) code (Grünwald 2007;
Grünwald and Roos 2019). Specifically, we show that the parametric complex-
ity term in the code length is independent of data dimensionality, which is an

115

Calculating the code length

important observation that makes it feasible to compute the NML code length.
Next, we discuss in detail the difficulties of encoding all possible models

S̃ ∈ M if we would want to directly optimize over the full model class M using
Equation (5.2), which motivates our (more pragmatic) solution of dividing the
model selection task into two separate steps.

Finally, we discuss the calculation of the code length of a model in the par-
titioning and merging step respectively, i.e., L(CS′) and L(S̃) of Equations (5.3)
and (5.4).

5.4.1 Code length of the data

Extending the work that was previously done for the one-dimensional case
(Kontkanen and Myllymäki 2007b), we use the same code—i.e., the Normalized
Maximum Likelihood (NML) code—to encode the two-dimensional data. This
code has the desirable property that it is theoretically optimal because it has
minimax regret. The code length of the NML code consists of two terms, namely
the maximum likelihood and the parametric complexity (also referred to as regret),
and is given by

L(xn|S̃) = − log

P (xn|S̃ ˆ⃗
f(xn)

)

COMP(n, S̃)

 , (5.5)

where P (xn|S̃ ˆ⃗
f(xn)

) is the probability of the data given S̃ ˆ⃗
f(xn)

, i.e., the parameters
f⃗ = (f1, ..., fK) are estimated by the maximum likelihood estimator given dataset
xn, denoted as ˆ⃗

f(xn) = (f̂1, . . . , f̂K). The term COMP(n, S̃) is the so-called
parametric complexity, which is defined as

COMP(n, S̃) =
∑

yn∈Sn

P (yn|S̃ ˆ⃗
f(yn)

), (5.6)

where
∑

yn∈Sn is the sum over all possible sequences yn within the Cartesian
product of sample space S that can be generated by the histogram model S̃, i.e.,
the order of individual values within vector yn does matter.

We will now first describe the calculation of P (xn|S̃ ˆ⃗
f(xn)

), and then the cal-
culation of COMP(n, S̃).

For any single data point xi ∈ xn, let xi = (xi1, xi2) denote the pair of values

116

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

for its two dimensions. We then have

P (xn|S̃ ˆ⃗
f(xn)

) =
n∏

i=1

P (xi|S̃ ˆ⃗
f(xn)

) =
K∏
j=1

 ∏
xi∈Sj

P (xi|S̃ ˆ⃗
f(xn)

)

 , (5.7)

as the data points are assumed to be independent. Note that K represents the
number of regions of S̃.

Since we assume our data to have precision ϵ, we can define the probability
of the data, also referred to as its maximum likelihood, as

P (xi|S̃ ˆ⃗
f(xn)

) = P (X ∈ [xi1−
ϵ

2
, xi1+

ϵ

2
]× [xi2−

ϵ

2
, xi2+

ϵ

2
] | S̃ ˆ⃗

f(xn)
) = f̂jϵ

2. (5.8)

The maximum likelihood estimator for the histogram model (Scott 2015) is

f̂j =
hj

n |Sj |
, ∀j, (5.9)

where hj is the number of data points within Sj , and |Sj | is the area of Sj . Thus,
following Equations (5.7),(5.8), and (5.9),

P (xn|S̃ ˆ⃗
f(xn)

) =

K∏
j=1

(f̂j ϵ
2)hj =

K∏
j=1

(
hj ϵ

2

n |Sj |
)hj . (5.10)

Next, we describe the calculation of COMP(n, S̃). Although it may be sur-
prising at first glance, we show that

Proposition 3. The parametric complexity COMP(n, S̃) of a histogram model is a
function of sample size n and the number of bins K. Given n and K, COMP(n, S̃)
is independent of the dimensionality of the data.

We leave the formal proof to Appendix A, but the proposition is based on
the following important observations. First, as Kontkanen and Myllymäki (2007b)
proved, COMP(n, S̃) is a function of sample size n and the number of bins K for
one-dimensional histograms. The remaining question is whether this holds for
two (and higher) dimensional histograms as well. Observe that the maximum
likelihood given a two-dimensional histogram model for any data is a function
of hj and |Sj |/ϵ2, respectively representing the number of data points in each
region, and the total number of possible positions of data points in each region,

117

Calculating the code length

which are both some form of “counts” and hence are “dimensionality free”. Finally,
COMP(n, S̃), as defined in Equation (5.6), is just the sum of maximum likelihoods.
Based on these observation, it is trivial to prove that COMP(n, S̃) has the same
form for one- and multi-dimensional histograms.

Therefore, for both one- and multi-dimensional histogram models, we can
denote COMP(n, S̃) as COMP(n,K), and as shown by Kontkanen and Myllymäki
(2007b),

COMP(n,K) =
∑

h1+...+hK=n

n!

h1!...hK !

K∏
j=1

(
hj

n
)hj , (5.11)

which turns out to be the same as the parametric complexity for the multinomial
model (Kontkanen and Myllymäki 2007a). We can calculate COMP(n,K) in
linear time (Kontkanen and Myllymäki 2007a) by means of the following recursive
formula:

COMP(n,K) = COMP(n,K − 1) +
n

K − 2
COMP(n,K − 2). (5.12)

5.4.2 Code length of the model

We first discuss in detail why properly encoding all models in the model class
is difficult, and then describe the code length of model in the partitioning step
and the merging step respectively.

Encoding all models in the model class is difficult

According to Kraft’s inequality, encoding all models in the model class is
equivalent to assigning a prior probability distribution to all models (Grünwald
2007). This prior distribution should reflect the model complexities (Grünwald
2004), especially when there exists some hierarchical structure in the model class.
For models with similar model complexity, the prior distribution should be non-
informative. Particularly, a common practice is to divide the model class into
sub-classes according to the hierarchical structure, and then assign the prior dis-
tribution to each model by first assigning some prior to all the sub-classes and
then assigning a uniform prior to all models within each sub-class.

The model class of all histogram models (i.e., all partitions of S) has an ap-
parent hierarchical structure with respect to model complexity. That is, the model

118

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

class could be divided into sub-classes based on a combination of two factors: 1)
the number of regions, and 2) the number of line segments composing the inner
boundaries. Nevertheless, it is extremely challenging to assign a proper (or even
an intuitively “natural”) prior distribution based on this complexity hierarchical
structure, because of the following two reasons.

First, it is difficult to specify a joint prior distribution on the number of
regions and the number of line segments, as they are dependent on each other,
though specifying marginal prior distributions for each of the factors may be
feasible.

