
Information-theoretic partition-based models for
interpretable machine learning
Yang, L.

Citation
Yang, L. (2024, September 20). Information-theoretic partition-based models for
interpretable machine learning. SIKS Dissertation Series. Retrieved from
https://hdl.handle.net/1887/4092882

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4092882

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4092882

Chapter 3

Probabilistic Truly
Unordered Rule Sets

This chapter consists of a paper titled Probabilistic Truly Unordered Rule Sets (submitted to JMLR), which
describes a refined version of the TURS model (in comparison to Chapter 2).
For being self-contained, Chapter 3 inevitably contains some repeated content from Chapter 2, including
notation descriptions, basic definitions, and some identical related work discussions. However, the definition,
model selection criterion, and algorithm for learning a TURS model are all refined based on Chapter 2. The
differences between Chapter 2 and 3 are briefly discussed at the end of Section 3.1, and more thoroughly in
the Appendix of this chapter.

39

Chapter Abstract
Rule set learning has been frequently revisited because of its interpretability.

Existing methods have several shortcomings though. First, most existing methods
impose orders among rules, either explicitly or implicitly, which makes the models
less comprehensible. Second, due to the difficulty of handling conflicts caused by
overlaps (i.e., instances covered by multiple rules), existing methods often do
not consider probabilistic rules. Third, learning classification rules for multi-class
target is understudied, as most existing methods focus on binary classification or
multi-class classification via the “one-versus-rest” approach.

To address these shortcomings, we propose TURS1, for Truly Unordered Rule
Sets. To resolve conflicts caused by overlapping rules, we propose a novel model
that exploits the probabilistic properties of our rule sets, with the intuition of
only allowing rules to overlap if they have similar probabilistic outputs. We next
formalize the problem of learning a TURS model based on the MDL principle
and develop a carefully designed heuristic algorithm. We benchmark against a
wide range of rule-based methods and demonstrate that our method learns rule
sets that have lower model complexity and highly competitive predictive perfor-
mance. In addition, we empirically show that rules in our model are empirically
“independent” and hence truly unordered.

1A refined version based on Chapter 2.

40

Chapter 3 Probabilistic Truly Unordered Rule Sets

3.1 Introduction

Despite the great success of black-box models in a wide range of tasks, intrin-
sically interpretable machine learning models have also received a lot of attention
due to their transparency and hence their applicability to sensitive real-world sce-
narios, such as health care and judicial systems (Rudin 2019). We particularly
focus on modelling and learning probabilistic rule sets for multi-class classification.

A probabilistic rule is in the form of IF X meets certain conditions,
THEN P (Y) = P̂ (Y), in which X represents the feature variables, Y the target
variable, and P̂ the associated class probability estimator.

Rule-based methods have the unique advantage that they are not only ac-
cessible and interpretable to statisticians and data scientists but also to domain
experts, since rules can be directly read. While a single rule summarizes a local
pattern from the data and hence only describes a subset of the instances, existing
rule-based methods adopt various approaches to put individual rules together to
form a global predictive model.

For instance, rule lists (or decision lists) (Fürnkranz et al. 2012) connect
all individual rules by the “IF ... (possibly multiple) ELSE IF ... ELSE
...” statement, which is equivalent to specifying an explicit order for each rule.
This approach is compatible with the very efficient divide-and-conquer algorithms:
when a rule is induced from data, the covered instances (i.e., instances satisfying
the condition of the rule) can be removed and hence iteratively simplify the search
space. While this approach is very efficient, it comes at the cost of interpretability.
As the condition of each rule depends on all preceding rules, comprehending a
single rule requires going over (the negations of) all preceding rules’ conditions,
which is impractical when the rule list becomes large.

On the other hand, rule set models put rules together without specifying
explicit orders. In this case, an instance can be covered by one single rule or si-
multaneously by multiple rules. When the instances covered by two or more rules
have intersections, we say that these rules overlap. Although existing rule set
methods claim that individual rules in rule sets are unordered (Clark and Boswell
1991; Kotsiantis 2013; Van Leeuwen and Knobbe 2012), we argue that they are
not truly unordered. In fact, when one instance is covered by multiple rules at the
same time, different rules may give conflicting (probabilistic) predictions. As a

41

Introduction

result, ad-hoc schemes are widely used to resolve the conflicts, typically by rank-
ing the involved rules with certain criteria (e.g., accuracy) and always selecting
the highest ranked rule (Lakkaraju et al. 2016; Zhang and Gionis 2020). This
approach, however, imposes implicit orders among rules, making rules entangled
instead of truly unordered.

Implicit orders in rule sets severely harm interpretability, especially from the
perspective of comprehensibility. While no agreement has been reached on the
precise definition of interpretability of machine learning models (Molnar 2020;
Murdoch et al. 2019), we specifically treat interpretability with domain experts
in mind. In particular, to explain a single prediction for an instance to domain
experts when implicit orders exist, it is insufficient to only provide the rules that
the instance satisfies, because other higher-ranked rules that the instance does
not satisfy are also a necessary part of the explanation. For example, imagine
a patient is predicted to have Flu because they have Fever. If the model also
contains the higher-ranked rule “Blood in stool → Dysentery”, the explanation
should include the fact that “Blood in stool” is not true, because otherwise the
prediction would change to Dysentery. If the model contains many rules, however,
it becomes impractical to go over all higher-ranked rules for each prediction.

Additionally, decision trees, which can broadly be viewed as a rule-based
approach, often have rules (root-to-leaf paths) that share multiple attributes due
to their inherent structure. This can result in overly lengthy rules (as we will also
empirically demonstrate in the Experiment section), since some internal nodes
may not contribute to the classification itself but only serve to maintain the tree
structure. Thus, decision trees are often less compact than decision rules, and
consequently it is more difficult for domain experts to grasp the internal decision
logic, and hence also the explanations for single predictions.

Given these shortcomings of existing rule-based models, we introduce truly
unordered rule sets (TURS), with the following properties. First, unlike most
recently proposed rule sets/lists methods that only predict labels as outputs (Dash
et al. 2018; Wang et al. 2017; Yang et al. 2021; Yang et al. 2017), we aim for
formalizing a set of rules as a probabilistic model in a principled way. Since rule-
based methods are potentially most applicable in sensitive areas, probabilistic
predictions are much more useful for decision making and knowledge discovery,
especially when domain experts are responsible for taking actions, such as in

42

Chapter 3 Probabilistic Truly Unordered Rule Sets

health care. Probabilistic rules also allow us to directly apply our model for multi-
class classification tasks, without leveraging the commonly used “one-versus-rest”
paradigm (Clark and Boswell 1991; Hühn and Hüllermeier 2009). Second, we aim
to develop a method to learn a set of probabilistic rules without implicit orders:
to achieve this, we “allow” rules to overlap only if they have similar probabilistic
outputs. In this case, when one instance is covered by multiple rules, it does not
matter much even if we randomly pick one of these rules for prediction, since the
differences of the prediction given by each individual rule is controlled. Thus, each
rule becomes “self-standing” and can be used for explaining the predictions alone.

Particularly, we formally define a truly unordered rule set (TURS) as a prob-
abilistic model, i.e., given a TURS model denoted as M and a dataset D, the like-
lihood of the target values conditioned on the feature values is defined. Notably,
without putting implicit orders among rules, instances covered by multiple rules
are modelled in a subtle manner such that the resulting likelihood is “penalized” if
these overlapping rules have very different probabilistic outputs. Thus, we lever-
age our formal definition of TURS model and incorporate the probabilistic output
differences into the goodness-of-fit of our probabilistic model, without introducing
any hyper-parameter to control the probabilistic output differences of overlapping
rules. Further, we treat the problem of learning a TURS model from data as a
probabilistic model selection task, and hence further design a model selection cri-
terion based on the minimum description length (MDL) principle (Grünwald 2007;
Grünwald and Roos 2019), which does not require a regularization parameter to
be tuned.

We resort to heuristics for optimization as the search space combined with
the model selection criterion do not allow efficient search. Yet, we carefully and
extensively extend the common heuristic approach for learning decision rules from
data, in the following aspects. First, we consider a “learning speed score” heuristic,
i.e., the decrease of our optimization score (to be minimized) per extra covered
instance as the quality measure for searching the next “best” rule. Second, we take
a novel beam search approach, such that 1) the degree of “patience” is considered
by using a diverse beam search approach, and 2) an auxiliary beam together with
a “complementary” score is proposed, in order to resolve the challenge that rules
that have been added to the rule set may become obstacles for new rules. This
challenge comes along with the fact that, unlike existing rule set methods, we

43

Introduction

do consider overlaps of rules in the process of learning rules from data. Third,
we propose an MDL-based local testing method in order to characterize whether
the “left out” instances during the process of refining a rule can be well covered
by rules we search for later. That is, while existing heuristics in rule learning
only characterize the “quality” of the individual rules in different ways, our local
testing criterion can be regarded as a look-ahead strategy.

In summary, our main contributions in this chapter are as follows:

1. In contrast to most recently proposed rule lists/sets methods that focus on
non-probabilistic modelling and binary classification, we propose a princi-
pled way to formalize rule sets as probabilistic models that arguably provides
more transparency and uncertainty information to domain experts in sensi-
tive areas such as health care. It can also handle multi-class classification
naturally, without resorting to the one-versus-rest scheme.

2. While existing rule sets methods adopt an ad-hoc approach to deal with con-
flicts caused by overlaps, often by always following the rule that scores the
best according to a pre-defined criterion (e.g., accuracy or F-score), we iden-
tify that this approach puts implicit orders among rules that can severely
harm interpretability. To tackle this issue, we propose to only “allow” over-
laps that are formed by rules with similar probabilistic outputs. We formally
define the TURS model, for Truly Unordered Rule Sets, in a way such that
the probabilistic output difference among overlapping rules is incorporated
in the goodness-of-fit as measured by the likelihood.

3. We formalize the problem of learning a TURS model from data as a proba-
bilistic model selection task. We further propose an MDL-based model selec-
tion criterion that automatically handles the trade-off between the goodness-
of-fit and model complexity, without any hyper-parameters to be tuned by
the time-consuming cross-validation.

4. We develop a heuristic optimization algorithm with considerable algorith-
mic innovations. We benchmark our model TURS together with the pro-
posed algorithm with extensive empirical comparisons against a wide range
of rule-based methods. We show that TURS has superior performance in the
following aspects: 1) it has very competitive predictive performance (mea-
sured by ROC-AUC); 2) it can empirically learn truly unordered rules: the

44

Chapter 3 Probabilistic Truly Unordered Rule Sets

probabilistic conflicts caused by overlaps are negligible, in the sense that the
influence is little even if we predict for instances covered by multiple rules by
randomly picking one single rule from these rules; 3) TURS learns a set of
rules with class probability estimates that can generalize well to unseen data;
and 4) it produces simpler models in comparison to competitor algorithms.

Comparison with our previous work. This chapter is based on the previous
chapter (Chapter 2), with vast extensions and modifications in all components,
including probabilistic modelling, model selection criterion, algorithmic approach,
and experiments. We summarize the key difference points between this chapter
and the previous chapter as follows. First of all, we developed a completely new
algorithm, with 1) a learning-speed-score heuristic motivated by the “normalized
gain” used in the CLASSY algorithm for rule lists (Proença and Leeuwen 2020);
2) a diverse beam search approach with diverse “patience”, in which the concept
of patience is taken from the PRIM method (Friedman and Fisher 1999) for re-
gression rules; 3) an innovative extension to the normal beam search approach,
in the sense that we propose to use an auxiliary beam together with the “main”
beam (and hence we simultaneously keep two beams); and 4) an MDL-local-test
that serves as a look-ahead strategy for instances that are not covered for now.
Further, we substantially extend the experiments in various aspects, and we now
demonstrate that we can empirically treat the rule sets induced from data as truly
unordered, in the sense that if a instance is covered by multiple rules we can now
randomly pick one single rule for prediction, with negligible influence on the pre-
dictive performance (measured by ROC-AUC). Lastly, we also make a moderate
modification to our optimization score. We discuss all these differences more in
detail in the Appendix.
Organization of the chapter. The remainder of the chapter is structured as
follows. In Section 3.2 we review related work. In Section 3.3 we present how
to formalize a rule set as a probabilistic model, with the key component of how
to model the instances covered by overlaps, i.e., by multiple rules at the same
time. In Section 3.4, we discuss our model selection approach for learning a
the truly unordered rule set, and formally define the model selection criterion
based on the minimum description length (MDL) principle. In Section 3.5, we
motivate and discuss our heuristics for learning the rule sets, and next present our
proposed algorithm. Finally, we discuss our experiment setup and demonstrate

45

Related Work

our experiment results in Section 3.6.

