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Abstract

Data-driven modeling in applied research often requires both predictive mod-
eling and understanding data. Predictive models in supervised learning are indis-
pensable for decision-making, early warning systems, and forming robust associa-
tions; meanwhile, algorithms in data mining and unsupervised learning search for
patterns that are crucial for understanding data, getting insights into the physical
process behind it, and taking action in the application domain.

In this dissertation, we study partition-based models that can be used both
for interpretable predictive modeling and for understanding data via interpretable
patterns. Specifically, we study probabilistic rule-based models for multi-class
classification and histogram models for discretization, explanatory data analysis,
and conditional mutual information estimation.

For rule-based models, we address the long-unresolved problem that inter-
pretability of rule-based models is harmed by the need for conflict-resolving schemes
for “overlaps” among rules (i.e., instances covered by multiple rules). Based on
the intuitions that 1) overlaps can be used for characterizing the uncertainty of
a model, and 2) only rules with similar class probability estimates are “allowed”
to overlap, we formally introduce a new probabilistic model based on probabilis-
tic rules, which we name Truly Unordered Rule Set (TURS). In a series of three
research papers (Chapters 2–4) we showcase that our proposed method learns
“independent” rules that are not “entangled” with each other, which significantly
improves the comprehensibility of the induced rule sets, as (explicit and implicit)
orders within rules are eliminated. Building upon our proposed TURS model,
we conduct a pilot study to demonstrate how it facilitates interactive rule learn-
ing: rules can be updated after receiving feedback from domain experts regarding
disliked variables.
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Next, in the realm of histogram-based methods, we first consider two dimen-
sional datasets (Chapter 5), motivated by the ubiquitous spatial datasets collected
by GPS devices. While histograms are widely used to discretize and summarize
data, how to incorporate dependency among variables in multivariate unsupervised
discretization is understudied. Further, the lack of a principled way for parameter
setting leads to ambiguity to data analysts, as different parameter settings for
histograms lead to significantly different results.

We address these issues by introducing a two dimensional histogram method
based on the minimum description length (MDL) principle, with enhanced inter-
pretability and transparency in the following aspects. First, we formally define
the optimal histogram under the MDL principle, and hence eliminate the need
for setting bin sizes, which increases the transparency of how histogram-based
data discretization/summarization is obtained. Second, we propose the problem
of learning two dimensional histograms in an expressive and flexible model class,
in which the data space can be partitioned into subsets consisting of unions of
disjoint rectangles. Based on this, we increase the interpretability of the model
by learning histograms in which neighboring “bins” must have density estimates
that are “dissimilar enough” under the MDL framework.

Following this line, we lastly study multi-dimensional adaptive histograms
for conditional mutual information (CMI) estimation (Chapter 6), which is a
fundamental task in understanding (conditional) independence and dependence
relationships among variables. Thus, CMI estimation has applications in feature
selection, independence testing, probabilistic graphic models, and causal inference.
We specifically consider discrete-continuous mixture data, which is common in
application areas where data can be truncated or is collected in a way that numeric
values (instead of discrete levels) are only recorded in specific (e.g., anomaly)
situations. We introduce histograms that can handle such mixture data, and
support it with theoretical underpinnings, including measure-theoretic entropy
definitions and consistency proofs. Notably, histogram bins with large differences
between the (empirical) joint entropy and the sum of marginal entropies can be
regarded as interpretable patterns for explaining dependency.

In conclusion, this dissertation explores MDL-based partition-based models
and advances the field of interpretable machine learning by introducing innovative
methods for a variety of tasks.

vi



Contents

Abstract v

1 Introduction 1
1.1 Data-driven Models . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Interpretable patterns for knowledge discovery . . . . . . . 2
1.1.2 Interpretable predictive models . . . . . . . . . . . . . . . . 3

1.2 What is Interpretability? . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Partition-based Models . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Probabilistic rule sets . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Multi-dimensional adaptive histograms . . . . . . . . . . . . 7

1.4 A Gentle Introduction to the MDL Principle . . . . . . . . . . . . 8
1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Towards rule sets for interactive rule learning . . . . . . . . 10
1.5.2 Adaptive histograms for discretization . . . . . . . . . . . . 11
1.5.3 Histograms for learning dependency structure . . . . . . . . 12

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Rule Sets with Overlaps that Represent Uncertainty 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Rule Sets as Probabilistic Models . . . . . . . . . . . . . . . . . . . 20

2.3.1 Probabilistic Rules . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Truly Unordered Rule Sets as Probabilistic Models . . . . . 21

2.4 Rule Set Learning as Probabilistic Model Selection . . . . . . . . . 24
2.4.1 Normalized Maximum Likelihood Distributions for Rule Sets 24

vii



Contents

2.4.2 Approximating the NML Distribution . . . . . . . . . . . . 25
2.5 Learning Truly Unordered Rule Sets from Data . . . . . . . . . . . 27

2.5.1 Evaluating Incomplete Rule Sets with a Surrogate Score . . 27
2.5.2 Two-phase Rule Growth . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Beam Search for Two-phase Rule Growth . . . . . . . . . . 30
2.5.4 Iterative search for the rule set . . . . . . . . . . . . . . . . 32

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 Appendix I: Reproducibility for Experiments . . . . . . . . . . . . 37
2.9 Appendix II: Proof of Proposition 1 . . . . . . . . . . . . . . . . . 37
2.10 Appendix III: Proof of Proposition 2 . . . . . . . . . . . . . . . . . 38

3 Probabilistic Truly Unordered Rule Sets 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Truly Unordered Rule Sets . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Probabilistic rules . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 The TURS model . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Predicting for a new instance . . . . . . . . . . . . . . . . . 52

3.4 Rule Set Learning as Probabilistic Model Selection . . . . . . . . . 53
3.4.1 Normalized Maximum Likelihood Distributions for Rule Sets 53
3.4.2 Approximating the NML Distribution . . . . . . . . . . . . 54
3.4.3 Code length of model . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 MDL-based model selection . . . . . . . . . . . . . . . . . . 58

3.5 Learning Truly Unordered Rules from Data . . . . . . . . . . . . . 59
3.5.1 Learning a rule set . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Learning a single rule . . . . . . . . . . . . . . . . . . . . . 61

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.2 Classification performance . . . . . . . . . . . . . . . . . . . 70
3.6.3 Prediction with ‘random picking’ for overlaps . . . . . . . . 71
3.6.4 Generalizability of local probabilistic estimates . . . . . . . 72
3.6.5 Model complexity . . . . . . . . . . . . . . . . . . . . . . . 74

viii



Contents

3.6.6 Ablation study 1: diverse patience beam search . . . . . . . 75
3.6.7 Ablation study 2: MDL-based local testing . . . . . . . . . 76
3.6.8 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.8 Appendix: Comparison to the Previous Work . . . . . . . . . . . . 81

4 Case Study: Towards Interactive Rule Learning for ICU Read-
mission Analysis 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Updating Rule Sets with Human Feedback . . . . . . . . . . . . . . 92

4.2.1 Human feedback format . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Updating a rule set . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 An Empirical Pilot Study . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Rule set for the ICU dataset . . . . . . . . . . . . . . . . . 96
4.3.3 Rule-based competitor methods . . . . . . . . . . . . . . . . 96
4.3.4 Human-AI collaboration . . . . . . . . . . . . . . . . . . . . 97

4.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Discussion for future work . . . . . . . . . . . . . . . . . . . 100

5 Summarizing Two-dimensional Data with MDL-based Discretiza-
tion by Histograms 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Notation and definitions of data, model, and model class . . 112
5.3.2 Histogram model selection by the MDL principle . . . . . . 113

5.4 Calculating the code length . . . . . . . . . . . . . . . . . . . . . . 115
5.4.1 Code length of the data . . . . . . . . . . . . . . . . . . . . 116
5.4.2 Code length of the model . . . . . . . . . . . . . . . . . . . 118

5.5 Revisiting MDL histograms for one-dimensional data . . . . . . . . 120
5.6 The PALM Algorithm for Partitioning and Merging . . . . . . . . 124
5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7.1 Measuring the difference between two-dimensional histograms127
5.7.2 Revealing ground truth two-dimensional histograms . . . . 128

ix



Contents

5.7.3 Approximating histogram models outside model class M . . 130
5.7.4 Gaussian random variables . . . . . . . . . . . . . . . . . . 131
5.7.5 Comparison with IPD . . . . . . . . . . . . . . . . . . . . . 132
5.7.6 Empirical runtime . . . . . . . . . . . . . . . . . . . . . . . 134

5.8 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.8.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.8.2 Case study tasks . . . . . . . . . . . . . . . . . . . . . . . . 136
5.8.3 Case study results . . . . . . . . . . . . . . . . . . . . . . . 137
5.8.4 Empirical runtime . . . . . . . . . . . . . . . . . . . . . . . 138
5.8.5 Algorithm settings . . . . . . . . . . . . . . . . . . . . . . . 139

5.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.10 Appendix A: Proof of Proposition 3 . . . . . . . . . . . . . . . . . 140
5.11 Appendix B: Proof of Proposition 4 . . . . . . . . . . . . . . . . . 142
5.12 Appendix C: IPD visualizations on case study datasets . . . . . . . 144

6 Interpretable Conditional Mutual Information Estimation with
Adaptive Histograms 149
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Entropy for Mixed Random Variables . . . . . . . . . . . . . . . . 152

6.2.1 A Generalized Definition of Entropy . . . . . . . . . . . . . 153
6.3 Adaptive Histogram Models . . . . . . . . . . . . . . . . . . . . . . 155

6.3.1 One-Dimensional Histogram Models . . . . . . . . . . . . . 155
6.3.2 Multi-Dimensional Histograms . . . . . . . . . . . . . . . . 156
6.3.3 Maximum Likelihood Estimator . . . . . . . . . . . . . . . 156
6.3.4 Conditional Mutual Information Estimator . . . . . . . . . 157

6.4 Learning Adaptive Histograms from Data . . . . . . . . . . . . . . 158
6.4.1 MDL and Stochastic Complexity . . . . . . . . . . . . . . . 158
6.4.2 Code Length of the Model . . . . . . . . . . . . . . . . . . . 159

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.7.1 Mutual Information Estimation . . . . . . . . . . . . . . . . 163

x



Contents

6.7.2 Independence Testing . . . . . . . . . . . . . . . . . . . . . 166
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.9 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . 169

6.9.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.9.2 Implementation Details . . . . . . . . . . . . . . . . . . . . 174
6.9.3 Data Generation and Additional Experiments . . . . . . . . 174

7 Conclusions 179
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . 181
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Acknowledgements 199

Summary 201

Samenvatting 203

Titles in the SIKS dissertation series since 2016 205

Curriculum Vitae 223

xi



Contents

xii



Chapter 1

Introduction
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Data-driven Models

1.1 Data-driven Models

Data may contain a large amount of information about the underlying pro-
cess that generated it. The larger the dataset is, the more information it may
contain, but meanwhile the more difficult it may be for humans to distinguish
useful patterns and regularities from noise and randomness.

Algorithms can handle large datasets that are intractable for humans to pro-
cess, either by summarizing datasets and extracting patterns that are comprehen-
sible for humans, or by building predictive models that construct relationships
between variables. Models and algorithms in data mining and unsupervised ma-
chine learning concern the former, and those in supervised machine learning and
statistical predictive modeling concern the latter.

1.1.1 Interpretable patterns for knowledge discovery

Due to our curious nature, we explore, reflect and learn from past experiences
for all kinds of tasks. This includes building new connections between phenomena,
discovering new knowledge from observations, and getting deep understanding
about fundamental and complicated matters.

We can now enhance such activities with the help of large amounts of collected
data, with the following application scenarios as examples. First, for instance,
with the help of customer purchase records in supermarkets, associative patterns
such as customers who buy coffee tend to buy milk and cookies as well can be
“mined” from the large amount of records. In addition, with data collected by
sensors installed in different places in manufacturing factories, anomalies can be
detected and insight of what perhaps causes the anomalies may be identified.
Furthermore, with the records of patients’ conditions in a hospital, knowledge of
factors that may lead to dangerous situations may be discovered. Finally, with
trajectories recorded by GPS devices, regions with different popularity can be
detected and insight about urban planning and/or police force distribution may
be obtained.

Various models and algorithms exist for different kinds of tasks in inducing
patterns from data, including and not limited to clustering, anomaly detection,
association rules, frequent pattern mining, and density estimation. However, with
the increased complexity of such models and algorithms, it has become an im-
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Chapter 1 Introduction

portant research problem to seek for interpretability and transparency, i.e., to ask
how the model outputs are produced. For instance, given some tabular data with
a large number of variables, a key task in understanding the data is to investigate
the dependency structure among variables, as widely used in graphical models and
causal inference. Both transparent models with interpretable patterns and black-
box models like deep neural networks are commonly used for this task. However,
only the former can provide insight into why the model outputs (conditionally)
“independent” or “dependent” for a certain subset of variables.

1.1.2 Interpretable predictive models

Besides knowledge discovery, building predictive models for a given target
variable from data with machine learning algorithms has become successful in
many areas, in the sense that the accuracy of such models are (beyond) “reason-
ably good” nowadays.

Examples for areas where such models are applied include the following. First,
streaming media like Netflix can predict whether a customer may like a new
movie or not, based on their historic watch data. Second, banks can predict
whether someone is likely to be capable of paying back their debts given their bank
account transaction data. Third, physicians in hospitals may use data collected by
monitoring patients’ conditions to help them predict the risk of certain operations.

However, accuracy of a predictive model is not the only concern when we
consider introducing such a model and putting it into real use in our society,
especially in critical areas such as health care (in which decisions are to be made
about diagnosis or medication use, for instance), the judicial system (in which
decisions are to be made about whether someone is guilty), and financial services
(in which decisions are to be made about whether someone can get a mortgage,
or someone is conducting fraud).

Because of ethical reasons and/or because of the severity of the outcome after
false predictions, decisions with major influence on people or the society cannot
be made automatically merely based on predictions given by machine learning
models. That is, only humans should be responsible for taking actions in such
critical areas.

Consider a scenario where a physician needs to decide whether a patient in an
intensive care unit (ICU) of a hospital is good enough to be discharged. While all

3



What is Interpretability?

the data records on the conditions of the patient can be useful, physicians can use
a machine learning model trained on historic patients dataset to make predictions
only for decision support, instead of letting the model directly make a decision for
the patient.

Another example may be the situation where analysts in an insurance com-
pany must decide whether a client is conducting fraud. Even if all the transactions
related to this client contain a lot of information about their behavior, it still re-
mains the job of the analyst to extract evidence from the data and the model
outputs as we cannot let the model take the responsibility in judging whether
someone is guilty of conducting fraud.

Thus, substantial research has been put into obtaining interpretability of pre-
dictive machine learning models, to accelerate the introduction of such models in
critical areas. This includes both 1) explaining black-box models and 2) devel-
oping new intrinsically interpretable models, with the general goal of providing
transparency for data-driven decisions and building trust between the model and
the end user (e.g., data analysts and domain experts) (Doshi-Velez and Kim 2017;
Rudin et al. 2022).

1.2 What is Interpretability?

Interpretability is an umbrella term that can have very different meanings in
different contexts. Conceptually, interpretability may refer to transparency, global
interpretability, and local interpretability (Molnar 2020).

First of all, transparency concerns the extent to which a human can un-
derstand the process of an algorithm “learning” the model from data—how an
algorithm takes the data as input and then outputs the model (Molnar 2020).
Further, local interpretability often refers to an explanation of how the model
output of a single instance is obtained; in contrast, global interpretability refers
to the explanation of the model as a whole.

Thus, different models are considered (intrinsically) interpretable for differ-
ent reasons. For instance, decision tree models (Breiman et al. 1984; Quinlan
2014) and rule-based models (Clark and Boswell 1991; Cohen 1995) are consid-
ered interpretable often due to the fact that the decision logic of every single
prediction can be directly read by humans. In addition, linear models are consid-
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Chapter 1 Introduction

ered interpretable as the marginal effect of a unit change in some feature value on
a predicted value is described by a linear function, which is assumed to be “eas-
ily understandable”. Further, generalized additive models (GAMs) are sometimes
also considered interpretable (Caruana et al. 2015) as the marginal effect of fea-
ture changes on the target variable can be described by some non-linear function
that can be visualized (and hence examined by the end user).

Meanwhile, what “interpretable models” mean in unsupervised learning is a
bit more vague. While we may consider the K-means method for clustering in-
terpretable, as it can more or less be explained why two instances belong to the
same cluster (or two different clusters), it may be difficult to justify a clustering
method based on deep neural network to be interpretable. Similarly, we may
consider (linear) principle component analysis (PCA) interpretable as the associ-
ated “importance” for each dimension after the “rotation” of the basis of a vector
space can be directly calculated; however, an embedding method based on an
auto-encoder can hardly be understood by a human.

Yet, the concept becomes much more intuitive when we talk about inter-
pretability in a comparative manner. For instance, a model that can make predic-
tions together with feature importance (i.e., how much each feature “contributes”
to the given model output) seems more interpretable than a model without fea-
ture importance. For instance, this is widely used in the field of computer vision,
i.e., to attribute the model output to each pixel and visualize it (Adebayo et al.
2018).

Thus, one may argue that by introducing an approach for obtaining feature
importance, the interpretability of a machine learning model class is increased1.
Besides obtaining feature importance, it is also common to increase interpretabil-
ity by 1) providing (local) surrogate models that are much “simpler” than the
model to be explained (Ribeiro et al. 2016), and 2) reducing model complexity
while maintaining predictive performance (Wu et al. 2018).

1Nevertheless, this may bring another issue that the method used for obtaining the feature importance
may be complicated and hence cannot be regarded as transparent.
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Partition-based Models

1.3 Partition-based Models
In this dissertation, we focus on partition-based models. Specifically, we

consider rule-based models for supervised learning and (adaptive) histogram models
for unsupervised learning, for which we now provide a very gentle introduction.

1.3.1 Probabilistic rule sets

A probabilistic rule is in the form of IF some condition is met, THEN
P (Y ) is equal to a certain value, where P (Y ) denotes the (estimated) prob-
ability distribution for the target variable Y . As an example, consider a dataset
that contains information on all flights in an airport within a certain period; then,
one rule that may be induced from this dataset looks like “IF Weather = Fog
AND Flight_time ≤ 9 a.m. THEN P(Delay) = 0.8”.

Further, a probabilistic rule set is simply a set of probabilistic rules put
together. Rule sets are often considered as intrinsically interpretability models,
as such probabilistic rules can be directly read and comprehended by humans. In
Table 1.1 we show an example rule set learned from a real dataset that we will
elaborate on in Chapter 4.

Condition of Rules Probability of Readmission to ICU
Ureum-max-all ≥ 12.1 0.223Ademfrequentie-median-value-last24h ≥ 23.5
APTT-max-all ≥ 43.1 0.199Ureum-mean-all ≥ 16.338
Leukocyten-mean-last ≥ 20.81 0.162
Kalium-count-first ≥ 6.0 0.131specialty-Organization-value-sub-ICCTC = FALSE
Trombocyten-count-first ≥ 2.0

0.019Ureum-last-last < 9.2
specialty-Organization-value-sub-ICCTC = TRUE
None of the above 0.059

Table 1.1: A rule set describing readmission risk that is learned from patients admitted
to the intensive care unit of a hospital (described in detail in Chapter 4).

We are particularly interested in rule-based models due to the following rea-
sons. First, one appealing property of rule-based models is that it connects inter-
pretable predictive modeling and knowledge discovery, in the sense that it on one
hand can be used for making (probabilistic) predictions for the target variable,
and on the other hand, each rule is a local pattern that summarizes a subset of
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Chapter 1 Introduction

the data and hence can be used for understanding the data itself and obtaining
insights.

Second, the interpretability of rule-based models concerns both global inter-
pretability and local interpretability. That is, individual rules can be used for
explaining why a single prediction is made; meanwhile, a human can comprehend
the rule set as a whole to grasp the internal logic of the model. Thus, rule-based
models do not rely on post-hoc, external, and potentially non-transparent meth-
ods for obtaining interpretability.

Third, as rules are readable by humans, rule-based models are very accessible
to domain experts who are not experts on machine learning methods. Thus, rule-
based models are suitable to be used as a foundation for developing interactive
machine learning methods: to allow the domain expert to give feedback to rules
and to let the model incorporate the feedback by means of self-updating.

1.3.2 Multi-dimensional adaptive histograms

Histograms are widely used as a tool for visualizing the distribution of one-
or two-dimensional data. For one- and multi-dimensional datasets in general,
histograms can also be used as a tool for density estimation, data summarization,
and discretization.

As an unsupervised partition-based model, histograms partition data points
into bins, and within each bin the probability density is estimated as one constant.
Specifically, an adaptive histogram is a histogram with variable bin sizes. For
multi-dimensional histograms, bins may refer to as (hyper-)boxes or even more
flexible subsets from a certain data partitioning process.

A multi-dimensional adaptive histogram is a simple yet powerful model that
can effectively capture dependency structures among different dimensions. Specif-
ically, multi-dimensional bins can be regarded as interpretable patterns that high-
light subsets of data points for which the empirical marginal and conditional distri-
butions differ from each other. This makes multi-dimensional adaptive histograms
suitable for 1) discretization that incorporates the dependencies among dimen-
sions, and 2) learning dependency structures for probabilistic graphic models.

