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Chapter Abstract
Rule set learning has long been studied and has recently been frequently

revisited due to the need for interpretable models. Still, existing methods have
several shortcomings: 1) most recent methods require a binary feature matrix
as input, while learning rules directly from numeric variables is understudied; 2)
existing methods impose orders among rules, either explicitly or implicitly, which
harms interpretability; and 3) currently no method exists for learning probabilistic
rule sets for multi-class target variables (there is only one for probabilistic rule
lists).

We propose TURS, for Truly Unordered Rule Sets, which addresses these
shortcomings. We first formalize the problem of learning truly unordered rule sets.
To resolve conflicts caused by overlapping rules, i.e., instances covered by multiple
rules, we propose a novel approach that exploits the probabilistic properties of our
rule sets. We next develop a two-phase heuristic algorithm that learns rule sets
by carefully growing rules. An important innovation is that we use a surrogate
score to take the global potential of the rule set into account when learning a local
rule.

Finally, we empirically demonstrate that, compared to non-probabilistic and
(explicitly or implicitly) ordered state-of-the-art methods, our method learns rule
sets that not only have better interpretability but also better predictive perfor-
mance.
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Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

2.1 Introduction

When using predictive models in sensitive real-world scenarios, such as in
health care, analysts seek for intelligible and reliable explanations for predictions.
Classification rules have considerable advantages here, as they are directly read-
able by humans. While rules all seem alike, however, some are more interpretable
than others. The reason lies in the subtle differences of how rules form a model.
Specifically, rules can form an unordered rule set, or an explicitly ordered rule
list; further, they can be categorized as probabilistic or non-probabilistic.

In practice, probabilistic rules should be preferred because they provide infor-
mation about the uncertainty of the predicted outcomes, and thus are useful when
a human is responsible to make the final decision, as the expected “utility” can
be calculated. Meanwhile, unordered rule sets should also be preferred, as they
have better properties regarding interpretability than ordered rule lists. While
no agreement has been reached on the precise definition of interpretability of ma-
chine learning models (Molnar 2020; Murdoch et al. 2019), we specifically treat
interpretability with domain experts in mind. From this perspective, a model’s
interpretability intuitively depends on two aspects: the degree of difficulty for a
human to comprehend the model itself, and to understand a single prediction.
Unordered probabilistic rule sets are favorable with respect to both aspects, for
the following reasons. First, comprehending ordered rule lists requires compre-
hending not only each individual rule, but also the relationship among the rules,
while comprehending unordered rule sets requires only the former. Second, the
explanation for a single prediction of an ordered rule list must contain the rule
that the instance satisfies, together with all of its preceding rules, which becomes
incomprehensible when the number of preceding rules is large.

Further, crucially, existing methods for rule set learning claim to learn un-
ordered rule sets, but most of them are not truly unordered. The problem is
caused by overlap, i.e., a single instance satisfying multiple rules. Ad-hoc schemes
are widely used to resolve prediction conflicts caused by overlaps, typically by
ranking the involved rules with certain criteria and always selecting the highest
ranked rule (Lakkaraju et al. 2016; Zhang and Gionis 2020) (e.g., the most ac-
curate one). This, however, imposes implicit orders among rules, making them
entangled instead of truly unordered.
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Introduction

This can badly harm interpretability: to explain a single prediction for an
instance, it is now insufficient to only provide the rules the instance satisfies,
because other higher-ranked rules that the instance does not satisfy are also part
of the explanation. For instance, imagine a patient is predicted to have Flu because
they have Fever. If the model also contains the higher-ranked rule “Blood in stool
→ Dysentery”, the explanation should include the fact that “Blood in stool” is not
true, because otherwise the prediction would change to Dysentery. If the model
contains many rules, it becomes impractical to have to go over all higher-ranked
rules for each prediction.

Learning truly unordered probabilistic rule sets is a very challenging problem
though. Classical rule set learning methods usually adopt a separate-and-conquer
strategy, often sequential covering: they iteratively find the next rule and remove
instances satisfying this rule. This includes 1) binary classifiers that learn rules
only for the “positive” class (Fürnkranz et al. 2012), and 2) its extension to multi-
class targets by the one-versus-rest paradigm, i.e., learning rules for each class
one by one (Clark and Boswell 1991; Cohen 1995). Importantly, by iteratively
removing instances the probabilistic predictive conflicts caused by overlaps, i.e.,
rules having different probability estimates for the target, are ignored. Recently
proposed rule learning methods go beyond separate-and-conquer by leveraging
discrete optimization techniques (Dash et al. 2018; Lakkaraju et al. 2016; Wang
et al. 2017; Yang et al. 2021; Zhang and Gionis 2020), but this comes at the
cost of requiring a binary feature matrix as input. Moreover, these methods
are neither probabilistic nor truly unordered, as they still use ad-hoc schemes to
resolve predictive conflicts caused by overlaps.

Approach and contributions. To tackle these challenges and learn truly un-
ordered probabilistic rules, we first formalize rule sets as probabilistic models.
We adopt a probabilistic model selection approach for rule set learning, for which
we design a criterion based on the minimum description length (MDL) principle
(Grünwald and Roos 2019). Second, we propose a novel surrogate score based on
decision trees that we use to evaluate the potential of incomplete rule sets. Third,
we are the first to design a rule learning algorithm that deals with probabilistic
conflicts caused by overlaps already during the rule learning process. We point
out that rules that have been added to the rule set may become obstacles for new
rules, and hence carefully design a two-phase heuristic algorithm, for which we
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Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

adopt diverse beam search (Van Leeuwen and Knobbe 2012). Last, we benchmark
our method, named TURS, for Truly Unordered Rule Sets, against a wide range
of methods. We show that the rule sets learned by TURS, apart from being prob-
abilistic and truly unordered, have better predictive performance than existing
rule list and rule set methods.