Second, given the number of regions, denoted by K, and the number of
line segments composing the inner boundaries, denoted by T , it is challenging
to count the number of models with K regions and T line segments. Hence,
the prior probability of each model (with the uniform prior) within this sub-
class is also difficult to obtain. On one hand, there is no analytical formula
to obtain such count (to the best of our knowledge). On the other hand, to
count this number algorithmically, we would first need to decide how many line
segments each region has, i.e., to assign positive integers to {T1, . . . , TK} such
that T1 + . . . + TK = T . The number of possible values of {T1, . . . , TK} grows
exponentially as K increases. Further, we would need to decide where to put these
line segments to form K regions. The number of possible positions is enormous
if ϵ is reasonably small. Finally, we would need to go over all individual cases to
check for repeated counting for T , since regions can share line segments, which
makes the counting computationally infeasible.

Code length of the model in the partitioning and merging steps

As properly encoding all possible models within M turns out to be too diffi-
cult, we now discuss how to calculate the code length of the model separately for
the partitioning and merging step.

Partitioning. For a region S′ ∈ S̃, assume that there are E candidate positions
for cut lines, either horizontally or vertically. To encode the set of cut lines, we first
encode the number of regions K ∈ {1, . . . ,Kmax}, where Kmax is predetermined.
We assign a uniform prior to K, and thus the code length needed to encode K

becomes a constant, which has no effect on the result of the partitioning step.
Given K, we then encode the positions of (K − 1) cut lines, with again a uniform

119

Revisiting MDL histograms for one-dimensional data

prior to all possible sets of (K − 1) cut lines. The code length needed in bits is

L(CS′) = log
(

E

K − 1

)
(5.13)

Merging. Next we discuss the code length of encoding all models in the con-
strained model class Mc, which contains all possible models that can be obtained
by merging neighboring regions of the partition after the partitioning step.

We argue that we should have a non-informative prior on Mc. First, as
discussed before, it is challenging to specify a joint prior to both the number
of line segments and the number of regions. Second, if neighboring regions are
merged, the partition of the sample space tends to have fewer regions but more
geometric complexity. Hence, there exists no obvious ways to compare model
complexities, even in an intuitive manner.

Thus, we treat the model complexities to be roughly equivalent and we assign
a uniform prior to all models in Mc. As a result, the code length of all models
within Mc is a constant and has no effect on the result of the merging step. In
other words, we only consider the code length of data in the merging step.

5.5 Revisiting MDL histograms for one-dimensional
data

In this section, we elaborate the link of our work to the MDL-based his-
tograms to one-dimensional data.

We first show that searching for the best cut lines on one certain dimension
of given two-dimensional data is equivalent to searching for the best cut points
for the corresponding one-dimensional data. We then review the algorithm for
inferring MDL histograms for one-dimensional data as proposed by Kontkanen
and Myllymäki (2007b), and describe how we improve it both theoretically and
practically.

Notation and relation to our problem. To be able to distinguish it from two-
dimensional data xn, we denote one-dimensional data as zn = (z1, ..., zn), with
precision equal to ϵ. Further, we define the sample space of zn as [min zn,max zn].

We define the one-dimensional histogram model with K bins as a set of

120

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

cut points, denoted as CK = {C0 = min zn, C1, ..., CK = max zn} ⊆ Ca, with
K ∈ {0, 1, . . . ,Kmax}, where Kmax is pre-determined and Ca is defined as

Ca = {min zn,min zn + ϵ, ...,min zn + E · ϵ,max zn}, (5.14)

with E = ⌊max zn−min zn

ϵ
⌋. Note that we assume all subintervals to be closed on

the left and open on the right, except that the rightmost subinterval is closed on
both sides.

The code length needed to encode the model CK is

L(CK) = log
(

E

K − 1

)
, (5.15)

which is the same as Equation (5.13). Further, based on the calculation of maxi-
mum likelihood given any histogram model (Section 5.4.1) and Proposition 3, the
code length needed to encode zn given CK by the NML code is

L(zn|CK) = − logP (zn|CK) + logCOMP(n,K)

= − log
K∏
j=1

(
hj ϵ

n (Cj+1 − Cj)
)hj + logCOMP(n,K).

(5.16)

If we compare L(zn|CK) and L(CK) with Equations (5.10) and (5.13), we can
see that the definition of the two-dimensional MDL-optimal cut lines and the
one-dimensional MDL-optimal cut points only differ by a constant. Thus, given
a two-dimensional dataset xn = {(x11, x21), . . . , (x1n, x2n)}, the optimization task
of searching for the MDL-optimal vertical (or horizontal) cut lines is equivalent
to the task of searching for the MDL-optimal one-dimensional cut points based
on one-dimensional dataset zn = {x11, . . . , x1n} (or zn = {x21, . . . , x2n}). That is,
zn is the projection of xn on the x- or y-axis.

In other words, the algorithm for constructing MDL-based one-dimensional
histograms proposed by Kontkanen and Myllymäki (2007b) can be directly applied
to the partitioning step of our model selection task. We now briefly review this
algorithm and show how we improve it both theoretically and practically.

Improved one-dimensional MDL-based histograms. We improve the one-
dimensional algorithm proposed by Kontkanen and Myllymäki (2007b) in two
ways. First, in their previous work, the candidate cut points, denoted as C ′

a, are

121

Revisiting MDL histograms for one-dimensional data

chosen based on the data zn, i.e., C ′
a =

⋃n
i=1{zi ± ϵ}, and hence the code length

of model is calculated dependent on given dataset, i.e., L(CK |zn) is calculated
instead of L(CK), which is theoretically sub-optimal, because generally

L(zn, CK) = L(zn|CK) + L(CK) ̸= L(zn|CK) + L(CK |zn). (5.17)

In practice, this will cause significantly worse results when the sample size is very
small. In such cases, the size of the set C ′

a will be very small, and hence the code
length of model will be significantly underestimated, leading to serious overfitting.
We fix this problem by encoding the model independent of the data, as defined
by Equations (5.14) and (5.15).

Further, we show that we do not need to consider all candidate cut points
within Ca, but just those cut points with a data point near it from left or right,
without other cut points in between. That is, we have the following.

Proposition 4. For any two cut points Ci, Ck ∈ Ca, suppose Ci < Ck and no
data points exist in the interval [Ci, Ck], then any cut point Cj ∈ [Ci, Ck] would
not be in the MDL-optimal set of cut points, i.e., we can skip all such Cj during
the search process.

This reduces the search space to a subset of Ca, and hence reduces the com-
putational requirements. We include the proof in Appendix B.

Finally, we simplify the recursion formula for the dynamic programming pro-
posed by Kontkanen and Myllymäki (2007b) in their original paper, which signif-
icantly reduces empirical computation time.
Dynamic programming algorithm. Kontkanen and Myllymäki (2007b) de-
rived the recursion formula based on the total code length L(zn, CK), i.e.,

L(zn, CK) = L(zn|CK) + L(CK)

= − log(P (zn|CK) + logCOMP(n,K) + log
(

E

K − 1

)
.

(5.18)

We show that we can simplify the recursion by only including the proba-
bility of the data, i.e., P (zn|CK), instead of L(zn, CK). Observe that when the
number of bins K is fixed, L(CK) and COMP(n,K) become constant. Then, for
fixed K, minimizing L(zn, CK) is equivalent to minimizing {− log(P (zn|CK)},
i.e., maximizing the likelihood.