Algorithm Model type Rule learning strategy Probabilistic Handle overlap conflicts
CBA ordered rule list divide and conquer ✓ explicit order

CN2-ordered ordered rule list divide and conquer ✓ explicit order
PART ordered rule list divide and conquer ✓ explicit order

CLASSY ordered rule list divide and conquer ✓ explicit order
RIPPER ordered list of rule sets divide and conquer × explicit order
C4.5 rules ordered list of rule sets one-versus-rest × explicit order

BRS rule set (binary target) rules for positive class only × no conflict
CG rule set (binary target) rules for positive class only × no conflict

Submodular rule set (binary target) rules for positive class only × no conflict
CN2-unordered rule set one-versus-rest ✓ ad-hoc (weighted average)

FURIA fuzzy rule set one-versus-rest ✓ fuzzy (weighted average)
CMAR rule set association rule mining × ad-hoc (implicit orders, χ2)
CPAR rule set association rule mining × ad-hoc (implicit orders, accuracy)
IDS rule set optimization for multi-class target × ad-hoc (implicit orders, F1-score)
DRS rule set optimization for multi-class target × ad-hoc (implicit orders, accuracy)

TURS (ours) truly unordered rule set optimization for multi-class target ✓ Not needed

Table 3.1: Summary of the algorithms’ key properties.

3.2 Related Work
We next review the related work and we categorize them as follows. First,

we discuss rule list methods, in which no overlap among rules exists by definition.
Second, we review previous methods that learn rules for a single class labels, and
based on it, the one-versus-rest rule learning methods. Last, we discuss rule sets
methods for multi-class targets, as well as several different but related methods
such as association rule mining. We summarize the key properties of closely
related methods in Table 3.1.
Rule lists. Rules in a rule list are connected by if-then-else statements, and
hence are with explicit orders. When classifying an instance, rules in the rule list
are checked sequentially: once a rule is found of which the condition is satisfied
by the instance, that single rule is used for prediction. Existing methods include
CBA (Liu et al. 1998), ordered CN2 (Clark and Niblett 1989), PART (Frank and
Witten 1998), and the more recently proposed CLASSY (Proença and Leeuwen
2020) and Bayesian rule list (Yang et al. 2017). Although these methods are often
efficient by leveraging the divide-and-conquer (i.e., sequential covering) approach,
rule lists are more difficult to interpret than rule sets because of their explicit
orders. To comprehend the conditions of each rule, conditions in all preceding
rules must also be taken into account; thus, the condition of each individual rule
may not be meaningful when domain experts examine it separately (except for
the first one).

46

Chapter 3 Probabilistic Truly Unordered Rule Sets

One-versus-rest rule learning. This category focuses on only learning rules
for a single class label, i.e., the “positive” class, which is already sufficient for
binary classification (Dash et al. 2018; Quinlan 1990; Wang et al. 2017; Yang
et al. 2021). That is, if an instance satisfies at least one of the induced rules, it
can be classified as “positive”, and otherwise negative. As all rules output the
“positive” class, no prediction conflicts exist by definition. Recently, this line
of research focuses on adopting discrete optimization techniques with provably
better theoretical properties than heuristic algorithms; however, they suffer from
the following drawbacks. First, these methods are non-probabilistic by definition,
and hence it is not clear how to estimate the class probability for the instances
covered by multiple rules (i.e., in the overlap). Second, no explicit explanation
exists for those instances that are classified into the “negative” class; instead, the
explanations for the negative class depend on the negation of all rules for the
positive class, which can be overly complicated to comprehend when the number
of rules is large. Third, these methods require discretizing and binarizing the
feature matrix, and hence can only afford rather coarse search granularity for
continuous-valued features, due to the high memory cost.

Further, learning rules for a single class label can be extended to multi-class
classification, through the one-versus-rest paradigm. Existing methods mostly
take the following two approaches to achieve this. The first, taken by RIP-
PER (Cohen 1995) and the C4.5 decision rule method (Quinlan 2014), is to learn
each class in a certain order. After all rules for a single class have been learned,
all covered instances are removed (or those with this class label). The resulting
model is essentially an ordered list of rule sets, and hence is more difficult to
interpret than a rule set.

The second approach does no impose an order among the classes; instead, it
learns a set of rules for each class against all other classes. The most well-known
are unordered-CN2 and FURIA (Clark and Boswell 1991; Hühn and Hüllermeier
2009). FURIA avoids dealing with conflicts of overlaps by essentially using all
(fuzzy) rules for predicting unseen instances; i.e., the rules’ outputs are weighted
by the so-called “certainty factor”. As a result, it cannot provide a single rule to
explain its prediction. Unordered-CN2, on the other hand, handles overlaps by
estimating the class probability as the weighted average of the class probability
estimates for all individual rules involved in the overlap. That is, unlike our

47

Related Work

method, CN2 adopts a post-hoc conflict resolving scheme, and as a result the
issue of probabilistic conflicts is ignored during the training phase of CN2.

Multi-class rule sets. Very few methods exist for formalizing learning rules
for multi-class classification as an optimization task directly (like our method),
which leads to algorithmically more challenging tasks than the one-versus-rest
paradigm, as the separate-and-conquer strategy is not applicable. To the best
of our knowledge, the only existing methods are IDS (Lakkaraju et al. 2016) and
DRS (Zhang and Gionis 2020). Both are neither probabilistic nor truly unordered.
To handle conflicts of overlaps, IDS follows the rule with the highest F1-score, and
DRS uses the most accurate rule. As we elaborated in Section 3.1, this approach
imposes implicit orders and thus harms the comprehensibility of the model.

Decision trees and association rules. Other related approaches include the
following. To begin with, decision tree based methods such as CART (Breiman
et al. 1984) and C4.5 (Quinlan 2014) produce rules that are forced to share many
“attributes” and hence are longer than necessary, as we will empirically demon-
strate in Section 3.6.

Besides, a large category of methods is associative rule classification, which
is to build rule-based classifiers based on existing association rule mining algo-
rithms (Abdelhamid and Thabtah 2014). Association rule mining is known to
have the problem of inducing redundant rules (Chen et al. 2006), hence a single
instance can be easily covered by potentially many rules at the same time. As
a result, various ad-hoc schemes have been proposed for handling the prediction
conflicts of rules.

For instance, CMAR (Li et al. 2001) first groups rules based on their (differ-
ent) predicted class labels for a given instance, and next constructs a contingency
table for the whole dataset based on 1) whether an instance is covered by the
group of rules and 2) the class label of each instance. Then the group of rules
(and hence the conflicting class labels) is ranked with the χ2 statistic. Moreover,
CPAR (Yin and Han 2003) extends the sequential covering approach taken by
FOIL (Quinlan 1990): instead of removing covered instances, the weights of cov-
ered instances are downgraded, in order to guide the search algorithm to focus on
uncovered instances, and then resolves the prediction conflicts based on ranking
the rules with the expected accuracy.

Lastly, the ‘lazy learning’ approach for associative rule classification, which

48

Chapter 3 Probabilistic Truly Unordered Rule Sets

focuses on learning a single rule for every test (unseen) instance separately with
a given training set of instances, can also avoid the conflicts of overlaps (Veloso
et al. 2006). As a result, the lazy learning approach will not construct a global rule
set model that describes the whole dataset, and hence provide less transparency
for domain experts than our method.

3.3 Truly Unordered Rule Sets

We first formalize individual rules as local probabilistic models, and then
define rule sets as global probabilistic models. The key challenge lies in how to
define P (Y = y|X = x) for an instance (x, y) that is covered by multiple rules.

3.3.1 Probabilistic rules

Denote the input random variables by X = (X1, . . . , Xd), where each Xi is
a one-dimensional random variable representing one dimension of X, and denote
the categorical target variable by Y together with its domain Y that contains all
unique class labels. Further, denote the dataset from which the rule set can be
induced as D = {(xi, yi)}i∈[n], or (xn, yn) for short. Each (xi, yi) is an instance.
Then, a probabilistic rule S is written as

(X1 ∈ R1 ∧X2 ∈ R2 ∧ . . .)→ PS(Y), (3.1)

where each Xi ∈ Ri is called a literal of the condition of the rule. Specifically,
each Ri is an interval (for a quantitative variable) or a set of categorical levels
(for a categorical variable).

A probabilistic rule of this form describes a subset S of the full sample space
of X, such that for any x ∈ S, the conditional distribution P (Y |X = x) is
approximated by the probability distribution of Y conditioned on the event {X ∈
S}, denoted as P (Y |X ∈ S). Since in classification Y is a discrete variable, we
can parametrize P (Y |X ∈ S) by a parameter vector β⃗, in which the jth element
βj represents P (Y = j|X ∈ S), for all j ∈ Y . We therefore denote P (Y |X ∈ S)

as PS,β⃗(Y), or PS(Y) for short. To estimate β⃗ from data, we adopt the maximum
likelihood estimator, denoted as P

S,
ˆ⃗
β
(Y), or P̂S(Y) for short.

Further, if an instance (x, y) satisfies the condition of rule S, we say that

49

Truly Unordered Rule Sets

(x, y) is covered by S. Reversely, the cover of S denotes the instances it covers.
When clear from the context, we use S to both represent the rule itself and/or its
cover, and define the number of covered instances |S| as its coverage.

3.3.2 The TURS model

We aim for defining a rule set model with the following properties. First,
each individual rule can be regarded as a reliable local pattern and generalizable
probabilistic model that can serve as an explanation for the model’s predictions.
Second, if certain rules overlap with each other, i.e., some instances are covered by
multiple rules simultaneously, then the probabilistic outputs of these rules “must
be similar enough”, in the sense that the likelihood of a TURS model given a
fixed dataset incorporates (and penalizes) the differences of probabilistic outputs
of overlapping rules.

Given a rule set with K individual rules, denoted as M = {Si}i∈[K], any
instance (x, y) falls into one of three cases: 1) exactly one rule covers x; 2) at least
two rules cover x; and 3) no rule in M covers x. We formally define the model M
as follows.

Covered by one rule only. Given a single rule denoted as S, when x ∈ S, S ∈M

and x /∈M \ S, we define

P (Y |X = x) = P (Y |X ∈ S) = PS(Y), ∀x ∈ S, x /∈M \ S (3.2)

in which PS(Y) can be estimated from data. That is, we use PS(Y) to “approx-
imate” the conditional probability P (Y |X = x). To estimate PS(Y) we adopt
the maximum likelihood (ML) estimator based on all instances covered by S. We
define the ML estimator as P̂S(Y), and let

P̂S(Y = j) =
|{(x, y) : x ∈ S, y = j}|

|S|
, ∀j ∈ Y . (3.3)

Note that we intentionally do not exclude instances in S that are also covered
by other rules (i.e., in overlaps) for estimating PS(Y). Hence, the probability
estimation for each rule is independent of other rules; as a result, each rule is
self-standing, which forms the foundation of a truly unordered rule set.

Covered by multiple rules. For the second case when x ∈
⋂

i∈I Si, I ⊆ [K], we

50

Chapter 3 Probabilistic Truly Unordered Rule Sets

define
P (Y |X = x) = P (Y |X ∈

⋃
i∈I

Si), ∀x ∈
⋂
i∈I

Si, I ⊆ [K] (3.4)

in which P (Y |X ∈
⋃

i∈I Si) is to be estimated from data with the ML estimator,
defined and denoted as

P̂ (Y = j|X ∈
⋃
i∈I

Si) =
|{(x, y) : x ∈

⋃
i∈I Si, y = j}|

|
⋃

i∈I Si|
, ∀j ∈ Y . (3.5)

Note that we take the union
⋃

i∈I Si for the instances covered by the overlap
(i.e., intersection)

⋂
i∈I Si. As counter-intuitive as it may seem at first glance, this

subtle definition plays a key role in our modelling: with this novel definition, the
likelihood of the data given the model—as the measure of the model’s goodness-
of-fit—automatically incorporates the differences between the rules’ probabilistic
outputs if they form an overlap.