We illustrate an example of a two-dimensional adaptive histogram in Fig-
ure 1.1, which is obtained by our proposed method that will be discussed in
Chapter 5 on a simulated Gaussian dataset.

7
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Figure 1.1: The histogram model for a simulated Gaussian dataset with density estimation
(discussed in detail in Chapter 5).

1.4 A Gentle Introduction to the MDL Principle
We leverage information-theoretic tools and specifically the minimum descrip-

tion length (MDL) principle to formalize the problem of learning partition-based
models from data as MDL-based model selection tasks.

The MDL principle has roots in information theory (Rissanen 1978). The
core idea may be summarized as learning by compression. Specifically, the MDL
principle states that the more we can compress the data in a lossless manner, the
more structure and pattern we have found in the data. The degree of compression
is measured by the code length, in bits, needed to encode data, together with the
code length needed to encode the model that describes the regularities (structure
and patterns) of the data.

Consider as an example learning regularities from the following two binary
sequences: 1) a randomly generated binary sequence “100111101...”, and 2) a
binary sequence with the same length, which contains the regularity that a one is

8
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always followed by a zero. Imagine we now need to communicate each sequence
to a message receiver; for the first sequence, as there exists no regularity inside it,
the only way is to enumerate each ‘1’ and ‘0’ in order. However, for the second
sequence, we can first communicate the regularity itself to the message receiver,
and then when we enumerate each ‘1’ and ‘0’ in order, we can skip the ‘0’ after each
‘1’ as the message receiver can add one ‘0’ after receiving a ‘1’ according to the
regularity the receiver received. Thus, the number of bits needed to communicate
the second sequence will be shorter than the length of the sequence itself. In this
case, we say that the data is compressed with the help of the regularity. Reversely,
regularity (instead of noise) is found if we find that it can be used to compress
the data.

Thus, applying the MDL principle to certain tasks is about calculating the
code length for the model and data together, which depends on the encoding
scheme. Historically, choosing the encoding scheme was done in a crude and
more or less arbitrary manner, and the earliest application of the MDL princi-
ple to partition-based models was to use the MDL principle in the well-known
C4.5 (Quinlan 2014) and RIPPER (Cohen 1995) rule learning methods. In con-
trast, the modern version of the MDL principle (Grünwald and Roos 2019) ex-
ploits the connection between encoding and probabilistic modeling. Statistically,
the length (in bits) of a given code2 is connected to a corresponding probability
distribution, as described by Kraft’s inequality (Grünwald 2007).

The main motivation for adopting the MDL principle is that it removes the
commonly used regularization parameter in the formalization of the learning prob-
lem, as the MDL principle automatically trades off between the goodness-of-fit and
model complexity, which increases the transparency of how a learning method
“creates” the model.

1.5 Research Questions
The overarching question we study in this dissertation is how to increase

interpretability and transparency for partition-based models for supervised and
unsupervised learning. This mainly concerns 1) how to make histograms more
interpretable by having adaptive bins, as well as more transparent by reducing

2We assume all codes are prefix codes in this dissertation.

9



Research Questions

the number of user-defined parameters (e.g., the number of bins), and 2) how
to increase the interpretability of rule-based models towards the level so that
human-guided rule learning is possible. We next present our three main research
questions in detail.

1.5.1 Towards rule sets for interactive rule learning

Although rule-based models carry significant interpretability because of the
readability of the rules, our goal is to bring their interpretability to an even higher
level so that domain experts can comprehend and potentially edit individual rules
without considering the effect of/on other rules.

Consider a set of classification rules, each rule in the form of
∧
{Xi ∈ Ri} →

Y ∼ P (Y ), in which Xi represents a single feature variable and Ri represents a
set/range of values. For instance, a single rule could be denoted as “Weather =

Fog ∧ Flight_time ≤ 9 a.m. → P(Delay) = 0.8” .
Enhancing the interpretability of a set of such rules requires properly han-

dling the “overlap” of rules, a long unresolved issue in learning rule-based models.
Specifically, overlap refers to the case where one instance (e.g., one flight) satisfies
the conditions of multiple rules, potentially with different probabilistic predictions
for the target variable (e.g., flight delay).

As overlaps among rules make rules “entangled”, we aim to enhance the
interpretability of rule-based models by obtaining rules that are “independent”
with regard to each other. Thus, we consider the following research question:

• Research Question 1: How can we formalize rule sets as probabilistic
models such that the individual rules are independent from each other? Fur-
ther, how can we learn such models from data?

Notably, due to the lack of a widely accepted general definition of inter-
pretability, we consider interpretability in a comparative manner. Different from
the common approach of seeking more interpretable rule-based models by mak-
ing rules “simpler” (i.e., fewer and shorter rules), we instead consider making a
rule-based model more interpretable by reducing the conflicts caused by overlaps
among rules. We explain in detail why and how conflicts caused by overlaps affect
interpretability in Chapters 2 and 3.
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1.5.2 Adaptive histograms for discretization

Discretization is the task of summarizing continuous values and transforming
them into a certain discrete representation form. It is a necessary pre-processing
step if the following step in the modeling pipeline requires discrete values as input.

Intuitively, discretization methods need to strike a balance between the amount
of preserved information and the complexity of the discretized representation (as
a simple representation of data has benefits in terms of interpretability).

We specifically consider unsupervised discretization, i.e., discretization for a
dataset without a target variable. Hence, the quality of the discretization cannot
be evaluated by evaluating the prediction loss of the following step. Instead, it
is crucial under such circumstances to discretize the data in a way that makes
sense to domain experts, which concerns providing transparency regarding how
the discretization is obtained.

Histogram-based models have the advantage of being very interpretable in
discretization, data summarization, and density estimation (Kontkanen and Myl-
lymäki 2007b; Scott 2015). However, while fixed histograms (histograms with
equal bin sizes) are still widely used, they are often constructed with user-defined,
more or less arbitrarily set parameters that control the number of bins (and hence
the bin sizes). Thus, different patterns and, as a result, summarizations of a given
dataset may exist, without any principled way of justifying which one represents
the data more accurately. We argue that this may cause confusion to domain
experts in practice, and hence negatively affects the trust in the model output by
humans.

Further, while histograms as probabilistic models “approximate” the density
of a given dataset by piece-wise constant values, existing methods lack a justifi-
cation of whether the density inside each bin of a histogram is indeed (approxi-
mately) homogeneous, and at the same time, whether the density of neighboring
bins are “very” different. Hence, the empirical distribution of data points within
each bin is not transparent to domain experts in this case. Similarly, it often
remains unclear whether “neighboring” bins have similar density estimates. For
domain experts, merging such neighboring bins makes the model simpler and
hence is beneficial for interpretability.

We specifically focus on two-dimensional datasets because spatial data is
widely collected and analyzed, while a large number of existing algorithms for
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mining spatial (or spatio-temporal) patterns require discrete values as input. This
brings additional challenges as previous methods rarely considered the dependency
of different dimensions, but applied a one-dimensional discretization method for
each dimension separately.

To address these challenges, we propose our second research question:

• Research Question 2: how can we construct parameter-free two-dimensional
histograms with transparent and informative patterns (bins)?

1.5.3 Histograms for learning dependency structure

We further exploit histogram-based models for the task of conditional mu-
tual information estimation, which is useful in learning dependency structures
among variables. That is, given three random variables denoted as X,Y, Z, the
conditional mutual information (CMI) I(X;Y |Z) characterizes whether X and
Y are conditionally independent given Z. CMI estimation has wide applications
in feature selection, conditional independence testing, and dependency structure
learning (for graphic models).

We specifically consider CMI estimation for data with mixed types, of which
each dimension can be continuous, discrete, and discrete-continuous mixtures.
Although k-nearest neighbor (kNN) estimation is shown to work in such cases, we
consider histogram-based models a more interpretable approach for such tasks, as
each bin of the histogram can be regarded as an interpretable local pattern for
explaining which subset of the data points contributes to the dependency among
certain variables (and to what extent). This leads to our last research question:

• Research Question 3: How can we construct a multi-dimensional adaptive
histogram-based model for interpretable CMI estimation?

Specifically, we extend our two-dimensional histogram-based models (discussed
above) to multi-dimensional cases.

1.6 Contributions
This dissertation is composed of articles listed in the Table 1.2. The contribu-

tions for the paper corresponding to Chapter 6 were split half/half with Alexander
Marx.
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Article Used in
Yang, L & van Leeuwen, M Truly Unordered Probabilis-
tic Rule Sets for Multi-class Classification. In: Proceed-
ings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
(ECMLPKDD 2022), 2022.

Chapter 2

Yang, L & van Leeuwen, M Probabilistic Truly Unordered
Rule Sets. Under review, submitted to JMLR.

Chapter 3

Yang, L, van der Meijden, S, Arbous, M.S & van Leeuwen,
M ICU Readmission Risk Analysis with Probabilistic
Rule Set Model. In Preparation.

Chapter 4

Yang, L, Baratchi, M & van Leeuwen, M Unsupervised
Discretization by Two-dimensional MDL-based His-
togram. Machine Learning, Springer, 2023.

Chapter 5

Marx, A, Yang, L & van Leeuwen, M Estimating Con-
ditional Mutual Information for Discrete-Continuous
Mixtures using Multi-Dimensional Adaptive His-
tograms. In: Proceedings of the SIAM Conference on Data
Mining 2021 (SDM’21), 2021.

Chapter 6

Table 1.2: List of papers.

We briefly summarize the contributions of these chapters as follows. In Chap-
ters 2 and 3, we introduce the truly unordered rule set (TURS) model and present
our method for learning TURS models from data, which substantially improves
the comprehensibility of rule set models. Specifically, in Chapter 2 we address the
challenge of how we can treat overlaps as uncertainty in order to eliminate the need
for post-hoc conflict-resolving schemes for overlap. We propose our first algorithm
to learn TURS models from data, and showcase that rule sets learned from data,
with overlaps representing uncertainty, can have on-par predictive performance
in comparison to rule-based methods with explicit or implicit orders among rules
(which are hence less interpretable).

Subsequently, in Chapter 3, we formalize the probabilistic modeling and the
learning problem for TURS in a more rigorous way. Further, we propose a refined
algorithm and conduct extensive experiments to present the appealing properties
of learned models from various perspectives.

In Chapter 4, we apply the TURS model to the problem of ICU readmission
risk analysis, and demonstrate that our method can be used for interactive rule
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learning.
In Chapter 5, we study two-dimensional MDL-based histograms for unsuper-

vised discretization. The main contributions are two fold. First, regarding the
MDL theory, we show that the parametric complexity does not depend on the
dimensionality of the data, which is defined as the regret term in the formula
that calculates the code length (in bits). Second, we propose a novel method that
can learn very flexible and expressive histograms for simulated and real-world
datasets.

In Chapter 6, we extend the MDL histograms to multi-dimensional cases
for the task of CMI estimation. Our main contributions include the following.
First, we develop a series of theoretic results to construct our CMI estimator: 1)
we define measure-theoretic entropy and prove the formula for calculating CMI
based on entropy also holds for discrete-continuos mixtures, 2) we formally define
histogram-based models for discrete-continuous mixture data, and 3) we prove the
consistency of the proposed CMI estimator. Second, we propose an alternating
algorithm to learn multi-dimensional adaptive histograms that are shown to be
highly competitive when we benchmark against several widely used competitor
methods.
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Chapter 2

Rule Sets with Overlaps that
Represent Uncertainty

This chapter has been published as Yang, L and van Leeuwen, M Truly Unordered Probabilistic Rule

Sets for Multi-class Classification. In: Proceedings of the European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2022), Springer, 2022.
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Chapter Abstract
Rule set learning has long been studied and has recently been frequently

revisited due to the need for interpretable models. Still, existing methods have
several shortcomings: 1) most recent methods require a binary feature matrix
as input, while learning rules directly from numeric variables is understudied; 2)
existing methods impose orders among rules, either explicitly or implicitly, which
harms interpretability; and 3) currently no method exists for learning probabilistic
rule sets for multi-class target variables (there is only one for probabilistic rule
lists).

We propose TURS, for Truly Unordered Rule Sets, which addresses these
shortcomings. We first formalize the problem of learning truly unordered rule sets.
To resolve conflicts caused by overlapping rules, i.e., instances covered by multiple
rules, we propose a novel approach that exploits the probabilistic properties of our
rule sets. We next develop a two-phase heuristic algorithm that learns rule sets
by carefully growing rules. An important innovation is that we use a surrogate
score to take the global potential of the rule set into account when learning a local
rule.

Finally, we empirically demonstrate that, compared to non-probabilistic and
(explicitly or implicitly) ordered state-of-the-art methods, our method learns rule
sets that not only have better interpretability but also better predictive perfor-
mance.
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Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

2.1 Introduction

When using predictive models in sensitive real-world scenarios, such as in
health care, analysts seek for intelligible and reliable explanations for predictions.
Classification rules have considerable advantages here, as they are directly read-
able by humans. While rules all seem alike, however, some are more interpretable
than others. The reason lies in the subtle differences of how rules form a model.
Specifically, rules can form an unordered rule set, or an explicitly ordered rule
list; further, they can be categorized as probabilistic or non-probabilistic.

In practice, probabilistic rules should be preferred because they provide infor-
mation about the uncertainty of the predicted outcomes, and thus are useful when
a human is responsible to make the final decision, as the expected “utility” can
be calculated. Meanwhile, unordered rule sets should also be preferred, as they
have better properties regarding interpretability than ordered rule lists. While
no agreement has been reached on the precise definition of interpretability of ma-
chine learning models (Molnar 2020; Murdoch et al. 2019), we specifically treat
interpretability with domain experts in mind. From this perspective, a model’s
interpretability intuitively depends on two aspects: the degree of difficulty for a
human to comprehend the model itself, and to understand a single prediction.
Unordered probabilistic rule sets are favorable with respect to both aspects, for
the following reasons. First, comprehending ordered rule lists requires compre-
hending not only each individual rule, but also the relationship among the rules,
while comprehending unordered rule sets requires only the former. Second, the
explanation for a single prediction of an ordered rule list must contain the rule
that the instance satisfies, together with all of its preceding rules, which becomes
incomprehensible when the number of preceding rules is large.

Further, crucially, existing methods for rule set learning claim to learn un-
ordered rule sets, but most of them are not truly unordered. The problem is
caused by overlap, i.e., a single instance satisfying multiple rules. Ad-hoc schemes
are widely used to resolve prediction conflicts caused by overlaps, typically by
ranking the involved rules with certain criteria and always selecting the highest
ranked rule (Lakkaraju et al. 2016; Zhang and Gionis 2020) (e.g., the most ac-
curate one). This, however, imposes implicit orders among rules, making them
entangled instead of truly unordered.
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This can badly harm interpretability: to explain a single prediction for an
instance, it is now insufficient to only provide the rules the instance satisfies,
because other higher-ranked rules that the instance does not satisfy are also part
of the explanation. For instance, imagine a patient is predicted to have Flu because
they have Fever. If the model also contains the higher-ranked rule “Blood in stool
→ Dysentery”, the explanation should include the fact that “Blood in stool” is not
true, because otherwise the prediction would change to Dysentery. If the model
contains many rules, it becomes impractical to have to go over all higher-ranked
rules for each prediction.

Learning truly unordered probabilistic rule sets is a very challenging problem
though. Classical rule set learning methods usually adopt a separate-and-conquer
strategy, often sequential covering: they iteratively find the next rule and remove
instances satisfying this rule. This includes 1) binary classifiers that learn rules
only for the “positive” class (Fürnkranz et al. 2012), and 2) its extension to multi-
class targets by the one-versus-rest paradigm, i.e., learning rules for each class
one by one (Clark and Boswell 1991; Cohen 1995). Importantly, by iteratively
removing instances the probabilistic predictive conflicts caused by overlaps, i.e.,
rules having different probability estimates for the target, are ignored. Recently
proposed rule learning methods go beyond separate-and-conquer by leveraging
discrete optimization techniques (Dash et al. 2018; Lakkaraju et al. 2016; Wang
et al. 2017; Yang et al. 2021; Zhang and Gionis 2020), but this comes at the
cost of requiring a binary feature matrix as input. Moreover, these methods
are neither probabilistic nor truly unordered, as they still use ad-hoc schemes to
resolve predictive conflicts caused by overlaps.

Approach and contributions. To tackle these challenges and learn truly un-
ordered probabilistic rules, we first formalize rule sets as probabilistic models.
We adopt a probabilistic model selection approach for rule set learning, for which
we design a criterion based on the minimum description length (MDL) principle
(Grünwald and Roos 2019). Second, we propose a novel surrogate score based on
decision trees that we use to evaluate the potential of incomplete rule sets. Third,
we are the first to design a rule learning algorithm that deals with probabilistic
conflicts caused by overlaps already during the rule learning process. We point
out that rules that have been added to the rule set may become obstacles for new
rules, and hence carefully design a two-phase heuristic algorithm, for which we
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adopt diverse beam search (Van Leeuwen and Knobbe 2012). Last, we benchmark
our method, named TURS, for Truly Unordered Rule Sets, against a wide range
of methods. We show that the rule sets learned by TURS, apart from being prob-
abilistic and truly unordered, have better predictive performance than existing
rule list and rule set methods.

2.2 Related Work
Rule lists. Rules in a rule list are connected by if-then-else statements. Existing
methods include CBA (Liu et al. 1998), ordered CN2 (Clark and Niblett 1989),
PART (Frank and Witten 1998), and the recently proposed CLASSY (Proença
and Leeuwen 2020) and Bayesian rule list (Yang et al. 2017). We argue that rule
lists are more difficult to interpret than rule sets because of their explicit orders.

One-versus-rest learning. This category focuses on only learning rules for a single
class label, i.e., the “positive” class, which is already sufficient for binary classi-
fication (Dash et al. 2018; Wang et al. 2017; Yang et al. 2021). For multi-class
classification, two approaches exist. The first, taken by RIPPER (Cohen 1995)
and C4.5 (Quinlan 2014), is to learn each class in a certain order. After all rules
for a single class have been learned, all covered instances are removed (or those
with this class label). The resulting model is essentially an ordered list of rule
sets, and hence is more difficult to interpret than rule set.

The second approach does not impose an order among the classes; instead, it
learns a set of rules for each class against all other classes. The most well-known
are unordered-CN2 and FURIA (Clark and Boswell 1991; Hühn and Hüllermeier
2009). FURIA avoids dealing with conflicts of overlaps by using all rules for pre-
dicting unseen instances; as a result, it cannot provide a single rule to explain
its prediction. Unordered-CN2, on the other hand, handles overlaps by “combin-
ing” all overlapping rules into a “hypothetical” rule, which sums up all instances
in all overlapping rules and hence ignoring probabilistic conflicts for constructing
rules. In Section 2.6, we show that our method learns smaller rule sets with better
predictive performance than unordered-CN2.

Multi-class rule sets. Very few methods exist for directly learning rules for multi-
class targets, which is algorithmically more challenging than the one-versus-rest
paradigm, as the separate-and-conquer strategy is not applicable. To the best
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of our knowledge, the only existing methods are IDS (Lakkaraju et al. 2016) and
DRS (Zhang and Gionis 2020). Both are neither probabilistic nor truly unordered.
To handle conflicts of overlaps, IDS follows the rule with the highest F1-score, and
DRS uses the most accurate rule.

Last, different but related approaches include 1) decision tree based methods
such as CART (Breiman et al. 1984), which produce rules that are forced to share
many “attributes” and hence are longer than necessary, as we will empirically
demonstrate in Section 2.6, and 2) a Bayesian rule mining (Gay and Boullé 2012)
method, which adopts naive bayes with the mined rules for prediction, and hence
does not produce a rule set model in the end. The ‘lazy learning’ approach for
rule-based models can also avoid the conflicts of overlaps (Veloso et al. 2006), but
no global rule set model describing the whole dataset is constructed in this case.

2.3 Rule Sets as Probabilistic Models

We first formalize individual rules as local probabilistic models, and then
define rule sets as global probabilistic models. The key challenge lies in how to
define P (Y = y|X = x) for an instance (x, y) that is covered by multiple rules.

2.3.1 Probabilistic Rules

Denote the input random variables by X = (X1, . . . , Xd), where each Xi is
a one-dimensional random variable representing one dimension of X, and denote
the categorical target variable by Y ∈ Y . Further, denote the dataset from which
the rule set can be induced as D = {(xi, yi)}i∈[n], or (xn, yn) for short. Each
(xi, yi) is an instance. Then, a probabilistic rule S is written as

(X1 ∈ R1 ∧X2 ∈ R2 ∧ . . .)→ PS(Y ), (2.1)

where each Xi ∈ Ri is called a literal of the condition of the rule. Specifically,
each Ri is an interval (for a quantitative variable) or a set of categorical levels
(for a categorical variable).