122

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Therefore, minimizing L(zn, CK), for all K ∈ {1, . . . ,Kmax}, can be done in
two steps: 1) find the maximum likelihood cut points with fixed K, denoted as
ĈK , for eachK, using the following dynamic algorithm; and 2) calculate L(zn|ĈK)

for each K, and find the K̂ ∈ {1, . . . ,Kmax} that minimizes L(zn, ĈK). Then,

ĈK̂ = arg min
K∈{1,...,Kmax},CK∈Ca

L(zn, CK). (5.19)

Now we describe the dynamic programming algorithm for finding ĈK for each
K ∈ {1, . . . ,Kmax}. The (log) probability of zn given any cut points is

logP (zn|CK) =
n∑

i=1

logP (zi|CK)

=
K∑
j=1

∑
zi∈[Cj−1,Cj)

logP (zi|CK)

=
K−1∑
j=1

∑
zi∈[Cj−1,Cj)

logP (zi|{CK \ CK}) +
∑

zi∈[CK−1,CK]

logP (zi|CK)

= logP (znCK−1
|{CK \ CK}) +

∑
zi∈[CK−1,CK]

logP (zi|CK)

(5.20)

where znCK
is a constrained dataset containing all data points smaller than CK ,

i.e.,
znCK−1

= {z ∈ zn|z < CK−1}. (5.21)

Given the previous, the recursion formula is given by

max
CK⊆Ca

logP (zn|CK) = max
CK∈Ca

[max
{CK\CK}⊆Ca

logP (znCK−1
|{CK \ CK})

+
∑

zi∈[CK−1,CK]

logP (zi|CK)]
(5.22)

and hence a dynamic programming algorithm can be applied to search all K ∈
{1, . . . ,Kmax}. In practice, Kmax is pre-determined, and larger Kmax should be
investigated if K̂ = Kmax.

The disadvantage of implementing the dynamic programming algorithm based
on L(zn, CK), ∀K ∈ {1, . . . ,Kmax}, is that we would need to calculate the para-

123

The PALM Algorithm for Partitioning and Merging

metric complexity COMP(·) for every constrained dataset. Our improved version,
in contrast, involves only P (zn|CK), and thus we only need to calculate COMP(·)
for the full dataset zn when calculating L(zn, ĈK) for each K, which will be much
faster in practice.

The essential component of the dynamic programming algorithm is to con-
struct the constrained dataset znCK−1

, ∀K ∈ {1, . . . ,Kmax}. These constrained
datasets are easy to construct in the one-dimensional case with a natural order,
but infeasible for two or higher dimensional cases. Hence we resort to the heuristic
algorithm presented in the next section.

5.6 The PALM Algorithm for Partitioning and
Merging

We propose a heuristic algorithm named PALM, which infers histogram
models for two-dimensional data by decomposing the overall model selection prob-
lem into two steps: 1) partition space S alternately based on the discretization
result from previous iterations until it stops automatically; and then 2) merge
neighboring regions if their densities are very similar. Both steps use the MDL
principle as the decision criterion, with the code length defined in Section 5.4.

The PALM algorithm is given in Algorithm 5. Specifically, we first initiate
S̃ = {S} and choose the starting direction (line 1); then we iterate over all regions
in S̃ and partition each of them by searching for the MDL-optimal cut lines in
the chosen direction (lines 3–5), and update S̃ accordingly (lines 8–10); then, we
keep iterating until S̃ is no longer updated (lines 2 and 6–7), which completes the
partitioning step.

Next, the merging step searches, in a greedy manner, for the MDL-optimal
partition of S over all possible partitions that can be obtained by merging any
two neighboring regions of the partition that is obtained in the partitioning step.
That is, we list all the neighboring pairs of regions in S̃, i.e., two regions that
share part of their boundaries (line 15); then, we merge the pair that compresses
the data most (or equivalently, decreases the MDL score most) and update the
neighboring pairs list (lines 21–23); finally, we stop the merging step when no
better compression can be obtained by merging any neighboring two pairs in S̃

(lines 19–20).

124

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Algorithm complexity. We now discuss the worst-case algorithm complexity
for the partitioning and merging step respectively, and we will show the empirical
runtime in Section 5.7.6.

For the first iteration of the partitioning step (i.e., when S̃ = {S}), the
algorithm has a complexity of O(KmaxE

2), the same as the one-dimensional case
(Kontkanen and Myllymäki 2007b), where E is the number of possible locations for
vertical (or horizontal) lines within the whole sample space S, based on the fixed
grid with granularity ϵ. The second iteration has a worst-case time complexity
of O(K2

maxE
2) when the first iteration produces exactly Kmax regions. Following

this line, the worst-case time complexity of the partitioning step is O(KI
maxE

2),
where I is the number of iterations.

As for the merging step, the time complexity is bounded by KpK0, where
K0 denotes the number of regions after the partitioning step, and Kp denotes the
number of neighboring pairs. That is, we can merge at most (Kp − 1) times, and
each merging requires going over all the neighboring pairs.

Although the worst-case time cost for the partitioning step is exponential,
and K0 and Kp could be large in practice, we will show in Section 5.7.6 that the
empirical runtime may scale much better than exponential growth.

Choosing the hyper-parameter settings. We now briefly discuss how to
choose ϵ and Kmax in practice. First, we should set ϵ to be the same as the
precision of the data by default; data is always recorded up to a precision in
practice. Further, when prior knowledge exists given a specific task, ϵ may be
larger than the recording precision, because the domain expert or data analyst
may decide that the data is only meaningful up to a more coarse precision.

Second, theoretically we should set Kmax to be sufficiently large, and hence
in practice Kmax is a “budget” rather than a hyper-parameter like the threshold
or stopping criterion in other discretization methods (e.g., Nguyen 2014, Kerber
1992). That is, unlike these hyper-parameters, which can be either too large or
too small and hence need to be carefully tuned, Kmax can be simply picked to be
as large as possible.

This makes our method practically hyper-parameter-free, in the sense that—
given the guidelines above—no tedious hyper-parameter tuning should be neces-
sary to obtain the best possible results.

125

Experiments

5.7 Experiments

In this section, we investigate the performance of PALM using synthetic data,
after which we will apply it to real-world data in the next section. We show that
PALM can construct two-dimensional histograms that are adaptive to both local
densities and sample size of the data.

We start off by defining the “loss” that we use for quantifying the quality of
the “learned” partitions. We then present experiment results on a wide variety of
synthetic data. Although our algorithm relies on heuristics, we show that it has
a number of desirable properties, as follows.

First, if the data is generated by a histogram model within our model class
M, PALM is able to identify the “true” histogram given a large enough sample
size. The results are discussed in Section 5.7.2.

