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Chapter 1

Introduction
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Data-driven Models

1.1 Data-driven Models

Data may contain a large amount of information about the underlying pro-
cess that generated it. The larger the dataset is, the more information it may
contain, but meanwhile the more difficult it may be for humans to distinguish
useful patterns and regularities from noise and randomness.

Algorithms can handle large datasets that are intractable for humans to pro-
cess, either by summarizing datasets and extracting patterns that are comprehen-
sible for humans, or by building predictive models that construct relationships
between variables. Models and algorithms in data mining and unsupervised ma-
chine learning concern the former, and those in supervised machine learning and
statistical predictive modeling concern the latter.

1.1.1 Interpretable patterns for knowledge discovery

Due to our curious nature, we explore, reflect and learn from past experiences
for all kinds of tasks. This includes building new connections between phenomena,
discovering new knowledge from observations, and getting deep understanding
about fundamental and complicated matters.

We can now enhance such activities with the help of large amounts of collected
data, with the following application scenarios as examples. First, for instance,
with the help of customer purchase records in supermarkets, associative patterns
such as customers who buy coffee tend to buy milk and cookies as well can be
“mined” from the large amount of records. In addition, with data collected by
sensors installed in different places in manufacturing factories, anomalies can be
detected and insight of what perhaps causes the anomalies may be identified.
Furthermore, with the records of patients’ conditions in a hospital, knowledge of
factors that may lead to dangerous situations may be discovered. Finally, with
trajectories recorded by GPS devices, regions with different popularity can be
detected and insight about urban planning and/or police force distribution may
be obtained.

Various models and algorithms exist for different kinds of tasks in inducing
patterns from data, including and not limited to clustering, anomaly detection,
association rules, frequent pattern mining, and density estimation. However, with
the increased complexity of such models and algorithms, it has become an im-
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Chapter 1 Introduction

portant research problem to seek for interpretability and transparency, i.e., to ask
how the model outputs are produced. For instance, given some tabular data with
a large number of variables, a key task in understanding the data is to investigate
the dependency structure among variables, as widely used in graphical models and
causal inference. Both transparent models with interpretable patterns and black-
box models like deep neural networks are commonly used for this task. However,
only the former can provide insight into why the model outputs (conditionally)
“independent” or “dependent” for a certain subset of variables.

1.1.2 Interpretable predictive models

Besides knowledge discovery, building predictive models for a given target
variable from data with machine learning algorithms has become successful in
many areas, in the sense that the accuracy of such models are (beyond) “reason-
ably good” nowadays.

Examples for areas where such models are applied include the following. First,
streaming media like Netflix can predict whether a customer may like a new
movie or not, based on their historic watch data. Second, banks can predict
whether someone is likely to be capable of paying back their debts given their bank
account transaction data. Third, physicians in hospitals may use data collected by
monitoring patients’ conditions to help them predict the risk of certain operations.

However, accuracy of a predictive model is not the only concern when we
consider introducing such a model and putting it into real use in our society,
especially in critical areas such as health care (in which decisions are to be made
about diagnosis or medication use, for instance), the judicial system (in which
decisions are to be made about whether someone is guilty), and financial services
(in which decisions are to be made about whether someone can get a mortgage,
or someone is conducting fraud).

Because of ethical reasons and/or because of the severity of the outcome after
false predictions, decisions with major influence on people or the society cannot
be made automatically merely based on predictions given by machine learning
models. That is, only humans should be responsible for taking actions in such
critical areas.

Consider a scenario where a physician needs to decide whether a patient in an
intensive care unit (ICU) of a hospital is good enough to be discharged. While all
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What is Interpretability?

the data records on the conditions of the patient can be useful, physicians can use
a machine learning model trained on historic patients dataset to make predictions
only for decision support, instead of letting the model directly make a decision for
the patient.

Another example may be the situation where analysts in an insurance com-
pany must decide whether a client is conducting fraud. Even if all the transactions
related to this client contain a lot of information about their behavior, it still re-
mains the job of the analyst to extract evidence from the data and the model
outputs as we cannot let the model take the responsibility in judging whether
someone is guilty of conducting fraud.

Thus, substantial research has been put into obtaining interpretability of pre-
dictive machine learning models, to accelerate the introduction of such models in
critical areas. This includes both 1) explaining black-box models and 2) devel-
oping new intrinsically interpretable models, with the general goal of providing
transparency for data-driven decisions and building trust between the model and
the end user (e.g., data analysts and domain experts) (Doshi-Velez and Kim 2017;
Rudin et al. 2022).