Without loss of generalization, consider two rules denoted as Si and Sj . When
PSi

(Y) and PSj
(Y) are very similar, the conditional probability conditioned on

the event {Si ∪ Sj}, denoted as P (Y |Si ∪ Sj), will also be similar to both PSi
(Y)

and PSj
(Y). In this case, it does not matter which of these three (i.e., PSi

(Y),
PSj

(Y), or P (Y |Si ∪Sj)) we use to model P (Y |X = x), ∀x ∈ Si ∩Sj , in the sense
that the “goodness-of-fit” measured by the likelihood of all instances covered by
the overlap Si ∩ Sj would be all similar.

On the other hand, when PSi
(Y) and PSj

(Y) are very different, the goodness-
of-fit would be poor when using P (Y |Si ∪ Sj) for estimating P (Y |X = x) for
x ∈ Si ∩ Sj . Thus, we leverage this property to penalize “bad” overlaps by
incorporating the probabilistic goodness-of-fit in our model selection criterion that
will be discussed in detail in Section 3.4.

Covered by no rule. When no rule in M covers x, we say that x belongs to
the so-called “else rule” that is part of every rule set and equivalent to x /∈

⋃
i Si.

Thus, we approximate P (Y |X = x) by P (Y |X /∈
⋃

i Si). We denote the else rule
by S0, which is the only rule in every rule set that depends on the other rules
and is therefore not self-standing; however, it will also have no overlap with other
rules by definition.

TURS as a probabilistic model. Building upon our definition for modelling
the conditional class probability and the maximum likelihood estimators, we can

51

Truly Unordered Rule Sets

now formally define truly unordered rule sets as probabilistic models. Formally,
a rule set M as a probabilistic model is a family of probability distributions,
denoted PM,θ(Y |X) and parametrized by θ. Specifically, θ is a parameter vector
representing all necessary probabilities of Y conditioned on events {X ∈ G},
where G is either a single rule (including the else-rule) or the union of multiple
rules. θ is estimated from data by estimating each P (Y |X ∈ G).

The resulting estimated vector is denoted as θ̂ and contains P̂ (Y |X ∈ G) for
all G ∈ G , where G consists of all individual rules and the unions of overlapping
rules in M . To simplify the notation, we denote (x, y) ⊢ G, for the following
two cases: 1) when G is a single rule (including the else rule), then (x, y) ⊢
G ⇐⇒ x ∈ G; and 2) when G is a union of multiple rules, G =

⋃
Si, then

(x, y) ⊢ G ⇐⇒ x ∈
⋂
Si. By assuming the dataset D = (xn, yn) to be i.i.d., we

have
PM,θ(y

n|xn) =
∏
G∈G

∏
(x,y)⊢G

P (Y = y|X ∈ G). (3.6)

3.3.3 Predicting for a new instance

When an unseen instance x′ comes in, we predict P (Y |X = x′) depending
on whether x′ is covered by one rule, multiple rules, or no rule. An important
question is whether we always need access to the training data, i.e., whether the
probability estimates we obtain from the training data points are sufficient for
predicting P (Y |X = x′), especially when x′ is covered by multiple rules by which
no instance in the training data is covered simultaneously.

For instance, if x′ is covered by two rules Si and Sj , P (Y |X = x′) is then
predicted as P̂ (Y |X ∈ Si ∪ Sj). However, if there are no training data points
covered both by Si and Sj , then we would not obtain P̂ (Y |X ∈ Si ∪ Sj) in the
training phase. Nevertheless, in this case we have |Si∪Sj | = |Si|+ |Sj |, and hence

P̂ (Y |X ∈ Si ∪ Sj) =
|Si|P̂ (Y |X ∈ Si) + |Sj |P̂ (Y |X ∈ Sj)

|Si|+ |Sj |
. (3.7)

By contrast, when x′ is covered by one rule only or no rule, the corresponding
class probability estimation is already obtained during the training phase. Thus,
we conclude that access to the training data is not necessary for prediction.

52

Chapter 3 Probabilistic Truly Unordered Rule Sets

3.4 Rule Set Learning as Probabilistic Model Se-
lection

Exploiting the formulation of rule sets as probabilistic models, we define the
task of learning a rule set as a probabilistic model selection problem. Specifically,
we use the minimum description length (MDL) principle for model selection.

The MDL principle is one of the best off-the-shelf model selection methods
and has been widely used in machine learning and data mining (Galbrun 2022;
Grünwald and Roos 2019). Although rooted in information theory, it has been
recently shown that MDL-based model selection can be regarded as an extension
of Bayesian model selection (Grünwald and Roos 2019).

The principle of MDL-based model selection is to pick the model, such that
the code length (in bits) needed to encode the data given the model, together with
the model itself, is minimized. We begin with discussing Normalized Maximum
Likelihood (NML) distributions for calculating the bits for encoding the data given
the model, followed by the calculation of the code length for encoding the model
itself.

3.4.1 Normalized Maximum Likelihood Distributions for Rule
Sets

As the Kraft inequality connects code length and probability2, the core idea
of the (modern) MDL principle is to assign a single probability distribution to
the data given a rule set M (Grünwald and Roos 2019), the so-called universal
distribution denoted by PM (Y n|Xn = xn). Informally, PM (Y n|Xn = xn) should
be a representative of the rule set model—as a family of probability distributions—
{PM,θ(y

n|xn)}θ. The theoretically optimal “representative” is defined to be the
one that has minimax regret, i.e.,

2Note that Section 3.4.1 — 3.4.2 describe the definitions of NML distributions and our proposed approx-
imation for it, which were already introduced in Chapter 2 (Section 2.4.1 — 2.4.2). We deliberately keep
the repeated content so that Chapter 3 is self-contained in describing the refined method for learning TURS
models.

53

Rule Set Learning as Probabilistic Model Selection

argmin
PM

max
zn∈Y n

[
− log2 PM (Y n = zn|Xn = xn)

−
(
− log2 Pθ̂(xn,zn)(Y

n = zn|Xn = xn)
)]

. (3.8)

We write the parameter estimator as θ̂(xn, zn) to emphasize that it depends
on the values of (Xn, Y n). The unique solution to PM of Equation (3.8) is the
so-called normalized maximum likelihood (NML) distribution (Grünwald 2007),:

PNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∑

zn∈Y n PM,θ̂(xn,zn)(Y
n = zn|Xn = xn)

. (3.9)

That is, we “normalize” the distribution PM,θ̂(.) to make it a proper probability
distribution, which requires the sum of all possible values of Y n to be 1. Hence,
we have

∑
zn∈Y n PNML

M (Y n = zn|Xn = xn) = 1 (Grünwald and Roos 2019).

3.4.2 Approximating the NML Distribution

A crucial difficulty in using the NML distribution in practice is the com-
putation of the normalizing term

∑
zn Pθ̂(xn,zn)(Y

n = zn|Xn = xn). Efficient
algorithms almost only exist for exponential family models (Grünwald and Roos
2019), hence we approximate the term by the product of the normalizing terms
for the individual rules.

NML distribution for a single rule. For an individual rule S ∈ M , we write
all instances covered by S as (xS , yS), in which yS can be regarded as a realization
of the random vector of length |S|, denoted as Y S . Y S takes values in Y |S|, the
|S|-ary Cartesian power of Y . Consequently, following the definition of the NML
distribution in Equation (3.9), the NML distribution for PS(Y) equals

PNML
S (Y S = yS |XS = xS) =

P̂S(Y
S = yS |XS = xS)∑

zS∈Y |S| P̂S(Y S = zS |XS = xS)
. (3.10)

Note that P̂S depends on the values of zS . As P̂S(Y) is a categorical distribution,

54

Chapter 3 Probabilistic Truly Unordered Rule Sets

it has been shown (Mononen and Myllymäki 2008) that the normalizing term can
be written as R(|S|, |Y |), a function of |S|—the rule’s coverage—and |Y |—the
number of unique values that Y can take:

R(|S|, |Y |) =
∑

zS∈Y |S|

P̂S(Y
S = zS |XS = xS), (3.11)

and it can be efficiently calculated in sub-linear time (Mononen and Myllymäki
2008).

The approximate NML distribution. We propose to approximate the nor-
malizing term of the NML distribution for rule set model PNML

M as the product
of the normalizing terms of PNML

S for all S ∈M :

P apprNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∏

S∈M R(|S|, |Y |)
. (3.12)

Note that the sum over all S ∈ M does include the “else rule” S0. The rationale
of using the approximate-NML distribution is as follows. First, it is equal to the
NML distribution for a rule set without any overlap, as follows.

Proposition 1. Given a rule set M in which for any Si, Sj ∈ M , Si ∩ Sj = ∅,
then PNML

M (Y n = yn|Xn = xn) = P apprNML
M (Y n = yn|Xn = xn).

Second, when overlaps exist in M , approximate-NML puts a small extra penalty
on overlaps, which is desirable to trade-off overlap with goodness-of-fit: when we
sum over all instances in each rule S ∈ M , the instances in overlaps are “repeat-
edly counted”. Third, approximate-NML behaves like the Bayesian information
criterion (BIC) asymptotically, which follows from the next proposition.

Proposition 2. Assume M contains K rules in total, including the else rule.
Under the mild assumption that |S| grows linearly as the sample size n for all
S ∈ M , then log

(∏
S∈M R(|S|, |Y |)

)
= K(|Y |−1)

2
logn + O(1), where O(1) is

bounded by a constant w.r.t. to n.

The proofs of these two propositions are shown in the Appendices of Chap-
ter 2.

55

Rule Set Learning as Probabilistic Model Selection

3.4.3 Code length of model

To obtain the final MDL based score, we next describe how to calculate the
code length of the model, denoted as L(M). The code length needed to encode
the model depends on the encoding scheme we choose. Given the Kraft’s inequal-
ity (Grünwald 2007), this can be practically treated as putting prior distributions
on the model class. We describe the encoding scheme in a hierarchical manner
due to the complexity of the model class.

Integer code for the number of rules. First, we encode the number of rules in
the rule set, for which we use the standard Rissanen’s integer universal code (Ris-
sanen 1983). The code length needed for encoding an integer K is equal to

Lrissanen(K) = c+ log2(K) + log2(log2(K)) + log2(log2(log2(K))) + . . . ;

the summation continues until a certain precision is reached (which we set as 10−5

in our implementation), and c ≈ 2.865 is a constant.

Encoding individual rules. Next, we encode the each individual rule sepa-
rately. For a given rule with k literals, we first encode k, the number of literals,
by a uniform code: as k’s range is bounded by the number of columns of the
dataset, denoted by Kcol, the code length needed to encode k is equal to

Lnum_literal = log2 Kcol. (3.13)

As each literal contains one unique variable, given the number of literals k, we
further specify which are these k variables among all Kcol variables, again with
a uniform code. Thus, the code length needed to specify which these k variables
are is equal to

Lwhich_vars = log2
(
Kcol

k

)
. (3.14)

Further, we sequentially encode the operator (i.e., ‘≥’ and/or ‘<’) and the
value of each literal. Specifically, for numeric variables, the literal is in either of
the two forms: 1) X ≥ (or <) v, and 2) v1 ≤ X < v2. As a result, we first need to
encode the which form the literal is, which cost Lform = 1 bit. Next, to encode
the values v [or (v1, v2)], we need to know in advance the search space of v [or
(v1, v2)], which are chosen as quantiles in our algorithm implementation.

56

Chapter 3 Probabilistic Truly Unordered Rule Sets

The number of candidate values (quantiles) for each numeric feature variable
is a hyper-parameter, which we argue should be chosen based on the task at hand:
it should be large enough without loss too much information for the prediction,
while at the same time the computational budget and the prior knowledge on what
is useful for interpreting the rules should also be taken into account in practice.