Second, in Section 5.7.3 we show that PALM has the flexibility to approximate
histogram models outside the model classM. Specifically, we study the behavior of
PALM on a dataset generated as follows: we set the sample space S = [0, 1]×[0, 1],
and partition it by a sine curve; we then generate data points uniformly distributed
above and below the sine curve, with different densities.

Third, we study the performance of PALM on data generated by two di-
mensional Gaussian distributions in Section 5.7.4. We show that it inherits the
property of the one-dimensional MDL histogram method (Kontkanen and Myl-
lymäki 2007b) that the bin sizes of the histogram are self-adaptive: the two-
dimensional bin sizes become smaller locally where the probability density changes
more rapidly.

Fourth, in Section 5.7.5 we compare PALM with the IPD algorithm (Nguyen
et al. 2014), using a simple synthetic dataset that is almost identical to what has
been used to study the performance of IPD (Nguyen et al. 2014).

Note that we always set ϵ = 0.001, and all simulations are repeated 500 times
unless specified otherwise4. The initial partitioning direction is fixed as vertical,
to make the visualizations of the inferred partitions comparable.

4The code is available at: https://github.com/ylincen/PALM

126

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

5.7.1 Measuring the difference between two-dimensional his-
tograms

As PALM produces a histogram model and can be regarded as a density esti-
mation method, one of the most intuitive “loss” functions is the Mean Integrated
Squared Error (MISE) (Scott 2015), defined as

MISE(f̂) = E[
∫
S

(f(x)− f̂(x))2dx], (5.23)

where f is the true probability density and f̂ is the histogram model density
estimator. We report the empirical MISE by calculating the integral numerically,
and estimating E[·] by the empirical mean of results over all repetitions of the
simulation.

As MISE cannot indicate whether there are more “bins” than necessary, we
also propose two “loss” functions that directly quantify the distances between the
inner boundaries of the learned and true partitions of a sample space S. We first
break up the line segments of the inner boundaries into pixels with a precision
set to 0.01 = 10ϵ (merely to speed up the calculation). Then we introduce two
loss functions based on the idea of Hausdorff distance, considering false positives
and false negatives respectively. Namely, we propose Llearn, based on the learned
partition, and Ltrue, based on the true partition:

Llearn =
∑
p∈P

minq∈Q||p− q||2;Ltrue =
∑
q∈Q

minp∈P ||p− q||2 (5.24)

where || · || denotes the Euclidean distance and P and Q are the sets of pixels on
the line segments of the learned partition and the true partition, respectively.

The intuition for Llearn is that, for a given pixel on a line segment of the
learned partition, we find on the line segments of the true partition the pixel
closest to it, and measure their distance; for Ltrue it is the other way around.
Thus, if Llearn is large, the learned partition must have unnecessary extra line
segments, whereas if Ltrue is large, the learned partition fails to identify part of
the line segments that actually exist.

127

Experiments

5.7.2 Revealing ground truth two-dimensional histograms

We describe the settings for simulating the data and then our experiment
results, to empirically show that our algorithm can identify the “true” histogram
model if the data is generated by it.

Experiment settings. To randomly generate the “true” partitions, we use a
generative process that is very similar to the search process of our algorithm: we
fix a rectangular region, S = [0, 1]× [0, 1], randomly generate vertical cut lines to
split it into K1 regions, and randomly generate horizontal cut lines to split each
of the K1 regions into (K21, ...,K2,K1

) regions respectively. Then, for each pair of
neighboring regions, we merge them with a pre-determined probability Pmerge.

We set these hyper-parameters as follows:

K1 = K21 = K22 = ... = K2,K1
= 5;Pmerge = 0.4; ϵ = 0.001. (5.25)

With these hyper-parameters, our generative process is able to generate a diverse
subset of M, as Pmerge is chosen delicately to be not too small or too large. Fig-
ure 5.3 shows four random examples of the true partitions and learned partitions.
These learned partitions are produced with the sample size set as 10 000.

After the partition is fixed, we generate “true” density parameters for the
histogram model using a uniform distribution, i.e.,

fj ∼ Uniform(0, 1), ∀i = 1, 2, ...,K; (5.26)

and normalize them such that
∑K

j=1 fj |Sj | = 1, where K is the number of regions
in total and |Sj | is the geometric area of Sj . Note that we do not force the fj to
be different from each other.

Results. Figure 5.4 shows that MISE is already small for small sample size, and
converges to almost 0 as the sample size increases. We also show, in Figure 5.5,
that Llearn and Ltrue converge to almost zero except for some outliers.

The outliers of Llearn are due to sampling variance when generating data
points, the number of which decreases significantly as the sample size grows.

The outliers of Ltrue, however, are due to the random generation of the density
parameters fj . As we do not force all fj ’s to be different, they could accidentally
turn out to be very similar. In that case, some of the “true” inner boundaries are

128

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Figure 5.3: Random examples of true (black solid) and learned partitions (red dashed)
of the experiment in Section 5.7.2, mainly to show that our experiment settings can produce
very flexible partitions of [0, 1] × [0, 1]. Note that the sample size is set as 10 000, which is
not enough for MISE (Equation 5.23) to converge to almost 0, but the learned partitions by
PALM already look promising: it can partly identify the true partitions.

actually unnecessary, and our algorithm will “fail” to discover them. Table 5.1
confirms that this is the cause of outliers when the sample size is large (≥ 1e5):
when PALM fails to identify part of the “true” inner boundaries and Ltrue > 1, the
learned histogram still estimates the density very accurately. The only explanation
is then that some regions of the true partition accidentally have very similar fj ’s.

Moreover, when the sample size is moderate, e.g., 5000, Llearn is already
small, meaning that PALM can partly identify the true partition quite precisely,
and rarely produces unnecessary extra regions. As the sample size increases, Ltrue

decreases, indicating that the learned partition becomes more and more complex;
i.e., it is shown that the model selection process is self-adaptive to sample size.

0.00
0.01
0.02
0.03
0.04
0.05

5e+
03
7e+

03
1e+

04
3e+

04
5e+

04
7e+

04
1e+

05
3e+

05
5e+

05
7e+

05
1e+

06
3e+

06
5e+

06

sample size

M
IS
E

Figure 5.4: Sample size vs MISE: MISE converges to almost 0 when the sample size
becomes larger than 100 000. The range between the 5th and 95th percentiles is shown in
blue.

129

Experiments

1

2

4

8

16

500
0

700
0

100
00

300
00

500
00

700
00

1e+
05

3e+
05

5e+
05

7e+
05

1e+
06

3e+
06

5e+
06

sample size

lo
g(
lo
ss

+
1)

Llearn

Ltrue

Figure 5.5: Boxplots showing the sample size versus Llearn and Ltrue as defined in Equa-
tion (5.24). Note that the y-axis has a logarithmic scale. Llearn is generally much smaller
than Ltrue, meaning that it is very rare that PALM produces unnecessary extra regions.
When the sample size is large enough for MISE to converge (n ≥ 1e5), outliers of Ltrue are
due to sampling variance when generating the true parameters fj defined in Equation (5.26),
see Table 5.1; the number of outliers for Llearn decreases rapidly as the sample size becomes
larger, as they are due to sampling variance when generating the data.