A probabilistic rule of this form describes a subset S of the full sample space
of X, such that for any x ∈ S, the conditional distribution P (Y |X = x) is
approximated by the probability distribution of Y conditioned on the event {X ∈
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S}, denoted as P (Y |X ∈ S). Since in classification Y is a discrete variable, we
can parametrize P (Y |X ∈ S) by a parameter vector β, in which the jth element
βj represents P (Y = j|X ∈ S), for all j ∈ Y . We therefore denote P (Y |X ∈ S)

as PS,β(Y ), or PS(Y ) for short. To estimate β from data, we adopt the maximum
likelihood estimator, denoted as PS,β̂(Y ), or P̂S(Y ) for short.

Further, if an instance (x, y) satisfies the condition of rule S, we say that
(x, y) is covered by S. Reversely, the cover of S denotes the instances it covers.
When clear from the context, we use S to both represent the rule itself and/or its
cover, and define the number of covered instances |S| as its coverage.

2.3.2 Truly Unordered Rule Sets as Probabilistic Models

While a rule set is simply a set of rules, the challenge lies in how to define rule
sets as probabilistic models while keeping the rules truly unordered. That is, how
do we define P (Y |X = x) given a rule set M , i.e., a model, and its parameters?
We first explain how to do this for a single instance of the training data, using a
simplified setting where at most two rules cover the instance. We then discuss—
potentially unseen—test instances and extend to more than two rules covering an
instance. Finally, we define a rule set as a probabilistic model.

Class probabilities for a single training instance. Given a rule set M with
K individual rules, denoted {Si}i∈[K], any instance (x, y) falls into one of four
cases: 1) exactly one rule covers x; 2) at least two rules cover x and no rule’s
cover is the subset of another rule’s cover (multiple non-nested); 3) at least two
rules cover x and one rule’s cover is the subset of another rule’s cover (multiple
nested); and 4) no rule in M covers x.

To simplify the notation, we here consider at most two rules covering an
instance—we later describe how we can trivially extend to more than two rules.

Covered by one rule. When exactly one rule S ∈ M covers x, we use PS(Y ) to
“approximate” the conditional probability P (Y |X = x). To estimate PS(Y ) from
data, we adopt the maximum likelihood (ML) estimator P̂S(Y ), i.e.,

P̂S(Y = j) =
|{(x, y) : x ∈ S, y = j}|

|S|
, ∀j ∈ Y . (2.2)

Note that we do not exclude instances in S that are also covered by other rules
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(i.e., in overlaps) for estimating PS(Y ). Hence, the probability estimation for
each rule is independent of other rules; as a result, each rule is self-standing,
which forms the foundation of a truly unordered rule set.

Covered by two non-nested rules. Next, we consider the case when x is covered
by Si and Sj , and neither Si ⊆ Sj nor Sj ⊆ Si, i.e., the rules are non-nested.

When an instance is covered by two non-nested, partially overlapping rules,
we interpret this as probabilistic uncertainty: we cannot tell whether the in-
stance belongs to one rule or the other, and therefore approximate its conditional
probability by the union of the two rules. That is, in this case we approximate
P (Y |X = x) by P (Y |X ∈ Si ∪ Sj), and we estimate this with its ML estimator
P̂ (Y |X ∈ Si ∪ Sj), using all instances in Si ∪ Sj .

This approach is particularly useful when the estimator of P (Y |X ∈ Si∩Sj),
i.e., conditioned on the event {X ∈ Si∩Sj}, is indistinguishable from P̂ (Y |X ∈ Si)

and P̂ (Y |X ∈ Sj). Intuitively, this can be caused by two reasons: 1) Si ∩ Sj

consists of very few instances, so the variance of the estimator for P (Y |X ∈ Si∩Sj)

is large; 2) P (Y |X ∈ Si∩Sj) is just very similar to P (Y |X ∈ Si) and P (Y |X ∈ Si),
which makes it undesirable to create a separate rule for Si∩Sj . Our model selection
approach, explained in Section 2.4, will ensure that a rule set with non-nested rules
has high goodness-of-fit only if this ‘uncertainty’ is indeed the case.

Covered by two nested rules. When x is covered by both Si and Sj , and Si is a
subset of Sj , i.e., x ∈ Si ⊆ Sj , the rules are nested1. In this case, we approximate
P (Y |X = x) by P (Y |X ∈ Si) and interpret Si as an exception of Sj . Having such
nested rules to model such exceptions is intuitively desirable, as it allows to have
general rules covering large parts of the data while being able to model smaller,
deviating parts. In order to preserve the self-standing property of individual rules,
for x ∈ Sj \ Si we still use P (Y |X ∈ Sj) rather than P (Y |X ∈ Sj \ Si). Although
this might seem counter-intuitive at first glance, using P (Y |X ∈ Sj \ Si) would
implicitly impose an order between Sj and Si, or—equivalently—implicitly change
Sj to another rule that only covers instances in Sj ∧ ¬Si.

Not covered by any rule. When no rule in M covers x, we say that x belongs to
the so-called “else rule” that is part of every rule set and equivalent to x /∈

⋃
i Si.

Thus, we approximate P (Y |X = x) by P (Y |X /∈
⋃

i Si). We denote the else rule
1Note that “nestedness” is based on the rules’ covers rather than on their conditions. For instance, if Si

is X1 <= 1 and Sj is X2 <= 1, Si and Sj could still be nested.
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by S0 and write S0 ∈ M for the else rule in M . Observe that the else rule is the
only rule in every rule set that depends on the other rules and is therefore not
self-standing; however, it will also have no overlap with other rules by definition.

Predicting for a new instance. When an unseen instance x′ comes in, we
predict P (Y |X = x′) depending on which of the aforementioned four cases it
satisfies. An important question is whether we always need access to the training
data, i.e., whether the probability estimates we obtain from the training data
points are sufficient for predicting P (Y |X = x′). Specifically, if x′ is covered by
non-nested Si and Sj , P (Y |X = x′) is predicted as P̂ (Y |X ∈ Si ∪ Sj). However,
if there are no training data points covered both by Si and Sj , then we would not
obtain P̂ (Y |X ∈ Si ∪Sj) in the training phase. Nevertheless, in this case we have
|Si ∪ Sj | = |Si|+ |Sj |, and hence

P̂ (Y |X ∈ Si ∪ Sj) =
|Si|P̂ (Y |X ∈ Si) + |Sj |P̂ (Y |X ∈ Sj)

|Si|+ |Sj |
. (2.3)

Thus, if x′ is covered by one rule, two nested rules, or no rule in M , the
corresponding probability estimates are already obtained during training. Thus,
we conclude that access to the training data is not necessary for prediction.

Extension to overlaps of multiple rules. Whenever an instance x is covered
by multiple rules, denoted J = {Si, Sj , Sk, ...}, three cases may happen. The
first case is all rules in J are nested. Without loss of generality, assume that
Si ⊆ Sj ⊆ Sk ⊆ ...; then, following the rationale for case of two nested rules,
P (Y |X = x) should be approximated by PSi

(Y ). Therefore, when x is covered
by multiple nested rules, only the “smallest” rule matters and we can act as if x
is only covered by that single rule.

The second case is that all rules in J are non-nested with each other. Fol-
lowing the solution for modeling two non-nested rules, we use P (Y |X ∈

⋃
S∈J S).

The third case is a mix of the previous two cases, i.e., rules in J are partially
nested. In this case, we iteratively go over all S ∈ J : if there exists an S′ ∈ J

satisfying S′ ⊆ S we remove S from J , and continue iterating until no nested
overlap in J remains. If one single rule is left, we act as if x is covered by that
single rule; otherwise, we follow the paradigm of modeling the non-nested overlaps
with the rules left in J .
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Probabilistic rule sets. We can now build upon the previous to define rule
sets as probabilistic models. Formally, the probabilistic model corresponding to
a rule set M is a family of probability distributions, denoted PM,θ(Y |X) and
parametrized by θ. Specifically, θ is a parameter vector representing all necessary
probabilities of Y conditioned on events {X ∈ G}, where G is either a single
rule or the union of multiple rules. θ is estimated from data by estimating each
P (Y |X ∈ G) by its maximum likelihood estimator. The resulting estimated vector
is denoted as θ̂ and contains P̂ (Y |X ∈ G) for all G ∈ G , where G consists of all
individual rules and the unions of overlapping rules in M .

Finally, we assume the dataset D = (xn, yn) to be i.i.d. Specifically, let us
define (x, y) ⊢ G for the following two cases: 1) when G is a single rule (including
the else rule), then (x, y) ⊢ G ⇐⇒ x ∈ G; and 2) when G is a union of multiple
rules, e.g., G =

⋃
Si, then (x, y) ⊢ G ⇐⇒ x ∈

⋂
Si. We then have

PM,θ(y
n|xn) =

∏
G∈G

∏
(x,y)⊢G

P (Y = y|X ∈ G). (2.4)

2.4 Rule Set Learning as Probabilistic Model Se-
lection

Exploiting the formulation of rule sets as probabilistic models, we define the
task of learning a rule set as a probabilistic model selection problem. Specifically,
we use the minimum description length (MDL) principle for model selection.

2.4.1 Normalized Maximum Likelihood Distributions for Rule
Sets

The MDL principle is one of the best off-the-shelf model selection methods
and has been widely used in machine learning and data mining (Grünwald and
Roos 2019). Although rooted in information theory, it has been recently shown
that MDL-based model selection can be regarded as an extension of Bayesian
model selection (Grünwald and Roos 2019).

The core idea of MDL-based model selection is to assign a single probabil-
ity distribution to the data given a rule set M , the so-called universal distribu-
tion denoted by PM (Y n|Xn = xn). Informally, PM (Y n|Xn = xn) should be a
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Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

representative of the rule set model—as a family of probability distributions—
{PM,θ(y

n|xn)}θ. The theoretically optimal “representative” is defined to be the
one that has minimax regret, i.e.,

argmin
PM

max
zn∈Y n

[
− log2 PM (Y n = zn|Xn = xn)

−
(
− log2 Pθ̂(xn,zn)(Y

n = zn|Xn = xn)
)]

. (2.5)

We write the parameter estimator as θ̂(xn, zn) to emphasize that it depends
on the values of the target variables Y n. The unique solution to PM of Equation 2.5
is the so-called normalized maximum likelihood (NML) distribution:

PNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∑

zn∈Y n PM,θ̂(xn,zn)(Y
n = zn|Xn = xn)

. (2.6)

That is, we “normalize” the distribution PM,θ̂(.) to make it a proper probability
distribution, which requires the sum of all possible values of Y n to be 1. Hence,
we have

∑
zn∈Y n PNML

M (Y n = zn|Xn = xn) = 1 (Grünwald and Roos 2019).

2.4.2 Approximating the NML Distribution

A crucial difficulty in using the NML distribution in practice is the com-
putation of the normalizing term

∑
zn Pθ̂(xn,zn)(Y

n = zn|Xn = xn). Efficient
algorithms almost only exist for exponential family models (Grünwald and Roos
2019), hence we approximate the term by the product of the normalizing terms
for the individual rules.

NML distribution for a single rule. For an individual rule S ∈ M , we write
all instances covered by S as (xS , yS), in which yS can be regarded as a realization
of the random vector Y S = (Y, ..., Y ), and Y S takes values in Y |S|, the |S|-ary
Cartesian power of Y . Then, the NML distribution for PS(Y ) equals

PNML
S (Y S = yS |XS = xS) =

P̂S(Y
S = yS |XS = xS)∑

zS∈Y S P̂S(Y S = zS |XS = xS)
. (2.7)
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Note that P̂S depends on the values of zS . As P̂S(Y ) is a categorical distribution,
the normalizing term can be written as R(|S|, |Y |), a function of |S|—the rule’s
coverage—and |Y |—the number of unique values that Y can take (Mononen and
Myllymäki 2008):

R(|S|, |Y |) =
∑

zS∈Y S

P̂S(Y
S = zS |XS = xS), (2.8)

which can be efficiently calculated in sub-linear time (Mononen and Myllymäki
2008).
The approximate NML distribution. We propose to approximate the nor-
malizing term of PNML

M as the product of the normalizing terms of PNML
S for all

S ∈ M , and propose the approximate-NML distribution as our model selection
criterion:

P apprNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∏

S∈M R(|S|, |Y |)
. (2.9)

Note that the sum over all S ∈M does include the “else rule” S0. Finally, we can
formally define the optimal rule set M∗ as

M∗ = argmax
M

P apprNML
M (Y n = yn|Xn = xn). (2.10)

The rationale of using the approximate-NML distribution is as follows. First, it
is equal to the NML distribution for a rule set without any overlap, as follows.

Proposition 1. Given a rule set M in which for any Si, Sj ∈ M , Si ∩ Sj = ∅,
then PNML

M (Y n = yn|Xn = xn) = P apprNML
M (Y n = yn|Xn = xn).

Second, when overlaps exist in M , approximate-NML puts a small extra penalty
on overlaps, which is desirable to trade-off overlap with goodness-of-fit: when we
sum over all instances in each rule S ∈ M , the instances in overlaps are “repeat-
edly counted”. Third, approximate-NML behaves like the Bayesian information
criterion (BIC) asymptotically, which follows from the next proposition.

Proposition 2. Assume M contains K rules in total, including the else rule, and
we have n instances. Under the mild assumption that |S| grows linearly as the
sample size n for all S ∈M , then log

(∏
S∈M R(|S|, |Y |)

)
= K(|Y |−1)

2
logn+O(1),

where O(1) is bounded by a constant w.r.t. to n.
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Chapter 2 Rule Sets with Overlaps that Represent Uncertainty

We defer the proofs of the two propositions to the Appendix of this chapter.

2.5 Learning Truly Unordered Rule Sets from Data

As our MDL-based model selection criterion unfortunately does not enable
efficient search for the optimal model, we resort to heuristics. We first address the
challenge of evaluating incomplete rule sets, after which we explain how to grow
individual rules in two phases and implement this with beam search. Finally, we
show how everything comes together to iteratively learn rule sets from data.

2.5.1 Evaluating Incomplete Rule Sets with a Surrogate Score

When iteratively searching for the next “best” rule, defining “best” is far
from trivial: rule coverage and precision are contradicting factors and typical
scores therefore combine those two factors in some—more or less—arbitrary way.

This issue is further aggravated by the iterative rule learning process, in
which the intermediate rule set is evaluated as an incomplete rule set in each step.
Evaluating incomplete rule sets is a challenging task (Fürnkranz and Flach 2005),
mainly because any good score needs to simultaneously consider two aspects: 1)
how well do all the rules currently in the rule set describe the already covered
instances; and 2) what is the “potential” for the uncovered instances, in the sense
that how well can those uncovered instances be described by rules that might be
added later?

Without knowing the rules that will be added later, we cannot compute the
NML-based criterion for the complete rule set. Yet, we should take into account
the potential of the uncovered instances. We propose to approximate the latter
using a surrogate score, which we obtain by fitting a decision tree on the uncovered
instances and using the leafs of the resulting tree as a surrogate for “future” rules.
Formally, we define the tree-based surrogate score as

LT (M) = P apprNML
M⊕T (Y n = yn|Xn = xn), (2.11)

where M ⊕ T denotes the surrogate rule set obtained by converting the branches
of T to rules and appending those to M (parameters are estimated as usual).
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Although the branches of the decision tree learned from the currently uncov-
ered instances may be different from the rules that will later be added to the rule
set, using the tree-based surrogate score will make it easier to gradually grow good
rule sets. We use decision trees because they are quick to learn and use, and the
correspondence of branches to rules makes using them straightforward. We will
empirically study the effects of the surrogate score on the predictive performance
of rule sets in Section 2.6.

2.5.2 Two-phase Rule Growth

To avoid having to traverse all possible rules when searching for the rule to
add to an incomplete rule set, we resort to a common heuristic: we start with an
empty rule and gradually refine it by adding literals—also referred to as growing
a rule (Fürnkranz et al. 2012). In contrast to existing methods, we propose a
two-phase method.
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Figure 2.1: (Left) Simulated data with two overlapping rules: S1 : X1 < 0.5 (outlined in
black) and S2 : 0.5 < X2 < 1 (purple). (Right) S2 has grown to 0.5 < X2 < 1 ∧X1 < 1.8,
which changes P (Y |X ∈ S2) and resolves the problematic overlap.

Motivation. A rule can only improve the surrogate score—and thus be added
to the rule set—if it achieves two goals: 1) it should improve the likelihood of
currently uncovered instances (penalized by the approximate-NML normalizing
term); and 2) it should not deteriorate the goodness-of-fit of the rule set by cre-
ating “bad” overlaps. These goals can be conflicting though, for two reasons.

First, it is not necessarily bad to have overlaps between a rule being grown
and the current rule set, because the rule and its probability estimates for the
target variable may still change. For example, consider the left plot of Figure 2.1.
If the current rule set consists of S1 (indicated in black), then adding S2 (in
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Figure 2.2: (Left) Simulated data with a rule set containing two rules (black outlines).
(Right) Growing a rule to describe the bottom-right instances will create conflicts with
existing rules. I.e., adding either X1 > 1 (vertical purple line) or X2 < 0.8 (horizontal purple
line) would create a huge overlap that deteriorates the surrogate score (Eq. 2.11).

purple) would be problematic: this would strongly deteriorate the likelihood of
the instances covered by both rules. However, as we further grow S2, as shown in
the right plot, we get P (Y |S1) = P (Y |S2) and the problem is solved.

Second, rules already in the rule set may become obstacles to growing a new
rule. For example, consider the data and rule set with two rules (in black) in
Figure 2.2. If we want to grow a rule that covers the bottom-right instances, the
existing rules form a blockade: the right plot shows how adding either X1 > 1

or X2 < 0.8 to the empty rule (in purple) would create a large overlap with the
existing rules, with significantly different probability estimates.

Therefore, instead of navigating towards the two goals simultaneously, we
propose to grow the next rule in two phases: 1) grow the rule as if the instances
covered by the (incomplete) rule set are excluded; 2) further grow the rule to
eliminate potentially “bad” overlaps, to further optimize the tree-based score.
Method. Given a rule S, define Sunc as its uncovered “counterpart”, which covers
all instances in S not covered by M , i.e., Sunc = S \ ∪{Si ∈M}. Then, given M ,
the search for the next best rule that optimizes the surrogate tree-based score is
divided into two phases. First, we aim to find the m rules for which the uncovered
counterparts have the highest surrogate scores, defined as

LT (M ⊕ Sunc) = P apprNML
M⊕Sunc⊕T (Y

n = yn|Xn = xn), (2.12)

where M ⊕Sunc⊕T denotes M appended with Sunc and all branches of T . Here,
m is a user-specified hyperparameter that controls the number of candidate rules
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Algorithm 1: Find Next Rule Ignoring Overlaps
Input: rule set M , data (xn, yn)
Output: A beam that contains the w best rules

1 RULE ← ∅; Beam ← [RULE] // Initialize the empty rule and
beam

2 BeamList ← Beam // Record all the beams in the beam search
3 while length(Beam) ̸= 0 do
4 candidates ← [ ] // initialized to store all possible

refinements
5 for RULE ∈ Beam do
6 Rs ← [Append L to RULE for L ∈ all possible literals]
7 candidates.extend(Rs)
8 Beam ← the w rules in candidates that have 1) the highest positive

gunc(), and 2) coverage diversity > α // w is the beam width
9 if length(Beam) ̸= 0 then

10 BeamList.extend(Beam) // extend the BeamList as an
array

11 for Rule ∈ BeamList do
12 Beam ← w rules in BeamList with best LT (M ⊕ Sunc)

13 return Beam

that are selected for further refinement in the second phase. In the second phase,
we further grow each of these m rules to search for the best one rule that optimizes

LT (M ⊕ S) = P apprNML
M⊕S⊕T (Y n = yn|Xn = xn). (2.13)

Given a rule S and its counterpart Sunc, the score of Sunc is an upper-bound
on the score of S: if S can be further refined to cover exactly what Sunc covers, we
can obtain LT (M ⊕ Sunc) = LT (M ⊕ Sunc). This is often not possible in practice
though, and we therefore generate m candidates in the first phase (instead of 1).

2.5.3 Beam Search for Two-phase Rule Growth

In both phases we aim for growing a rule that optimizes the tree-based score
(Equation 2.11); the difference is that we ignore the already covered instances
in the first phase. To avoid growing rules too greedily, i.e., adding literals that
quickly reduce the coverage of the rule, we use a heuristic that is based on the
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NML distribution of a single rule and motivated by Foil’s information gain (Cohen
1995).

Phase 1: rule growth ignoring covered instances. We propose the NML-
gain to optimize LT (M ⊕ Sunc): given two rules S and Q, where we obtain S by
adding one literal to Q, we define the NML-gain as gunc(S,Q):

gunc(S,Q) =

(
PNML
Sunc

(ySunc |xSunc)

|Sunc|
−

PNML
Qunc

(yQunc |xQunc)

|Qunc|

)
|Sunc| (2.14)

=

(
P̂Sunc

(ySunc |xSunc)

R(|Sunc|, |Y |) |Sunc|
− P̂Qunc

(yQunc |xQunc)

R(|Qunc|, |Y |) |Qunc|

)
|Sunc|, (2.15)

which we use as the navigation heuristic.
The advantage of having a tree-based score to evaluate rules, besides the

navigation heuristic (local score), is that we can adopt beam search, as outlined
in Algorithm 1. We start by initializing 1) the rule as an empty rule (a rule without
any condition), 2) the Beam containing that empty rule, and 3) the BeamRecord
to record the rules in the beam search process (Line 1-2). Then, for each rule in
the beam, we generate refined candidate rules by adding one literal to it (Ln 5-7).
Among all candidates, we select at most w rules with the highest NML-based
gain gunc, satisfying two constraints: 1) gunc > 0; and 2) for each pair of these
(at most) w rules, e.g., S and Q, their “coverage diversity” |Sunc∩Qunc|

|Sunc∪Qunc| > α, where
α is a user-specified parameter that controls the diversity of the beam search
(Van Leeuwen and Knobbe 2012). We update the Beam with these (at most)
w rules (Ln 8-10). We repeat the process until we can no longer grow any rule
with positive gunc based on all rules in Beam (Ln 3). Last, among the record of
all Beams we obtained during the process, we return the best w rules with the
highest tree-based score L(Sunc ∪M) (Ln 11-13).