1.2 What is Interpretability?

Interpretability is an umbrella term that can have very different meanings in
different contexts. Conceptually, interpretability may refer to transparency, global
interpretability, and local interpretability (Molnar 2020).

First of all, transparency concerns the extent to which a human can un-
derstand the process of an algorithm “learning” the model from data—how an
algorithm takes the data as input and then outputs the model (Molnar 2020).
Further, local interpretability often refers to an explanation of how the model
output of a single instance is obtained; in contrast, global interpretability refers
to the explanation of the model as a whole.

Thus, different models are considered (intrinsically) interpretable for differ-
ent reasons. For instance, decision tree models (Breiman et al. 1984; Quinlan
2014) and rule-based models (Clark and Boswell 1991; Cohen 1995) are consid-
ered interpretable often due to the fact that the decision logic of every single
prediction can be directly read by humans. In addition, linear models are consid-
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Chapter 1 Introduction

ered interpretable as the marginal effect of a unit change in some feature value on
a predicted value is described by a linear function, which is assumed to be “eas-
ily understandable”. Further, generalized additive models (GAMs) are sometimes
also considered interpretable (Caruana et al. 2015) as the marginal effect of fea-
ture changes on the target variable can be described by some non-linear function
that can be visualized (and hence examined by the end user).

Meanwhile, what “interpretable models” mean in unsupervised learning is a
bit more vague. While we may consider the K-means method for clustering in-
terpretable, as it can more or less be explained why two instances belong to the
same cluster (or two different clusters), it may be difficult to justify a clustering
method based on deep neural network to be interpretable. Similarly, we may
consider (linear) principle component analysis (PCA) interpretable as the associ-
ated “importance” for each dimension after the “rotation” of the basis of a vector
space can be directly calculated; however, an embedding method based on an
auto-encoder can hardly be understood by a human.

Yet, the concept becomes much more intuitive when we talk about inter-
pretability in a comparative manner. For instance, a model that can make predic-
tions together with feature importance (i.e., how much each feature “contributes”
to the given model output) seems more interpretable than a model without fea-
ture importance. For instance, this is widely used in the field of computer vision,
i.e., to attribute the model output to each pixel and visualize it (Adebayo et al.
2018).

Thus, one may argue that by introducing an approach for obtaining feature
importance, the interpretability of a machine learning model class is increased1.
Besides obtaining feature importance, it is also common to increase interpretabil-
ity by 1) providing (local) surrogate models that are much “simpler” than the
model to be explained (Ribeiro et al. 2016), and 2) reducing model complexity
while maintaining predictive performance (Wu et al. 2018).

1Nevertheless, this may bring another issue that the method used for obtaining the feature importance
may be complicated and hence cannot be regarded as transparent.
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Partition-based Models

1.3 Partition-based Models
In this dissertation, we focus on partition-based models. Specifically, we

consider rule-based models for supervised learning and (adaptive) histogram models
for unsupervised learning, for which we now provide a very gentle introduction.

1.3.1 Probabilistic rule sets

A probabilistic rule is in the form of IF some condition is met, THEN
P (Y ) is equal to a certain value, where P (Y ) denotes the (estimated) prob-
ability distribution for the target variable Y . As an example, consider a dataset
that contains information on all flights in an airport within a certain period; then,
one rule that may be induced from this dataset looks like “IF Weather = Fog
AND Flight_time ≤ 9 a.m. THEN P(Delay) = 0.8”.

Further, a probabilistic rule set is simply a set of probabilistic rules put
together. Rule sets are often considered as intrinsically interpretability models,
as such probabilistic rules can be directly read and comprehended by humans. In
Table 1.1 we show an example rule set learned from a real dataset that we will
elaborate on in Chapter 4.

Condition of Rules Probability of Readmission to ICU
Ureum-max-all ≥ 12.1 0.223Ademfrequentie-median-value-last24h ≥ 23.5
APTT-max-all ≥ 43.1 0.199Ureum-mean-all ≥ 16.338
Leukocyten-mean-last ≥ 20.81 0.162
Kalium-count-first ≥ 6.0 0.131specialty-Organization-value-sub-ICCTC = FALSE
Trombocyten-count-first ≥ 2.0

0.019Ureum-last-last < 9.2
specialty-Organization-value-sub-ICCTC = TRUE
None of the above 0.059

Table 1.1: A rule set describing readmission risk that is learned from patients admitted
to the intensive care unit of a hospital (described in detail in Chapter 4).