5.7.3 Approximating histogram models outside model class M

We now investigate the case where the true model is not within model class
M, while the data is still generated uniformly within each region.

We show that, although the model class M is based on a grid, it is indeed
flexible and expressive: in practice, the learned partitions can approximate true
partitions outside M, and the approximation becomes more and more accurate as
the sample size increases.

Experiment settings. As an illustrative example, we partition S = [0, 1]× [0, 1]

by several sine curves, defined as

g(x) =
1

4
sin 2mπx+

1

2
(5.27)

and where m is a hyper-parameter.
We randomly generate data from a uniform distribution above and under the

sine curve, and we set the probability density above g(x) to be twice as large as
below g(x), i.e., we uniformly sample 2

3
n data points above g(x), and 1

3
n data

points below g(x), where n is the total sample size.

Results. We empirically show that the learned partitions approximate the sine
curves quite precisely, though occasionally a few extra undesired regions are
produced. Figure 5.6 (left) shows the learned partitions on single simulated
datasets, with m ∈ {2, 4, 6} to control the degree of oscillation, and sample size
n ∈ {1e4, 1e5, 1e6}. We see that, as the sample size grows, our approximation

130

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Figure 5.6: (Left) Sine curve defined in Equation (5.27) (red), with m ∈ {2, 4, 6} from
left to right on each row, and the learned partition by PALM (black). Data is randomly
generated by uniforms distribution above and below the sine curve, within S = [0, 1]× [0, 1].
Densities above and below the since curve are 2:1. From top to bottom, the sample sizes of the
simulated data are n ∈ {1e4, 1e5, 1e6}. (Right) 50 partition results of 50 different simulated
datasets are plotted together. It shows that PALM is not guaranteed to be absolutely stable,
as it occasionally produces undesired extra line segments, but the line segments of the learned
partitions mostly gather around the true sine curve.

becomes more and more accurate.
However, since our algorithm is greedy in nature, there is no guarantee to find

the partition with the global minimum score. In practice, PALM will occasionally
produce undesired, extra line segments. Thus, to investigate the stability of the
learned partitions, we repeat the simulation 50 times for each combination of m
and n, and plot all partition results in one single plot in Figure 5.6 (right).

Figure 5.6 (right) shows that the undesired extra regions are produced more
frequently as m increases, but seems independent of sample size n. However, as
sample size increases, the learned partitions become indeed more stable as they
gather around the sine curves more closely.

5.7.4 Gaussian random variables

In this section, we show the performance of our algorithm on data generated
from a two-dimensional Gaussian distribution. Specifically, we consider two of
them, i.e., N [(0

0), (
1 0
0 1)] andN [(0

0), (
1 0.5
0.5 1)], of which the key difference is whether

131

Experiments

the two dimensions are independent. We assume S = [−5, 5]× [−5, 5], as the true
Gaussian density outside such S is negligible.

Figure 5.8 shows the learned partitions as well as the learned empirical densi-
ties from a random simulated dataset with different sample sizes, n ∈ {5 000, 10 000,
50 000}. Note that bin size is self-adaptive with regard to sample size and local
structure of the probability density. We also mention that the empirical runtime
for a single dataset generated by such Gaussian distributions is at most a few
minutes, for all n ≤ 50 000.

To quantify the quality of the learned partitions by PALM, we compare the
MISE of PALM to the MISE of fixed equally-spaced grid partitions with different
granularities. Figure 5.7 shows the mean and standard deviation of MISE for
different cases, and we conclude that, to achieve roughly the same level of MISE
with a fixed grid, a fixed grid needs to have five times as many regions as a
partition learned by PALM.

Independent: N [(0
0), (

1 0
0 1)] Dependent: N [(0

0), (
1 0.5
0.5 1)]

PALM 1x 2x 3x 5x 10x *1x PALM 1x 2x 3x 5x 10x *1x
0.000

0.005

0.010

0.015

number of cells

M
IS
E

sample size
5000
10000
50000

Figure 5.7: For data generated from a two-dimensional Gaussian distribution, described in
Section 5.7.4, the mean and standard deviation of MISE is calculated for different partitions:
(from left to right) PALM, fixed grid with the same number of regions as PALM (denoted as
‘1x’), fixed grid with two times number of regions as PALM (denoted as ‘2x’), ..., and fixed
grid with the same number of regions before the merging step of PALM (denoted as ‘*1x’).
We assume S = [−5, 5]× [−5, 5], as the true Gaussian density outside S is negligible.

5.7.5 Comparison with IPD

Since—to the best of our knowledge—no existing discretization method can
produce partitions as expressive as PALM, it seems not so meaningful to compare

132

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Figure 5.8: Learned partitions and estimated densities by PALM. The data is generated
from two-dimensional Gaussian distributions, with sample size n ∈ {5 000, 10 000, 50 000},
from left to right. The top and bottom row is respectively generated from independent and
dependent two-dimensional Gaussian distributions.

with any existing algorithm. However, we do include a comparison with the IPD
algorithm (Nguyen et al. 2014), mainly to show that our algorithm not only can
produce more flexible partitions by definition, but also beats this state-of-the-
art algorithm on a “simple” task, i.e., when the “true” partition is an adaptive
two-dimensional grid.

We use simple synthetic data, similar to one of the synthetic datasets used to
study the performance of IPD (Nguyen et al. 2014). The data is generated to be
uniform within four regions in S = [0, 1] × [0, 1]. These regions are produced by
partitioning S by one vertical line x = Vx and one horizontal line y = Hy, where
Vx,Hy ∼ Uniform(0, 1). The number of data points within each region is equal.

133

Experiments

We compare the loss, as defined in Equation (5.24), and we show in Figure 5.9
that 1) PALM has better performance on small datasets, and 2) as the sample size
gets larger, PALM converges but IPD partitions S into more and more regions,
as can be witnessed from an increasing Ltrue.

1

2

4

8

16

100 200 300 400 500 600 700 800 900 1000 3000 5000 7000 9000
sample size

lo
g(
lo
ss
+
1) IPD: Llearn

PALM: Llearn

IPD: Ltrue

PALM: Ltrue

Figure 5.9: Comparison of PALM and IPD, using the box-plot and the mean of Llearn
and Ltrue, as defined in Equation (5.24). PALM not only performs better when the sample
size is small, but also converges as the sample size increases, while IPD does not converge.

5.7.6 Empirical runtime

We next discuss the empirical runtime with respect to Kmax, the maximum
number of bins to search, and E, the number of candidate cut points.