Phase 2: rule growth including covered instances. We now optimize L(M⊕
S) and select a rule based on the candidates obtained in the previous step. We
first define a navigation heuristic: given two rules S and Q, where S is obtained
by adding one literal to Q, we define the NML-gain g(S,Q) as

g(S,Q) =

(
P̂S(y

Sunc |xSunc)

R(|Sunc|, |Y |) |Sunc|
− P̂Q(y

Qunc |xQunc)

R(|Qunc|, |Y |) |Qunc|

)
|Sunc|. (2.16)
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Algorithm 2: Find Rule Set
Input: training data (xn, yn)
Output: rule set M

1 M ← ∅; M_record ← [M ] scores ← [P apprNML
M (yn|xn)] // Record

P apprNML
M while growing

2 while True do
3 S∗ ← FindNextRule(M, (xn, yn)) // find the next best rule S∗

4 if S∗ = ∅ or LT (M ⊕ S) = P apprNML
M⊕S∗ (yn|xn) then

5 Break
6 else
7 M ←M ⊕ S∗; M_record.append(M) // update and record

M

8 scores.append(P apprNML
M (yn|xn))

9 return the rule set with the maximum score in M_record

Note that the difference between g(S,Q) and gunc(S,Q) is that they use a
different maximum likelihood estimator: P̂Q is the ML estimator based on all
instances in Q, while P̂Qunc

is based on all instances in Qunc.

The algorithm is almost identical to Algorithm 1, with four small modifica-
tions: 1) the navigation heuristic is replaced by g(S,Q); 2) LT (M ⊕ S) is used to
select the best rule from the BeamRecord instead of LT (M ⊕ Sunc) ; and 3) the
coverage diversity is based on the rules itself instead of the counterparts; 4) only
the best rule is returned.

2.5.4 Iterative search for the rule set

Algorithm 2 outlines the proposed rule set learner. We start with an empty
rule set (Ln 1-2), then iteratively add the next best rule (Ln 3–9) until the stopping
criterion is met (Ln 5–6). That is, it stops when 1) the surrogate score equals the
‘real’ model selection criterion (i.e., the model’s NML distribution), or 2) no more
rules with positive NML-gain can be found. We record the ‘real’ criterion when
adding each rule to the set, and pick the one maximizing it (Ln 10).
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2.6 Experiments

We demonstrate that TURS learns rule sets with competitive predictive per-
formance, and that using the surrogate score substantially improves the AUC
scores. Further, we demonstrate that TURS achieves model complexities compa-
rable to other rule set methods for multi-class targets.

We here discuss the most important parts of the experiment setup; for com-
pleteness, additional information can be found in the Appendix2.

Decision trees for surrogate score. We use CART (Breiman et al. 1984) to
learn the trees for the surrogate score. For efficiency and robustness, we do not
use any post-pruning for the decision trees but only set a minimum sample size
for the leafs.

Beam width and coverage diversity. We set the coverage diversity α = 0.05,
and beam width w = 5. With the coverage diversity as a constraint, we found
that w ∈ {5, 10, 20} all give similar results. Due to the limited space, we leave a
formal sensitivity analysis of α as future work.

Benchmark datasets and competitor algorithms. We test on 13 UCI bench-
mark datasets (shown in Table 1), and compare against the following methods:
1) unordered CN2 (Clark and Boswell 1991), the one-versus-rest rule sets method
without implicit order among rules; 2) DRS (Zhang and Gionis 2020), a repre-
sentative multi-class rule set learning method; 3) BRS (Wang et al. 2017), the
Bayesian rule set method for binary classification; 4) RIPPER (Cohen 1995), the
widely used one-versus-rest method with orders among class labels; 5) CLASSY
(Proença and Leeuwen 2020), the probabilistic rule list methods using MDL-based
model selection; and 6) CART (Breiman et al. 1984), the well-known decision tree
method, with post-pruning by cross-validation.

2.6.1 Results

Predictive performance. We report the ROC-AUC scores in Table 2.1. For
multi-class classification, we report the weighted one-versus-rest AUC scores, as
was also used for evaluating the recently proposed CLASSY method (Proença and
Leeuwen 2020).

2The source code is available at https://github.com/ylincen/TURS
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data TURS CN2 DRS BRS CLASSY RIPPER CART TURS %overlap
anuran 0.998 1.000 0.858 — 0.983 0.999 0.996 0.395
avila 0.968 0.978 0.530 — 0.954 0.997 0.988 0.286
backnote 0.991 0.969 0.945 0.957 0.987 0.979 0.984 0.297
car 0.978 0.633 0.924 — 0.945 0.980 0.971 0.063
chess 0.995 0.536 0.823 0.945 0.991 0.995 0.994 0.264
contracept 0.667 0.597 0.544 — 0.630 0.626 0.600 0.074
diabetes 0.766 0.677 0.628 0.683 0.761 0.735 0.661 0.155
ionosphere 0.914 0.912 0.663 0.837 0.909 0.901 0.845 0.310
iris 0.964 0.985 0.935 — 0.960 0.973 0.965 0.018
magic 0.886 0.590 0.695 0.794 0.895 0.818 0.800 0.500
tic-tac-toe 0.972 0.826 0.971 0.976 0.983 0.954 0.847 0.231
waveform 0.902 0.775 0.588 — 0.833 0.884 0.803 0.528
wine 0.954 0.962 0.810 — 0.961 0.945 0.932 0.031
Avg Rank 2.231 4.077 5.846 5.462 3.154 3.000 4.231 /

Table 2.1: ROC-AUC scores, averaged over 10 cross-validated folds. The rank (smaller
means better) is further averaged over all datasets. Among the four rule set methods, TURS
is substantially better on 7 out 13 datasets (AUC scores in bold).

Compared to non-probabilistic rule set methods—i.e., CN2, DRS, and BRS
(only for binary targets)—TURS is much better in terms of the mean rank of its
AUC scores. Specifically, it performs substantially better on about half of the
datasets (shown in bold). Besides, it is ranked better than rule list methods,
which produce explicitly ordered rules that may be difficult for domain experts to
comprehend and digest in practice. Next, CART attains AUCs generally inferior
to TURS, although it helps TURS to get a higher AUC as part of the surrogate
score.

Last, we report the percentage of instances covered by more than one rule
for TURS in Table 2.1, and we show that overlaps are common in the rule sets
obtained for different datasets. This empirically confirms that our way of formal-
izing rule sets as probabilistic models, i.e., treating overlaps as uncertainty and
exception, can indeed lead to improved predictive performance, as the overlapping
rules are a non-negligible part of the model learned from data and hence indeed
play a role.
Effects of the surrogate score. Figure 2.3 shows the difference in AUC ob-
tained by our method with and without using the surrogate score (i.e., without
surrogate score means replacing it with the final model selection criterion). We
conclude that the surrogate score has a substantial effect on learning better rule
sets, except for three “simple” datasets, of which the sample sizes and the number
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Figure 2.3: Improvement in AUC by enabling the surrogate score for TURS.

#instances #features data TURS CN2 DRS BRS CLASSY RIPPER CART
1372 5 backnote 42 41 55 22 22 16 94
1473 10 contracept 75 275 73 — 14 14 6241
768 9 diabetes 55 152 131 10 10 6 827
150 5 iris 7 9 23 — 3 3 9
958 10 tic-tac-toe 86 90 108 24 27 60 816
178 14 wine 10 6 134 — 6 5 15
1728 7 car 211 163 325 — 92 111 718
7195 24 anuran 74 37 407 — 49 7 96
3196 37 chess 299 316 482 21 37 44 355
351 35 ionosphere 50 30 261 14 6 5 101
5000 22 waveform 707 802 60 — 139 115 3928
20867 11 avila 890 1296 179 — 988 574 8145
19020 11 magic 1321 2238 48 23 256 69 22566

Avg Rank 2.15 2.46 2.77 1.00 — — —

Table 2.2: Left: The sample sizes and number of features of datasets. Right: total
number of literals, i.e., average rule lengths × number of rules in the set, averaged over
10-fold cross-validation. The rank is averaged over all datasets, for rule sets methods only.

of variables are small, as shown in Table 2.2 (Left).
Model complexity. Finally, we compare the ‘model complexity’ of the rule sets
for all methods. As this is hard to quantify in a unified manner, as a proxy we
report the total number of literals in all rules in a rule set, averaged over 10-fold
cross-validation (the same as used for the results reported in Table 2.1).

We show that among all rule set methods (TURS, CN2, DRS, BRS), TURS
has better average ranks than both CN2 and DRS. Although BRS learns very
small rule sets, it is only applicable to binary targets and its low model complexity
also brings worse AUC scores than TURS. Further, although rule list methods
(CLASSY, RIPPER) generally have fewer literals than rule sets methods, this
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does not make rule lists easy to interpret, as every rule depends on all previous
rules. Last, we empirically confirm that tree-based method CART produces much
larger rule sets.

2.7 Conclusion
We formalized the problem of learning truly unordered probabilistic rule sets

as a model selection task. We also proposed a novel, tree-based surrogate score
for evaluating incomplete rule sets. Building upon this, we developed a two-phase
heuristic algorithm that learns rule set models that were empirically shown to be
accurate in comparison to competing methods.

For future work, we will study the practical use of our method with a case
study in the health care domain. This involves investigating how well our method
scales to larger datasets. Furthermore, a user study will be performed to inves-
tigate whether, and in what degree, the domain experts find the truly unordered
property of rule sets obtained by our method helps them comprehend the rules
better in practice, in comparison to rule lists/sets with explicit or implicit orders.
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2.8 Appendix I: Reproducibility for Experiments

Decision trees for surrogate score. We use a CART decision tree (Breiman
et al. 1984) to get the tree-based surrogate score. For efficiency and robustness,
we do not use any post-pruning for the decision tree but only set the minimum
sample size on leafs, denoted as s. Specifically, we try s ∈ {10, 30, 50, 70, 90}
and hence calculate five surrogate scores accordingly, among which we pick the
smallest as the final surrogate score.

Beam width and coverage diversity. We set the coverage diversity α = 0.05,
and beam width w = 5. With the coverage diversity as a constraint, we found that
w ∈ {5, 10, 20} gives similar results. Due to the limited space, we leave formal
sensitivity analysis of α as future work.

Number of cut points for numeric features. To generate literals for numeric
features, we need to decide the number of cut points for these features. In practice,
it should depend on how the analysts want to interpret the resulting rules: given
a specific task, is it useful to be more precise than the granularity of the 10- or
20-quantiles? Intuitively, we believe it is seldom necessary to be more precise than
100-quantiles, and hence we set the number of cut points as 100.

Benchmark datasets and competitor algorithms. For reproducibility, we
use the implementation of CN2 from Orange3 (Demšar et al. 2013), RIPPER from
RWeka (Hornik et al. 2009), CART from Sklearn (Pedregosa et al. 2011), and BRS
and DRS from the authors’ original implementation. Most parameters are set as
“default” based on the implementation. For BRS and DRS, this means that we
use what the author suggested in the original papers. Specifically, for CART,
we use the post-pruning for trees with the regularization parameter chosen from
cross-validation.

2.9 Appendix II: Proof of Proposition 1

Proposition 1: Given a rule set M in which for any Si, Sj ∈ M , Si ∩ Sj = ∅,
then PNML

M (Y n = yn|Xn = xn) = P apprNML
M (Y n = yn|Xn = xn).
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Proof. The numerators are the same, and hence we only need to show that the
denominators are the same. Assume there are K rules in M in total,∑

zn∈Y n

PM,θ̂(xn,zn)(z
n|xn) =

∑
zn

∏
S∈M

P̂S(y
S |XS)

=
∑
zn

P̂
S1
(zS1 |xS1) . . . P̂

SK
(zSK |xSK )

=
∑
zS1

. . .
∑
zSK

(
P̂

S1
(zS1 |xS1) . . . P̂

SK
(zSK |xSK )

)
=

(∑
zS1

. . .
∑

zSK−1

P̂
S1
(zS1 |xS1) . . . P̂

SK−1
(zSK−1 |xSK−1)

)(∑
zSK

P̂
SK

(zSK |xSK )

)
. . .

=

(∑
zS1

P̂
S1
(zS1 |xS1)

)
. . .

(∑
zSK

P̂
SK

(zSK |xSK )

)
=
∏
S∈M

∑
zS

P̂
S
(zS |xS)

=
∏
S∈M

R(|S|, |Y |),

(2.17)

which completes the proof.

2.10 Appendix III: Proof of Proposition 2
Proposition 2: Assume M contains K rules in total, including the else rule, and
we have n instances. Under the mild assumption that |S| grows linearly as the
sample size n for all S ∈M , then log

(∏
S∈M R(|S|, |Y |)

)
= K(|Y |−1)

2
logn+O(1),

where O(1) is bounded by a constant w.r.t. to n.

Proof. The proof directly follows from Theorem 3 of (Silander et al. 2008). Firstly,
it has been proven that logR(|S|, |Y |) = |Y |−1

2
log |S| + O(1) (Rissanen 1996).

Next, under the mild assumption that |S| grows linearly as the full sample size n,
we have log |S| = log((γ+o(1))n) = logn+O(1). Hence, log

∏
S∈M R(|S|, |Y |) =∑

S logR(|S|, |Y |) = K(|Y |−1)
2

logn+O(1), which completes the proof.
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Chapter 3

Probabilistic Truly
Unordered Rule Sets

This chapter consists of a paper titled Probabilistic Truly Unordered Rule Sets (submitted to JMLR), which
describes a refined version of the TURS model (in comparison to Chapter 2).
For being self-contained, Chapter 3 inevitably contains some repeated content from Chapter 2, including
notation descriptions, basic definitions, and some identical related work discussions. However, the definition,
model selection criterion, and algorithm for learning a TURS model are all refined based on Chapter 2. The
differences between Chapter 2 and 3 are briefly discussed at the end of Section 3.1, and more thoroughly in
the Appendix of this chapter.
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Chapter Abstract
Rule set learning has been frequently revisited because of its interpretability.

Existing methods have several shortcomings though. First, most existing methods
impose orders among rules, either explicitly or implicitly, which makes the models
less comprehensible. Second, due to the difficulty of handling conflicts caused by
overlaps (i.e., instances covered by multiple rules), existing methods often do
not consider probabilistic rules. Third, learning classification rules for multi-class
target is understudied, as most existing methods focus on binary classification or
multi-class classification via the “one-versus-rest” approach.

To address these shortcomings, we propose TURS1, for Truly Unordered Rule
Sets. To resolve conflicts caused by overlapping rules, we propose a novel model
that exploits the probabilistic properties of our rule sets, with the intuition of
only allowing rules to overlap if they have similar probabilistic outputs. We next
formalize the problem of learning a TURS model based on the MDL principle
and develop a carefully designed heuristic algorithm. We benchmark against a
wide range of rule-based methods and demonstrate that our method learns rule
sets that have lower model complexity and highly competitive predictive perfor-
mance. In addition, we empirically show that rules in our model are empirically
“independent” and hence truly unordered.

1A refined version based on Chapter 2.
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3.1 Introduction

Despite the great success of black-box models in a wide range of tasks, intrin-
sically interpretable machine learning models have also received a lot of attention
due to their transparency and hence their applicability to sensitive real-world sce-
narios, such as health care and judicial systems (Rudin 2019). We particularly
focus on modelling and learning probabilistic rule sets for multi-class classification.

A probabilistic rule is in the form of IF X meets certain conditions,
THEN P (Y ) = P̂ (Y ), in which X represents the feature variables, Y the target
variable, and P̂ the associated class probability estimator.

Rule-based methods have the unique advantage that they are not only ac-
cessible and interpretable to statisticians and data scientists but also to domain
experts, since rules can be directly read. While a single rule summarizes a local
pattern from the data and hence only describes a subset of the instances, existing
rule-based methods adopt various approaches to put individual rules together to
form a global predictive model.

For instance, rule lists (or decision lists) (Fürnkranz et al. 2012) connect
all individual rules by the “IF ... (possibly multiple) ELSE IF ... ELSE
...” statement, which is equivalent to specifying an explicit order for each rule.
This approach is compatible with the very efficient divide-and-conquer algorithms:
when a rule is induced from data, the covered instances (i.e., instances satisfying
the condition of the rule) can be removed and hence iteratively simplify the search
space. While this approach is very efficient, it comes at the cost of interpretability.
As the condition of each rule depends on all preceding rules, comprehending a
single rule requires going over (the negations of) all preceding rules’ conditions,
which is impractical when the rule list becomes large.

On the other hand, rule set models put rules together without specifying
explicit orders. In this case, an instance can be covered by one single rule or si-
multaneously by multiple rules. When the instances covered by two or more rules
have intersections, we say that these rules overlap. Although existing rule set
methods claim that individual rules in rule sets are unordered (Clark and Boswell
1991; Kotsiantis 2013; Van Leeuwen and Knobbe 2012), we argue that they are
not truly unordered. In fact, when one instance is covered by multiple rules at the
same time, different rules may give conflicting (probabilistic) predictions. As a
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result, ad-hoc schemes are widely used to resolve the conflicts, typically by rank-
ing the involved rules with certain criteria (e.g., accuracy) and always selecting
the highest ranked rule (Lakkaraju et al. 2016; Zhang and Gionis 2020). This
approach, however, imposes implicit orders among rules, making rules entangled
instead of truly unordered.

Implicit orders in rule sets severely harm interpretability, especially from the
perspective of comprehensibility. While no agreement has been reached on the
precise definition of interpretability of machine learning models (Molnar 2020;
Murdoch et al. 2019), we specifically treat interpretability with domain experts
in mind. In particular, to explain a single prediction for an instance to domain
experts when implicit orders exist, it is insufficient to only provide the rules that
the instance satisfies, because other higher-ranked rules that the instance does
not satisfy are also a necessary part of the explanation. For example, imagine
a patient is predicted to have Flu because they have Fever. If the model also
contains the higher-ranked rule “Blood in stool → Dysentery”, the explanation
should include the fact that “Blood in stool” is not true, because otherwise the
prediction would change to Dysentery. If the model contains many rules, however,
it becomes impractical to go over all higher-ranked rules for each prediction.

Additionally, decision trees, which can broadly be viewed as a rule-based
approach, often have rules (root-to-leaf paths) that share multiple attributes due
to their inherent structure. This can result in overly lengthy rules (as we will also
empirically demonstrate in the Experiment section), since some internal nodes
may not contribute to the classification itself but only serve to maintain the tree
structure. Thus, decision trees are often less compact than decision rules, and
consequently it is more difficult for domain experts to grasp the internal decision
logic, and hence also the explanations for single predictions.

Given these shortcomings of existing rule-based models, we introduce truly
unordered rule sets (TURS), with the following properties. First, unlike most
recently proposed rule sets/lists methods that only predict labels as outputs (Dash
et al. 2018; Wang et al. 2017; Yang et al. 2021; Yang et al. 2017), we aim for
formalizing a set of rules as a probabilistic model in a principled way. Since rule-
based methods are potentially most applicable in sensitive areas, probabilistic
predictions are much more useful for decision making and knowledge discovery,
especially when domain experts are responsible for taking actions, such as in
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health care. Probabilistic rules also allow us to directly apply our model for multi-
class classification tasks, without leveraging the commonly used “one-versus-rest”
paradigm (Clark and Boswell 1991; Hühn and Hüllermeier 2009). Second, we aim
to develop a method to learn a set of probabilistic rules without implicit orders:
to achieve this, we “allow” rules to overlap only if they have similar probabilistic
outputs. In this case, when one instance is covered by multiple rules, it does not
matter much even if we randomly pick one of these rules for prediction, since the
differences of the prediction given by each individual rule is controlled. Thus, each
rule becomes “self-standing” and can be used for explaining the predictions alone.

Particularly, we formally define a truly unordered rule set (TURS) as a prob-
abilistic model, i.e., given a TURS model denoted as M and a dataset D, the like-
lihood of the target values conditioned on the feature values is defined. Notably,
without putting implicit orders among rules, instances covered by multiple rules
are modelled in a subtle manner such that the resulting likelihood is “penalized” if
these overlapping rules have very different probabilistic outputs. Thus, we lever-
age our formal definition of TURS model and incorporate the probabilistic output
differences into the goodness-of-fit of our probabilistic model, without introducing
any hyper-parameter to control the probabilistic output differences of overlapping
rules. Further, we treat the problem of learning a TURS model from data as a
probabilistic model selection task, and hence further design a model selection cri-
terion based on the minimum description length (MDL) principle (Grünwald 2007;
Grünwald and Roos 2019), which does not require a regularization parameter to
be tuned.