2.2 Related Work
Rule lists. Rules in a rule list are connected by if-then-else statements. Existing
methods include CBA (Liu et al. 1998), ordered CN2 (Clark and Niblett 1989),
PART (Frank and Witten 1998), and the recently proposed CLASSY (Proença
and Leeuwen 2020) and Bayesian rule list (Yang et al. 2017). We argue that rule
lists are more difficult to interpret than rule sets because of their explicit orders.

One-versus-rest learning. This category focuses on only learning rules for a single
class label, i.e., the “positive” class, which is already sufficient for binary classi-
fication (Dash et al. 2018; Wang et al. 2017; Yang et al. 2021). For multi-class
classification, two approaches exist. The first, taken by RIPPER (Cohen 1995)
and C4.5 (Quinlan 2014), is to learn each class in a certain order. After all rules
for a single class have been learned, all covered instances are removed (or those
with this class label). The resulting model is essentially an ordered list of rule
sets, and hence is more difficult to interpret than rule set.

The second approach does not impose an order among the classes; instead, it
learns a set of rules for each class against all other classes. The most well-known
are unordered-CN2 and FURIA (Clark and Boswell 1991; Hühn and Hüllermeier
2009). FURIA avoids dealing with conflicts of overlaps by using all rules for pre-
dicting unseen instances; as a result, it cannot provide a single rule to explain
its prediction. Unordered-CN2, on the other hand, handles overlaps by “combin-
ing” all overlapping rules into a “hypothetical” rule, which sums up all instances
in all overlapping rules and hence ignoring probabilistic conflicts for constructing
rules. In Section 2.6, we show that our method learns smaller rule sets with better
predictive performance than unordered-CN2.

Multi-class rule sets. Very few methods exist for directly learning rules for multi-
class targets, which is algorithmically more challenging than the one-versus-rest
paradigm, as the separate-and-conquer strategy is not applicable. To the best

19



Rule Sets as Probabilistic Models

of our knowledge, the only existing methods are IDS (Lakkaraju et al. 2016) and
DRS (Zhang and Gionis 2020). Both are neither probabilistic nor truly unordered.
To handle conflicts of overlaps, IDS follows the rule with the highest F1-score, and
DRS uses the most accurate rule.

Last, different but related approaches include 1) decision tree based methods
such as CART (Breiman et al. 1984), which produce rules that are forced to share
many “attributes” and hence are longer than necessary, as we will empirically
demonstrate in Section 2.6, and 2) a Bayesian rule mining (Gay and Boullé 2012)
method, which adopts naive bayes with the mined rules for prediction, and hence
does not produce a rule set model in the end. The ‘lazy learning’ approach for
rule-based models can also avoid the conflicts of overlaps (Veloso et al. 2006), but
no global rule set model describing the whole dataset is constructed in this case.

2.3 Rule Sets as Probabilistic Models

We first formalize individual rules as local probabilistic models, and then
define rule sets as global probabilistic models. The key challenge lies in how to
define P (Y = y|X = x) for an instance (x, y) that is covered by multiple rules.

2.3.1 Probabilistic Rules

Denote the input random variables by X = (X1, . . . , Xd), where each Xi is
a one-dimensional random variable representing one dimension of X, and denote
the categorical target variable by Y ∈ Y . Further, denote the dataset from which
the rule set can be induced as D = {(xi, yi)}i∈[n], or (xn, yn) for short. Each
(xi, yi) is an instance. Then, a probabilistic rule S is written as

(X1 ∈ R1 ∧X2 ∈ R2 ∧ . . .)→ PS(Y ), (2.1)

where each Xi ∈ Ri is called a literal of the condition of the rule. Specifically,
each Ri is an interval (for a quantitative variable) or a set of categorical levels
(for a categorical variable).

A probabilistic rule of this form describes a subset S of the full sample space
of X, such that for any x ∈ S, the conditional distribution P (Y |X = x) is
approximated by the probability distribution of Y conditioned on the event {X ∈
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Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

S}, denoted as P (Y |X ∈ S). Since in classification Y is a discrete variable, we
can parametrize P (Y |X ∈ S) by a parameter vector β, in which the jth element
βj represents P (Y = j|X ∈ S), for all j ∈ Y . We therefore denote P (Y |X ∈ S)

as PS,β(Y ), or PS(Y ) for short. To estimate β from data, we adopt the maximum
likelihood estimator, denoted as PS,β̂(Y ), or P̂S(Y ) for short.

Further, if an instance (x, y) satisfies the condition of rule S, we say that
(x, y) is covered by S. Reversely, the cover of S denotes the instances it covers.
When clear from the context, we use S to both represent the rule itself and/or its
cover, and define the number of covered instances |S| as its coverage.

2.3.2 Truly Unordered Rule Sets as Probabilistic Models

While a rule set is simply a set of rules, the challenge lies in how to define rule
sets as probabilistic models while keeping the rules truly unordered. That is, how
do we define P (Y |X = x) given a rule set M , i.e., a model, and its parameters?
We first explain how to do this for a single instance of the training data, using a
simplified setting where at most two rules cover the instance. We then discuss—
potentially unseen—test instances and extend to more than two rules covering an
instance. Finally, we define a rule set as a probabilistic model.

Class probabilities for a single training instance. Given a rule set M with
K individual rules, denoted {Si}i∈[K], any instance (x, y) falls into one of four
cases: 1) exactly one rule covers x; 2) at least two rules cover x and no rule’s
cover is the subset of another rule’s cover (multiple non-nested); 3) at least two
rules cover x and one rule’s cover is the subset of another rule’s cover (multiple
nested); and 4) no rule in M covers x.

To simplify the notation, we here consider at most two rules covering an
instance—we later describe how we can trivially extend to more than two rules.