Denote the number candidate cut points after excluding those that result in a
rule with coverage equal to 0 as Kvalue. Depending on whether the literal contains
one or two splits, we can further calculate the code length needed to encode the
operator and value(s) in the literal, denoted as Lvalue_op, as

Lvalue_op = Loperator + Lform + log2 Kvalue, or (3.15)

Lvalue_op = log2
(
Kvalue

2

)
+ Lform, (3.16)

since for the former case we also need to encode the operator in the literal, i.e.,
“≥” or “<”, which cost Loperator = 1 bit. In contrast, the latter case has only one
possibility for the operators, and hence requires 0 bit to encode it.

Next, for categorical variables with L levels, encoding a subset of l levels
requires Lvalue_op = log2 L + log2

(L
l

)
bits; the former term, log2 L, is needed for

encoding the number l itself, and the latter one is code length needed to specify
these l levels from L in total. For simplicity, in our implementation we assume all
categorical features are one-hot encoded, and hence Lvalue_op = 1.

To sum up, the number of bits needed for encoding an individual rule S,
denoted as L(S), is equal to

L(S) = Lnum_literal + Lwhich_vars +
∑

Lvalue_op, (3.17)

in which the term
∑

Lvalue_op denotes the summation of the code length needed
to encode the operator and value for each single literal.

Note that 2−L(S) can be interpreted as a prior probability mass for S among
all possible individual rules (Grünwald 2007). Moreover, because of the way we
determine Kvalue (i.e., by excluding those candidate cut points that lead to rules
with coverage equal to 0), the code length needed to encode a single rule does
depend on the order of encoding each literal in the condition of the rule. This
turns out to be desirable because of our algorithmic approach, which will be

57

Rule Set Learning as Probabilistic Model Selection

described in Section 3.5.
Encoding the rule set. Based on the code length needed for single rules, we
can now define the code length needed to encode the whole rule set. Given a rule
set M with K rules, the total bits needed to encode M is

L(M) = Lrissanen(K) +

K∑
i=1

L(S)− log2(K!), (3.18)

in which the last term is to eliminate the redundancy caused by the fact that the
order of the rules in a rule set does not matter.

To see the rationale of introducing the term (− log2(K!)), consider the prior
probability of each rule denoted as P (Si) = 2−L(Si). Then, the prior probability
of the set of rules {S1, ..., SK}, conditioned on the fixed K, can be defined as

P ({S1, ..., SK}) =
∑ K∏

i=1

P (Si) = (K!)
K∏
i=1

P (Si), (3.19)

in which the sum goes over all permutations of {S1, ..., SK}. Thus, we have
L(M) = Lrissanen(K) − log2 P ({S1, ..., SK}), which connects the definition of
L(M) to the prior probability of M and hence justifies the introduction of the
term (− log2(K!)) in Equation (3.18).

3.4.4 MDL-based model selection

After the describing the approximate normalized maximum likelihood distri-
butions and the code length (number of bits) needed to specifying a model in
the model class, we can now formulate the task of learning truly unordered rule
sets as a model selection problem. That is, our goal is to search for the rule set,
denoted as M∗, among all possible rule setsM, such that

M∗ = argmin
M

L ((xn, yn),M) := argmin
M

[− log2 P
apprNML
M (Y n = yn|Xn = xn) + L(M)],

(3.20)
in which P apprNML

M (Y n = yn|Xn = xn) is defined in Equation (3.12) and L(M)

in Equation (3.18).
We refer to the proposed optimization function L((xn, yn),M) as our model

selection criterion; for a fixed model M and a (training) dataset (xn, yn), we refer
to the value of L((xn, yn),M) as the MDL-based score for the rule set model M .

58

Chapter 3 Probabilistic Truly Unordered Rule Sets

3.5 Learning Truly Unordered Rules from Data

Given the combinatorial nature of the search space, learning rule sets from
data is an extremely difficult task. Notably, although recently proposed algo-
rithms can obtain provably optimal rule lists (Angelino et al. 2017) and decision
trees (Hu et al. 2019), their branch-and-bound approaches are not applicable to
learning TURS models due to the following reasons. First, our model class (and
hence also search space) is different than that of rule lists and decision trees, since
our TURS model allows for overlaps of rules. Second, the output of the TURS
model is probabilistic while the optimal trees/lists algorithms learn rule-based
models with non-probabilistic (or just binary) output. Third, our model selec-
tion criterion, although requiring no hyper-parameter for regularization, does not
allow efficient search for the global optimum, as like most existing MDL-based ap-
proaches (Galbrun 2022). Hence, we cannot easily apply the branch-and-bound
approaches as employed by the optimal tree/list algorithms.

As for rule set methods, traditional algorithms focus on defining heuristics
that try to characterize the “quality” of individual rules in different ways, often
without a global optimization score (Fürnkranz and Flach 2005; Fürnkranz et
al. 2012). In addition, recently proposed ones mostly rely on randomized tech-
niques: DRS (Zhang and Gionis 2020) is based on heuristic-based randomized
algorithm, IDS (Lakkaraju et al. 2016) on stochastic local search, BRS (Wang
et al. 2017) on simulated annealing, and CG (Dash et al. 2018) on (randomized)
integer programming. However, BRS and CG are only suitable for binary target
and non-probabilistic rules, while DRS and IDS turn out to have unsatisfactory
predictive performance as shown in Section 3.6.

Therefore, we develop a heuristic-based algorithm for iteratively learning sin-
gle rules with extensive innovations in comparison to traditional heuristic algo-
rithms.

3.5.1 Learning a rule set

In the following, we start by describing the process of iteratively learning
a rule set, followed by discussing the heuristic of defining the “best” single rule
given the current status of the rule set. Then, we discuss how to learn a single
rule in Section 3.5.2, in which we introduce a diverse-patience dual-beam search

59

Learning Truly Unordered Rules from Data

algorithm, together with a novel look-ahead strategy that we propose based on
the analogy between the MDL principle and hypothesis testing (Grünwald 2007,
Chapter 14.3), which we hence name “MDL-based local testing”.

Iteratively learning a rule set

Algorithm 3: Iteratively Learning a Rule Set
Data: dataset D = (xn, yn)
Result: rule set M

1 Initialize M // Empty rule set.
2 while TRUE do
3 S ← Learn-Single-Rule(M,D) // Described in Algorithm 4
4 if L(D,M ∪ {S}) < L(D,M) then
5 M ←M ∪ {S} // The ``else-rule" updates accordingly
6 else
7 return rule set M

The process of learning a rule set iteratively, rule by rule, is shown in Al-
gorithm 3. The algorithm starts with an empty rule set (in which all instances
are covered by the “else-rule”) [Line 1]. Then, the “best” single rule, defined as
the one that maximizes what we call the learning-speed-score heuristic that is dis-
cussed in detail next, is learned from data [Line 3]. This single rule is added to
the rule set if adding it to the rule set decreases the MDL-based model selection
criterion defined Equation (3.20) [Lines 4-5]. This process is repeated until no
new rule can be found that further optimizes our model selection criterion [Lines
2-9].

Heuristic score for a single rule

Consider the search space of all possible rule sets, adding one single rule to
the rule set can be considered as one single “step” towards another “point” in
the search space. As it is obviously meaningless to add a new rule that does not
cover any previously uncovered instance, such a step always leads to a monotonic
increase for the coverage of the rule set (excluding the else rule).

Therefore, we propose a heuristic that leads to the next rule (step) with the

60

Chapter 3 Probabilistic Truly Unordered Rule Sets

steepest descent with respect to the increase in the coverage of rule set; that is, the
next “best” single rule (step) is defined as the one that maximizes the decrease of
the MDL-based score per extra covered instance. We hence name this heuristic as
the learning speed score. Formally, given a rule set denoted as M , the learning
speed score for a single rule S to be added to M is defined as

r(S) =
L ((xn, yn),M)− L ((xn, yn),M ∪ {S})

|M ∪ {S}| − |M |
, (3.21)

in which M ∪{S} denotes the rule set obtained by adding the single rule S to M .
Further, |M | and |M ∪ {S}| respectively denotes the coverage before and after
adding S to the rule set M (excluding the else-rule).

We next discuss how to search for the next best rule that optimizes r(S).

3.5.2 Learning a single rule

For describing our algorithm for learning a single rule, we start with describ-
ing the general paradigm of applying beam search in learning a single rule, and
then move forward to describe our three algorithmic innovations. Last, we put
everything together and describe our proposed algorithm in detail.

Preliminary: Beam Search for Learning a single rule

Recall that the condition of a rule S can be written as the conjunction of
literals, in which each literal takes the form of {Xi ∈ Ri}, with Ri representing
an interval if Xi is a quantitative variable and a set of categorical levels if Xi is a
categorical variable.

When applying a beam search in learning a single rule, we start with an empty
rule containing no literal that hence covers all instances. Next, we enumerate all
feature variables Xi to construct the search space of all possible single literals:
for continuous-valued Xi, we pick quantiles as splits points and combine it with
the operator (‘≥’ or ‘<’) to construct a literal, in which the “search granularity”
(i.e., the number of quantiles) is a hyper-parameter that depends on the task at
hand, as previously discussed in Section 3.4.3; for categorical variables, we assume
they are all one-hot encoded for simplicity, and hence the possible literals are just
(Xi = 1) or (Xi = 0). After enumerating all possible single literals, given a beam

61

Learning Truly Unordered Rules from Data

width W , we rank these literals with a predetermined criterion, and then pick the
top-W literals to be the W candidate rules of length one.

Next, for each of these W candidate rule of length one, we repeat the process
of enumerating all possible single literals to append to this rule. We refer to these
possible rules obtained by adding one more literal to a given rule as the rule growth
results. Among all rule growth results of these W length-one candidate rules, we
again pick the top-W length-two candidate rules, according to the predetermined
criterion.

We can repeat this process until some stopping criterion is met, e.g., no
rule growth result that can further optimize the model selection criterion can be
found (or this has happened consecutively for a number of times). Lastly, among
all these candidate rules with different lengths, we return the rule based on the
heuristic that defines the “best” next rule (i.e., the learning speed score r(.) in
our case).

Note that we build our diverse-patience dual-beam search algorithm upon this
general paradigm of applying beam search to learning a single rule with significant
algorithmic innovations, as follows: 1) instead of using one single heuristic for
searching for the next “best” rule, we introduce a look ahead strategy in the rule
growth process; 2) instead of simply keeping the top-W rule growth results in
the beam, we also monitor the diversity of “patience”; and 3) instead of a single
beam, we introduce another auxiliary beam with a complementary score and we
simultaneously keep two beams. The complementary score is proposed as we
observe that allowing overlaps in rule sets leads to the algorithmic challenge that
existing rules in the rule set may become obstacles to searching for new rules to
be added to the rule set. We next describe these three heuristics in depth.

MDL-based local testing

When growing a rule S by adding a literal and obtaining its growth result
S′, we essentially leave out the instances covered by S but not S′ to be covered
potentially by rules we may obtain later. Existing rule learning heuristics often
neglect this left-out part but focus only on characterizing the quality of the rule
growth result S′ itself. In contrast, we introduce a local test that can be viewed
as a way of assessing whether it is better to model the instances in {S \S′} by the
rule S (and hence discard S′ and stop growing S), or to leave out the instances

62

Chapter 3 Probabilistic Truly Unordered Rule Sets

in {S \ S′} for “future” rules that we may obtain later.
Formally, consider a rule S, its growth result S′, and the potentially left-out

part, defined and denoted as Sl = S \ S′. We only proceed to consider S′ as an
appropriate rule growth candidate if

− log2 PNML
S (yS |xS) > − log2 PNML

S′ (yS
′
|xS′

)− log2 PNML
Sl

(ySl |xSl) + Lsplit,

(3.22)
in which PNML

S (yS |xS) is the NML-distribution when viewing a single rule as a
local probabilistic model, defined in Equation (3.10). Further, Lsplit denotes the
code length needed to encode the condition that splits S into S′ and Sl. This
requires specifying 1) the variable of the literal and 2) the numeric threshold or
the categorical levels (which depends on the variable type), both with the uniform
code as described in Section 3.4.3. That is, we only allow rule growth that satisfies
the local test defined in Equation (3.22).