Specifically, we use two-dimensional datasets simulated from independent
standard Gaussian distributions to examine the relationship between Kmax and
runtime, with fixed sample size equal to 500 and ϵ = 0.001. The results are il-
lustrated in Figure 5.10, showing that the runtime increases linearly with Kmax.
Further, to investigate the relationship between E and the runtime, we again sim-
ulate from two-dimensional Gaussian distributions with different variance σ2 to
control the E 5. We fixed the sample size to be 1 000 and ϵ = 0.001. The results
show that, the runtime grows quadratically with E (as shown by the blue dashed
curve), but the second-order coefficient is quite small (as it is very close to the red
dashed line with a linear trend). We report the runtime based on 500 repetitions.

5For reproducibility, we first simulate 10 000 data points from N [
(

0
0

)
,
(

0 σ2

σ2 0

)
], where σ2 = Eϵ/2,

where E is the desired number of candidate cut points. Since the corresponding desired data range with
E candidate cut points is [−Eϵ/2, Eϵ/2], we next remove the data points outside this desired data range,
and we finally randomly select 1 000 data points from the remaining data points.

134

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Figure 5.10: Empirical time complexity on simulated two-dimensional Gaussian data,
with respect to E, the number of candidate cut points, and the runtime, and Kmax, the
maximum number of bins we search.

5.8 Case study

We now show the results of applying our algorithm to real-world spatial
datasets. We start with describing the three datasets we use in Section 5.8.1.
Next, we describe our case study tasks in Section 5.8.2. Specifically, we inspect
the results by visualizing the histograms, to illustrate that our method can be
used as an explanatory data analysis (EDA) tool. We also compare with kernel
density estimation (KDE), arguably the most widely used EDA method for spatial
datasets, both for the visualizations and the goodness-of-fit on unseen data. In
Section 5.8.3, we report our results and show that 1) PALM can produce partitions
that characterize more detailed density changes than KDE, and 2) PALM fits
better on unseen data (i.e., a test dataset), in the sense that the partition of
PALM has larger log-likelihood on the test dataset than KDE. Finally, we report
the runtimes and detailed algorithm settings, respectively in Section 5.8.4 and
5.8.5.

135

Case study

5.8.1 Datasets

We consider three diverse real world datasets: locations of Airbnb housing
in Amsterdam6, GPS locations of destinations of DiDi taxi queries in Chengdu,
China7, and GPS recordings of visitors’ movement in an amusement park8.

Visitors movement data in the DinoFun amusement park. All visitors
at the amusement park need to carry a device or use a smartphone app to check
in at different attractions (e.g., roller coasters). Further, the amusement park is
segmented into 100× 100 cells (all of them are roughly 5 meters × 5 meters), and
each cell has a sensor which can track the position of each visitor. The device (or
the mobile app), together with the sensors, checks the position of the visitor every
few seconds and records the position if the visitor moves to another cell. Thus,
applying PALM on this dataset will reveal the densities of places that people have
been in the amusement park. This data has a sample size of 9 078 623, in which
every row represents a single position that one individual visitor visited (or passed
by), with information like visitor’s ID, timestamp, and location.

Amsterdam airbnb locations. This data has a sample size of 20 244, and the
location of each house is recorded by its longitude and latitude. Applying PALM
on this dataset shows the distribution of Airbnb housing in Amsterdam.

DiDi taxi data in Chengdu. The sample size of the data is 107 573, which
collects the longitude and latitude of taxi destinations. Applying PALM on this
dataset shows the densities of different regions that people visited by taxi in
Chengdu, China.

5.8.2 Case study tasks

Explanatory data analysis and visualizations. We first partition the three
two-dimensional datasets by PALM and estimate the densities of all regions, using
the full datasets. We visualize the densities by the heat maps in Figure 5.11, and
compare the visualizations obtained by two-dimensional kernel density estimation
(KDE) (Duong et al. 2007), also with the full dataset. We also include the vi-
sualization results of the discretization obtained by IPD (Nguyen et al. 2014) for

6http://insideairbnb.com
7https://gaia.didichuxing.com
8http://vacommunity.org/VAST+Challenge+2015

136

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

comparison, although IPD is not primarily designed for two-dimensional datasets.
The background of Figure 5.11 are the map of the DinoFun amusement part (pro-
vided together with the dataset), and the map of Amsterdam and Chengdu (from
Google Maps API and the R package “ggmap” (Kahle and Wickham 2013)).

Comparison of KDE and PALM on the goodness-of-fit. Further, to quan-
titatively compare how KDE and PALM fit unseen data, and thus generalize to
the underlying data distribution, we randomly split each dataset into training and
testing set, obtain the PALM and KDE result from the training set, and compare
the log-likelihoods on the testing dataset. We repeat the random splitting 100
times9.

5.8.3 Case study results

We first analyze the result on each dataset respectively, based on which we
give our concluding remarks for the case study at the end of this section.

Visitors movement data in the DinoFun amusement park. As shown
in Figure 5.11, both KDE and PALM reveal the walking path of the amusement
park purely from the movement data (i.e., without knowing the map as additional
information). Although KDE seems to capture more density changes, we show
that it fits unseen data much worse than PALM, measured by the log-likelihood
on the test dataset, shown in Table 5.2. Thus, we conclude that KDE may overfit
on this dataset.

Amsterdam airbnb locations. The visualizations of PALM and KDE look
generally similar: if we treat red and orange regions in the center as the “dense
region”, the rigid boundary between the dense region and the rest obtained by
PALM approximates well the corresponding curve boundary obtained by KDE.
However, note that more density changes are captured within the dense region,
and PALM revealed two dense spots outside the central areas that KDE neglects,
respectively on the top right and the bottom right of the map10. Further, as shown
in Table 5.2, the (average) log-likelihood of PALM and KDE on the test set is

9To speed up the process, we randomly sampled a subset of the Chengdu taxi dataset that contains 10%
of the full sample size; also, for the amusement park movement dataset, we only use the subset of the data
that is between 4 hours and 5 hours after the opening of the park, with sample size 713 846. Note that this
is only for the comparison of goodness-of-fit but not for the visualizations and empirical runtime evaluation

10The top right dense spot is close to the “AMSTERDAM NOORD” text on the map (on the “T”), and
bottom right dense spot is near “Amstel Business Park”.

137

Case study

almost the same, which indicates that PALM does not overfit on this dataset, i.e.,
the dense spots revealed by PALM are valid.

DiDi taxi data in Chengdu. The visualizations of PALM and KDE lead to
different understandings of this dataset: while KDE reveals several hot clusters
of taxi destinations, PALM shows that the density can change drastically within
very small range of areas. As PALM fits better on the testing dataset, we conclude
that PALM does not overfit but KDE may over-smooth this dataset.

By default the PALM algorithm always starts by splitting the x-axis. Starting by
splitting the y-axis leads to slightly different models, and thus somewhat different
visualizations, but those differences are so minimal that they can be ignored for
practical purposes. That is, the differences mostly appear in sparse regions, with
very low densities, where no interesting patterns occur. To demonstrate that the
differences are negligible, we compare the log-likelihoods obtained on unseen data
when starting splitting on either the x-axis or the y-axis. The log-likelihoods are
indeed very similar for both starting directions, as shown in Table 5.2, confirm-
ing that the resulting histogram models can only be different in sparse and less
important regions; otherwise the log-likelihoods would be substantially different.