Covered by one rule. When exactly one rule S ∈ M covers x, we use PS(Y ) to
“approximate” the conditional probability P (Y |X = x). To estimate PS(Y ) from
data, we adopt the maximum likelihood (ML) estimator P̂S(Y ), i.e.,

P̂S(Y = j) =
|{(x, y) : x ∈ S, y = j}|

|S|
, ∀j ∈ Y . (2.2)

Note that we do not exclude instances in S that are also covered by other rules
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Rule Sets as Probabilistic Models

(i.e., in overlaps) for estimating PS(Y ). Hence, the probability estimation for
each rule is independent of other rules; as a result, each rule is self-standing,
which forms the foundation of a truly unordered rule set.

Covered by two non-nested rules. Next, we consider the case when x is covered
by Si and Sj , and neither Si ⊆ Sj nor Sj ⊆ Si, i.e., the rules are non-nested.

When an instance is covered by two non-nested, partially overlapping rules,
we interpret this as probabilistic uncertainty: we cannot tell whether the in-
stance belongs to one rule or the other, and therefore approximate its conditional
probability by the union of the two rules. That is, in this case we approximate
P (Y |X = x) by P (Y |X ∈ Si ∪ Sj), and we estimate this with its ML estimator
P̂ (Y |X ∈ Si ∪ Sj), using all instances in Si ∪ Sj .

This approach is particularly useful when the estimator of P (Y |X ∈ Si∩Sj),
i.e., conditioned on the event {X ∈ Si∩Sj}, is indistinguishable from P̂ (Y |X ∈ Si)

and P̂ (Y |X ∈ Sj). Intuitively, this can be caused by two reasons: 1) Si ∩ Sj

consists of very few instances, so the variance of the estimator for P (Y |X ∈ Si∩Sj)

is large; 2) P (Y |X ∈ Si∩Sj) is just very similar to P (Y |X ∈ Si) and P (Y |X ∈ Si),
which makes it undesirable to create a separate rule for Si∩Sj . Our model selection
approach, explained in Section 2.4, will ensure that a rule set with non-nested rules
has high goodness-of-fit only if this ‘uncertainty’ is indeed the case.

Covered by two nested rules. When x is covered by both Si and Sj , and Si is a
subset of Sj , i.e., x ∈ Si ⊆ Sj , the rules are nested1. In this case, we approximate
P (Y |X = x) by P (Y |X ∈ Si) and interpret Si as an exception of Sj . Having such
nested rules to model such exceptions is intuitively desirable, as it allows to have
general rules covering large parts of the data while being able to model smaller,
deviating parts. In order to preserve the self-standing property of individual rules,
for x ∈ Sj \ Si we still use P (Y |X ∈ Sj) rather than P (Y |X ∈ Sj \ Si). Although
this might seem counter-intuitive at first glance, using P (Y |X ∈ Sj \ Si) would
implicitly impose an order between Sj and Si, or—equivalently—implicitly change
Sj to another rule that only covers instances in Sj ∧ ¬Si.

Not covered by any rule. When no rule in M covers x, we say that x belongs to
the so-called “else rule” that is part of every rule set and equivalent to x /∈

⋃
i Si.

Thus, we approximate P (Y |X = x) by P (Y |X /∈
⋃

i Si). We denote the else rule
1Note that “nestedness” is based on the rules’ covers rather than on their conditions. For instance, if Si

is X1 <= 1 and Sj is X2 <= 1, Si and Sj could still be nested.
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Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

by S0 and write S0 ∈ M for the else rule in M . Observe that the else rule is the
only rule in every rule set that depends on the other rules and is therefore not
self-standing; however, it will also have no overlap with other rules by definition.

Predicting for a new instance. When an unseen instance x′ comes in, we
predict P (Y |X = x′) depending on which of the aforementioned four cases it
satisfies. An important question is whether we always need access to the training
data, i.e., whether the probability estimates we obtain from the training data
points are sufficient for predicting P (Y |X = x′). Specifically, if x′ is covered by
non-nested Si and Sj , P (Y |X = x′) is predicted as P̂ (Y |X ∈ Si ∪ Sj). However,
if there are no training data points covered both by Si and Sj , then we would not
obtain P̂ (Y |X ∈ Si ∪Sj) in the training phase. Nevertheless, in this case we have
|Si ∪ Sj | = |Si|+ |Sj |, and hence

P̂ (Y |X ∈ Si ∪ Sj) =
|Si|P̂ (Y |X ∈ Si) + |Sj |P̂ (Y |X ∈ Sj)

|Si|+ |Sj |
. (2.3)

Thus, if x′ is covered by one rule, two nested rules, or no rule in M , the
corresponding probability estimates are already obtained during training. Thus,
we conclude that access to the training data is not necessary for prediction.

Extension to overlaps of multiple rules. Whenever an instance x is covered
by multiple rules, denoted J = {Si, Sj , Sk, ...}, three cases may happen. The
first case is all rules in J are nested. Without loss of generality, assume that
Si ⊆ Sj ⊆ Sk ⊆ ...; then, following the rationale for case of two nested rules,
P (Y |X = x) should be approximated by PSi

(Y ). Therefore, when x is covered
by multiple nested rules, only the “smallest” rule matters and we can act as if x
is only covered by that single rule.

The second case is that all rules in J are non-nested with each other. Fol-
lowing the solution for modeling two non-nested rules, we use P (Y |X ∈

⋃
S∈J S).