Intuitively, this is equivalent to building a depth-one decision tree for in-
stances covered by S only, in which the left and right nodes are S′ and Sl respec-
tively. We then compare whether S on itself or S′ together with Sl is a better local
model, according to the MDL principle (Grünwald 2007). Recall that MDL-based
model selection picks the model that minimizes the code length needed to encode
the data together with the model; thus, if the local test is satisfied, we prefer the
depth-one decision tree with nodes S′ and Sl over the single-node tree with the
only node S, and vice versa.

The rationale of the local test is that, by explicitly considering the local model
for the left out part Sl, we incorporate the potential carried by the instances in Sl.
That is, the local test we introduce can exclude those rule growth results of S that
may leave out a subset of instances that are hard to model later. We empirically
show in Section 3.5.2 that without MDL-based local testing, the learning speed
score can be too greedy and hence the algorithm fails to reveal the ground-truth
rule set model even in a simple simulated case.

Beam search with “patience” diversity

We now present the beam search with the patience diversity. For the simplic-
ity of presentation, we now focus on describing the beam search with the “main”
beam that adopts the learning speed score r(S) as the heuristic, after which the

63

Learning Truly Unordered Rules from Data

description of the complementary-score-assisted auxiliary beam immediately fol-
lows in Section 3.5.2.

Assuming the beam width is W , we start with a rule with empty condition
which all instances satisfy. Next, we go over all possible rule growth results by
adding one single literal. Furthermore, we keep the top-W rule growth results,
with the following properties: 1) they satisfy the MDL-based local testing, defined
previously in Section 3.5.2; 2) they have the highest learning speed score defined
by r(S) in Equation (3.21); and 3) they satisfy the patience diversity constraint,
which we discuss below.

Motivation for “patience” diversity. While we aim to iteratively search for
the rule with the best learning speed score r(S) (Equation 3.21), it may be too
greedy to directly use r(S) to search for the next best literal (as a rule can contain
multiple literals). Denote a rule as S and its growth result as S′, we empirically
observe that the coverage of S′ can shrink drastically in comparison to that of S
when directly using r(S) for learning the next literal. However, a more “patient”
search procedure with a moderate change in the coverage may be desirable in some
cases, as a moderate decrease in coverage leaves many possibilities for adding more
literals later. This concept of “patience” was first introduced in PRIM (Friedman
and Fisher 1999), and we are the first to combine it with a beam search approach.

Specifically, we propose to use the beam search approach to keep the diversity
of the patience, i.e., to have a variety of rule growth results, with diverse coverage
relative to the rule from which the rule growth result is obtained.
Beam search with patience diversity. Given a potentially incomplete rule S,
we search all candidate rules {S′} that can be obtained by adding a literal to S

(excluding those not satisfying the MDL-based local test).
Given a beam width W , we categorize all candidate rules, denoted as {S′},

into W clusters according to their coverage: the wth cluster is defined as:

{S′}w = {S′ ∈ {S′} : |S
′|
|S|
∈
[
w − 1

W
,
w

W

)
}, w ∈ {1, ...,W}; (3.23)

i.e., all candidate rule growth results in {S′}w must satisfy the condition that its
coverage divided by the coverage of S is in the interval [(w − 1)/W,w/W).

For each cluster, we search for the best growth result by optimizing the
learning speed score r(S′). In this way, our beam search is diverse with regard to

64

Chapter 3 Probabilistic Truly Unordered Rule Sets

the degree of “patience”: when the coverage decreases by a small ratio only, the
optimization is “patient” (by leaving a lot of possibilities for adding more literals);
on the other hand, when the coverage decreases by a large ratio, the optimization
is greedy (by leaving out little room for further refinement). We empirically
show that adopting patience diversity improves the prediction performance of our
method in Section 3.6.6.

Auxiliary beam with a complementary score

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

X1

X
2

Y

0

1

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

X1

X
2

Y

0

1

Figure 3.1: (Left) Simulated data with a rule set containing two rules (black outlines).
(Right) Growing a rule to describe the bottom-right instances will create conflicts with
existing rules. E.g., adding either X1 > 1 (vertical purple line) or X2 < 0.8 (horizontal
purple line) would create a huge overlap that deteriorates the likelihood.

We now describe the auxiliary beam in our dual-beam approach. We start with
the motivation for having an auxiliary beam, and next describe in detail the
complementary score, as well as how we incorporate the auxiliary beam in the
beam search algorithm.

Motivation for auxiliary beam. Recall that the learning speed score r(S)

evaluates the decrease of the MDL-based optimization score per extra covered
instance when S is added to the rule set; thus, to maximize r(S) we aim for
obtaining a rule S that 1) improves the likelihood of the instances not covered by
the rule set so far, and 2) has similar class probability estimates to those rules in
the rule set that overlap with S. However, when iteratively searching for the next
literal, the single literals we consider may not be able to contribute to both aims
simultaneously.

Consider an illustrative example with data and a rule set with two rules (in
black) in Figure 3.1 (left). If we want to grow a rule that covers the bottom-right
instances, the existing rules form a blockade: the right plot shows how adding

65

Learning Truly Unordered Rules from Data

either X1 > 1 or X2 < 0.8 to the empty rule (shown in purple) would create
a large overlap with the existing rules, with significantly different probability
estimates.

Our auxiliary beam is useful in cases like this, to keep literals like X1 > 1

or X2 < 0.8, which solely contributes to the first goal we discussed above, i.e.,
it improves the likelihood of the instances not covered by the rule set so far but
creates a “bad” overlap with a large class probability difference. As a rule’s class
probability estimation is still up to change during the growing process, we can
potentially “correct” bad overlaps by adding more literals later.

Thus, we propose an auxiliary beam together with a complementary score,
informally defined as the learning speed score calculated by ignoring the overlap
created by the new rule that is being grown. We next formally define the comple-
mentary score.

Complementary score. Formally, given a rule set M and a new rule S (i.e.,
S /∈ M), the complementary learning speed after adding S to M , denoted as
R(S), is defined as

R(S) =
L ((xn, yn),M)− L ((xn, yn),M ∪ {S \M})

|M ∪ {S \M}| − |M |
(3.24)

in which S \M can be regarded as a “hypothetical” rule with the cover equal to
the instances covered by rule S excluding the instances covered by rules already in
M , and hence L ((xn, yn),M ∪ {S \M}) denotes the MDL-based score (as defined
in Equation 3.20) after adding S \M to the rule set M .

Complementary-score-assisted beam search. We simultaneously keep two
beams, both with a beam width W . Apart from the beam that keeps the top-W
literals according to the learning speed score r(.), we additionally keep an auxiliary
beam that keeps the top-W literals according to the complementary score R(.).

Further, the auxiliary beam must also satisfy the MDL-based local testing
defined in Section 3.5.2, with the NML distribution calculated based on instances
excluding those covered by the rule set. That is, consider a rule set M , a rule S

with its growth result S′, and the left-out part S \ S′ := Sl, the local test for the

66

Chapter 3 Probabilistic Truly Unordered Rule Sets

auxiliary beam is defined as

− log2 PNML
S (yS\M |xS\M) >

− log2 PNML
S′\M (yS

′\M |xS′\M)− log2 PNML
Sl\M (ySl\M |xSl\M) + Lsplit.

(3.25)

Additionally, the auxiliary beam must satisfy the patience diversity, as de-
scribed in Section 3.5.2. The only difference is that the coverage of each rule is
calculated based on S \M instead of S; i.e., instances that are already covered
by the rule set M are ignored.

Algorithm description

We now put all heuristics together and describe in full our algorithm for
finding the next rule, of which the pseudo code is provided in Algorithm 4.

With a rule set M that either contains no rule or some existing rules, we
always start with an Empty Rule that contains no literals for its condition, and
we initialize the “rules-for-next-iter” [Line 2] as an array containing the empty
rule only.

For each iteration, we initialize a new beam an a new auxiliary beam [Line 4-
5] with beam width W . The beam keeps the top-W rule growth results using the
learning speed score defined in Equation (3.21); in contrast, the auxiliary beam
keeps the W best rule growth results using the complementary score by ignoring
the rule’s overlap with M , as discussed in detail in Section 3.5.2.

Next, we use every rule in the “rules-for-next-iter” array as a “base” for
growing [Line 6-18]. Specifically, given a rule, we first generate its candidate
growth by adding one literal only [Line 7]. That is, we go over all feature variables
in the dataset, and for each variable, we generate candidate literals with numeric
thresholds (quantiles) or with categorical levels, based on the variable type.

Further, we cluster the generated candidates by their coverage (for the beam),
as well as their coverage excluding the instances already covered by M (for the
auxiliary beam) [Line 8 & 12]. We next filter out the candidates in “categorized-
candidates” and “categorized-candidates-auxiliary” with the MDL-based local test
defined in Section 3.5.2 [Line 9 & 13]. Further, we search for the best candidate
in each cluster of the beam using r(.), and each cluster of the auxiliary beam using
R(.) [Line 10-11 & 14-15].

67

Experiments

To check whether the growing process should be stopped after this iteration,
we take a budget denoted asKstop: we stop the beam search when this is theKstop-
th time in a row that both beams (the beam and the auxiliary beam) produce
rules with worse scores (r(.) for the “beam” and R(.) for the “auxiliary-beam”)
than the previous beams [Line 19].

If the stopping criterion is not met, we first filter the beam and auxiliary beam
to reduce the number of rules in each beam to be equal to the beam width W ,
as both of them now contain (W ∗ length(rules-for-next-iter)) rules [Line 22-23].
Specifically, we sort all rules in the beam based on their coverage and categorize
them into W clusters; next, for each cluster, we keep the top-W rules with the
highest r(.) for the “beam” and highest R(.) for the “auxiliary-beam”, as the
base for rule growing for the next iteration. Last, we update “all-candidate-rules”
and “rules-for-next-iter” [Line 24-25], and continue to the next iteration [Line
3]. The former is the pool we use for finally selecting the next best rule to be
potentially added to M , and the latter contains all “base rules” for the next rule
growth iteration, which contains all rules in the beam and the auxiliary beam.

Finally, if the stopping criterion is met, we return the rule S among “all-
candidate-rules” with the best (largest) learning speed score r(.) [Line 20].

3.6 Experiments

We extensively benchmark our diverse-patience dual-beam algorithm and we
study the truly unordered rule sets (TURS) model learned from data in the fol-
lowing aspects:

1. Does the TURS model learned from data achieve on-par or better classifica-
tion performance in comparison to other rule-based methods, especially rule
set methods that allow (implicit) orders among rules?

2. Can rules in the TURS model learned from data be empirically treated as
truly unordered?

3. Do the class probability estimates from rules in the induced TURS model
generalize well to unseen (test) instances, such that these probability esti-
mates are reliable to serve as part of the explanations for the (probabilistic)
predictions?

68

Chapter 3 Probabilistic Truly Unordered Rule Sets

4. Is the model complexity of the TURS model learned from data smaller than
that of the rule-based models learned by competitor methods?

5. What are the effects of our proposed heuristics, including the beam search
with patience diversity and the MDL-based local test?

3.6.1 Setup

Datasets. We conduct an extensive experiments with 31 datasets, summa-
rized in Table 3.2. Our multi-class datasets are from the UCI repository, while
the binary-class datasets are from both the UCI repository (Dua and Graff 2017)
and the ADBench Github repository (Han et al. 2022). ADBench is a bench-
mark toolbox for anomaly detection (including imbalanced classification), and all
datasets from it are marked in italics in Table 3.2.
Competitors. We compare against a wide ranges of methods, summarized as
follows. First, we compare with unordered CN2 (Clark and Boswell 1991), which
adopts the one-versus-rest strategy. As CN2 does not impose an implicit order
among rules, it is conceptually the closest competitor to our method. Second, we
compare with DRS (Zhang and Gionis 2020) and IDS (Lakkaraju et al. 2016), as
they are the only two multi-class rule set methods without first learning rules for
individual class labels and then leveraging the one-versus-rest strategy, to the best
of our knowledge. Further, similar to us, they also incorporate the properties of
overlaps in their optimization scores: DRS aims to minimize the size of overlaps,
while IDS optimizes a linear combination of seven scores, one of which explic-
itly penalizes the size of overlaps. Third, we compare with CLASSY, a recently
proposed ordered rule list method, as it uses a similar model selection approach
based on the MDL principle. Fourth, since the MDL principle is conceptually
related to Bayesian modelling, we also compare with BRS (Wang et al. 2017)
as a representative method under the Bayesian framework, which also adopts an
non-heuristic simulated annealing approach. Last, we include RIPPER (Cohen
1995), CART (Breiman et al. 1984), and C4.5 decision trees (Quinlan 2014), due
to their wide use in practice.
Implementation details. For TURS, we set the beam width as 10, and the
number of candidate cut points for numeric features as 203. For competitor al-

3We observe that further increasing the number of candidate cut points for numeric features to 100, as
well as the beam width to 20, makes no big difference on the predictive performance in general.