We are particularly interested in rule-based models due to the following rea-
sons. First, one appealing property of rule-based models is that it connects inter-
pretable predictive modeling and knowledge discovery, in the sense that it on one
hand can be used for making (probabilistic) predictions for the target variable,
and on the other hand, each rule is a local pattern that summarizes a subset of
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Chapter 1 Introduction

the data and hence can be used for understanding the data itself and obtaining
insights.

Second, the interpretability of rule-based models concerns both global inter-
pretability and local interpretability. That is, individual rules can be used for
explaining why a single prediction is made; meanwhile, a human can comprehend
the rule set as a whole to grasp the internal logic of the model. Thus, rule-based
models do not rely on post-hoc, external, and potentially non-transparent meth-
ods for obtaining interpretability.

Third, as rules are readable by humans, rule-based models are very accessible
to domain experts who are not experts on machine learning methods. Thus, rule-
based models are suitable to be used as a foundation for developing interactive
machine learning methods: to allow the domain expert to give feedback to rules
and to let the model incorporate the feedback by means of self-updating.

1.3.2 Multi-dimensional adaptive histograms

Histograms are widely used as a tool for visualizing the distribution of one-
or two-dimensional data. For one- and multi-dimensional datasets in general,
histograms can also be used as a tool for density estimation, data summarization,
and discretization.

As an unsupervised partition-based model, histograms partition data points
into bins, and within each bin the probability density is estimated as one constant.
Specifically, an adaptive histogram is a histogram with variable bin sizes. For
multi-dimensional histograms, bins may refer to as (hyper-)boxes or even more
flexible subsets from a certain data partitioning process.

A multi-dimensional adaptive histogram is a simple yet powerful model that
can effectively capture dependency structures among different dimensions. Specif-
ically, multi-dimensional bins can be regarded as interpretable patterns that high-
light subsets of data points for which the empirical marginal and conditional distri-
butions differ from each other. This makes multi-dimensional adaptive histograms
suitable for 1) discretization that incorporates the dependencies among dimen-
sions, and 2) learning dependency structures for probabilistic graphic models.

We illustrate an example of a two-dimensional adaptive histogram in Fig-
ure 1.1, which is obtained by our proposed method that will be discussed in
Chapter 5 on a simulated Gaussian dataset.
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A Gentle Introduction to the MDL Principle

Figure 1.1: The histogram model for a simulated Gaussian dataset with density estimation
(discussed in detail in Chapter 5).

1.4 A Gentle Introduction to the MDL Principle
We leverage information-theoretic tools and specifically the minimum descrip-

tion length (MDL) principle to formalize the problem of learning partition-based
models from data as MDL-based model selection tasks.

The MDL principle has roots in information theory (Rissanen 1978). The
core idea may be summarized as learning by compression. Specifically, the MDL
principle states that the more we can compress the data in a lossless manner, the
more structure and pattern we have found in the data. The degree of compression
is measured by the code length, in bits, needed to encode data, together with the
code length needed to encode the model that describes the regularities (structure
and patterns) of the data.

Consider as an example learning regularities from the following two binary
sequences: 1) a randomly generated binary sequence “100111101...”, and 2) a
binary sequence with the same length, which contains the regularity that a one is
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always followed by a zero. Imagine we now need to communicate each sequence
to a message receiver; for the first sequence, as there exists no regularity inside it,
the only way is to enumerate each ‘1’ and ‘0’ in order. However, for the second
sequence, we can first communicate the regularity itself to the message receiver,
and then when we enumerate each ‘1’ and ‘0’ in order, we can skip the ‘0’ after each
‘1’ as the message receiver can add one ‘0’ after receiving a ‘1’ according to the
regularity the receiver received. Thus, the number of bits needed to communicate
the second sequence will be shorter than the length of the sequence itself. In this
case, we say that the data is compressed with the help of the regularity. Reversely,
regularity (instead of noise) is found if we find that it can be used to compress
the data.

Thus, applying the MDL principle to certain tasks is about calculating the
code length for the model and data together, which depends on the encoding
scheme. Historically, choosing the encoding scheme was done in a crude and
more or less arbitrary manner, and the earliest application of the MDL princi-
ple to partition-based models was to use the MDL principle in the well-known
C4.5 (Quinlan 2014) and RIPPER (Cohen 1995) rule learning methods. In con-
trast, the modern version of the MDL principle (Grünwald and Roos 2019) ex-
ploits the connection between encoding and probabilistic modeling. Statistically,
the length (in bits) of a given code2 is connected to a corresponding probability
distribution, as described by Kraft’s inequality (Grünwald 2007).