The third case is a mix of the previous two cases, i.e., rules in J are partially
nested. In this case, we iteratively go over all S ∈ J : if there exists an S′ ∈ J

satisfying S′ ⊆ S we remove S from J , and continue iterating until no nested
overlap in J remains. If one single rule is left, we act as if x is covered by that
single rule; otherwise, we follow the paradigm of modeling the non-nested overlaps
with the rules left in J .
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Probabilistic rule sets. We can now build upon the previous to define rule
sets as probabilistic models. Formally, the probabilistic model corresponding to
a rule set M is a family of probability distributions, denoted PM,θ(Y |X) and
parametrized by θ. Specifically, θ is a parameter vector representing all necessary
probabilities of Y conditioned on events {X ∈ G}, where G is either a single
rule or the union of multiple rules. θ is estimated from data by estimating each
P (Y |X ∈ G) by its maximum likelihood estimator. The resulting estimated vector
is denoted as θ̂ and contains P̂ (Y |X ∈ G) for all G ∈ G , where G consists of all
individual rules and the unions of overlapping rules in M .

Finally, we assume the dataset D = (xn, yn) to be i.i.d. Specifically, let us
define (x, y) ⊢ G for the following two cases: 1) when G is a single rule (including
the else rule), then (x, y) ⊢ G ⇐⇒ x ∈ G; and 2) when G is a union of multiple
rules, e.g., G =

⋃
Si, then (x, y) ⊢ G ⇐⇒ x ∈

⋂
Si. We then have

PM,θ(y
n|xn) =

∏
G∈G

∏
(x,y)⊢G

P (Y = y|X ∈ G). (2.4)

2.4 Rule Set Learning as Probabilistic Model Se-
lection

Exploiting the formulation of rule sets as probabilistic models, we define the
task of learning a rule set as a probabilistic model selection problem. Specifically,
we use the minimum description length (MDL) principle for model selection.

2.4.1 Normalized Maximum Likelihood Distributions for Rule
Sets

The MDL principle is one of the best off-the-shelf model selection methods
and has been widely used in machine learning and data mining (Grünwald and
Roos 2019). Although rooted in information theory, it has been recently shown
that MDL-based model selection can be regarded as an extension of Bayesian
model selection (Grünwald and Roos 2019).

The core idea of MDL-based model selection is to assign a single probabil-
ity distribution to the data given a rule set M , the so-called universal distribu-
tion denoted by PM (Y n|Xn = xn). Informally, PM (Y n|Xn = xn) should be a

24



Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

representative of the rule set model—as a family of probability distributions—
{PM,θ(y

n|xn)}θ. The theoretically optimal “representative” is defined to be the
one that has minimax regret, i.e.,

argmin
PM

max
zn∈Y n

[
− log2 PM (Y n = zn|Xn = xn)

−
(
− log2 Pθ̂(xn,zn)(Y

n = zn|Xn = xn)
)]

. (2.5)

We write the parameter estimator as θ̂(xn, zn) to emphasize that it depends
on the values of the target variables Y n. The unique solution to PM of Equation 2.5
is the so-called normalized maximum likelihood (NML) distribution:

PNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∑

zn∈Y n PM,θ̂(xn,zn)(Y
n = zn|Xn = xn)

. (2.6)

That is, we “normalize” the distribution PM,θ̂(.) to make it a proper probability
distribution, which requires the sum of all possible values of Y n to be 1. Hence,
we have

∑
zn∈Y n PNML

M (Y n = zn|Xn = xn) = 1 (Grünwald and Roos 2019).

2.4.2 Approximating the NML Distribution

A crucial difficulty in using the NML distribution in practice is the com-
putation of the normalizing term

∑
zn Pθ̂(xn,zn)(Y

n = zn|Xn = xn). Efficient
algorithms almost only exist for exponential family models (Grünwald and Roos
2019), hence we approximate the term by the product of the normalizing terms
for the individual rules.

NML distribution for a single rule. For an individual rule S ∈ M , we write
all instances covered by S as (xS , yS), in which yS can be regarded as a realization
of the random vector Y S = (Y, ..., Y ), and Y S takes values in Y |S|, the |S|-ary
Cartesian power of Y . Then, the NML distribution for PS(Y ) equals

PNML
S (Y S = yS |XS = xS) =

P̂S(Y
S = yS |XS = xS)∑

zS∈Y S P̂S(Y S = zS |XS = xS)
. (2.7)
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Note that P̂S depends on the values of zS . As P̂S(Y ) is a categorical distribution,
the normalizing term can be written as R(|S|, |Y |), a function of |S|—the rule’s
coverage—and |Y |—the number of unique values that Y can take (Mononen and
Myllymäki 2008):

R(|S|, |Y |) =
∑

zS∈Y S

P̂S(Y
S = zS |XS = xS), (2.8)

which can be efficiently calculated in sub-linear time (Mononen and Myllymäki
2008).
The approximate NML distribution. We propose to approximate the nor-
malizing term of PNML

M as the product of the normalizing terms of PNML
S for all

S ∈ M , and propose the approximate-NML distribution as our model selection
criterion:

P apprNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∏

S∈M R(|S|, |Y |)
. (2.9)

Note that the sum over all S ∈M does include the “else rule” S0. Finally, we can
formally define the optimal rule set M∗ as

M∗ = argmax
M

P apprNML
M (Y n = yn|Xn = xn). (2.10)

The rationale of using the approximate-NML distribution is as follows. First, it
is equal to the NML distribution for a rule set without any overlap, as follows.

Proposition 1. Given a rule set M in which for any Si, Sj ∈ M , Si ∩ Sj = ∅,
then PNML

M (Y n = yn|Xn = xn) = P apprNML
M (Y n = yn|Xn = xn).

Second, when overlaps exist in M , approximate-NML puts a small extra penalty
on overlaps, which is desirable to trade-off overlap with goodness-of-fit: when we
sum over all instances in each rule S ∈ M , the instances in overlaps are “repeat-
edly counted”. Third, approximate-NML behaves like the Bayesian information
criterion (BIC) asymptotically, which follows from the next proposition.