69

Experiments

gorithms, we use CN2 from Orange (Demšar et al. 2013), IDS from a third-party
implementation with proven scalability (Filip and Kliegr 2019), RIPPER and
C4.5 from Weka (Hall et al. 2009) and its R wrapper, CART from Python’s
Scikit-Learn package (Pedregosa et al. 2011), and finally, DRS, BRS, CLASSY
from the original authors’ implementations. Competitors algorithms’ configura-
tions are set to be the same as the default as in the paper and/or in original
authors’ implementations. We make the code public for reproducibility4.

All reported results in this section are based on five-fold stratified cross-
validation, unless mentioned otherwise.

Figure 3.2: For each algorithm, we calculate for every individual dataset the difference
between its ROC-AUC score and the best ROC-AUC scores. The differences to the best
ROC-AUC scores for each algorithm is illustrated by a box-plot.

3.6.2 Classification performance

To investigate the classification performance for the TURS model learned
from data, we report in Table 3.3 average ROC-AUC scores on the test sets
obtained using five-fold stratified cross-validation. For multi-class classification,
we report the “macro” one-versus-rest AUC scores, as “macro” AUC treats all
class labels equally and hence can characterize how well the classifiers predict for
the minority classes.

Note that BRS (Wang et al. 2017) can only be applied to binary datasets.
Further, we fail to obtain the results of DRS on three datasets because the imple-
mentation of DRS makes it incapable of handling datasets with very large number

4https://github.com/ylincen/TURS2.

70

Chapter 3 Probabilistic Truly Unordered Rule Sets

of columns5. We also fail to obtain the result of IDS on one dataset as it exceeds
the predetermined time limit: 10 hours for one single fold of one dataset.

We show that TURS is very competitive in comparison to its competitors in
the following aspects. First, TURS performs the best in 11 out of the total 31
datasets, and performs the best in 6 out of 11 multi-class datasets. We denote
the best ROC-AUC for each dataset in bold. Second, we report the difference
between TURS’s ROC-AUC scores and the best ROC-AUC scores for each indi-
vidual dataset, in the bracket in the table. This shows the gap between TURS
and the best competitor for each individual dataset.

We further calculate the ROC-AUC scores of each competitor algorithm for
each dataset, minus the best ROC-AUC score for each individual dataset, which
measures the “gaps to the best” for each competitor algorithm. We compare
these gaps-to-best scores for all competitor algorithms in Figure 3.2. The box-
plots demonstrate that TURS is very stable for all 31 datasets we have tested,
and in comparison to its competitors the gaps-to-best scores are much smaller.

Third, among all rule set methods (CN2, DRS, IDS, TURS), TURS shows
substantially superior performance against DRS and IDS. As DRS and IDS both
aim to reduce the size of overlaps, our results indicate that simply minimizing
the sizes of overlaps may impose a too restricted constraint and hence lead to
sub-optimal classification performance. On the other hand, CN2 is competitive
in terms of obtaining the best AUCs, especially for binary datasets, as shown in
Table 3.3. However, as shown in Figure 3.2, CN2 has in general larger gaps to
the best AUCs than TURS does. Further, more comparison between TURS and
CN2 will be presented in the following paragraphs.

3.6.3 Prediction with ‘random picking’ for overlaps

Recall that in our definition of the truly unordered rule set (TURS) model,
we estimate the class probabilities for overlaps by considering the “union” of the
covers of all involved rules. Thus, the next question we study empirically is
whether our formalization of rule sets as probabilistic models can indeed lead to
overlaps only formed by rules with similar probabilistic estimates.

Therefore, we compare the probabilistic predictions of our TURS models
5The key issue is that their implementation involves transforming a binary vector to an integer, and they

use the “numpy” package for this, which does not support “arbitrarily large integers”.

71

Experiments

against the probabilistic predictions by what we call “random picking” for over-
laps: when an unseen instance is covered by multiple rules, we randomly pick
one of these rules, and use its estimated class probabilities (estimated from the
training set) as the probabilistic prediction for this instance.

Intuitively, if the overlaps are formed only by rules with similar probabilis-
tic output, we expect the probabilistic prediction performance by TURS and by
“TURS with random-picking” (abbreviated as TURS-RP) to be very close. We
report the ROC-AUC of TURS and TURS-RP in Table 3.4, together with the per-
centage of instances covered by more than one rules (the “%overlaps” column).
The ROC-AUC scores are obtained using five-fold cross-validation, and specifi-
cally, for each fold, the “random picking” ROC-AUC is obtained by averaging the
ROC-AUC scores obtained by 10 random picking probabilistic predictions.

We benchmark the ROC-AUC scores against those of CN2 (IDS and DRS are
excluded due to their sub-optimal performance in general). We have shown that
the differences between the ROC-AUC of TURS and TURS-RP are all negligible
up to the second decimal (i.e., smaller than 0.01), while the differences between
the ROC-AUC of CN2 and CN2-RP are mostly larger than 0.01 (shown in bold),
among which eight are larger than 0.05.

We can hence conclude that, while CN2 relies heavily on its conflict resolving
schemes for overlaps, TURS produces overlaps only formed by probabilistic rules
with very similar probability estimates. This indicates our probabilistic rules can
be viewed as truly unordered in the sense that, when an instance is covered by
multiple rules, the rule chosen to predict class probabilities has little effect on the
prediction performance.

3.6.4 Generalizability of local probabilistic estimates

While rule-based models are commonly considered to be intrinsically explain-
able models, we argue that only rules with probability estimates that generalize
well can serve as trustworthy explanations. Thus, we next examine the difference
between individual rules’ probability estimates on the train and test sets.

Specifically, given a rule set induced from a specific dataset, we look at each
individual rule’s probability estimates, estimated from the training and test set re-
spectively, by the maximum likelihood estimator. Finally, we report the weighted
averages of the probability estimates differences for all rules, weighted by the

72

Chapter 3 Probabilistic Truly Unordered Rule Sets

Figure 3.3: The weighted average of the differences between the class probability esti-
mates of every individual rule for training and test sets, shown as the empirical cumulative
distribution function, in which the weight is defined as the coverage of each rule for the
training set.

coverage of each rule on the training set.
Formally, given a rule set with K rules, M = {S1, ..., SK}, denote the proba-

bility estimates of all rules by (p1, ..., pK) and (q1, ..., qK), respectively estimated
from the training and test set. Assume each probability estimate has length C

(i.e., C = 2 for binary target and C > 2 for multi-class target), we measure how
well the individual rules generalize by

g =
1

K

∑
j

|Sj |

(∑
c

1

C
|pjc − qjc|

)
(3.26)

in which pjc (qjc) is the c-th element of vector pj (qj). Note that each individual
rule is treated separately in calculating the g-score above, and hence the overlaps
do not play a role here.

We calculate this score for all algorithms and all datasets, averaged using
the five-fold stratified cross-validation, and we present the results with empirical
cumulative density functions (ECDF) in Figure 3.3. Since the position of the
curve towards the upper-left shows that the corresponding algorithm has small
probability estimate differences between training and test sets, we observe that

73

Experiments

TURS (the bold curve) dominates rule sets learned by the rest of the algorithms,
with IDS the only close competitor.

For some datasets, IDS learns rule sets that have smaller probability esti-
mation differences than the TURS model (shown by the fact that part of the
corresponding blue curve is above the curve of TURS in bold). However, this
indicates that IDS has serious “under-fitting” if we take into consideration IDS’s
suboptimal predictive performance as discussed in Section 3.6.2. That is, IDS pro-
duces rules with too large coverage, and hence is not specific and refined enough
for classification, although rules with large coverage have probability estimates
that generalize well.

Thus, in conclusion, rules in the TURS model learned by our algorithm are
equipped with more reliable and trustworthy class probability estimates, in com-
parison to the other eight tree- and rule-based models.

Figure 3.4: Empirical cumulative distribution function for the comparative score for
model complexity. Curves towards the bottom-right indicate larger comparative scores and
simpler models.

3.6.5 Model complexity

We study next whether TURS empirically leads to more complex rule sets
given that it allows overlaps formed by rules with similar probabilistic outputs
only.

74

Chapter 3 Probabilistic Truly Unordered Rule Sets

We measure the model complexity by the number of total literals for each
model: i.e., summing up the lengths of rules in a rule set, rule list, or decision
tree (by treating each tree path as rule), which directly indicates the workload for
a domain expert if they read the rules. We report this measure in Table 3.5, and
specifically, we mark the results from the models with substantially worse ROC-
AUC scores than those of TURS by denoting them in smaller font sizes. Precisely,
for a given dataset, all competitor models with more than 0.1 smaller ROC-AUC
scores than that of TURS are marked. Excluding the results from these models,
we observe that TURS produces the simplest model for 13 out 31 datasets. The
model complexity of all simplest models are denoted in bold in Table 3.5.

Further, to illustrate the differences between the number of literals across all
algorithms, we calculate a comparative score as follow: for each individual dataset,
we divide the minimum total number of literals by the total number of literals of
each algorithm. This score show that, for each pair of dataset and algorithm, what
is the ratio of the minimum number of literals for this dataset, over the number of
literals for the algorithm-dataset pair, i.e., larger scores indicate simpler models
as the minimum number of literals is the numerator. We plot the ECDF of these
comparative scores in Figure 3.4, excluding the comparative scores obtained from
models with substantially worse ROC-AUC scores than that of TURS, same as
above. We observe that TURS lies at the most bottom-right, dominating the other
competitors, since curves towards the bottom-right indicate larger comparative
scores and hence simpler models.

3.6.6 Ablation study 1: diverse patience beam search

We study the effect of using the beam search with the “diverse patience”, by
replacing it with a “normal” (non-diverse) beam search. Suppose the beam width
is W , we then pick the top-W rule growth candidates without categorizing rule
growth candidates by their coverage. That is, we “turn off” the diverse coverage
constraints both for updating the beam and the auxiliary beam.

As shown in Figure 3.5, when using the diverse coverage heuristic, the ROC-
AUC on the test sets (points and curve in orange) becomes better on 25 out of 31
datasets, demonstrating the benefits for predictive performance.

75

Experiments

Figure 3.5: The differences between the ROC-AUC scores on the test sets with and
without the diverse patience.

3.6.7 Ablation study 2: MDL-based local testing

Figure 3.6: The process of adding rules to the rule set, with and without the local
testing heuristics, using the first dataset among the 100 simulated datasets. Each point
represents the status after a single rule is added, with the x-axis representing the coverage of
the (potentially incomplete) rule set after adding this rule, and the y-axis representing the
MDL-based score.

Recall that the MDL-based local test is used for evaluating the “potential” in
the left out instances when growing a rule. Thus, from the perspective of optimiza-
tion, it is used for looking ahead to prevent ending up in a local minimum when
optimizing our MDL-based model selection criterion as defined in Equation (3.20).

We next illustrate that, without the local test, our algorithm would fail to
reveal the ground-truth rule set model even for a very simple simulated dataset.
Instead, it would learn a much more complicated model, and consequently, our
optimization algorithm would end up at an inferior minimum.

76

Chapter 3 Probabilistic Truly Unordered Rule Sets

Consider a simulated dataset generated by a known ground-truth rule set
model with one rule only as follows. The feature variables are denoted as X =

(X1, ..., X50), which are assumed to be all binary. We sample X1 ∼ Ber(0.2),
Xi ∼ Ber(0.5)(i = 2, ..., 50), in which Ber(.) denotes the Bernoulli distribution.
Further, we consider binary target variable Y and sample Y |X1 = 1 ∼ Ber(0.7)

and Y |X1 = 0 ∼ Ber(0.95). That is, X1 = 1 (or X1 = 0) is the only “true rule”
in this simulated dataset.