The main motivation for adopting the MDL principle is that it removes the
commonly used regularization parameter in the formalization of the learning prob-
lem, as the MDL principle automatically trades off between the goodness-of-fit and
model complexity, which increases the transparency of how a learning method
“creates” the model.

1.5 Research Questions
The overarching question we study in this dissertation is how to increase

interpretability and transparency for partition-based models for supervised and
unsupervised learning. This mainly concerns 1) how to make histograms more
interpretable by having adaptive bins, as well as more transparent by reducing

2We assume all codes are prefix codes in this dissertation.
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Research Questions

the number of user-defined parameters (e.g., the number of bins), and 2) how
to increase the interpretability of rule-based models towards the level so that
human-guided rule learning is possible. We next present our three main research
questions in detail.

1.5.1 Towards rule sets for interactive rule learning

Although rule-based models carry significant interpretability because of the
readability of the rules, our goal is to bring their interpretability to an even higher
level so that domain experts can comprehend and potentially edit individual rules
without considering the effect of/on other rules.

Consider a set of classification rules, each rule in the form of
∧
{Xi ∈ Ri} →

Y ∼ P (Y ), in which Xi represents a single feature variable and Ri represents a
set/range of values. For instance, a single rule could be denoted as “Weather =

Fog ∧ Flight_time ≤ 9 a.m. → P(Delay) = 0.8” .
Enhancing the interpretability of a set of such rules requires properly han-

dling the “overlap” of rules, a long unresolved issue in learning rule-based models.
Specifically, overlap refers to the case where one instance (e.g., one flight) satisfies
the conditions of multiple rules, potentially with different probabilistic predictions
for the target variable (e.g., flight delay).

As overlaps among rules make rules “entangled”, we aim to enhance the
interpretability of rule-based models by obtaining rules that are “independent”
with regard to each other. Thus, we consider the following research question:

• Research Question 1: How can we formalize rule sets as probabilistic
models such that the individual rules are independent from each other? Fur-
ther, how can we learn such models from data?

Notably, due to the lack of a widely accepted general definition of inter-
pretability, we consider interpretability in a comparative manner. Different from
the common approach of seeking more interpretable rule-based models by mak-
ing rules “simpler” (i.e., fewer and shorter rules), we instead consider making a
rule-based model more interpretable by reducing the conflicts caused by overlaps
among rules. We explain in detail why and how conflicts caused by overlaps affect
interpretability in Chapters 2 and 3.
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1.5.2 Adaptive histograms for discretization

Discretization is the task of summarizing continuous values and transforming
them into a certain discrete representation form. It is a necessary pre-processing
step if the following step in the modeling pipeline requires discrete values as input.

Intuitively, discretization methods need to strike a balance between the amount
of preserved information and the complexity of the discretized representation (as
a simple representation of data has benefits in terms of interpretability).

We specifically consider unsupervised discretization, i.e., discretization for a
dataset without a target variable. Hence, the quality of the discretization cannot
be evaluated by evaluating the prediction loss of the following step. Instead, it
is crucial under such circumstances to discretize the data in a way that makes
sense to domain experts, which concerns providing transparency regarding how
the discretization is obtained.

Histogram-based models have the advantage of being very interpretable in
discretization, data summarization, and density estimation (Kontkanen and Myl-
lymäki 2007b; Scott 2015). However, while fixed histograms (histograms with
equal bin sizes) are still widely used, they are often constructed with user-defined,
more or less arbitrarily set parameters that control the number of bins (and hence
the bin sizes). Thus, different patterns and, as a result, summarizations of a given
dataset may exist, without any principled way of justifying which one represents
the data more accurately. We argue that this may cause confusion to domain
experts in practice, and hence negatively affects the trust in the model output by
humans.

Further, while histograms as probabilistic models “approximate” the density
of a given dataset by piece-wise constant values, existing methods lack a justifi-
cation of whether the density inside each bin of a histogram is indeed (approxi-
mately) homogeneous, and at the same time, whether the density of neighboring
bins are “very” different. Hence, the empirical distribution of data points within
each bin is not transparent to domain experts in this case. Similarly, it often
remains unclear whether “neighboring” bins have similar density estimates. For
domain experts, merging such neighboring bins makes the model simpler and
hence is beneficial for interpretability.

We specifically focus on two-dimensional datasets because spatial data is
widely collected and analyzed, while a large number of existing algorithms for
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Contributions

mining spatial (or spatio-temporal) patterns require discrete values as input. This
brings additional challenges as previous methods rarely considered the dependency
of different dimensions, but applied a one-dimensional discretization method for
each dimension separately.