Proposition 2. Assume M contains K rules in total, including the else rule, and
we have n instances. Under the mild assumption that |S| grows linearly as the
sample size n for all S ∈M , then log

(∏
S∈M R(|S|, |Y |)

)
= K(|Y |−1)

2
logn+O(1),

where O(1) is bounded by a constant w.r.t. to n.

26



Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

We defer the proofs of the two propositions to the Appendix of this chapter.

2.5 Learning Truly Unordered Rule Sets from Data

As our MDL-based model selection criterion unfortunately does not enable
efficient search for the optimal model, we resort to heuristics. We first address the
challenge of evaluating incomplete rule sets, after which we explain how to grow
individual rules in two phases and implement this with beam search. Finally, we
show how everything comes together to iteratively learn rule sets from data.

2.5.1 Evaluating Incomplete Rule Sets with a Surrogate Score

When iteratively searching for the next “best” rule, defining “best” is far
from trivial: rule coverage and precision are contradicting factors and typical
scores therefore combine those two factors in some—more or less—arbitrary way.

This issue is further aggravated by the iterative rule learning process, in
which the intermediate rule set is evaluated as an incomplete rule set in each step.
Evaluating incomplete rule sets is a challenging task (Fürnkranz and Flach 2005),
mainly because any good score needs to simultaneously consider two aspects: 1)
how well do all the rules currently in the rule set describe the already covered
instances; and 2) what is the “potential” for the uncovered instances, in the sense
that how well can those uncovered instances be described by rules that might be
added later?

Without knowing the rules that will be added later, we cannot compute the
NML-based criterion for the complete rule set. Yet, we should take into account
the potential of the uncovered instances. We propose to approximate the latter
using a surrogate score, which we obtain by fitting a decision tree on the uncovered
instances and using the leafs of the resulting tree as a surrogate for “future” rules.
Formally, we define the tree-based surrogate score as

LT (M) = P apprNML
M⊕T (Y n = yn|Xn = xn), (2.11)

where M ⊕ T denotes the surrogate rule set obtained by converting the branches
of T to rules and appending those to M (parameters are estimated as usual).
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Although the branches of the decision tree learned from the currently uncov-
ered instances may be different from the rules that will later be added to the rule
set, using the tree-based surrogate score will make it easier to gradually grow good
rule sets. We use decision trees because they are quick to learn and use, and the
correspondence of branches to rules makes using them straightforward. We will
empirically study the effects of the surrogate score on the predictive performance
of rule sets in Section 2.6.

2.5.2 Two-phase Rule Growth

To avoid having to traverse all possible rules when searching for the rule to
add to an incomplete rule set, we resort to a common heuristic: we start with an
empty rule and gradually refine it by adding literals—also referred to as growing
a rule (Fürnkranz et al. 2012). In contrast to existing methods, we propose a
two-phase method.
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Figure 2.1: (Left) Simulated data with two overlapping rules: S1 : X1 < 0.5 (outlined in
black) and S2 : 0.5 < X2 < 1 (purple). (Right) S2 has grown to 0.5 < X2 < 1 ∧X1 < 1.8,
which changes P (Y |X ∈ S2) and resolves the problematic overlap.

Motivation. A rule can only improve the surrogate score—and thus be added
to the rule set—if it achieves two goals: 1) it should improve the likelihood of
currently uncovered instances (penalized by the approximate-NML normalizing
term); and 2) it should not deteriorate the goodness-of-fit of the rule set by cre-
ating “bad” overlaps. These goals can be conflicting though, for two reasons.

First, it is not necessarily bad to have overlaps between a rule being grown
and the current rule set, because the rule and its probability estimates for the
target variable may still change. For example, consider the left plot of Figure 2.1.
If the current rule set consists of S1 (indicated in black), then adding S2 (in
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Figure 2.2: (Left) Simulated data with a rule set containing two rules (black outlines).
(Right) Growing a rule to describe the bottom-right instances will create conflicts with
existing rules. I.e., adding either X1 > 1 (vertical purple line) or X2 < 0.8 (horizontal purple
line) would create a huge overlap that deteriorates the surrogate score (Eq. 2.11).

purple) would be problematic: this would strongly deteriorate the likelihood of
the instances covered by both rules. However, as we further grow S2, as shown in
the right plot, we get P (Y |S1) = P (Y |S2) and the problem is solved.

Second, rules already in the rule set may become obstacles to growing a new
rule. For example, consider the data and rule set with two rules (in black) in
Figure 2.2. If we want to grow a rule that covers the bottom-right instances, the
existing rules form a blockade: the right plot shows how adding either X1 > 1

or X2 < 0.8 to the empty rule (in purple) would create a large overlap with the
existing rules, with significantly different probability estimates.

Therefore, instead of navigating towards the two goals simultaneously, we
propose to grow the next rule in two phases: 1) grow the rule as if the instances
covered by the (incomplete) rule set are excluded; 2) further grow the rule to
eliminate potentially “bad” overlaps, to further optimize the tree-based score.
Method. Given a rule S, define Sunc as its uncovered “counterpart”, which covers
all instances in S not covered by M , i.e., Sunc = S \ ∪{Si ∈M}. Then, given M ,
the search for the next best rule that optimizes the surrogate tree-based score is
divided into two phases. First, we aim to find the m rules for which the uncovered
counterparts have the highest surrogate scores, defined as

LT (M ⊕ Sunc) = P apprNML
M⊕Sunc⊕T (Y

n = yn|Xn = xn), (2.12)

where M ⊕Sunc⊕T denotes M appended with Sunc and all branches of T . Here,
m is a user-specified hyperparameter that controls the number of candidate rules
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Algorithm 1: Find Next Rule Ignoring Overlaps
Input: rule set M , data (xn, yn)
Output: A beam that contains the w best rules