Based on the analysis above, we conclude that 1) although PALM partitions
the dataset with rigid boundaries, PALM fits the data better than KDE when the
datasets have drastic local density changes, such as the Chengdu taxi dataset and
the amusement park dataset; 2) when we have smoother two-dimensional data
such as the Amsterdam housing dataset, PALM and KDE fit the data equally
well; 3) when we look at the visualizations, PALM tends to capture more density
changes than KDE, and PALM can reveal dense spots that KDE neglects; in other
words, KDE tends to over-smooth the dataset.

Last, we include the visualizations of the IPD discretization in Appendix C, in
which we demonstrate that the discretization results obtained by IPD have much
coarser granularity. Hence, our discretization results preserve more information
from the original datasets.

5.8.4 Empirical runtime

We examine the empirical runtime on these three datasets in Table 5.3 (using
the full datasets, without the split of training and testing set). We conclude that

138

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

KDE is generally much faster, except on the amusement park dataset, which has
a very large sample size but small E.

Note that the runtime of KDE highly depends on the number of evaluation
points, the bandwidth selection methods, and whether to use the binned kernel
estimation as an approximation to the exact kernel estimation for bandwidth
selection and/or density estimation. The runtime we report here is based on
the following settings: 1) the number of evaluation points is the same as the
number of pixels evaluated by PALM, i.e., the pixels on the fixed grid with the
granularity ϵ; 2) the binned approximation for the plug-in bandwidth selection
is used; otherwise it becomes too slow11; 3) the binned approximation for the
density estimation is not used. Note that we use these same settings not only
for the runtime evaluation, but also for visualizations and calculating the log-
likelihood on the testing datasets.

5.8.5 Algorithm settings

We now describe some additional algorithm settings for reproducibility for
PALM and KDE.

Kernel density estimation (KDE). We choose the Gaussian kernel for KDE,
the most commonly used kernel by default. We also experiment with several
bandwidth selection methods, including both plug-in methods and cross-validation
methods. We find that plug-in methods are generally both more stable and much
faster in these three cases, and we choose the one that is specifically designed for
two-dimensional cases (Duong and Hazelton 2003).

Also, we visualize the KDE results by directly plotting the density of each
“pixel”; another common practice is to use a contour function, which will further
smooth the KDE results and hence hamper the straightforward comparisons with
the PALM results.

PALM. We set ϵ = 1 and Kmax = 100 for the amusement park dataset, as
the amusement park is divided into a 100 × 100 grid, so the data is recorded at
precision of 1 and the maximum number of bins cannot exceed 100. For the other
two datasets, the precision of the dataset is set as ϵ = 0.001, which is roughly

11It cost more than 10 minutes for the Amsterdam housing data, and more than two days for the amuse-
ment park data, both on the full dataset (no splitting for training and testing set).

139

Conclusions

100 meters. During the partitioning step, we set Kmax = 300 to make sure that
K̂ < Kmax.

5.9 Conclusions

We proposed to discretize two-dimensional data by histograms with far more
flexible partitions than adaptive grids, as we observed that the appropriate binning
of one dimension may depend on the value of the other dimension.

Next, we formalized this task based on the MDL principle. Building upon
the one-dimensional MDL histogram, we made several technical contributions so
as to extend both the formulation and algorithm to the two-dimensional case.
Specifically, we solved the problem of calculating the parametric complexity for
multi-dimensional cases. Also, we revisited and improved the algorithm for one-
dimensional dataset by 1) correcting a minor flaw related to the model encoding,
and 2) simplifying the dynamic programming recursion and hence improving the
time complexity.

Further, we proposed a novel heuristic algorithm PALM, which combines
the top-down and bottom-up search strategies, and we extensively examined the
performance of the PALM algorithm on both synthetic and real-world datasets.
That is, we verified our algorithm on various synthetic datasets, and showed that:
1) PALM reveals the ground-truth histogram and converges, in contrast to IPD
that produces more and more bins as sample size increases; 2) PALM approximates
well to the partitions outside the model class; 3) PALM is self-adaptive to local
density structures and sample sizes.

Finally, we applied our algorithm on three diverse real-world spatial datasets,
and demonstrated that PALM not only captures more densities changes than
KDE, but also fits the unseen data better than KDE, as measured by the log-
likelihood.

5.10 Appendix A: Proof of Proposition 3

Proposition 3: The parametric complexity COMP(n, S̃) of a histogram model
is a function of sample size n and the number of bins K. Given n and K,
COMP(n, S̃) is independent of the dimensionality of the data.

140

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Assume S ⊂ Rl, S̃ is any partition of S with K regions, and ∀Sj ∈ S̃, |Sj |
represents the (hyper-)volume of Sj ; for any yn that can be generated by S̃, hj(y

n)

denotes the number of data points in region Sj .

COMP(n, S̃) =
∑

yn∈Sn

P (yn|S̃
f⃗=

ˆ⃗
f(yn)

)

=
∑

yn∈Sn

[
K∏
j=1

(
hj(y

n) ϵl

n |Sj |
)hj]

=
∑

h1+...+hK=n,hj≥0,∀j

∑
{yn:hj(yn)=hj ,∀j}

[
K∏
j=1

(
hj(y

n) ϵl

n |Sj |
)hj]

(5.28)

To count the elements in the set {yn : hj(y
n) = hj , ∀j}, we observe that the num-

ber of possible ways of distributing (h1, ..., hK) data points into each region of S̃
respectively is(

n

h1

)(
n− h1

h2

)
. . .

(
n− h1 − . . .− hK−1

hK

)
=

n!

h1!...hK !
. (5.29)

As we assume the precision to be ϵ, for any Sj , the number of possible locations
for those hj(y

n) points is equal to (|Sj |
ϵl

)hj . Thus, the number of elements in the
set {yn : hj(y

n) = hj , ∀j} is

n!

h1!...hK !

K∏
j=1

(
|Sj |
ϵl

)hj

(5.30)

Therefore,

COMP(n, S̃) =
∑

h1+...+hK=n

[
n!

h1!...hK !

K∏
j=1

[(
|Sj |
ϵl

)hj

K∏
j=1

(
hj · ϵl

n · |Sj |
)hj]

=
∑

h1+...+hK=n

[
n!

h1!...hK !

K∏
j=1

[(
|Sj |
ϵl

)hj (
hj · ϵl

n · |Sj |
)hj]

=
∑

h1+...+hK=n

n!

h1!...hK !

K∏
j=1

(
hj

n

)hj

,

(5.31)

which completes the proof.
Note that for continuous data yn, COMP(n, S̃) becomes an integral over

141

Appendix B: Proof of Proposition 4

yn ∈ Sn, but by the definition of Riemann integral, (which always exists since ϵ

cancels out), the result of COMP(n, S̃) is the same as Equation (5.31).