We resort to heuristics for optimization as the search space combined with
the model selection criterion do not allow efficient search. Yet, we carefully and
extensively extend the common heuristic approach for learning decision rules from
data, in the following aspects. First, we consider a “learning speed score” heuristic,
i.e., the decrease of our optimization score (to be minimized) per extra covered
instance as the quality measure for searching the next “best” rule. Second, we take
a novel beam search approach, such that 1) the degree of “patience” is considered
by using a diverse beam search approach, and 2) an auxiliary beam together with
a “complementary” score is proposed, in order to resolve the challenge that rules
that have been added to the rule set may become obstacles for new rules. This
challenge comes along with the fact that, unlike existing rule set methods, we
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do consider overlaps of rules in the process of learning rules from data. Third,
we propose an MDL-based local testing method in order to characterize whether
the “left out” instances during the process of refining a rule can be well covered
by rules we search for later. That is, while existing heuristics in rule learning
only characterize the “quality” of the individual rules in different ways, our local
testing criterion can be regarded as a look-ahead strategy.

In summary, our main contributions in this chapter are as follows:

1. In contrast to most recently proposed rule lists/sets methods that focus on
non-probabilistic modelling and binary classification, we propose a princi-
pled way to formalize rule sets as probabilistic models that arguably provides
more transparency and uncertainty information to domain experts in sensi-
tive areas such as health care. It can also handle multi-class classification
naturally, without resorting to the one-versus-rest scheme.

2. While existing rule sets methods adopt an ad-hoc approach to deal with con-
flicts caused by overlaps, often by always following the rule that scores the
best according to a pre-defined criterion (e.g., accuracy or F-score), we iden-
tify that this approach puts implicit orders among rules that can severely
harm interpretability. To tackle this issue, we propose to only “allow” over-
laps that are formed by rules with similar probabilistic outputs. We formally
define the TURS model, for Truly Unordered Rule Sets, in a way such that
the probabilistic output difference among overlapping rules is incorporated
in the goodness-of-fit as measured by the likelihood.

3. We formalize the problem of learning a TURS model from data as a proba-
bilistic model selection task. We further propose an MDL-based model selec-
tion criterion that automatically handles the trade-off between the goodness-
of-fit and model complexity, without any hyper-parameters to be tuned by
the time-consuming cross-validation.

4. We develop a heuristic optimization algorithm with considerable algorith-
mic innovations. We benchmark our model TURS together with the pro-
posed algorithm with extensive empirical comparisons against a wide range
of rule-based methods. We show that TURS has superior performance in the
following aspects: 1) it has very competitive predictive performance (mea-
sured by ROC-AUC); 2) it can empirically learn truly unordered rules: the
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probabilistic conflicts caused by overlaps are negligible, in the sense that the
influence is little even if we predict for instances covered by multiple rules by
randomly picking one single rule from these rules; 3) TURS learns a set of
rules with class probability estimates that can generalize well to unseen data;
and 4) it produces simpler models in comparison to competitor algorithms.

Comparison with our previous work. This chapter is based on the previous
chapter (Chapter 2), with vast extensions and modifications in all components,
including probabilistic modelling, model selection criterion, algorithmic approach,
and experiments. We summarize the key difference points between this chapter
and the previous chapter as follows. First of all, we developed a completely new
algorithm, with 1) a learning-speed-score heuristic motivated by the “normalized
gain” used in the CLASSY algorithm for rule lists (Proença and Leeuwen 2020);
2) a diverse beam search approach with diverse “patience”, in which the concept
of patience is taken from the PRIM method (Friedman and Fisher 1999) for re-
gression rules; 3) an innovative extension to the normal beam search approach,
in the sense that we propose to use an auxiliary beam together with the “main”
beam (and hence we simultaneously keep two beams); and 4) an MDL-local-test
that serves as a look-ahead strategy for instances that are not covered for now.
Further, we substantially extend the experiments in various aspects, and we now
demonstrate that we can empirically treat the rule sets induced from data as truly
unordered, in the sense that if a instance is covered by multiple rules we can now
randomly pick one single rule for prediction, with negligible influence on the pre-
dictive performance (measured by ROC-AUC). Lastly, we also make a moderate
modification to our optimization score. We discuss all these differences more in
detail in the Appendix.
Organization of the chapter. The remainder of the chapter is structured as
follows. In Section 3.2 we review related work. In Section 3.3 we present how
to formalize a rule set as a probabilistic model, with the key component of how
to model the instances covered by overlaps, i.e., by multiple rules at the same
time. In Section 3.4, we discuss our model selection approach for learning a
the truly unordered rule set, and formally define the model selection criterion
based on the minimum description length (MDL) principle. In Section 3.5, we
motivate and discuss our heuristics for learning the rule sets, and next present our
proposed algorithm. Finally, we discuss our experiment setup and demonstrate
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our experiment results in Section 3.6.

Algorithm Model type Rule learning strategy Probabilistic Handle overlap conflicts
CBA ordered rule list divide and conquer ✓ explicit order

CN2-ordered ordered rule list divide and conquer ✓ explicit order
PART ordered rule list divide and conquer ✓ explicit order

CLASSY ordered rule list divide and conquer ✓ explicit order
RIPPER ordered list of rule sets divide and conquer × explicit order
C4.5 rules ordered list of rule sets one-versus-rest × explicit order

BRS rule set (binary target) rules for positive class only × no conflict
CG rule set (binary target) rules for positive class only × no conflict

Submodular rule set (binary target) rules for positive class only × no conflict
CN2-unordered rule set one-versus-rest ✓ ad-hoc (weighted average)

FURIA fuzzy rule set one-versus-rest ✓ fuzzy (weighted average)
CMAR rule set association rule mining × ad-hoc (implicit orders, χ2)
CPAR rule set association rule mining × ad-hoc (implicit orders, accuracy)
IDS rule set optimization for multi-class target × ad-hoc (implicit orders, F1-score)
DRS rule set optimization for multi-class target × ad-hoc (implicit orders, accuracy)

TURS (ours) truly unordered rule set optimization for multi-class target ✓ Not needed

Table 3.1: Summary of the algorithms’ key properties.

3.2 Related Work
We next review the related work and we categorize them as follows. First,

we discuss rule list methods, in which no overlap among rules exists by definition.
Second, we review previous methods that learn rules for a single class labels, and
based on it, the one-versus-rest rule learning methods. Last, we discuss rule sets
methods for multi-class targets, as well as several different but related methods
such as association rule mining. We summarize the key properties of closely
related methods in Table 3.1.
Rule lists. Rules in a rule list are connected by if-then-else statements, and
hence are with explicit orders. When classifying an instance, rules in the rule list
are checked sequentially: once a rule is found of which the condition is satisfied
by the instance, that single rule is used for prediction. Existing methods include
CBA (Liu et al. 1998), ordered CN2 (Clark and Niblett 1989), PART (Frank and
Witten 1998), and the more recently proposed CLASSY (Proença and Leeuwen
2020) and Bayesian rule list (Yang et al. 2017). Although these methods are often
efficient by leveraging the divide-and-conquer (i.e., sequential covering) approach,
rule lists are more difficult to interpret than rule sets because of their explicit
orders. To comprehend the conditions of each rule, conditions in all preceding
rules must also be taken into account; thus, the condition of each individual rule
may not be meaningful when domain experts examine it separately (except for
the first one).
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One-versus-rest rule learning. This category focuses on only learning rules
for a single class label, i.e., the “positive” class, which is already sufficient for
binary classification (Dash et al. 2018; Quinlan 1990; Wang et al. 2017; Yang
et al. 2021). That is, if an instance satisfies at least one of the induced rules, it
can be classified as “positive”, and otherwise negative. As all rules output the
“positive” class, no prediction conflicts exist by definition. Recently, this line
of research focuses on adopting discrete optimization techniques with provably
better theoretical properties than heuristic algorithms; however, they suffer from
the following drawbacks. First, these methods are non-probabilistic by definition,
and hence it is not clear how to estimate the class probability for the instances
covered by multiple rules (i.e., in the overlap). Second, no explicit explanation
exists for those instances that are classified into the “negative” class; instead, the
explanations for the negative class depend on the negation of all rules for the
positive class, which can be overly complicated to comprehend when the number
of rules is large. Third, these methods require discretizing and binarizing the
feature matrix, and hence can only afford rather coarse search granularity for
continuous-valued features, due to the high memory cost.

Further, learning rules for a single class label can be extended to multi-class
classification, through the one-versus-rest paradigm. Existing methods mostly
take the following two approaches to achieve this. The first, taken by RIP-
PER (Cohen 1995) and the C4.5 decision rule method (Quinlan 2014), is to learn
each class in a certain order. After all rules for a single class have been learned,
all covered instances are removed (or those with this class label). The resulting
model is essentially an ordered list of rule sets, and hence is more difficult to
interpret than a rule set.

The second approach does no impose an order among the classes; instead, it
learns a set of rules for each class against all other classes. The most well-known
are unordered-CN2 and FURIA (Clark and Boswell 1991; Hühn and Hüllermeier
2009). FURIA avoids dealing with conflicts of overlaps by essentially using all
(fuzzy) rules for predicting unseen instances; i.e., the rules’ outputs are weighted
by the so-called “certainty factor”. As a result, it cannot provide a single rule to
explain its prediction. Unordered-CN2, on the other hand, handles overlaps by
estimating the class probability as the weighted average of the class probability
estimates for all individual rules involved in the overlap. That is, unlike our

47



Related Work

method, CN2 adopts a post-hoc conflict resolving scheme, and as a result the
issue of probabilistic conflicts is ignored during the training phase of CN2.

Multi-class rule sets. Very few methods exist for formalizing learning rules
for multi-class classification as an optimization task directly (like our method),
which leads to algorithmically more challenging tasks than the one-versus-rest
paradigm, as the separate-and-conquer strategy is not applicable. To the best
of our knowledge, the only existing methods are IDS (Lakkaraju et al. 2016) and
DRS (Zhang and Gionis 2020). Both are neither probabilistic nor truly unordered.
To handle conflicts of overlaps, IDS follows the rule with the highest F1-score, and
DRS uses the most accurate rule. As we elaborated in Section 3.1, this approach
imposes implicit orders and thus harms the comprehensibility of the model.

Decision trees and association rules. Other related approaches include the
following. To begin with, decision tree based methods such as CART (Breiman
et al. 1984) and C4.5 (Quinlan 2014) produce rules that are forced to share many
“attributes” and hence are longer than necessary, as we will empirically demon-
strate in Section 3.6.

Besides, a large category of methods is associative rule classification, which
is to build rule-based classifiers based on existing association rule mining algo-
rithms (Abdelhamid and Thabtah 2014). Association rule mining is known to
have the problem of inducing redundant rules (Chen et al. 2006), hence a single
instance can be easily covered by potentially many rules at the same time. As
a result, various ad-hoc schemes have been proposed for handling the prediction
conflicts of rules.

For instance, CMAR (Li et al. 2001) first groups rules based on their (differ-
ent) predicted class labels for a given instance, and next constructs a contingency
table for the whole dataset based on 1) whether an instance is covered by the
group of rules and 2) the class label of each instance. Then the group of rules
(and hence the conflicting class labels) is ranked with the χ2 statistic. Moreover,
CPAR (Yin and Han 2003) extends the sequential covering approach taken by
FOIL (Quinlan 1990): instead of removing covered instances, the weights of cov-
ered instances are downgraded, in order to guide the search algorithm to focus on
uncovered instances, and then resolves the prediction conflicts based on ranking
the rules with the expected accuracy.

Lastly, the ‘lazy learning’ approach for associative rule classification, which
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focuses on learning a single rule for every test (unseen) instance separately with
a given training set of instances, can also avoid the conflicts of overlaps (Veloso
et al. 2006). As a result, the lazy learning approach will not construct a global rule
set model that describes the whole dataset, and hence provide less transparency
for domain experts than our method.

3.3 Truly Unordered Rule Sets

We first formalize individual rules as local probabilistic models, and then
define rule sets as global probabilistic models. The key challenge lies in how to
define P (Y = y|X = x) for an instance (x, y) that is covered by multiple rules.

3.3.1 Probabilistic rules

Denote the input random variables by X = (X1, . . . , Xd), where each Xi is
a one-dimensional random variable representing one dimension of X, and denote
the categorical target variable by Y together with its domain Y that contains all
unique class labels. Further, denote the dataset from which the rule set can be
induced as D = {(xi, yi)}i∈[n], or (xn, yn) for short. Each (xi, yi) is an instance.
Then, a probabilistic rule S is written as

(X1 ∈ R1 ∧X2 ∈ R2 ∧ . . .)→ PS(Y ), (3.1)

where each Xi ∈ Ri is called a literal of the condition of the rule. Specifically,
each Ri is an interval (for a quantitative variable) or a set of categorical levels
(for a categorical variable).

A probabilistic rule of this form describes a subset S of the full sample space
of X, such that for any x ∈ S, the conditional distribution P (Y |X = x) is
approximated by the probability distribution of Y conditioned on the event {X ∈
S}, denoted as P (Y |X ∈ S). Since in classification Y is a discrete variable, we
can parametrize P (Y |X ∈ S) by a parameter vector β⃗, in which the jth element
βj represents P (Y = j|X ∈ S), for all j ∈ Y . We therefore denote P (Y |X ∈ S)

as PS,β⃗(Y ), or PS(Y ) for short. To estimate β⃗ from data, we adopt the maximum
likelihood estimator, denoted as P

S,
ˆ⃗
β
(Y ), or P̂S(Y ) for short.

Further, if an instance (x, y) satisfies the condition of rule S, we say that
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(x, y) is covered by S. Reversely, the cover of S denotes the instances it covers.
When clear from the context, we use S to both represent the rule itself and/or its
cover, and define the number of covered instances |S| as its coverage.

3.3.2 The TURS model

We aim for defining a rule set model with the following properties. First,
each individual rule can be regarded as a reliable local pattern and generalizable
probabilistic model that can serve as an explanation for the model’s predictions.
Second, if certain rules overlap with each other, i.e., some instances are covered by
multiple rules simultaneously, then the probabilistic outputs of these rules “must
be similar enough”, in the sense that the likelihood of a TURS model given a
fixed dataset incorporates (and penalizes) the differences of probabilistic outputs
of overlapping rules.

Given a rule set with K individual rules, denoted as M = {Si}i∈[K], any
instance (x, y) falls into one of three cases: 1) exactly one rule covers x; 2) at least
two rules cover x; and 3) no rule in M covers x. We formally define the model M
as follows.

Covered by one rule only. Given a single rule denoted as S, when x ∈ S, S ∈M

and x /∈M \ S, we define

P (Y |X = x) = P (Y |X ∈ S) = PS(Y ), ∀x ∈ S, x /∈M \ S (3.2)

in which PS(Y ) can be estimated from data. That is, we use PS(Y ) to “approx-
imate” the conditional probability P (Y |X = x). To estimate PS(Y ) we adopt
the maximum likelihood (ML) estimator based on all instances covered by S. We
define the ML estimator as P̂S(Y ), and let

P̂S(Y = j) =
|{(x, y) : x ∈ S, y = j}|

|S|
, ∀j ∈ Y . (3.3)

Note that we intentionally do not exclude instances in S that are also covered
by other rules (i.e., in overlaps) for estimating PS(Y ). Hence, the probability
estimation for each rule is independent of other rules; as a result, each rule is
self-standing, which forms the foundation of a truly unordered rule set.

Covered by multiple rules. For the second case when x ∈
⋂

i∈I Si, I ⊆ [K], we
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define
P (Y |X = x) = P (Y |X ∈

⋃
i∈I

Si), ∀x ∈
⋂
i∈I

Si, I ⊆ [K] (3.4)

in which P (Y |X ∈
⋃

i∈I Si) is to be estimated from data with the ML estimator,
defined and denoted as

P̂ (Y = j|X ∈
⋃
i∈I

Si) =
|{(x, y) : x ∈

⋃
i∈I Si, y = j}|

|
⋃

i∈I Si|
, ∀j ∈ Y . (3.5)

Note that we take the union
⋃

i∈I Si for the instances covered by the overlap
(i.e., intersection)

⋂
i∈I Si. As counter-intuitive as it may seem at first glance, this

subtle definition plays a key role in our modelling: with this novel definition, the
likelihood of the data given the model—as the measure of the model’s goodness-
of-fit—automatically incorporates the differences between the rules’ probabilistic
outputs if they form an overlap.

Without loss of generalization, consider two rules denoted as Si and Sj . When
PSi

(Y ) and PSj
(Y ) are very similar, the conditional probability conditioned on

the event {Si ∪ Sj}, denoted as P (Y |Si ∪ Sj), will also be similar to both PSi
(Y )

and PSj
(Y ). In this case, it does not matter which of these three (i.e., PSi

(Y ),
PSj

(Y ), or P (Y |Si ∪Sj)) we use to model P (Y |X = x), ∀x ∈ Si ∩Sj , in the sense
that the “goodness-of-fit” measured by the likelihood of all instances covered by
the overlap Si ∩ Sj would be all similar.

On the other hand, when PSi
(Y ) and PSj

(Y ) are very different, the goodness-
of-fit would be poor when using P (Y |Si ∪ Sj) for estimating P (Y |X = x) for
x ∈ Si ∩ Sj . Thus, we leverage this property to penalize “bad” overlaps by
incorporating the probabilistic goodness-of-fit in our model selection criterion that
will be discussed in detail in Section 3.4.

Covered by no rule. When no rule in M covers x, we say that x belongs to
the so-called “else rule” that is part of every rule set and equivalent to x /∈

⋃
i Si.

Thus, we approximate P (Y |X = x) by P (Y |X /∈
⋃

i Si). We denote the else rule
by S0, which is the only rule in every rule set that depends on the other rules
and is therefore not self-standing; however, it will also have no overlap with other
rules by definition.

TURS as a probabilistic model. Building upon our definition for modelling
the conditional class probability and the maximum likelihood estimators, we can
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now formally define truly unordered rule sets as probabilistic models. Formally,
a rule set M as a probabilistic model is a family of probability distributions,
denoted PM,θ(Y |X) and parametrized by θ. Specifically, θ is a parameter vector
representing all necessary probabilities of Y conditioned on events {X ∈ G},
where G is either a single rule (including the else-rule) or the union of multiple
rules. θ is estimated from data by estimating each P (Y |X ∈ G).

The resulting estimated vector is denoted as θ̂ and contains P̂ (Y |X ∈ G) for
all G ∈ G , where G consists of all individual rules and the unions of overlapping
rules in M . To simplify the notation, we denote (x, y) ⊢ G, for the following
two cases: 1) when G is a single rule (including the else rule), then (x, y) ⊢
G ⇐⇒ x ∈ G; and 2) when G is a union of multiple rules, G =

⋃
Si, then

(x, y) ⊢ G ⇐⇒ x ∈
⋂
Si. By assuming the dataset D = (xn, yn) to be i.i.d., we

have
PM,θ(y

n|xn) =
∏
G∈G

∏
(x,y)⊢G

P (Y = y|X ∈ G). (3.6)

3.3.3 Predicting for a new instance

When an unseen instance x′ comes in, we predict P (Y |X = x′) depending
on whether x′ is covered by one rule, multiple rules, or no rule. An important
question is whether we always need access to the training data, i.e., whether the
probability estimates we obtain from the training data points are sufficient for
predicting P (Y |X = x′), especially when x′ is covered by multiple rules by which
no instance in the training data is covered simultaneously.

For instance, if x′ is covered by two rules Si and Sj , P (Y |X = x′) is then
predicted as P̂ (Y |X ∈ Si ∪ Sj). However, if there are no training data points
covered both by Si and Sj , then we would not obtain P̂ (Y |X ∈ Si ∪ Sj) in the
training phase. Nevertheless, in this case we have |Si∪Sj | = |Si|+ |Sj |, and hence

P̂ (Y |X ∈ Si ∪ Sj) =
|Si|P̂ (Y |X ∈ Si) + |Sj |P̂ (Y |X ∈ Sj)

|Si|+ |Sj |
. (3.7)

By contrast, when x′ is covered by one rule only or no rule, the corresponding
class probability estimation is already obtained during the training phase. Thus,
we conclude that access to the training data is not necessary for prediction.
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3.4 Rule Set Learning as Probabilistic Model Se-
lection

Exploiting the formulation of rule sets as probabilistic models, we define the
task of learning a rule set as a probabilistic model selection problem. Specifically,
we use the minimum description length (MDL) principle for model selection.

The MDL principle is one of the best off-the-shelf model selection methods
and has been widely used in machine learning and data mining (Galbrun 2022;
Grünwald and Roos 2019). Although rooted in information theory, it has been
recently shown that MDL-based model selection can be regarded as an extension
of Bayesian model selection (Grünwald and Roos 2019).

The principle of MDL-based model selection is to pick the model, such that
the code length (in bits) needed to encode the data given the model, together with
the model itself, is minimized. We begin with discussing Normalized Maximum
Likelihood (NML) distributions for calculating the bits for encoding the data given
the model, followed by the calculation of the code length for encoding the model
itself.