1 RULE ← ∅; Beam ← [RULE] // Initialize the empty rule and
beam

2 BeamList ← Beam // Record all the beams in the beam search
3 while length(Beam) ̸= 0 do
4 candidates ← [ ] // initialized to store all possible

refinements
5 for RULE ∈ Beam do
6 Rs ← [Append L to RULE for L ∈ all possible literals]
7 candidates.extend(Rs)
8 Beam ← the w rules in candidates that have 1) the highest positive

gunc(), and 2) coverage diversity > α // w is the beam width
9 if length(Beam) ̸= 0 then

10 BeamList.extend(Beam) // extend the BeamList as an
array

11 for Rule ∈ BeamList do
12 Beam ← w rules in BeamList with best LT (M ⊕ Sunc)

13 return Beam

that are selected for further refinement in the second phase. In the second phase,
we further grow each of these m rules to search for the best one rule that optimizes

LT (M ⊕ S) = P apprNML
M⊕S⊕T (Y n = yn|Xn = xn). (2.13)

Given a rule S and its counterpart Sunc, the score of Sunc is an upper-bound
on the score of S: if S can be further refined to cover exactly what Sunc covers, we
can obtain LT (M ⊕ Sunc) = LT (M ⊕ Sunc). This is often not possible in practice
though, and we therefore generate m candidates in the first phase (instead of 1).

2.5.3 Beam Search for Two-phase Rule Growth

In both phases we aim for growing a rule that optimizes the tree-based score
(Equation 2.11); the difference is that we ignore the already covered instances
in the first phase. To avoid growing rules too greedily, i.e., adding literals that
quickly reduce the coverage of the rule, we use a heuristic that is based on the
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NML distribution of a single rule and motivated by Foil’s information gain (Cohen
1995).

Phase 1: rule growth ignoring covered instances. We propose the NML-
gain to optimize LT (M ⊕ Sunc): given two rules S and Q, where we obtain S by
adding one literal to Q, we define the NML-gain as gunc(S,Q):

gunc(S,Q) =

(
PNML
Sunc

(ySunc |xSunc)

|Sunc|
−

PNML
Qunc

(yQunc |xQunc)

|Qunc|

)
|Sunc| (2.14)

=

(
P̂Sunc

(ySunc |xSunc)

R(|Sunc|, |Y |) |Sunc|
− P̂Qunc

(yQunc |xQunc)

R(|Qunc|, |Y |) |Qunc|

)
|Sunc|, (2.15)

which we use as the navigation heuristic.
The advantage of having a tree-based score to evaluate rules, besides the

navigation heuristic (local score), is that we can adopt beam search, as outlined
in Algorithm 1. We start by initializing 1) the rule as an empty rule (a rule without
any condition), 2) the Beam containing that empty rule, and 3) the BeamRecord
to record the rules in the beam search process (Line 1-2). Then, for each rule in
the beam, we generate refined candidate rules by adding one literal to it (Ln 5-7).
Among all candidates, we select at most w rules with the highest NML-based
gain gunc, satisfying two constraints: 1) gunc > 0; and 2) for each pair of these
(at most) w rules, e.g., S and Q, their “coverage diversity” |Sunc∩Qunc|

|Sunc∪Qunc| > α, where
α is a user-specified parameter that controls the diversity of the beam search
(Van Leeuwen and Knobbe 2012). We update the Beam with these (at most)
w rules (Ln 8-10). We repeat the process until we can no longer grow any rule
with positive gunc based on all rules in Beam (Ln 3). Last, among the record of
all Beams we obtained during the process, we return the best w rules with the
highest tree-based score L(Sunc ∪M) (Ln 11-13).

Phase 2: rule growth including covered instances. We now optimize L(M⊕
S) and select a rule based on the candidates obtained in the previous step. We
first define a navigation heuristic: given two rules S and Q, where S is obtained
by adding one literal to Q, we define the NML-gain g(S,Q) as

g(S,Q) =

(
P̂S(y

Sunc |xSunc)

R(|Sunc|, |Y |) |Sunc|
− P̂Q(y

Qunc |xQunc)

R(|Qunc|, |Y |) |Qunc|

)
|Sunc|. (2.16)
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Algorithm 2: Find Rule Set
Input: training data (xn, yn)
Output: rule set M

1 M ← ∅; M_record ← [M ] scores ← [P apprNML
M (yn|xn)] // Record

P apprNML
M while growing

2 while True do
3 S∗ ← FindNextRule(M, (xn, yn)) // find the next best rule S∗

4 if S∗ = ∅ or LT (M ⊕ S) = P apprNML
M⊕S∗ (yn|xn) then

5 Break
6 else
7 M ←M ⊕ S∗; M_record.append(M) // update and record

M

8 scores.append(P apprNML
M (yn|xn))

9 return the rule set with the maximum score in M_record

Note that the difference between g(S,Q) and gunc(S,Q) is that they use a
different maximum likelihood estimator: P̂Q is the ML estimator based on all
instances in Q, while P̂Qunc

is based on all instances in Qunc.

The algorithm is almost identical to Algorithm 1, with four small modifica-
tions: 1) the navigation heuristic is replaced by g(S,Q); 2) LT (M ⊕ S) is used to
select the best rule from the BeamRecord instead of LT (M ⊕ Sunc) ; and 3) the
coverage diversity is based on the rules itself instead of the counterparts; 4) only
the best rule is returned.