We simulate the dataset with sample size 5 000 for 100 times, and run TURS
with and without local testing. As shown in Table 3.6, without local testing we
achieve a worse (larger) score for our optimization function (i.e., the MDL-based
score).

Notably, although the ROC-AUC scores are similar for using and not using
the local testing, the ground truth model is only found when local testing is used.
When the local testing is disabled, the number of rules and the rule lengths are
both not consistent with the “true” model, as irrelevant variables are picked when
growing the rules. We have two perspectives to explain the inconsistency.

To begin with, as shown in Table 3.6, when the local testing is not used,
the difference between the class probabilities estimated from the training and test
dataset is larger than the difference when the local testing is imposed, which
indicates that the rules as local probabilistic models generalize worse when the
local test heuristic is turned off. In other words, we observe overfitting locally.

Further, as we wrote as motivation in Section 3.5.2, the local testing heuristic
is designed to prevent leaving out instances that are difficult to cover for ‘future’
rules, and we do notice this phenomenon empirically. Specifically, for a single
run of TURS on the simulated dataset, we plot in Figure 3.6 the procedure of
iteratively searching for the next best rule: each point represents the status of
the rule set after a single rule is added, with the x-axis representing the coverage
of the rule set (i.e., the number of instances covered by at least one of the rules
excluding the else-rule), and the y-axis representing the MDL-based score for the
rule set as a whole model. Thus, our learning speed score, defined in Section 3.5.1,
basically tries to iteratively find the next point (i.e., the next rule) in Figure 3.6
with the steepest slope.

However, without the local test heuristic, although the learning speed scores
(shown by the red curve in Figure 3.6) are in the first place larger than that of

77

Experiments

the blue curve (for the case when the local testing is used), the red curve achieves
an inferior optimization result in the end. That is, without local testing, the
instances that are left out are simply ignored during the process of rule growing,
which leads to a worse optimization result.

3.6.8 Runtime

Figure 3.7: Average runtime for five rule set methods. The y-axis is scaled by log10(·).

Last, we report the runtime of TURS, together with rule set competitor
methods only, as decision trees/lists methods from mature software (Weka and
Python Scikit-Learn) are highly optimized in speed and are known to be very fast.

We illustrate average the runtime (in seconds) obtained using cross-validation
in Figure 3.7. In general, the runtime of TURS is competitive among all rule set
methods except for CN2. CN2 seems faster in general and scales better to larger
datasets, which can be caused both by a more efficient implementation (from the
software “Orange3”), and by its algorithmic properties (a greedy and separate-
and-conquer approach). However, as we saw in Section 3.6.3, rule sets learned
from data by CN2 cannot be empirically treated as truly unordered.

78

Chapter 3 Probabilistic Truly Unordered Rule Sets

3.7 Conclusion

We studied the problem of learning truly unordered rule sets from data. While
existing rule set methods adopt post-hoc schemes to resolve conflicts caused by
overlapping rules, we proposed the intuitive idea of only “allowing” rules to overlap
if they have similar probabilistic output. Building upon this, we formally defined
a truly unordered rule set (TURS) model: given a set of rules and a dataset
(assumed i.i.d.), the TURS model defines the likelihood of the class labels given
the feature values.

Further, we formalized the problem of learning such TURS model from data
as a probabilistic model selection problem, by leveraging the minimum description
length (MDL) principle. Our MDL-based model selection criterion can strike a
balance between the goodness-of-fit and the model complexity without any regu-
larization parameter.

We further proposed a carefully designed dual-beam diverse-patience algo-
rithm to learn the TURS model from data. We showed that our algorithm can
induce rules with competitive performance with respect to the following aspects.
First, we benchmarked our algorithm using a large number of datasets and showed
that the learned TURS model has very competitive predictive performance mea-
sured by the ROC-AUC. Specifically, in comparison to other multi-class rule set
methods (CN2, DRS, IDS), the TURS model learned by our algorithm shows clear
superiority with respect to the ROC-AUC scores. Second, uniquely, we showed
that the TURS model learned by our algorithm is empirically truly ordered, in
the sense that the predictive performance is hardly affected when predicting in-
stances covered by multiple rules through a randomly picked rule among these
multiple rules. Third, the learned TURS model contains single rules with reliable
and trustworthy class probability estimates that can generalize well to the un-
seen instances. Fourth, the model complexity of the learned TURS model is also
competitive in comparison to other rule-based methods.

For future work, we consider using TURS as a building block towards de-
signing interactive rule learning algorithms with humans in the loop, since rules
being truly unordered instead of entangled are more comprehensible and easier
to edit. That is, comprehending and editing single rules in the TURS model does
not require domain experts or data analysts to consider other (potentially many,

79

Conclusion

higher-ranked) rules. In sensitive area like health care, this may help build trust
between the data-driven models and domain experts.

In addition, extending truly unordered rule sets to other machine learning
tasks such as feature construction, subgroup discovery, regression with uncer-
tainty, and explaining black-box models are all promising directions.

80

Chapter 3 Probabilistic Truly Unordered Rule Sets

3.8 Appendix: Comparison to the Previous Work

As this chapter is based on the previous chapter, we hereby summarize the
main changes and additions as follows. First, while working on the follow-up real-
world case study in health care, we noticed an unsatisfactory prediction perfor-
mance of our previous method. After careful investigation, we realized it was the
algorithmic heuristics that could be further improved. Specifically, the previous
method used a heuristic motivated by the FOIL’s information gain (Fürnkranz et
al. 2012), i.e., an MDL-based Foil-like compression gain; however, we later noticed
extending the FOIL’s information gain to multi-class situations will cause prob-
lem when using it to guide the search for rule growth, since it can be proven that
the FOIL’s information gain will only lead to rules with lower empirical entropy
than the rules in the previous step. This specifically can cause problems when
the dataset is noisy (in the sense that the Bayes-optimal classifier cannot achieve
a perfect or near-perfect classification) and/or imbalanced. Therefore, we now
implement a learning-speed heuristic, motivated by the “normalized gain” used
in the CLASSY algorithm for rule lists (Proença and Leeuwen 2020); however,
as we observe “normalized gain” often shrinks of the rule’s coverage (the number
of instances covered by the rule) too fast, we further introduced a diverse beam
search with diverse “patience”, in which the concept of patience is motivated from
the PRIM method (Friedman and Fisher 1999), one of the first pioneer works for
regression rules.

Second, one unique challenge of learning truly unordered rules is to both
evaluate the quality of individual rules and the quality of the overlaps (i.e., whether
the rules that form the overlap do not have similar enough outputs). However,
this makes existing rules obstacles for the following search for more rules, as
we elaborate in Section 3.5.2. In our previous work, we adopted a “two-stage”
algorithm: in the first stage, the existing rules are ignored when calculating the
heuristics, and next we use the results of the first stage as “seeds” for the second
stage, in which the existing rules are considered in order to calculate the MDL-
based score for evaulating the rules. However, we noticed that the first stage can
output rules of which the number of covered instances is too small to be further
refined when incorporating its overlaps with existing rules in the second stage.
Therefore, we now combine these two stages by always keeping two “beams” in

81

Appendix: Comparison to the Previous Work

the beam search, with one beam using the heuristic score that ignores the existing
rules and the other incorporating the existing rules.

Third, given the necessity to evaluate the “potential” for the instances that
are not covered by any rule so far during the rule set learning process, which is
closely related to the claim made in the previous work (Fürnkranz and Flach 2005)
that evaluating incomplete rule sets are a challenging and unresolved issue in rule
learning in general, in our previous work we proposed to use a surrogate CART
decision tree model to assess the potential for the uncovered instances. However,
this approach turned out to be not very stable for this purpose in general, as we
cannot afford the computational time for tuning the regularization parameter for
the post-pruning for CART; in addition, when the dataset is very imbalanced, the
performance of CART is sub-optimal and hence does not provide a satisfactory
assessment. To resolve this issue, in this chapter we introduce a local constraint
based on the local MDL compression gain, as discussed in Section 3.5.2.

Besides the algorithmic improvements, we substantially extended the exper-
iments for the purpose of studying the truly unordered rules in detail. That is,
the purpose of the experiments in the previous chapter was to show that, with the
(soft) constraints of only allowing rules with similar outputs to overlap, truly un-
ordered rule sets can achieve on-par predictive performance in comparison to rule
sets methods that adopt ad-hoc schemes for conflicts caused by overlaps. However,
in this chapter, we aim for studying 1) the predictive performance on a large scale
of datasets, 2) whether the induced rules from data can be empirically regarded as
truly unordered, in the sense that how large is the effect if we randomly pick one
rule for predicting an instance covered by multiple rules, 3) whether the proba-
bilistic estimates of individual rules can generalize to unseen (test) instances, such
that the individual rules can be used as reliable and trustworthy explanations to
the predictions, and 4) whether our rule sets need to sacrifice model complexity
for being “truly unordered”, given that our search space is essentially much more
complicated in comparison to i) non-probabilistic rules, ii) rules for binary targets
only, and iii) methods with the separate-and-conquer strategy that simplifies the
search space by iteratively removing covered instances.

Moreover, we also made a moderate modification to our optimization score.
If we simply regard the (vanilla definition of) MDL-based model selection criterion
as a score based on the penalized maximum likelihood, the penalty consists of two

82

Chapter 3 Probabilistic Truly Unordered Rule Sets

terms: 1) the code length of model and 2) the regret. However, it is well-known
that, firstly by the implementation of C4.5 rules (Quinlan 2014), the code length of
the model (the first term in the penalty) does not consider the redundancy in the
model class of all possible rule sets, which can cause under-fitting. Specifically,
during the implementation of our previous work, we simply exclude this “code
length of the model” term, since we noticed that when not including this term, the
predictive performance is in general better (at the cost of higher model complexity
though). However, with the improved algorithm we propose in this chapter, we can
now include the code length of model term for obtaining simpler models without
sacrificing predictive performance.

Finally, we now formally defined TURS as a probabilistic model, while the
previous chapter was not very precise in this regard. Also, we unified the nested
overlap (i.e., one rule fully cover the other rule) and non-nested overlap of rules
in the previous chapter, without using separate modelling schemes for the two
cases respectively. Empirically, checking whether an overlap is a nested overlap is
computationally expensive, while the empirical results show that the final model
learned from the data rarely contains such nested overlap.

83

Appendix: Comparison to the Previous Work

Algorithm 4: Learn a single rule
Input: Rule set M , dataset (xn, yn), beam width W
Output: The next rule S

1 all_candidate_rules← []
2 rules_for_next_iter← [∅] // Initialize the rule with an

``empty" condition
3 while TRUE do
4 beam← [] // Initialize the beam for the beam search
5 auxiliary_beam← [] // Initialize the auxiliary beam

(Section 3.5.2)
6 for rule in rules_for_next_iter do
7 rule_candidates← generate_candidates(rule) // Enumerate

literals and append to rule
8 categorized_candidates← categorize(rule_candidates)

// Categorize into clusters by coverage
(Section 3.5.2)

9 categorized_candidates←
MDL_local_testing(categorized_candidates) // Defined in
Section 3.5.2

10 top_W_candidates← The candidate with the highest r(.)
11 in each category of categorized_candidates
12 categorized_candidates_auxiliary← categorize(rule_candidates)

// Categorize into clusters by coverage excluding the
instances covered by M (Section 3.5.2)

13 categorized_candidates_auxiliary←
MDL_local_testing(categorized_candidates_auxiliary)

14 top_W_auxiliary← The best candidate with the highest R(.)
15 in each category of categorized_candidates_auxiliary
16 beam.append(top_W_candidates)
17 auxiliary_beam.append(top_W_auxiliary)
18 if stopping_criterion_is_met then
19 return the rule with the highest r(.) in all_candidate_rules
20 else
21 beam ← top-W candidates in beam with the highest r(.)