3.4.1 Normalized Maximum Likelihood Distributions for Rule
Sets

As the Kraft inequality connects code length and probability2, the core idea
of the (modern) MDL principle is to assign a single probability distribution to
the data given a rule set M (Grünwald and Roos 2019), the so-called universal
distribution denoted by PM (Y n|Xn = xn). Informally, PM (Y n|Xn = xn) should
be a representative of the rule set model—as a family of probability distributions—
{PM,θ(y

n|xn)}θ. The theoretically optimal “representative” is defined to be the
one that has minimax regret, i.e.,

2Note that Section 3.4.1 — 3.4.2 describe the definitions of NML distributions and our proposed approx-
imation for it, which were already introduced in Chapter 2 (Section 2.4.1 — 2.4.2). We deliberately keep
the repeated content so that Chapter 3 is self-contained in describing the refined method for learning TURS
models.
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argmin
PM

max
zn∈Y n

[
− log2 PM (Y n = zn|Xn = xn)

−
(
− log2 Pθ̂(xn,zn)(Y

n = zn|Xn = xn)
)]

. (3.8)

We write the parameter estimator as θ̂(xn, zn) to emphasize that it depends
on the values of (Xn, Y n). The unique solution to PM of Equation (3.8) is the
so-called normalized maximum likelihood (NML) distribution (Grünwald 2007),:

PNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∑

zn∈Y n PM,θ̂(xn,zn)(Y
n = zn|Xn = xn)

. (3.9)

That is, we “normalize” the distribution PM,θ̂(.) to make it a proper probability
distribution, which requires the sum of all possible values of Y n to be 1. Hence,
we have

∑
zn∈Y n PNML

M (Y n = zn|Xn = xn) = 1 (Grünwald and Roos 2019).

3.4.2 Approximating the NML Distribution

A crucial difficulty in using the NML distribution in practice is the com-
putation of the normalizing term

∑
zn Pθ̂(xn,zn)(Y

n = zn|Xn = xn). Efficient
algorithms almost only exist for exponential family models (Grünwald and Roos
2019), hence we approximate the term by the product of the normalizing terms
for the individual rules.

NML distribution for a single rule. For an individual rule S ∈ M , we write
all instances covered by S as (xS , yS), in which yS can be regarded as a realization
of the random vector of length |S|, denoted as Y S . Y S takes values in Y |S|, the
|S|-ary Cartesian power of Y . Consequently, following the definition of the NML
distribution in Equation (3.9), the NML distribution for PS(Y ) equals

PNML
S (Y S = yS |XS = xS) =

P̂S(Y
S = yS |XS = xS)∑

zS∈Y |S| P̂S(Y S = zS |XS = xS)
. (3.10)

Note that P̂S depends on the values of zS . As P̂S(Y ) is a categorical distribution,
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it has been shown (Mononen and Myllymäki 2008) that the normalizing term can
be written as R(|S|, |Y |), a function of |S|—the rule’s coverage—and |Y |—the
number of unique values that Y can take:

R(|S|, |Y |) =
∑

zS∈Y |S|

P̂S(Y
S = zS |XS = xS), (3.11)

and it can be efficiently calculated in sub-linear time (Mononen and Myllymäki
2008).

The approximate NML distribution. We propose to approximate the nor-
malizing term of the NML distribution for rule set model PNML

M as the product
of the normalizing terms of PNML

S for all S ∈M :

P apprNML
M (Y n = yn|Xn = xn) =

PM,θ̂(xn,yn)(Y
n = yn|Xn = xn)∏

S∈M R(|S|, |Y |)
. (3.12)

Note that the sum over all S ∈ M does include the “else rule” S0. The rationale
of using the approximate-NML distribution is as follows. First, it is equal to the
NML distribution for a rule set without any overlap, as follows.

Proposition 1. Given a rule set M in which for any Si, Sj ∈ M , Si ∩ Sj = ∅,
then PNML

M (Y n = yn|Xn = xn) = P apprNML
M (Y n = yn|Xn = xn).

Second, when overlaps exist in M , approximate-NML puts a small extra penalty
on overlaps, which is desirable to trade-off overlap with goodness-of-fit: when we
sum over all instances in each rule S ∈ M , the instances in overlaps are “repeat-
edly counted”. Third, approximate-NML behaves like the Bayesian information
criterion (BIC) asymptotically, which follows from the next proposition.

Proposition 2. Assume M contains K rules in total, including the else rule.
Under the mild assumption that |S| grows linearly as the sample size n for all
S ∈ M , then log

(∏
S∈M R(|S|, |Y |)

)
= K(|Y |−1)

2
logn + O(1), where O(1) is

bounded by a constant w.r.t. to n.

The proofs of these two propositions are shown in the Appendices of Chap-
ter 2.
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3.4.3 Code length of model

To obtain the final MDL based score, we next describe how to calculate the
code length of the model, denoted as L(M). The code length needed to encode
the model depends on the encoding scheme we choose. Given the Kraft’s inequal-
ity (Grünwald 2007), this can be practically treated as putting prior distributions
on the model class. We describe the encoding scheme in a hierarchical manner
due to the complexity of the model class.

Integer code for the number of rules. First, we encode the number of rules in
the rule set, for which we use the standard Rissanen’s integer universal code (Ris-
sanen 1983). The code length needed for encoding an integer K is equal to

Lrissanen(K) = c+ log2(K) + log2(log2(K)) + log2(log2(log2(K))) + . . . ;

the summation continues until a certain precision is reached (which we set as 10−5

in our implementation), and c ≈ 2.865 is a constant.

Encoding individual rules. Next, we encode the each individual rule sepa-
rately. For a given rule with k literals, we first encode k, the number of literals,
by a uniform code: as k’s range is bounded by the number of columns of the
dataset, denoted by Kcol, the code length needed to encode k is equal to

Lnum_literal = log2 Kcol. (3.13)

As each literal contains one unique variable, given the number of literals k, we
further specify which are these k variables among all Kcol variables, again with
a uniform code. Thus, the code length needed to specify which these k variables
are is equal to

Lwhich_vars = log2
(
Kcol

k

)
. (3.14)

Further, we sequentially encode the operator (i.e., ‘≥’ and/or ‘<’) and the
value of each literal. Specifically, for numeric variables, the literal is in either of
the two forms: 1) X ≥ (or <) v, and 2) v1 ≤ X < v2. As a result, we first need to
encode the which form the literal is, which cost Lform = 1 bit. Next, to encode
the values v [or (v1, v2)], we need to know in advance the search space of v [or
(v1, v2)], which are chosen as quantiles in our algorithm implementation.
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The number of candidate values (quantiles) for each numeric feature variable
is a hyper-parameter, which we argue should be chosen based on the task at hand:
it should be large enough without loss too much information for the prediction,
while at the same time the computational budget and the prior knowledge on what
is useful for interpreting the rules should also be taken into account in practice.

Denote the number candidate cut points after excluding those that result in a
rule with coverage equal to 0 as Kvalue. Depending on whether the literal contains
one or two splits, we can further calculate the code length needed to encode the
operator and value(s) in the literal, denoted as Lvalue_op, as

Lvalue_op = Loperator + Lform + log2 Kvalue, or (3.15)

Lvalue_op = log2
(
Kvalue

2

)
+ Lform, (3.16)

since for the former case we also need to encode the operator in the literal, i.e.,
“≥” or “<”, which cost Loperator = 1 bit. In contrast, the latter case has only one
possibility for the operators, and hence requires 0 bit to encode it.

Next, for categorical variables with L levels, encoding a subset of l levels
requires Lvalue_op = log2 L + log2

(L
l

)
bits; the former term, log2 L, is needed for

encoding the number l itself, and the latter one is code length needed to specify
these l levels from L in total. For simplicity, in our implementation we assume all
categorical features are one-hot encoded, and hence Lvalue_op = 1.

To sum up, the number of bits needed for encoding an individual rule S,
denoted as L(S), is equal to

L(S) = Lnum_literal + Lwhich_vars +
∑

Lvalue_op, (3.17)

in which the term
∑

Lvalue_op denotes the summation of the code length needed
to encode the operator and value for each single literal.

Note that 2−L(S) can be interpreted as a prior probability mass for S among
all possible individual rules (Grünwald 2007). Moreover, because of the way we
determine Kvalue (i.e., by excluding those candidate cut points that lead to rules
with coverage equal to 0), the code length needed to encode a single rule does
depend on the order of encoding each literal in the condition of the rule. This
turns out to be desirable because of our algorithmic approach, which will be
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described in Section 3.5.
Encoding the rule set. Based on the code length needed for single rules, we
can now define the code length needed to encode the whole rule set. Given a rule
set M with K rules, the total bits needed to encode M is

L(M) = Lrissanen(K) +

K∑
i=1

L(S)− log2(K!), (3.18)

in which the last term is to eliminate the redundancy caused by the fact that the
order of the rules in a rule set does not matter.

To see the rationale of introducing the term (− log2(K!)), consider the prior
probability of each rule denoted as P (Si) = 2−L(Si). Then, the prior probability
of the set of rules {S1, ..., SK}, conditioned on the fixed K, can be defined as

P ({S1, ..., SK}) =
∑ K∏

i=1

P (Si) = (K!)
K∏
i=1

P (Si), (3.19)

in which the sum goes over all permutations of {S1, ..., SK}. Thus, we have
L(M) = Lrissanen(K) − log2 P ({S1, ..., SK}), which connects the definition of
L(M) to the prior probability of M and hence justifies the introduction of the
term (− log2(K!)) in Equation (3.18).

3.4.4 MDL-based model selection

After the describing the approximate normalized maximum likelihood distri-
butions and the code length (number of bits) needed to specifying a model in
the model class, we can now formulate the task of learning truly unordered rule
sets as a model selection problem. That is, our goal is to search for the rule set,
denoted as M∗, among all possible rule setsM, such that

M∗ = argmin
M

L ((xn, yn),M) := argmin
M

[− log2 P
apprNML
M (Y n = yn|Xn = xn) + L(M)],

(3.20)
in which P apprNML

M (Y n = yn|Xn = xn) is defined in Equation (3.12) and L(M)

in Equation (3.18).
We refer to the proposed optimization function L((xn, yn),M) as our model

selection criterion; for a fixed model M and a (training) dataset (xn, yn), we refer
to the value of L((xn, yn),M) as the MDL-based score for the rule set model M .
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3.5 Learning Truly Unordered Rules from Data

Given the combinatorial nature of the search space, learning rule sets from
data is an extremely difficult task. Notably, although recently proposed algo-
rithms can obtain provably optimal rule lists (Angelino et al. 2017) and decision
trees (Hu et al. 2019), their branch-and-bound approaches are not applicable to
learning TURS models due to the following reasons. First, our model class (and
hence also search space) is different than that of rule lists and decision trees, since
our TURS model allows for overlaps of rules. Second, the output of the TURS
model is probabilistic while the optimal trees/lists algorithms learn rule-based
models with non-probabilistic (or just binary) output. Third, our model selec-
tion criterion, although requiring no hyper-parameter for regularization, does not
allow efficient search for the global optimum, as like most existing MDL-based ap-
proaches (Galbrun 2022). Hence, we cannot easily apply the branch-and-bound
approaches as employed by the optimal tree/list algorithms.

As for rule set methods, traditional algorithms focus on defining heuristics
that try to characterize the “quality” of individual rules in different ways, often
without a global optimization score (Fürnkranz and Flach 2005; Fürnkranz et
al. 2012). In addition, recently proposed ones mostly rely on randomized tech-
niques: DRS (Zhang and Gionis 2020) is based on heuristic-based randomized
algorithm, IDS (Lakkaraju et al. 2016) on stochastic local search, BRS (Wang
et al. 2017) on simulated annealing, and CG (Dash et al. 2018) on (randomized)
integer programming. However, BRS and CG are only suitable for binary target
and non-probabilistic rules, while DRS and IDS turn out to have unsatisfactory
predictive performance as shown in Section 3.6.

Therefore, we develop a heuristic-based algorithm for iteratively learning sin-
gle rules with extensive innovations in comparison to traditional heuristic algo-
rithms.

3.5.1 Learning a rule set

In the following, we start by describing the process of iteratively learning
a rule set, followed by discussing the heuristic of defining the “best” single rule
given the current status of the rule set. Then, we discuss how to learn a single
rule in Section 3.5.2, in which we introduce a diverse-patience dual-beam search
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algorithm, together with a novel look-ahead strategy that we propose based on
the analogy between the MDL principle and hypothesis testing (Grünwald 2007,
Chapter 14.3), which we hence name “MDL-based local testing”.

Iteratively learning a rule set

Algorithm 3: Iteratively Learning a Rule Set
Data: dataset D = (xn, yn)
Result: rule set M

1 Initialize M // Empty rule set.
2 while TRUE do
3 S ← Learn-Single-Rule(M,D) // Described in Algorithm 4
4 if L(D,M ∪ {S}) < L(D,M) then
5 M ←M ∪ {S} // The ``else-rule" updates accordingly
6 else
7 return rule set M

The process of learning a rule set iteratively, rule by rule, is shown in Al-
gorithm 3. The algorithm starts with an empty rule set (in which all instances
are covered by the “else-rule”) [Line 1]. Then, the “best” single rule, defined as
the one that maximizes what we call the learning-speed-score heuristic that is dis-
cussed in detail next, is learned from data [Line 3]. This single rule is added to
the rule set if adding it to the rule set decreases the MDL-based model selection
criterion defined Equation (3.20) [Lines 4-5]. This process is repeated until no
new rule can be found that further optimizes our model selection criterion [Lines
2-9].

Heuristic score for a single rule

Consider the search space of all possible rule sets, adding one single rule to
the rule set can be considered as one single “step” towards another “point” in
the search space. As it is obviously meaningless to add a new rule that does not
cover any previously uncovered instance, such a step always leads to a monotonic
increase for the coverage of the rule set (excluding the else rule).

Therefore, we propose a heuristic that leads to the next rule (step) with the
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steepest descent with respect to the increase in the coverage of rule set; that is, the
next “best” single rule (step) is defined as the one that maximizes the decrease of
the MDL-based score per extra covered instance. We hence name this heuristic as
the learning speed score. Formally, given a rule set denoted as M , the learning
speed score for a single rule S to be added to M is defined as

r(S) =
L ((xn, yn),M)− L ((xn, yn),M ∪ {S})

|M ∪ {S}| − |M |
, (3.21)

in which M ∪{S} denotes the rule set obtained by adding the single rule S to M .
Further, |M | and |M ∪ {S}| respectively denotes the coverage before and after
adding S to the rule set M (excluding the else-rule).

We next discuss how to search for the next best rule that optimizes r(S).

3.5.2 Learning a single rule

For describing our algorithm for learning a single rule, we start with describ-
ing the general paradigm of applying beam search in learning a single rule, and
then move forward to describe our three algorithmic innovations. Last, we put
everything together and describe our proposed algorithm in detail.

Preliminary: Beam Search for Learning a single rule

Recall that the condition of a rule S can be written as the conjunction of
literals, in which each literal takes the form of {Xi ∈ Ri}, with Ri representing
an interval if Xi is a quantitative variable and a set of categorical levels if Xi is a
categorical variable.

When applying a beam search in learning a single rule, we start with an empty
rule containing no literal that hence covers all instances. Next, we enumerate all
feature variables Xi to construct the search space of all possible single literals:
for continuous-valued Xi, we pick quantiles as splits points and combine it with
the operator (‘≥’ or ‘<’) to construct a literal, in which the “search granularity”
(i.e., the number of quantiles) is a hyper-parameter that depends on the task at
hand, as previously discussed in Section 3.4.3; for categorical variables, we assume
they are all one-hot encoded for simplicity, and hence the possible literals are just
(Xi = 1) or (Xi = 0). After enumerating all possible single literals, given a beam
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width W , we rank these literals with a predetermined criterion, and then pick the
top-W literals to be the W candidate rules of length one.

Next, for each of these W candidate rule of length one, we repeat the process
of enumerating all possible single literals to append to this rule. We refer to these
possible rules obtained by adding one more literal to a given rule as the rule growth
results. Among all rule growth results of these W length-one candidate rules, we
again pick the top-W length-two candidate rules, according to the predetermined
criterion.

We can repeat this process until some stopping criterion is met, e.g., no
rule growth result that can further optimize the model selection criterion can be
found (or this has happened consecutively for a number of times). Lastly, among
all these candidate rules with different lengths, we return the rule based on the
heuristic that defines the “best” next rule (i.e., the learning speed score r(.) in
our case).

Note that we build our diverse-patience dual-beam search algorithm upon this
general paradigm of applying beam search to learning a single rule with significant
algorithmic innovations, as follows: 1) instead of using one single heuristic for
searching for the next “best” rule, we introduce a look ahead strategy in the rule
growth process; 2) instead of simply keeping the top-W rule growth results in
the beam, we also monitor the diversity of “patience”; and 3) instead of a single
beam, we introduce another auxiliary beam with a complementary score and we
simultaneously keep two beams. The complementary score is proposed as we
observe that allowing overlaps in rule sets leads to the algorithmic challenge that
existing rules in the rule set may become obstacles to searching for new rules to
be added to the rule set. We next describe these three heuristics in depth.

MDL-based local testing

When growing a rule S by adding a literal and obtaining its growth result
S′, we essentially leave out the instances covered by S but not S′ to be covered
potentially by rules we may obtain later. Existing rule learning heuristics often
neglect this left-out part but focus only on characterizing the quality of the rule
growth result S′ itself. In contrast, we introduce a local test that can be viewed
as a way of assessing whether it is better to model the instances in {S \S′} by the
rule S (and hence discard S′ and stop growing S), or to leave out the instances
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in {S \ S′} for “future” rules that we may obtain later.
Formally, consider a rule S, its growth result S′, and the potentially left-out

part, defined and denoted as Sl = S \ S′. We only proceed to consider S′ as an
appropriate rule growth candidate if

− log2 PNML
S (yS |xS) > − log2 PNML

S′ (yS
′
|xS′

)− log2 PNML
Sl

(ySl |xSl) + Lsplit,

(3.22)
in which PNML

S (yS |xS) is the NML-distribution when viewing a single rule as a
local probabilistic model, defined in Equation (3.10). Further, Lsplit denotes the
code length needed to encode the condition that splits S into S′ and Sl. This
requires specifying 1) the variable of the literal and 2) the numeric threshold or
the categorical levels (which depends on the variable type), both with the uniform
code as described in Section 3.4.3. That is, we only allow rule growth that satisfies
the local test defined in Equation (3.22).

Intuitively, this is equivalent to building a depth-one decision tree for in-
stances covered by S only, in which the left and right nodes are S′ and Sl respec-
tively. We then compare whether S on itself or S′ together with Sl is a better local
model, according to the MDL principle (Grünwald 2007). Recall that MDL-based
model selection picks the model that minimizes the code length needed to encode
the data together with the model; thus, if the local test is satisfied, we prefer the
depth-one decision tree with nodes S′ and Sl over the single-node tree with the
only node S, and vice versa.

The rationale of the local test is that, by explicitly considering the local model
for the left out part Sl, we incorporate the potential carried by the instances in Sl.
That is, the local test we introduce can exclude those rule growth results of S that
may leave out a subset of instances that are hard to model later. We empirically
show in Section 3.5.2 that without MDL-based local testing, the learning speed
score can be too greedy and hence the algorithm fails to reveal the ground-truth
rule set model even in a simple simulated case.

Beam search with “patience” diversity

We now present the beam search with the patience diversity. For the simplic-
ity of presentation, we now focus on describing the beam search with the “main”
beam that adopts the learning speed score r(S) as the heuristic, after which the
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description of the complementary-score-assisted auxiliary beam immediately fol-
lows in Section 3.5.2.

Assuming the beam width is W , we start with a rule with empty condition
which all instances satisfy. Next, we go over all possible rule growth results by
adding one single literal. Furthermore, we keep the top-W rule growth results,
with the following properties: 1) they satisfy the MDL-based local testing, defined
previously in Section 3.5.2; 2) they have the highest learning speed score defined
by r(S) in Equation (3.21); and 3) they satisfy the patience diversity constraint,
which we discuss below.

Motivation for “patience” diversity. While we aim to iteratively search for
the rule with the best learning speed score r(S) (Equation 3.21), it may be too
greedy to directly use r(S) to search for the next best literal (as a rule can contain
multiple literals). Denote a rule as S and its growth result as S′, we empirically
observe that the coverage of S′ can shrink drastically in comparison to that of S
when directly using r(S) for learning the next literal. However, a more “patient”
search procedure with a moderate change in the coverage may be desirable in some
cases, as a moderate decrease in coverage leaves many possibilities for adding more
literals later. This concept of “patience” was first introduced in PRIM (Friedman
and Fisher 1999), and we are the first to combine it with a beam search approach.