2.5.4 Iterative search for the rule set

Algorithm 2 outlines the proposed rule set learner. We start with an empty
rule set (Ln 1-2), then iteratively add the next best rule (Ln 3–9) until the stopping
criterion is met (Ln 5–6). That is, it stops when 1) the surrogate score equals the
‘real’ model selection criterion (i.e., the model’s NML distribution), or 2) no more
rules with positive NML-gain can be found. We record the ‘real’ criterion when
adding each rule to the set, and pick the one maximizing it (Ln 10).
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2.6 Experiments

We demonstrate that TURS learns rule sets with competitive predictive per-
formance, and that using the surrogate score substantially improves the AUC
scores. Further, we demonstrate that TURS achieves model complexities compa-
rable to other rule set methods for multi-class targets.

We here discuss the most important parts of the experiment setup; for com-
pleteness, additional information can be found in the Appendix2.

Decision trees for surrogate score. We use CART (Breiman et al. 1984) to
learn the trees for the surrogate score. For efficiency and robustness, we do not
use any post-pruning for the decision trees but only set a minimum sample size
for the leafs.

Beam width and coverage diversity. We set the coverage diversity α = 0.05,
and beam width w = 5. With the coverage diversity as a constraint, we found
that w ∈ {5, 10, 20} all give similar results. Due to the limited space, we leave a
formal sensitivity analysis of α as future work.

Benchmark datasets and competitor algorithms. We test on 13 UCI bench-
mark datasets (shown in Table 1), and compare against the following methods:
1) unordered CN2 (Clark and Boswell 1991), the one-versus-rest rule sets method
without implicit order among rules; 2) DRS (Zhang and Gionis 2020), a repre-
sentative multi-class rule set learning method; 3) BRS (Wang et al. 2017), the
Bayesian rule set method for binary classification; 4) RIPPER (Cohen 1995), the
widely used one-versus-rest method with orders among class labels; 5) CLASSY
(Proença and Leeuwen 2020), the probabilistic rule list methods using MDL-based
model selection; and 6) CART (Breiman et al. 1984), the well-known decision tree
method, with post-pruning by cross-validation.

2.6.1 Results

Predictive performance. We report the ROC-AUC scores in Table 2.1. For
multi-class classification, we report the weighted one-versus-rest AUC scores, as
was also used for evaluating the recently proposed CLASSY method (Proença and
Leeuwen 2020).

2The source code is available at https://github.com/ylincen/TURS
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data TURS CN2 DRS BRS CLASSY RIPPER CART TURS %overlap
anuran 0.998 1.000 0.858 — 0.983 0.999 0.996 0.395
avila 0.968 0.978 0.530 — 0.954 0.997 0.988 0.286
backnote 0.991 0.969 0.945 0.957 0.987 0.979 0.984 0.297
car 0.978 0.633 0.924 — 0.945 0.980 0.971 0.063
chess 0.995 0.536 0.823 0.945 0.991 0.995 0.994 0.264
contracept 0.667 0.597 0.544 — 0.630 0.626 0.600 0.074
diabetes 0.766 0.677 0.628 0.683 0.761 0.735 0.661 0.155
ionosphere 0.914 0.912 0.663 0.837 0.909 0.901 0.845 0.310
iris 0.964 0.985 0.935 — 0.960 0.973 0.965 0.018
magic 0.886 0.590 0.695 0.794 0.895 0.818 0.800 0.500
tic-tac-toe 0.972 0.826 0.971 0.976 0.983 0.954 0.847 0.231
waveform 0.902 0.775 0.588 — 0.833 0.884 0.803 0.528
wine 0.954 0.962 0.810 — 0.961 0.945 0.932 0.031
Avg Rank 2.231 4.077 5.846 5.462 3.154 3.000 4.231 /

Table 2.1: ROC-AUC scores, averaged over 10 cross-validated folds. The rank (smaller
means better) is further averaged over all datasets. Among the four rule set methods, TURS
is substantially better on 7 out 13 datasets (AUC scores in bold).

Compared to non-probabilistic rule set methods—i.e., CN2, DRS, and BRS
(only for binary targets)—TURS is much better in terms of the mean rank of its
AUC scores. Specifically, it performs substantially better on about half of the
datasets (shown in bold). Besides, it is ranked better than rule list methods,
which produce explicitly ordered rules that may be difficult for domain experts to
comprehend and digest in practice. Next, CART attains AUCs generally inferior
to TURS, although it helps TURS to get a higher AUC as part of the surrogate
score.

Last, we report the percentage of instances covered by more than one rule
for TURS in Table 2.1, and we show that overlaps are common in the rule sets
obtained for different datasets. This empirically confirms that our way of formal-
izing rule sets as probabilistic models, i.e., treating overlaps as uncertainty and
exception, can indeed lead to improved predictive performance, as the overlapping
rules are a non-negligible part of the model learned from data and hence indeed
play a role.
Effects of the surrogate score. Figure 2.3 shows the difference in AUC ob-
tained by our method with and without using the surrogate score (i.e., without
surrogate score means replacing it with the final model selection criterion). We
conclude that the surrogate score has a substantial effect on learning better rule
sets, except for three “simple” datasets, of which the sample sizes and the number
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Figure 2.3: Improvement in AUC by enabling the surrogate score for TURS.

#instances #features data TURS CN2 DRS BRS CLASSY RIPPER CART
1372 5 backnote 42 41 55 22 22 16 94
1473 10 contracept 75 275 73 — 14 14 6241
768 9 diabetes 55 152 131 10 10 6 827
150 5 iris 7 9 23 — 3 3 9
958 10 tic-tac-toe 86 90 108 24 27 60 816
178 14 wine 10 6 134 — 6 5 15
1728 7 car 211 163 325 — 92 111 718
7195 24 anuran 74 37 407 — 49 7 96
3196 37 chess 299 316 482 21 37 44 355
351 35 ionosphere 50 30 261 14 6 5 101
5000 22 waveform 707 802 60 — 139 115 3928
20867 11 avila 890 1296 179 — 988 574 8145
19020 11 magic 1321 2238 48 23 256 69 22566

Avg Rank 2.15 2.46 2.77 1.00 — — —

Table 2.2: Left: The sample sizes and number of features of datasets. Right: total
number of literals, i.e., average rule lengths × number of rules in the set, averaged over
10-fold cross-validation. The rank is averaged over all datasets, for rule sets methods only.

of variables are small, as shown in Table 2.2 (Left).
Model complexity. Finally, we compare the ‘model complexity’ of the rule sets
for all methods. As this is hard to quantify in a unified manner, as a proxy we
report the total number of literals in all rules in a rule set, averaged over 10-fold
cross-validation (the same as used for the results reported in Table 2.1).