// Reduce the number of rules to W
22 auxiliary_beam←

top-W candidates in auxiliary_beam with the highest r(.)
23 all_candidate_rules.append(beam)
24 rules_for_next_iter← beam ∪ auxiliary_beam

84

Chapter 3 Probabilistic Truly Unordered Rule Sets

Data # rows # columns # classes max. class prob. min. class prob.
aloi 49534 28 2 0.970 0.030
backdoor 95329 197 2 0.976 0.024
backnote 1372 5 2 0.555 0.445
chess 3196 37 2 0.522 0.478
diabetes 768 9 2 0.651 0.349
glass-2 214 8 2 0.958 0.042
ionosphere 351 35 2 0.641 0.359
magic 19020 11 2 0.648 0.352
mammography 11183 7 2 0.977 0.023
musk 3062 167 2 0.968 0.032
optdigits 5216 65 2 0.971 0.029
pendigits-2 6870 17 2 0.977 0.023
satimage-2 5803 37 2 0.988 0.012
smtp 95156 4 2 1.000 0.000
thyroid 3772 7 2 0.975 0.025
tic-tac-toe 958 10 2 0.653 0.347
vowels 1456 13 2 0.966 0.034
waveform-2 3443 22 2 0.971 0.029
wdbc 367 31 2 0.973 0.027
anuran 7195 24 4 0.614 0.009
avila 20867 11 12 0.411 0.001
car 1728 7 4 0.700 0.038
contracept 1473 10 3 0.427 0.226
drybeans 13611 17 7 0.261 0.038
glass 214 11 6 0.355 0.042
heartcleveland 303 14 5 0.541 0.043
iris 150 5 3 0.333 0.333
pendigits 7494 17 10 0.104 0.096
vehicle 846 19 4 0.258 0.235
waveform 5000 22 3 0.339 0.329
wine 178 14 3 0.399 0.270

Table 3.2: Datasets for binary (top) and multi-class classification (bottom), publicly
available on the UCI repository and the ADBench Python package; datasets from the latter
are marked in Italic. We use the maximum and minimum of the marginal class probabilities
to indicate the degree of class imbalance.

85

Appendix: Comparison to the Previous Work

Data BRS C45 CART CLASSY Ripper CN2 DRS IDS TURS(diff to best)

aloi 0.519 0.398 0.621 0.654 0.485 0.569 0.500 0.509 0.619 (-0.035)

backdoor 0.917 0.990 0.979 0.996 0.976 0.997 — — 0.995 (-0.002)

backnote 0.957 0.987 0.983 0.990 0.982 0.993 0.988 0.765 0.981 (-0.012)

chess 0.957 0.998 0.995 0.992 0.995 0.532 0.809 0.677 0.994 (-0.004)

diabetes 0.725 0.710 0.667 0.737 0.641 0.709 0.727 0.595 0.750 (0)

glass-2 0.676 0.890 0.790 0.730 0.793 0.941 0.926 0.912 0.949 (0)

ionosphere 0.802 0.882 0.851 0.886 0.911 0.941 0.712 0.786 0.904 (-0.037)

magic 0.767 0.869 0.799 0.888 0.819 0.698 0.774 0.507 0.887 (-0.001)

mammography 0.644 0.817 0.730 0.890 0.582 0.891 0.857 0.535 0.897 (0)

musk 1.000 0.995 1.000 1.000 1.000 1.000 — 1.000 1.000 (0)

optdigits 0.897 0.959 0.942 0.986 0.966 0.992 — 0.960 0.977 (-0.015)

pendigits-2 0.938 0.986 0.964 0.974 0.973 0.996 0.948 0.914 0.955 (-0.041)

satimage-2 0.922 0.914 0.915 0.929 0.964 0.964 0.699 0.867 0.909 (-0.055)

smtp 0.596 0.930 0.965 0.905 0.950 0.853 0.889 0.879 0.972 (0)

thyroid 0.897 0.972 0.950 0.983 0.989 0.998 0.921 0.960 0.961 (-0.037)

tic-tac-toe 1.000 0.878 0.918 0.978 0.972 0.932 0.992 0.599 0.965 (-0.035)

vowels 0.854 0.693 0.773 0.796 0.758 0.897 0.813 0.748 0.817 (-0.08)

waveform-2 0.567 0.716 0.648 0.847 0.333 0.886 0.540 0.774 0.832 (-0.054)

wdbc 0.836 0.999 0.896 0.843 0.899 0.836 0.620 0.942 0.947 (-0.052)

anuran — 0.995 0.944 0.968 0.996 0.962 0.945 0.602 0.973 (-0.023)

avila — 0.999 0.977 0.987 0.993 0.920 0.729 0.617 0.990 (-0.009)

car — 0.956 0.939 0.978 0.931 0.885 0.935 0.831 0.980 (0)

contracept — 0.680 0.597 0.653 0.607 0.598 0.598 0.549 0.658 (-0.022)

drybeans — 0.970 0.943 0.977 0.979 0.929 0.975 0.591 0.989 (0)

glass — 0.970 0.984 0.975 0.940 0.937 0.926 0.793 0.967 (-0.017)

heartcleveland — 0.603 0.572 0.721 0.509 0.694 0.611 0.513 0.695 (-0.026)

iris — 0.960 0.975 0.970 0.962 0.977 0.954 0.810 0.981 (0)

pendigits — 0.982 0.974 0.986 0.983 0.991 0.967 0.522 0.994 (0)

vehicle — 0.856 0.789 0.870 0.859 0.858 0.764 0.579 0.882 (0)

waveform — 0.842 0.814 0.910 0.880 0.803 0.654 0.517 0.915 (0)

wine — 0.937 0.906 0.960 0.937 0.973 0.909 0.854 0.952 (-0.021)

Table 3.3: Average ROC-AUC scores obtained using cross-validation. BRS can only be
applied to binary datasets, and DRS and IDS fail to get results on a few datasets, denoted
as “—” in the table. Best ROC-AUC for each dataset is shown in bold and. The difference
between the best ROC-AUC for each dataset and the ROC-AUC of TURS for the same
dataset is shown in bracket.

86

Chapter 3 Probabilistic Truly Unordered Rule Sets

data TURS TURS-RP Diff. %overlap CN2 CN2-RP Diff. %overlap
aloi 0.619 0.62 -0.001 4% 0.569 0.578 -0.009 97%
anuran 0.973 0.969 0.004 28% 0.962 0.913 0.048 90%
avila 0.99 0.989 0.001 17% 0.92 0.915 0.004 45%
backdoor 0.995 0.995 0 0% 0.997 0.976 0.021 96%
backnote 0.981 0.98 0.001 20% 0.993 0.973 0.019 60%
drybeans 0.989 0.986 0.004 34% 0.929 0.908 0.021 94%
glass-2 0.949 0.949 0 0% 0.941 0.839 0.102 33%
heartcleveland 0.695 0.687 0.008 8% 0.694 0.663 0.031 61%
mammography 0.897 0.897 0 5% 0.891 0.806 0.084 86%
musk 1 1 0 0% 1 1 0 0%
optdigits 0.977 0.977 0 0% 0.992 0.972 0.02 92%
pendigits-2 0.955 0.955 0 0% 0.996 0.972 0.024 88%
satimage-2 0.909 0.909 0 0% 0.964 0.909 0.055 89%
smtp 0.972 0.972 0 0% 0.853 0.795 0.058 51%
thyroid 0.961 0.961 0 0% 0.998 0.941 0.056 87%
vehicle 0.882 0.878 0.004 15% 0.858 0.826 0.033 77%
vowels 0.817 0.817 0 1% 0.897 0.838 0.059 71%
waveform-2 0.832 0.832 0 9% 0.886 0.754 0.132 92%
wdbc 0.947 0.947 0 0% 0.836 0.596 0.241 69%
car 0.98 0.98 0.001 22% 0.885 0.794 0.091 91%
chess 0.994 0.994 0 23% 0.532 0.551 -0.019 95%
contracept 0.658 0.657 0.001 3% 0.598 0.572 0.026 100%
diabetes 0.75 0.748 0.002 11% 0.709 0.676 0.033 82%
glass 0.967 0.965 0.002 2% 0.937 0.937 0 0%
ionosphere 0.904 0.904 0 15% 0.941 0.895 0.046 55%
iris 0.981 0.98 0.001 5% 0.977 0.977 0 0%
magic 0.887 0.887 0 38% 0.698 0.738 -0.04 92%
pendigits 0.994 0.991 0.003 40% 0.991 0.982 0.009 76%
tic-tac-toe 0.965 0.965 0 7% 0.932 0.925 0.007 49%
waveform 0.915 0.905 0.009 51% 0.803 0.84 -0.037 77%
wine 0.952 0.952 0 0% 0.973 0.971 0.002 2%

Table 3.4: Average ROC-AUC for the predictions with and without “random picking”,
both for TURS and CN2. The difference between the two ROC-AUC scores are shown in
bold if the difference is larger than 0.01. We further show the percentage of instances covered
by more than one rule, denoted as %overlap.

87

Appendix: Comparison to the Previous Work

Data BRS C45 CART CLASSY RIPPER CN2 DRS IDS TURS
aloi 3 2659.1 26952.8 52.3 26.2 2116 0 14 66.5
backdoor 13 701.5 2460.5 72.6 101.5 259.6 — — 59.1
backnote 35.8 79.6 116.7 22.7 22.3 39.5 54 12.5 14.2
chess 19.2 250.2 340.5 33 57.9 297 54.2 14.5 58
diabetes 15.6 107.6 700.5 5 6.6 165.4 82.5 13.2 6.8
glass-2 10.8 19.7 6.7 3 5.9 1.8 37.2 15.5 1
ionosphere 31.2 59 86.6 5.6 12.5 25.1 440.7 12 5.1
magic 43.5 3211.8 20053.1 228.4 87.1 3351.9 44.7 18.5 227.8
mammography 3 273.7 1126.8 38.7 30.5 199.2 24.4 14 37.4
musk 6 4 2 2 2 2 — 9.3 2
optdigits 54.5 46.6 78.7 9.6 15.8 16.7 — 11.2 7.6
pendigits-2 14.8 48.3 66.9 9.5 12.7 19.9 136.5 14.1 12
satimage-2 15 14.8 17.8 7.9 9 9.9 524.8 12.4 4
smtp 3 20.9 34.4 5.6 7 19.2 16.7 13.9 3
thyroid 3 18.9 28.1 16.4 4.2 9.7 73.1 13.4 7.8
tic-tac-toe 25.2 411.9 410.8 29.2 42.3 81.1 101.7 13.5 28.9
vowels 25.2 58.9 147.8 14.1 13.5 22.6 141.9 14.3 8.7
waveform-2 4.2 165.6 406.3 19.3 20.5 79.4 522.2 11.2 12
wdbc 9 8 2.5 3.2 2 4.4 337.6 7.6 2
anuran — 80.9 1284.3 90.7 11 264.8 346.1 12.4 100.2
avila — 3460.4 7795.9 939.8 707.2 1297.4 181.3 14 726
car — 659.8 776.1 56.4 171.7 72 307.6 13.5 132
contracept — 1268.1 5536.2 12 14.7 221.8 5 16.8 12.6
drybeans — 2481.6 7039.4 105.8 153.3 1280.6 202.3 13.2 182.4
glass — 24.8 20 5.2 14 7.8 171 11.3 6
heartcleveland — 245.7 410.2 6.6 5.5 42.1 522.2 14 5.7
iris — 15.2 13 2.8 5.9 8.4 26.7 10.4 2.3
pendigits — 1274.9 1689.7 142.3 260.9 430.4 561.7 15.6 174.5
vehicle — 560.6 760.3 25.4 46.9 175.5 741.1 11.6 23
waveform — 2782.9 3520 125.7 143 970.5 75.6 14.4 160.6
wine — 22 15.5 5 8.9 7.5 103.8 14.4 4.6

Table 3.5: Total number of literals in the rule set, rule list, or decision tree. Smaller fonts
indicate that the model learned by a certain algorithm gives the ROC-AUC score substantially
worse than TURS does, and the results in bold indicate the smallest total number of literals
(excluding those models with substantially worse ROC-AUC scores).

Local testing # rules rule length ROC-AUC MDL-based score train/test prob. diff.
No 12.48(±1.56) 5.597(±0.42) 0.722(±0.02) 2191.189(±65.91) 0.049(±0.01)
Yes 1(±0) 1(±0) 0.724(±0.01) 2050.087(±68.88) 0.007(±0)

Table 3.6: Results of ablation study on local testing. We report the mean (± standard
deviation) over 100 repetitions.

88