5.11 Appendix B: Proof of Proposition 4

Proposition 4: For any two cut points Ci, Ck ∈ Ca, suppose Ci < Ck and no
data points exist in the interval [Ci, Ck], then any cut point Cj ∈ [Ci, Ck] would
not be in the MDL-optimal set of cut points, i.e., we can skip all such Cj during
the search process.

Consider one-dimensional data zn, and a partition of the data space S, by
a set of cut points, denoted as CK = {C0 = min zn, C1, ..., CK = max zn}, the
probability of data is

P (zn|CK) =
K∏
j=1

(
hj ϵ

n |Sj |
)hj (5.32)

where hj is the number of data points within the subinterval Sj , and |Sj | is the
length of the subinterval Sj .

We regard P (xn|CK) as a continuous function of the vector S⃗ = (|S1|, ..., |SK |),
i.e., we forget about the granularity ϵ for now, and clearly all hj ’s are fixed once
we fix the S⃗.

On the other hand, if we keep all hj ’s fixed, we can still “move” all the cut
points to change S⃗ while keeping the hj ’s fixed, i.e., we can move a cut point Vx

within some closed interval, denoted as [a, b], within which no data points exist.
We prove that the maximum of P (xn|CK) will always achieved when Vx = a

or Vx = b as we keep other cut points fixed. By doing this, we also prove that,
given candidate cut points, we only need to consider cut points that are near to
the data points, i.e., if for any candidate cut point, it is another two cut points
that are closest to it, other than one or more data points, we can then skip this
candidate cut point.

Since when we move one single cut point, it only affects the subinterval left
and right to that cut point, while all other |Sj |’s remain the same, it is sufficient
to just prove for the case K = 2.

Since now C0 = mini∈[n] xi1 and C2 = maxi∈[n] xi1, P (xn|C2) becomes a
function of C1, and equivalently a function of |S1|, where both C1 and |S1| are

142

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

bounded as we need to keep h1 and h2 fixed, i.e.,

logP (xn|C2) = log
((

ϵh1

n|S1|

)h1
(

ϵh2

n(|S| − |S1|)

)h2
)

(5.33)

where we assume |S1| ∈ [a, b] for some certain closed interval [a, b]. As we want
to maximize logP (xn|C2), it is equivalent to minimizing

F (|S1|) := h1 log |S1|+ h2 log(|S| − |S1|) (5.34)

as other terms in Equation (5.33) are constant. Since

F ′(|S1|) =
h1(|S| − |S1|)− h2|S1|

(|S| − |S1|)|S1|
, (5.35)

by setting F ′(|S1|) = 0, we have

|S1|∗ =
h1

h1 + h2

L. (5.36)

We also have

F ′′(|S1|) =
−(h1 + h2)|S1|2 + 2h1|S||S1| − h1|S|2

(|S| − |S1|)2|S1|2
< 0 (5.37)

because 1) the denominator is always positive apparently, and 2) the numerator
is a simple quadratic function which is always negative. The reason is that 1)
−(h1 + h2)|S1| < 0 and 2) the numerator has no real roots, since

(2h1|S|)2 − 4(−(h1 + h2))(h1|S|2) = −4h2h1|S1|2 < 0. (5.38)

Therefore, if |S1|∗ ̸∈ [a, b], F (|S1|) is monotonic within [a, b]; if |S1|∗ ∈ [a, b], |S1|∗

reaches the maximum. In both cases, the minimum of F (|S1|) will be either a or
b, which completes the proof.

143

Appendix C: IPD visualizations on case study datasets

5.12 Appendix C: IPD visualizations on case study
datasets

Figure 5.12 shows the visualization of the IPD discretization results on two
of the case study datasets.

144

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Algorithm 5: PALM
Input: data xn, data precision ϵ, sample space S, maximum number of

splits per partitioning step Kmax

Output: S̃, a partition of S
1 dir ← 0 or 1;
2 while true do
3 foreach Sk ∈ S̃ do
4 Partition Sk as S̃k by finding the optimal cut lines for Sk in

direction dir;
5 C∗

Sk
= argminCSk

L({xn ∈ Sk}, CSk
);

6 if S̃k = {Sk} for all Sk ∈ S̃ then
7 break;
8 else
9 S̃ ←

⋃
S̃k;

10 dir ← 1− dir;

11 S̃merge ← S̃;
12 Kmerge ← the number of regions of S̃merge;
13 while true do
14 Get all neighboring pairs of regions of S̃merge,

Pairs← {(Sj , Sk), . . .};
15 foreach (Sj , Sk) ∈ Pairs do
16 S̃′

j,k ← merge the pair (Sj , Sk) in S̃merge;
17 Calculate

L(xn, S̃′
j,k) = − log

(
P (xn|S̃′

j,k)
)
+ logCOMP(n,Kmerge − 1);

18 if minS′
j,k

L(xn, S̃′
j,k) > L(xn, S̃merge) then

19 return S̃merge;
20 else
21 S̃merge ← argmin

S̃′
i,j

L(xn, S̃′
i,j);

22 Kmerge ← Kmerge − 1;

145

Appendix C: IPD visualizations on case study datasets

Sample size MISE for subgroup: Ltrue > 1 overall MISE
100 000 0.00148 0.00148
300 000 0.00055 0.00074
500 000 0.00051 0.00065
700 000 0.00019 0.00069

1 000 000 0.00023 0.00058
3 000 000 0.00017 0.00055
5 000 000 0.00006 0.00051

Table 5.1: The average MISE of cases when Ltrue > 1, and the overall mean of MISE. We
show that, when PALM fails to identify part of the true partitions, the learned histogram
model still estimates the probability density accurately. The only explanation for these cases
is that some neighboring regions in the true partitions have very similar “true” fj as defined
in Equation (5.26), as a result of which PALM does not deem it necessary to further partition
these regions.

Dataset lpalm l′palm lkde (lpalm − lkde)/lkde
1 Amsterdam housing 29976.36 29983.31 30069.78 -0.00
2 Amusement park 270.56 262.0688 227.22 0.19
3 Chengdu taxi 14904.28 14742.05 14073.42 0.06

Table 5.2: The log-likelihood of PALM with partitioning vertically first, lpalm, and with
partitioning horizontally first, l′palm, and the log-likelihood of KDE, lkde, on the test set for
each of the three datasets.

Dataset sample size PALM KDE
1 Amsterdam housing 20 244 106.821 6.73
2 Amusement park 9 078 623 1134.581 2017.215
3 Chengdu taxi 107 573 60977.285 29.197

Table 5.3: Empirical runtime (in seconds) for the three case study datasets.

146

Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

Figure 5.11: Estimated densities on three real-world datasets using PALM (left) and
KDE (right); from top to bottom: DinoFun amusement park, Amsterdam Airbnb housing,
and taxi destinations in Chengdu.

147

Appendix C: IPD visualizations on case study datasets

Figure 5.12: Visualization of the IPD discretization results on two of the case study
datasets (we fail to obtain the result of IPD on the Amusement Park data within four
hours).

148