Specifically, we propose to use the beam search approach to keep the diversity
of the patience, i.e., to have a variety of rule growth results, with diverse coverage
relative to the rule from which the rule growth result is obtained.
Beam search with patience diversity. Given a potentially incomplete rule S,
we search all candidate rules {S′} that can be obtained by adding a literal to S

(excluding those not satisfying the MDL-based local test).
Given a beam width W , we categorize all candidate rules, denoted as {S′},

into W clusters according to their coverage: the wth cluster is defined as:

{S′}w = {S′ ∈ {S′} : |S
′|
|S|
∈
[
w − 1

W
,
w

W

)
}, w ∈ {1, ...,W}; (3.23)

i.e., all candidate rule growth results in {S′}w must satisfy the condition that its
coverage divided by the coverage of S is in the interval [(w − 1)/W,w/W ).

For each cluster, we search for the best growth result by optimizing the
learning speed score r(S′). In this way, our beam search is diverse with regard to
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the degree of “patience”: when the coverage decreases by a small ratio only, the
optimization is “patient” (by leaving a lot of possibilities for adding more literals);
on the other hand, when the coverage decreases by a large ratio, the optimization
is greedy (by leaving out little room for further refinement). We empirically
show that adopting patience diversity improves the prediction performance of our
method in Section 3.6.6.

Auxiliary beam with a complementary score
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Figure 3.1: (Left) Simulated data with a rule set containing two rules (black outlines).
(Right) Growing a rule to describe the bottom-right instances will create conflicts with
existing rules. E.g., adding either X1 > 1 (vertical purple line) or X2 < 0.8 (horizontal
purple line) would create a huge overlap that deteriorates the likelihood.

We now describe the auxiliary beam in our dual-beam approach. We start with
the motivation for having an auxiliary beam, and next describe in detail the
complementary score, as well as how we incorporate the auxiliary beam in the
beam search algorithm.

Motivation for auxiliary beam. Recall that the learning speed score r(S)

evaluates the decrease of the MDL-based optimization score per extra covered
instance when S is added to the rule set; thus, to maximize r(S) we aim for
obtaining a rule S that 1) improves the likelihood of the instances not covered by
the rule set so far, and 2) has similar class probability estimates to those rules in
the rule set that overlap with S. However, when iteratively searching for the next
literal, the single literals we consider may not be able to contribute to both aims
simultaneously.

Consider an illustrative example with data and a rule set with two rules (in
black) in Figure 3.1 (left). If we want to grow a rule that covers the bottom-right
instances, the existing rules form a blockade: the right plot shows how adding
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either X1 > 1 or X2 < 0.8 to the empty rule (shown in purple) would create
a large overlap with the existing rules, with significantly different probability
estimates.

Our auxiliary beam is useful in cases like this, to keep literals like X1 > 1

or X2 < 0.8, which solely contributes to the first goal we discussed above, i.e.,
it improves the likelihood of the instances not covered by the rule set so far but
creates a “bad” overlap with a large class probability difference. As a rule’s class
probability estimation is still up to change during the growing process, we can
potentially “correct” bad overlaps by adding more literals later.

Thus, we propose an auxiliary beam together with a complementary score,
informally defined as the learning speed score calculated by ignoring the overlap
created by the new rule that is being grown. We next formally define the comple-
mentary score.

Complementary score. Formally, given a rule set M and a new rule S (i.e.,
S /∈ M), the complementary learning speed after adding S to M , denoted as
R(S), is defined as

R(S) =
L ((xn, yn),M)− L ((xn, yn),M ∪ {S \M})

|M ∪ {S \M}| − |M |
(3.24)

in which S \M can be regarded as a “hypothetical” rule with the cover equal to
the instances covered by rule S excluding the instances covered by rules already in
M , and hence L ((xn, yn),M ∪ {S \M}) denotes the MDL-based score (as defined
in Equation 3.20) after adding S \M to the rule set M .

Complementary-score-assisted beam search. We simultaneously keep two
beams, both with a beam width W . Apart from the beam that keeps the top-W
literals according to the learning speed score r(.), we additionally keep an auxiliary
beam that keeps the top-W literals according to the complementary score R(.).

Further, the auxiliary beam must also satisfy the MDL-based local testing
defined in Section 3.5.2, with the NML distribution calculated based on instances
excluding those covered by the rule set. That is, consider a rule set M , a rule S

with its growth result S′, and the left-out part S \ S′ := Sl, the local test for the
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auxiliary beam is defined as

− log2 PNML
S (yS\M |xS\M ) >

− log2 PNML
S′\M (yS

′\M |xS′\M )− log2 PNML
Sl\M (ySl\M |xSl\M ) + Lsplit.

(3.25)

Additionally, the auxiliary beam must satisfy the patience diversity, as de-
scribed in Section 3.5.2. The only difference is that the coverage of each rule is
calculated based on S \M instead of S; i.e., instances that are already covered
by the rule set M are ignored.

Algorithm description

We now put all heuristics together and describe in full our algorithm for
finding the next rule, of which the pseudo code is provided in Algorithm 4.

With a rule set M that either contains no rule or some existing rules, we
always start with an Empty Rule that contains no literals for its condition, and
we initialize the “rules-for-next-iter” [Line 2] as an array containing the empty
rule only.

For each iteration, we initialize a new beam an a new auxiliary beam [Line 4-
5] with beam width W . The beam keeps the top-W rule growth results using the
learning speed score defined in Equation (3.21); in contrast, the auxiliary beam
keeps the W best rule growth results using the complementary score by ignoring
the rule’s overlap with M , as discussed in detail in Section 3.5.2.

Next, we use every rule in the “rules-for-next-iter” array as a “base” for
growing [Line 6-18]. Specifically, given a rule, we first generate its candidate
growth by adding one literal only [Line 7]. That is, we go over all feature variables
in the dataset, and for each variable, we generate candidate literals with numeric
thresholds (quantiles) or with categorical levels, based on the variable type.

Further, we cluster the generated candidates by their coverage (for the beam),
as well as their coverage excluding the instances already covered by M (for the
auxiliary beam) [Line 8 & 12]. We next filter out the candidates in “categorized-
candidates” and “categorized-candidates-auxiliary” with the MDL-based local test
defined in Section 3.5.2 [Line 9 & 13]. Further, we search for the best candidate
in each cluster of the beam using r(.), and each cluster of the auxiliary beam using
R(.) [Line 10-11 & 14-15].

67



Experiments

To check whether the growing process should be stopped after this iteration,
we take a budget denoted asKstop: we stop the beam search when this is theKstop-
th time in a row that both beams (the beam and the auxiliary beam) produce
rules with worse scores (r(.) for the “beam” and R(.) for the “auxiliary-beam”)
than the previous beams [Line 19].

If the stopping criterion is not met, we first filter the beam and auxiliary beam
to reduce the number of rules in each beam to be equal to the beam width W ,
as both of them now contain (W ∗ length(rules-for-next-iter)) rules [Line 22-23].
Specifically, we sort all rules in the beam based on their coverage and categorize
them into W clusters; next, for each cluster, we keep the top-W rules with the
highest r(.) for the “beam” and highest R(.) for the “auxiliary-beam”, as the
base for rule growing for the next iteration. Last, we update “all-candidate-rules”
and “rules-for-next-iter” [Line 24-25], and continue to the next iteration [Line
3]. The former is the pool we use for finally selecting the next best rule to be
potentially added to M , and the latter contains all “base rules” for the next rule
growth iteration, which contains all rules in the beam and the auxiliary beam.

Finally, if the stopping criterion is met, we return the rule S among “all-
candidate-rules” with the best (largest) learning speed score r(.) [Line 20].

3.6 Experiments

We extensively benchmark our diverse-patience dual-beam algorithm and we
study the truly unordered rule sets (TURS) model learned from data in the fol-
lowing aspects:

1. Does the TURS model learned from data achieve on-par or better classifica-
tion performance in comparison to other rule-based methods, especially rule
set methods that allow (implicit) orders among rules?

2. Can rules in the TURS model learned from data be empirically treated as
truly unordered?

3. Do the class probability estimates from rules in the induced TURS model
generalize well to unseen (test) instances, such that these probability esti-
mates are reliable to serve as part of the explanations for the (probabilistic)
predictions?
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4. Is the model complexity of the TURS model learned from data smaller than
that of the rule-based models learned by competitor methods?

5. What are the effects of our proposed heuristics, including the beam search
with patience diversity and the MDL-based local test?

3.6.1 Setup

Datasets. We conduct an extensive experiments with 31 datasets, summa-
rized in Table 3.2. Our multi-class datasets are from the UCI repository, while
the binary-class datasets are from both the UCI repository (Dua and Graff 2017)
and the ADBench Github repository (Han et al. 2022). ADBench is a bench-
mark toolbox for anomaly detection (including imbalanced classification), and all
datasets from it are marked in italics in Table 3.2.
Competitors. We compare against a wide ranges of methods, summarized as
follows. First, we compare with unordered CN2 (Clark and Boswell 1991), which
adopts the one-versus-rest strategy. As CN2 does not impose an implicit order
among rules, it is conceptually the closest competitor to our method. Second, we
compare with DRS (Zhang and Gionis 2020) and IDS (Lakkaraju et al. 2016), as
they are the only two multi-class rule set methods without first learning rules for
individual class labels and then leveraging the one-versus-rest strategy, to the best
of our knowledge. Further, similar to us, they also incorporate the properties of
overlaps in their optimization scores: DRS aims to minimize the size of overlaps,
while IDS optimizes a linear combination of seven scores, one of which explic-
itly penalizes the size of overlaps. Third, we compare with CLASSY, a recently
proposed ordered rule list method, as it uses a similar model selection approach
based on the MDL principle. Fourth, since the MDL principle is conceptually
related to Bayesian modelling, we also compare with BRS (Wang et al. 2017)
as a representative method under the Bayesian framework, which also adopts an
non-heuristic simulated annealing approach. Last, we include RIPPER (Cohen
1995), CART (Breiman et al. 1984), and C4.5 decision trees (Quinlan 2014), due
to their wide use in practice.
Implementation details. For TURS, we set the beam width as 10, and the
number of candidate cut points for numeric features as 203. For competitor al-

3We observe that further increasing the number of candidate cut points for numeric features to 100, as
well as the beam width to 20, makes no big difference on the predictive performance in general.
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gorithms, we use CN2 from Orange (Demšar et al. 2013), IDS from a third-party
implementation with proven scalability (Filip and Kliegr 2019), RIPPER and
C4.5 from Weka (Hall et al. 2009) and its R wrapper, CART from Python’s
Scikit-Learn package (Pedregosa et al. 2011), and finally, DRS, BRS, CLASSY
from the original authors’ implementations. Competitors algorithms’ configura-
tions are set to be the same as the default as in the paper and/or in original
authors’ implementations. We make the code public for reproducibility4.

All reported results in this section are based on five-fold stratified cross-
validation, unless mentioned otherwise.

Figure 3.2: For each algorithm, we calculate for every individual dataset the difference
between its ROC-AUC score and the best ROC-AUC scores. The differences to the best
ROC-AUC scores for each algorithm is illustrated by a box-plot.

3.6.2 Classification performance

To investigate the classification performance for the TURS model learned
from data, we report in Table 3.3 average ROC-AUC scores on the test sets
obtained using five-fold stratified cross-validation. For multi-class classification,
we report the “macro” one-versus-rest AUC scores, as “macro” AUC treats all
class labels equally and hence can characterize how well the classifiers predict for
the minority classes.

Note that BRS (Wang et al. 2017) can only be applied to binary datasets.
Further, we fail to obtain the results of DRS on three datasets because the imple-
mentation of DRS makes it incapable of handling datasets with very large number

4https://github.com/ylincen/TURS2.
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of columns5. We also fail to obtain the result of IDS on one dataset as it exceeds
the predetermined time limit: 10 hours for one single fold of one dataset.

We show that TURS is very competitive in comparison to its competitors in
the following aspects. First, TURS performs the best in 11 out of the total 31
datasets, and performs the best in 6 out of 11 multi-class datasets. We denote
the best ROC-AUC for each dataset in bold. Second, we report the difference
between TURS’s ROC-AUC scores and the best ROC-AUC scores for each indi-
vidual dataset, in the bracket in the table. This shows the gap between TURS
and the best competitor for each individual dataset.

We further calculate the ROC-AUC scores of each competitor algorithm for
each dataset, minus the best ROC-AUC score for each individual dataset, which
measures the “gaps to the best” for each competitor algorithm. We compare
these gaps-to-best scores for all competitor algorithms in Figure 3.2. The box-
plots demonstrate that TURS is very stable for all 31 datasets we have tested,
and in comparison to its competitors the gaps-to-best scores are much smaller.

Third, among all rule set methods (CN2, DRS, IDS, TURS), TURS shows
substantially superior performance against DRS and IDS. As DRS and IDS both
aim to reduce the size of overlaps, our results indicate that simply minimizing
the sizes of overlaps may impose a too restricted constraint and hence lead to
sub-optimal classification performance. On the other hand, CN2 is competitive
in terms of obtaining the best AUCs, especially for binary datasets, as shown in
Table 3.3. However, as shown in Figure 3.2, CN2 has in general larger gaps to
the best AUCs than TURS does. Further, more comparison between TURS and
CN2 will be presented in the following paragraphs.

3.6.3 Prediction with ‘random picking’ for overlaps

Recall that in our definition of the truly unordered rule set (TURS) model,
we estimate the class probabilities for overlaps by considering the “union” of the
covers of all involved rules. Thus, the next question we study empirically is
whether our formalization of rule sets as probabilistic models can indeed lead to
overlaps only formed by rules with similar probabilistic estimates.

Therefore, we compare the probabilistic predictions of our TURS models
5The key issue is that their implementation involves transforming a binary vector to an integer, and they

use the “numpy” package for this, which does not support “arbitrarily large integers”.

71



Experiments

against the probabilistic predictions by what we call “random picking” for over-
laps: when an unseen instance is covered by multiple rules, we randomly pick
one of these rules, and use its estimated class probabilities (estimated from the
training set) as the probabilistic prediction for this instance.

Intuitively, if the overlaps are formed only by rules with similar probabilis-
tic output, we expect the probabilistic prediction performance by TURS and by
“TURS with random-picking” (abbreviated as TURS-RP) to be very close. We
report the ROC-AUC of TURS and TURS-RP in Table 3.4, together with the per-
centage of instances covered by more than one rules (the “%overlaps” column).
The ROC-AUC scores are obtained using five-fold cross-validation, and specifi-
cally, for each fold, the “random picking” ROC-AUC is obtained by averaging the
ROC-AUC scores obtained by 10 random picking probabilistic predictions.

We benchmark the ROC-AUC scores against those of CN2 (IDS and DRS are
excluded due to their sub-optimal performance in general). We have shown that
the differences between the ROC-AUC of TURS and TURS-RP are all negligible
up to the second decimal (i.e., smaller than 0.01), while the differences between
the ROC-AUC of CN2 and CN2-RP are mostly larger than 0.01 (shown in bold),
among which eight are larger than 0.05.

We can hence conclude that, while CN2 relies heavily on its conflict resolving
schemes for overlaps, TURS produces overlaps only formed by probabilistic rules
with very similar probability estimates. This indicates our probabilistic rules can
be viewed as truly unordered in the sense that, when an instance is covered by
multiple rules, the rule chosen to predict class probabilities has little effect on the
prediction performance.

3.6.4 Generalizability of local probabilistic estimates

While rule-based models are commonly considered to be intrinsically explain-
able models, we argue that only rules with probability estimates that generalize
well can serve as trustworthy explanations. Thus, we next examine the difference
between individual rules’ probability estimates on the train and test sets.

Specifically, given a rule set induced from a specific dataset, we look at each
individual rule’s probability estimates, estimated from the training and test set re-
spectively, by the maximum likelihood estimator. Finally, we report the weighted
averages of the probability estimates differences for all rules, weighted by the
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Figure 3.3: The weighted average of the differences between the class probability esti-
mates of every individual rule for training and test sets, shown as the empirical cumulative
distribution function, in which the weight is defined as the coverage of each rule for the
training set.

coverage of each rule on the training set.
Formally, given a rule set with K rules, M = {S1, ..., SK}, denote the proba-

bility estimates of all rules by (p1, ..., pK) and (q1, ..., qK), respectively estimated
from the training and test set. Assume each probability estimate has length C

(i.e., C = 2 for binary target and C > 2 for multi-class target), we measure how
well the individual rules generalize by

g =
1

K

∑
j

|Sj |

(∑
c

1

C
|pjc − qjc|

)
(3.26)

in which pjc (qjc) is the c-th element of vector pj (qj). Note that each individual
rule is treated separately in calculating the g-score above, and hence the overlaps
do not play a role here.

We calculate this score for all algorithms and all datasets, averaged using
the five-fold stratified cross-validation, and we present the results with empirical
cumulative density functions (ECDF) in Figure 3.3. Since the position of the
curve towards the upper-left shows that the corresponding algorithm has small
probability estimate differences between training and test sets, we observe that
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TURS (the bold curve) dominates rule sets learned by the rest of the algorithms,
with IDS the only close competitor.

For some datasets, IDS learns rule sets that have smaller probability esti-
mation differences than the TURS model (shown by the fact that part of the
corresponding blue curve is above the curve of TURS in bold). However, this
indicates that IDS has serious “under-fitting” if we take into consideration IDS’s
suboptimal predictive performance as discussed in Section 3.6.2. That is, IDS pro-
duces rules with too large coverage, and hence is not specific and refined enough
for classification, although rules with large coverage have probability estimates
that generalize well.

Thus, in conclusion, rules in the TURS model learned by our algorithm are
equipped with more reliable and trustworthy class probability estimates, in com-
parison to the other eight tree- and rule-based models.

Figure 3.4: Empirical cumulative distribution function for the comparative score for
model complexity. Curves towards the bottom-right indicate larger comparative scores and
simpler models.

3.6.5 Model complexity

We study next whether TURS empirically leads to more complex rule sets
given that it allows overlaps formed by rules with similar probabilistic outputs
only.
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We measure the model complexity by the number of total literals for each
model: i.e., summing up the lengths of rules in a rule set, rule list, or decision
tree (by treating each tree path as rule), which directly indicates the workload for
a domain expert if they read the rules. We report this measure in Table 3.5, and
specifically, we mark the results from the models with substantially worse ROC-
AUC scores than those of TURS by denoting them in smaller font sizes. Precisely,
for a given dataset, all competitor models with more than 0.1 smaller ROC-AUC
scores than that of TURS are marked. Excluding the results from these models,
we observe that TURS produces the simplest model for 13 out 31 datasets. The
model complexity of all simplest models are denoted in bold in Table 3.5.

Further, to illustrate the differences between the number of literals across all
algorithms, we calculate a comparative score as follow: for each individual dataset,
we divide the minimum total number of literals by the total number of literals of
each algorithm. This score show that, for each pair of dataset and algorithm, what
is the ratio of the minimum number of literals for this dataset, over the number of
literals for the algorithm-dataset pair, i.e., larger scores indicate simpler models
as the minimum number of literals is the numerator. We plot the ECDF of these
comparative scores in Figure 3.4, excluding the comparative scores obtained from
models with substantially worse ROC-AUC scores than that of TURS, same as
above. We observe that TURS lies at the most bottom-right, dominating the other
competitors, since curves towards the bottom-right indicate larger comparative
scores and hence simpler models.

3.6.6 Ablation study 1: diverse patience beam search

We study the effect of using the beam search with the “diverse patience”, by
replacing it with a “normal” (non-diverse) beam search. Suppose the beam width
is W , we then pick the top-W rule growth candidates without categorizing rule
growth candidates by their coverage. That is, we “turn off” the diverse coverage
constraints both for updating the beam and the auxiliary beam.

As shown in Figure 3.5, when using the diverse coverage heuristic, the ROC-
AUC on the test sets (points and curve in orange) becomes better on 25 out of 31
datasets, demonstrating the benefits for predictive performance.
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Figure 3.5: The differences between the ROC-AUC scores on the test sets with and
without the diverse patience.

3.6.7 Ablation study 2: MDL-based local testing

Figure 3.6: The process of adding rules to the rule set, with and without the local
testing heuristics, using the first dataset among the 100 simulated datasets. Each point
represents the status after a single rule is added, with the x-axis representing the coverage of
the (potentially incomplete) rule set after adding this rule, and the y-axis representing the
MDL-based score.

Recall that the MDL-based local test is used for evaluating the “potential” in
the left out instances when growing a rule. Thus, from the perspective of optimiza-
tion, it is used for looking ahead to prevent ending up in a local minimum when
optimizing our MDL-based model selection criterion as defined in Equation (3.20).

We next illustrate that, without the local test, our algorithm would fail to
reveal the ground-truth rule set model even for a very simple simulated dataset.
Instead, it would learn a much more complicated model, and consequently, our
optimization algorithm would end up at an inferior minimum.
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Consider a simulated dataset generated by a known ground-truth rule set
model with one rule only as follows. The feature variables are denoted as X =

(X1, ..., X50), which are assumed to be all binary. We sample X1 ∼ Ber(0.2),
Xi ∼ Ber(0.5)(i = 2, ..., 50), in which Ber(.) denotes the Bernoulli distribution.
Further, we consider binary target variable Y and sample Y |X1 = 1 ∼ Ber(0.7)

and Y |X1 = 0 ∼ Ber(0.95). That is, X1 = 1 (or X1 = 0) is the only “true rule”
in this simulated dataset.