To address these challenges, we propose our second research question:

• Research Question 2: how can we construct parameter-free two-dimensional
histograms with transparent and informative patterns (bins)?

1.5.3 Histograms for learning dependency structure

We further exploit histogram-based models for the task of conditional mu-
tual information estimation, which is useful in learning dependency structures
among variables. That is, given three random variables denoted as X,Y, Z, the
conditional mutual information (CMI) I(X;Y |Z) characterizes whether X and
Y are conditionally independent given Z. CMI estimation has wide applications
in feature selection, conditional independence testing, and dependency structure
learning (for graphic models).

We specifically consider CMI estimation for data with mixed types, of which
each dimension can be continuous, discrete, and discrete-continuous mixtures.
Although k-nearest neighbor (kNN) estimation is shown to work in such cases, we
consider histogram-based models a more interpretable approach for such tasks, as
each bin of the histogram can be regarded as an interpretable local pattern for
explaining which subset of the data points contributes to the dependency among
certain variables (and to what extent). This leads to our last research question:

• Research Question 3: How can we construct a multi-dimensional adaptive
histogram-based model for interpretable CMI estimation?

Specifically, we extend our two-dimensional histogram-based models (discussed
above) to multi-dimensional cases.

1.6 Contributions
This dissertation is composed of articles listed in the Table 1.2. The contribu-

tions for the paper corresponding to Chapter 6 were split half/half with Alexander
Marx.
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Article Used in
Yang, L & van Leeuwen, M Truly Unordered Probabilis-
tic Rule Sets for Multi-class Classification. In: Proceed-
ings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(ECMLPKDD 2022), 2022.

Chapter 2

Yang, L & van Leeuwen, M Probabilistic Truly Unordered
Rule Sets. Under review, submitted to JMLR.

Chapter 3

Yang, L, van der Meijden, S, Arbous, M.S & van Leeuwen,
M ICU Readmission Risk Analysis with Probabilistic
Rule Set Model. In Preparation.

Chapter 4

Yang, L, Baratchi, M & van Leeuwen, M Unsupervised
Discretization by Two-dimensional MDL-based His-
togram. Machine Learning, Springer, 2023.

Chapter 5

Marx, A, Yang, L & van Leeuwen, M Estimating Con-
ditional Mutual Information for Discrete-Continuous
Mixtures using Multi-Dimensional Adaptive His-
tograms. In: Proceedings of the SIAM Conference on Data
Mining 2021 (SDM’21), 2021.

Chapter 6

Table 1.2: List of papers.

We briefly summarize the contributions of these chapters as follows. In Chap-
ters 2 and 3, we introduce the truly unordered rule set (TURS) model and present
our method for learning TURS models from data, which substantially improves
the comprehensibility of rule set models. Specifically, in Chapter 2 we address the
challenge of how we can treat overlaps as uncertainty in order to eliminate the need
for post-hoc conflict-resolving schemes for overlap. We propose our first algorithm
to learn TURS models from data, and showcase that rule sets learned from data,
with overlaps representing uncertainty, can have on-par predictive performance
in comparison to rule-based methods with explicit or implicit orders among rules
(which are hence less interpretable).

Subsequently, in Chapter 3, we formalize the probabilistic modeling and the
learning problem for TURS in a more rigorous way. Further, we propose a refined
algorithm and conduct extensive experiments to present the appealing properties
of learned models from various perspectives.

In Chapter 4, we apply the TURS model to the problem of ICU readmission
risk analysis, and demonstrate that our method can be used for interactive rule
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learning.
In Chapter 5, we study two-dimensional MDL-based histograms for unsuper-

vised discretization. The main contributions are two fold. First, regarding the
MDL theory, we show that the parametric complexity does not depend on the
dimensionality of the data, which is defined as the regret term in the formula
that calculates the code length (in bits). Second, we propose a novel method that
can learn very flexible and expressive histograms for simulated and real-world
datasets.

In Chapter 6, we extend the MDL histograms to multi-dimensional cases
for the task of CMI estimation. Our main contributions include the following.
First, we develop a series of theoretic results to construct our CMI estimator: 1)
we define measure-theoretic entropy and prove the formula for calculating CMI
based on entropy also holds for discrete-continuos mixtures, 2) we formally define
histogram-based models for discrete-continuous mixture data, and 3) we prove the
consistency of the proposed CMI estimator. Second, we propose an alternating
algorithm to learn multi-dimensional adaptive histograms that are shown to be
highly competitive when we benchmark against several widely used competitor
methods.
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