We show that among all rule set methods (TURS, CN2, DRS, BRS), TURS
has better average ranks than both CN2 and DRS. Although BRS learns very
small rule sets, it is only applicable to binary targets and its low model complexity
also brings worse AUC scores than TURS. Further, although rule list methods
(CLASSY, RIPPER) generally have fewer literals than rule sets methods, this
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does not make rule lists easy to interpret, as every rule depends on all previous
rules. Last, we empirically confirm that tree-based method CART produces much
larger rule sets.

2.7 Conclusion
We formalized the problem of learning truly unordered probabilistic rule sets

as a model selection task. We also proposed a novel, tree-based surrogate score
for evaluating incomplete rule sets. Building upon this, we developed a two-phase
heuristic algorithm that learns rule set models that were empirically shown to be
accurate in comparison to competing methods.

For future work, we will study the practical use of our method with a case
study in the health care domain. This involves investigating how well our method
scales to larger datasets. Furthermore, a user study will be performed to inves-
tigate whether, and in what degree, the domain experts find the truly unordered
property of rule sets obtained by our method helps them comprehend the rules
better in practice, in comparison to rule lists/sets with explicit or implicit orders.
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2.8 Appendix I: Reproducibility for Experiments

Decision trees for surrogate score. We use a CART decision tree (Breiman
et al. 1984) to get the tree-based surrogate score. For efficiency and robustness,
we do not use any post-pruning for the decision tree but only set the minimum
sample size on leafs, denoted as s. Specifically, we try s ∈ {10, 30, 50, 70, 90}
and hence calculate five surrogate scores accordingly, among which we pick the
smallest as the final surrogate score.

Beam width and coverage diversity. We set the coverage diversity α = 0.05,
and beam width w = 5. With the coverage diversity as a constraint, we found that
w ∈ {5, 10, 20} gives similar results. Due to the limited space, we leave formal
sensitivity analysis of α as future work.

Number of cut points for numeric features. To generate literals for numeric
features, we need to decide the number of cut points for these features. In practice,
it should depend on how the analysts want to interpret the resulting rules: given
a specific task, is it useful to be more precise than the granularity of the 10- or
20-quantiles? Intuitively, we believe it is seldom necessary to be more precise than
100-quantiles, and hence we set the number of cut points as 100.

Benchmark datasets and competitor algorithms. For reproducibility, we
use the implementation of CN2 from Orange3 (Demšar et al. 2013), RIPPER from
RWeka (Hornik et al. 2009), CART from Sklearn (Pedregosa et al. 2011), and BRS
and DRS from the authors’ original implementation. Most parameters are set as
“default” based on the implementation. For BRS and DRS, this means that we
use what the author suggested in the original papers. Specifically, for CART,
we use the post-pruning for trees with the regularization parameter chosen from
cross-validation.

2.9 Appendix II: Proof of Proposition 1

Proposition 1: Given a rule set M in which for any Si, Sj ∈ M , Si ∩ Sj = ∅,
then PNML

M (Y n = yn|Xn = xn) = P apprNML
M (Y n = yn|Xn = xn).
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Appendix III: Proof of Proposition 2

Proof. The numerators are the same, and hence we only need to show that the
denominators are the same. Assume there are K rules in M in total,∑

zn∈Y n

PM,θ̂(xn,zn)(z
n|xn) =

∑
zn

∏
S∈M

P̂S(y
S |XS)

=
∑
zn

P̂
S1
(zS1 |xS1) . . . P̂

SK
(zSK |xSK )

=
∑
zS1

. . .
∑
zSK

(
P̂

S1
(zS1 |xS1) . . . P̂

SK
(zSK |xSK )

)
=

(∑
zS1

. . .
∑

zSK−1

P̂
S1
(zS1 |xS1) . . . P̂

SK−1
(zSK−1 |xSK−1)

)(∑
zSK

P̂
SK

(zSK |xSK )

)
. . .

=

(∑
zS1

P̂
S1
(zS1 |xS1)

)
. . .

(∑
zSK

P̂
SK

(zSK |xSK )

)
=
∏
S∈M

∑
zS

P̂
S
(zS |xS)

=
∏
S∈M

R(|S|, |Y |),

(2.17)

which completes the proof.

2.10 Appendix III: Proof of Proposition 2
Proposition 2: Assume M contains K rules in total, including the else rule, and
we have n instances. Under the mild assumption that |S| grows linearly as the
sample size n for all S ∈M , then log

(∏
S∈M R(|S|, |Y |)

)
= K(|Y |−1)

2
logn+O(1),

where O(1) is bounded by a constant w.r.t. to n.

Proof. The proof directly follows from Theorem 3 of (Silander et al. 2008). Firstly,
it has been proven that logR(|S|, |Y |) = |Y |−1

2
log |S| + O(1) (Rissanen 1996).

Next, under the mild assumption that |S| grows linearly as the full sample size n,
we have log |S| = log((γ+o(1))n) = logn+O(1). Hence, log

∏
S∈M R(|S|, |Y |) =∑

S logR(|S|, |Y |) = K(|Y |−1)
2

logn+O(1), which completes the proof.
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