We simulate the dataset with sample size 5 000 for 100 times, and run TURS
with and without local testing. As shown in Table 3.6, without local testing we
achieve a worse (larger) score for our optimization function (i.e., the MDL-based
score).

Notably, although the ROC-AUC scores are similar for using and not using
the local testing, the ground truth model is only found when local testing is used.
When the local testing is disabled, the number of rules and the rule lengths are
both not consistent with the “true” model, as irrelevant variables are picked when
growing the rules. We have two perspectives to explain the inconsistency.

To begin with, as shown in Table 3.6, when the local testing is not used,
the difference between the class probabilities estimated from the training and test
dataset is larger than the difference when the local testing is imposed, which
indicates that the rules as local probabilistic models generalize worse when the
local test heuristic is turned off. In other words, we observe overfitting locally.

Further, as we wrote as motivation in Section 3.5.2, the local testing heuristic
is designed to prevent leaving out instances that are difficult to cover for ‘future’
rules, and we do notice this phenomenon empirically. Specifically, for a single
run of TURS on the simulated dataset, we plot in Figure 3.6 the procedure of
iteratively searching for the next best rule: each point represents the status of
the rule set after a single rule is added, with the x-axis representing the coverage
of the rule set (i.e., the number of instances covered by at least one of the rules
excluding the else-rule), and the y-axis representing the MDL-based score for the
rule set as a whole model. Thus, our learning speed score, defined in Section 3.5.1,
basically tries to iteratively find the next point (i.e., the next rule) in Figure 3.6
with the steepest slope.

However, without the local test heuristic, although the learning speed scores
(shown by the red curve in Figure 3.6) are in the first place larger than that of
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the blue curve (for the case when the local testing is used), the red curve achieves
an inferior optimization result in the end. That is, without local testing, the
instances that are left out are simply ignored during the process of rule growing,
which leads to a worse optimization result.

3.6.8 Runtime

Figure 3.7: Average runtime for five rule set methods. The y-axis is scaled by log10(·).

Last, we report the runtime of TURS, together with rule set competitor
methods only, as decision trees/lists methods from mature software (Weka and
Python Scikit-Learn) are highly optimized in speed and are known to be very fast.

We illustrate average the runtime (in seconds) obtained using cross-validation
in Figure 3.7. In general, the runtime of TURS is competitive among all rule set
methods except for CN2. CN2 seems faster in general and scales better to larger
datasets, which can be caused both by a more efficient implementation (from the
software “Orange3”), and by its algorithmic properties (a greedy and separate-
and-conquer approach). However, as we saw in Section 3.6.3, rule sets learned
from data by CN2 cannot be empirically treated as truly unordered.
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3.7 Conclusion

We studied the problem of learning truly unordered rule sets from data. While
existing rule set methods adopt post-hoc schemes to resolve conflicts caused by
overlapping rules, we proposed the intuitive idea of only “allowing” rules to overlap
if they have similar probabilistic output. Building upon this, we formally defined
a truly unordered rule set (TURS) model: given a set of rules and a dataset
(assumed i.i.d.), the TURS model defines the likelihood of the class labels given
the feature values.

Further, we formalized the problem of learning such TURS model from data
as a probabilistic model selection problem, by leveraging the minimum description
length (MDL) principle. Our MDL-based model selection criterion can strike a
balance between the goodness-of-fit and the model complexity without any regu-
larization parameter.

We further proposed a carefully designed dual-beam diverse-patience algo-
rithm to learn the TURS model from data. We showed that our algorithm can
induce rules with competitive performance with respect to the following aspects.
First, we benchmarked our algorithm using a large number of datasets and showed
that the learned TURS model has very competitive predictive performance mea-
sured by the ROC-AUC. Specifically, in comparison to other multi-class rule set
methods (CN2, DRS, IDS), the TURS model learned by our algorithm shows clear
superiority with respect to the ROC-AUC scores. Second, uniquely, we showed
that the TURS model learned by our algorithm is empirically truly ordered, in
the sense that the predictive performance is hardly affected when predicting in-
stances covered by multiple rules through a randomly picked rule among these
multiple rules. Third, the learned TURS model contains single rules with reliable
and trustworthy class probability estimates that can generalize well to the un-
seen instances. Fourth, the model complexity of the learned TURS model is also
competitive in comparison to other rule-based methods.

For future work, we consider using TURS as a building block towards de-
signing interactive rule learning algorithms with humans in the loop, since rules
being truly unordered instead of entangled are more comprehensible and easier
to edit. That is, comprehending and editing single rules in the TURS model does
not require domain experts or data analysts to consider other (potentially many,
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higher-ranked) rules. In sensitive area like health care, this may help build trust
between the data-driven models and domain experts.

In addition, extending truly unordered rule sets to other machine learning
tasks such as feature construction, subgroup discovery, regression with uncer-
tainty, and explaining black-box models are all promising directions.
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3.8 Appendix: Comparison to the Previous Work

As this chapter is based on the previous chapter, we hereby summarize the
main changes and additions as follows. First, while working on the follow-up real-
world case study in health care, we noticed an unsatisfactory prediction perfor-
mance of our previous method. After careful investigation, we realized it was the
algorithmic heuristics that could be further improved. Specifically, the previous
method used a heuristic motivated by the FOIL’s information gain (Fürnkranz et
al. 2012), i.e., an MDL-based Foil-like compression gain; however, we later noticed
extending the FOIL’s information gain to multi-class situations will cause prob-
lem when using it to guide the search for rule growth, since it can be proven that
the FOIL’s information gain will only lead to rules with lower empirical entropy
than the rules in the previous step. This specifically can cause problems when
the dataset is noisy (in the sense that the Bayes-optimal classifier cannot achieve
a perfect or near-perfect classification) and/or imbalanced. Therefore, we now
implement a learning-speed heuristic, motivated by the “normalized gain” used
in the CLASSY algorithm for rule lists (Proença and Leeuwen 2020); however,
as we observe “normalized gain” often shrinks of the rule’s coverage (the number
of instances covered by the rule) too fast, we further introduced a diverse beam
search with diverse “patience”, in which the concept of patience is motivated from
the PRIM method (Friedman and Fisher 1999), one of the first pioneer works for
regression rules.

Second, one unique challenge of learning truly unordered rules is to both
evaluate the quality of individual rules and the quality of the overlaps (i.e., whether
the rules that form the overlap do not have similar enough outputs). However,
this makes existing rules obstacles for the following search for more rules, as
we elaborate in Section 3.5.2. In our previous work, we adopted a “two-stage”
algorithm: in the first stage, the existing rules are ignored when calculating the
heuristics, and next we use the results of the first stage as “seeds” for the second
stage, in which the existing rules are considered in order to calculate the MDL-
based score for evaulating the rules. However, we noticed that the first stage can
output rules of which the number of covered instances is too small to be further
refined when incorporating its overlaps with existing rules in the second stage.
Therefore, we now combine these two stages by always keeping two “beams” in
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the beam search, with one beam using the heuristic score that ignores the existing
rules and the other incorporating the existing rules.

Third, given the necessity to evaluate the “potential” for the instances that
are not covered by any rule so far during the rule set learning process, which is
closely related to the claim made in the previous work (Fürnkranz and Flach 2005)
that evaluating incomplete rule sets are a challenging and unresolved issue in rule
learning in general, in our previous work we proposed to use a surrogate CART
decision tree model to assess the potential for the uncovered instances. However,
this approach turned out to be not very stable for this purpose in general, as we
cannot afford the computational time for tuning the regularization parameter for
the post-pruning for CART; in addition, when the dataset is very imbalanced, the
performance of CART is sub-optimal and hence does not provide a satisfactory
assessment. To resolve this issue, in this chapter we introduce a local constraint
based on the local MDL compression gain, as discussed in Section 3.5.2.

Besides the algorithmic improvements, we substantially extended the exper-
iments for the purpose of studying the truly unordered rules in detail. That is,
the purpose of the experiments in the previous chapter was to show that, with the
(soft) constraints of only allowing rules with similar outputs to overlap, truly un-
ordered rule sets can achieve on-par predictive performance in comparison to rule
sets methods that adopt ad-hoc schemes for conflicts caused by overlaps. However,
in this chapter, we aim for studying 1) the predictive performance on a large scale
of datasets, 2) whether the induced rules from data can be empirically regarded as
truly unordered, in the sense that how large is the effect if we randomly pick one
rule for predicting an instance covered by multiple rules, 3) whether the proba-
bilistic estimates of individual rules can generalize to unseen (test) instances, such
that the individual rules can be used as reliable and trustworthy explanations to
the predictions, and 4) whether our rule sets need to sacrifice model complexity
for being “truly unordered”, given that our search space is essentially much more
complicated in comparison to i) non-probabilistic rules, ii) rules for binary targets
only, and iii) methods with the separate-and-conquer strategy that simplifies the
search space by iteratively removing covered instances.

Moreover, we also made a moderate modification to our optimization score.
If we simply regard the (vanilla definition of) MDL-based model selection criterion
as a score based on the penalized maximum likelihood, the penalty consists of two
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terms: 1) the code length of model and 2) the regret. However, it is well-known
that, firstly by the implementation of C4.5 rules (Quinlan 2014), the code length of
the model (the first term in the penalty) does not consider the redundancy in the
model class of all possible rule sets, which can cause under-fitting. Specifically,
during the implementation of our previous work, we simply exclude this “code
length of the model” term, since we noticed that when not including this term, the
predictive performance is in general better (at the cost of higher model complexity
though). However, with the improved algorithm we propose in this chapter, we can
now include the code length of model term for obtaining simpler models without
sacrificing predictive performance.

Finally, we now formally defined TURS as a probabilistic model, while the
previous chapter was not very precise in this regard. Also, we unified the nested
overlap (i.e., one rule fully cover the other rule) and non-nested overlap of rules
in the previous chapter, without using separate modelling schemes for the two
cases respectively. Empirically, checking whether an overlap is a nested overlap is
computationally expensive, while the empirical results show that the final model
learned from the data rarely contains such nested overlap.
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Algorithm 4: Learn a single rule
Input: Rule set M , dataset (xn, yn), beam width W
Output: The next rule S

1 all_candidate_rules← [ ]
2 rules_for_next_iter← [∅] // Initialize the rule with an

``empty" condition
3 while TRUE do
4 beam← [ ] // Initialize the beam for the beam search
5 auxiliary_beam← [ ] // Initialize the auxiliary beam

(Section 3.5.2)
6 for rule in rules_for_next_iter do
7 rule_candidates← generate_candidates(rule) // Enumerate

literals and append to rule
8 categorized_candidates← categorize(rule_candidates)

// Categorize into clusters by coverage
(Section 3.5.2)

9 categorized_candidates←
MDL_local_testing(categorized_candidates) // Defined in
Section 3.5.2

10 top_W_candidates← The candidate with the highest r(.)
11 in each category of categorized_candidates
12 categorized_candidates_auxiliary← categorize(rule_candidates)

// Categorize into clusters by coverage excluding the
instances covered by M (Section 3.5.2)

13 categorized_candidates_auxiliary←
MDL_local_testing(categorized_candidates_auxiliary)

14 top_W_auxiliary← The best candidate with the highest R(.)
15 in each category of categorized_candidates_auxiliary
16 beam.append(top_W_candidates)
17 auxiliary_beam.append(top_W_auxiliary)
18 if stopping_criterion_is_met then
19 return the rule with the highest r(.) in all_candidate_rules
20 else
21 beam ← top-W candidates in beam with the highest r(.)

// Reduce the number of rules to W
22 auxiliary_beam←

top-W candidates in auxiliary_beam with the highest r(.)
23 all_candidate_rules.append(beam)
24 rules_for_next_iter← beam ∪ auxiliary_beam
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Data # rows # columns # classes max. class prob. min. class prob.
aloi 49534 28 2 0.970 0.030
backdoor 95329 197 2 0.976 0.024
backnote 1372 5 2 0.555 0.445
chess 3196 37 2 0.522 0.478
diabetes 768 9 2 0.651 0.349
glass-2 214 8 2 0.958 0.042
ionosphere 351 35 2 0.641 0.359
magic 19020 11 2 0.648 0.352
mammography 11183 7 2 0.977 0.023
musk 3062 167 2 0.968 0.032
optdigits 5216 65 2 0.971 0.029
pendigits-2 6870 17 2 0.977 0.023
satimage-2 5803 37 2 0.988 0.012
smtp 95156 4 2 1.000 0.000
thyroid 3772 7 2 0.975 0.025
tic-tac-toe 958 10 2 0.653 0.347
vowels 1456 13 2 0.966 0.034
waveform-2 3443 22 2 0.971 0.029
wdbc 367 31 2 0.973 0.027
anuran 7195 24 4 0.614 0.009
avila 20867 11 12 0.411 0.001
car 1728 7 4 0.700 0.038
contracept 1473 10 3 0.427 0.226
drybeans 13611 17 7 0.261 0.038
glass 214 11 6 0.355 0.042
heartcleveland 303 14 5 0.541 0.043
iris 150 5 3 0.333 0.333
pendigits 7494 17 10 0.104 0.096
vehicle 846 19 4 0.258 0.235
waveform 5000 22 3 0.339 0.329
wine 178 14 3 0.399 0.270

Table 3.2: Datasets for binary (top) and multi-class classification (bottom), publicly
available on the UCI repository and the ADBench Python package; datasets from the latter
are marked in Italic. We use the maximum and minimum of the marginal class probabilities
to indicate the degree of class imbalance.
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Data BRS C45 CART CLASSY Ripper CN2 DRS IDS TURS(diff to best)

aloi 0.519 0.398 0.621 0.654 0.485 0.569 0.500 0.509 0.619 (-0.035)

backdoor 0.917 0.990 0.979 0.996 0.976 0.997 — — 0.995 (-0.002)

backnote 0.957 0.987 0.983 0.990 0.982 0.993 0.988 0.765 0.981 (-0.012)

chess 0.957 0.998 0.995 0.992 0.995 0.532 0.809 0.677 0.994 (-0.004)

diabetes 0.725 0.710 0.667 0.737 0.641 0.709 0.727 0.595 0.750 (0)

glass-2 0.676 0.890 0.790 0.730 0.793 0.941 0.926 0.912 0.949 (0)

ionosphere 0.802 0.882 0.851 0.886 0.911 0.941 0.712 0.786 0.904 (-0.037)

magic 0.767 0.869 0.799 0.888 0.819 0.698 0.774 0.507 0.887 (-0.001)

mammography 0.644 0.817 0.730 0.890 0.582 0.891 0.857 0.535 0.897 (0)

musk 1.000 0.995 1.000 1.000 1.000 1.000 — 1.000 1.000 (0)

optdigits 0.897 0.959 0.942 0.986 0.966 0.992 — 0.960 0.977 (-0.015)

pendigits-2 0.938 0.986 0.964 0.974 0.973 0.996 0.948 0.914 0.955 (-0.041)

satimage-2 0.922 0.914 0.915 0.929 0.964 0.964 0.699 0.867 0.909 (-0.055)

smtp 0.596 0.930 0.965 0.905 0.950 0.853 0.889 0.879 0.972 (0)

thyroid 0.897 0.972 0.950 0.983 0.989 0.998 0.921 0.960 0.961 (-0.037)

tic-tac-toe 1.000 0.878 0.918 0.978 0.972 0.932 0.992 0.599 0.965 (-0.035)

vowels 0.854 0.693 0.773 0.796 0.758 0.897 0.813 0.748 0.817 (-0.08)

waveform-2 0.567 0.716 0.648 0.847 0.333 0.886 0.540 0.774 0.832 (-0.054)

wdbc 0.836 0.999 0.896 0.843 0.899 0.836 0.620 0.942 0.947 (-0.052)

anuran — 0.995 0.944 0.968 0.996 0.962 0.945 0.602 0.973 (-0.023)

avila — 0.999 0.977 0.987 0.993 0.920 0.729 0.617 0.990 (-0.009)

car — 0.956 0.939 0.978 0.931 0.885 0.935 0.831 0.980 (0)

contracept — 0.680 0.597 0.653 0.607 0.598 0.598 0.549 0.658 (-0.022)

drybeans — 0.970 0.943 0.977 0.979 0.929 0.975 0.591 0.989 (0)

glass — 0.970 0.984 0.975 0.940 0.937 0.926 0.793 0.967 (-0.017)

heartcleveland — 0.603 0.572 0.721 0.509 0.694 0.611 0.513 0.695 (-0.026)

iris — 0.960 0.975 0.970 0.962 0.977 0.954 0.810 0.981 (0)

pendigits — 0.982 0.974 0.986 0.983 0.991 0.967 0.522 0.994 (0)

vehicle — 0.856 0.789 0.870 0.859 0.858 0.764 0.579 0.882 (0)

waveform — 0.842 0.814 0.910 0.880 0.803 0.654 0.517 0.915 (0)

wine — 0.937 0.906 0.960 0.937 0.973 0.909 0.854 0.952 (-0.021)

Table 3.3: Average ROC-AUC scores obtained using cross-validation. BRS can only be
applied to binary datasets, and DRS and IDS fail to get results on a few datasets, denoted
as “—” in the table. Best ROC-AUC for each dataset is shown in bold and. The difference
between the best ROC-AUC for each dataset and the ROC-AUC of TURS for the same
dataset is shown in bracket.
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data TURS TURS-RP Diff. %overlap CN2 CN2-RP Diff. %overlap
aloi 0.619 0.62 -0.001 4% 0.569 0.578 -0.009 97%
anuran 0.973 0.969 0.004 28% 0.962 0.913 0.048 90%
avila 0.99 0.989 0.001 17% 0.92 0.915 0.004 45%
backdoor 0.995 0.995 0 0% 0.997 0.976 0.021 96%
backnote 0.981 0.98 0.001 20% 0.993 0.973 0.019 60%
drybeans 0.989 0.986 0.004 34% 0.929 0.908 0.021 94%
glass-2 0.949 0.949 0 0% 0.941 0.839 0.102 33%
heartcleveland 0.695 0.687 0.008 8% 0.694 0.663 0.031 61%
mammography 0.897 0.897 0 5% 0.891 0.806 0.084 86%
musk 1 1 0 0% 1 1 0 0%
optdigits 0.977 0.977 0 0% 0.992 0.972 0.02 92%
pendigits-2 0.955 0.955 0 0% 0.996 0.972 0.024 88%
satimage-2 0.909 0.909 0 0% 0.964 0.909 0.055 89%
smtp 0.972 0.972 0 0% 0.853 0.795 0.058 51%
thyroid 0.961 0.961 0 0% 0.998 0.941 0.056 87%
vehicle 0.882 0.878 0.004 15% 0.858 0.826 0.033 77%
vowels 0.817 0.817 0 1% 0.897 0.838 0.059 71%
waveform-2 0.832 0.832 0 9% 0.886 0.754 0.132 92%
wdbc 0.947 0.947 0 0% 0.836 0.596 0.241 69%
car 0.98 0.98 0.001 22% 0.885 0.794 0.091 91%
chess 0.994 0.994 0 23% 0.532 0.551 -0.019 95%
contracept 0.658 0.657 0.001 3% 0.598 0.572 0.026 100%
diabetes 0.75 0.748 0.002 11% 0.709 0.676 0.033 82%
glass 0.967 0.965 0.002 2% 0.937 0.937 0 0%
ionosphere 0.904 0.904 0 15% 0.941 0.895 0.046 55%
iris 0.981 0.98 0.001 5% 0.977 0.977 0 0%
magic 0.887 0.887 0 38% 0.698 0.738 -0.04 92%
pendigits 0.994 0.991 0.003 40% 0.991 0.982 0.009 76%
tic-tac-toe 0.965 0.965 0 7% 0.932 0.925 0.007 49%
waveform 0.915 0.905 0.009 51% 0.803 0.84 -0.037 77%
wine 0.952 0.952 0 0% 0.973 0.971 0.002 2%

Table 3.4: Average ROC-AUC for the predictions with and without “random picking”,
both for TURS and CN2. The difference between the two ROC-AUC scores are shown in
bold if the difference is larger than 0.01. We further show the percentage of instances covered
by more than one rule, denoted as %overlap.
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Data BRS C45 CART CLASSY RIPPER CN2 DRS IDS TURS
aloi 3 2659.1 26952.8 52.3 26.2 2116 0 14 66.5
backdoor 13 701.5 2460.5 72.6 101.5 259.6 — — 59.1
backnote 35.8 79.6 116.7 22.7 22.3 39.5 54 12.5 14.2
chess 19.2 250.2 340.5 33 57.9 297 54.2 14.5 58
diabetes 15.6 107.6 700.5 5 6.6 165.4 82.5 13.2 6.8
glass-2 10.8 19.7 6.7 3 5.9 1.8 37.2 15.5 1
ionosphere 31.2 59 86.6 5.6 12.5 25.1 440.7 12 5.1
magic 43.5 3211.8 20053.1 228.4 87.1 3351.9 44.7 18.5 227.8
mammography 3 273.7 1126.8 38.7 30.5 199.2 24.4 14 37.4
musk 6 4 2 2 2 2 — 9.3 2
optdigits 54.5 46.6 78.7 9.6 15.8 16.7 — 11.2 7.6
pendigits-2 14.8 48.3 66.9 9.5 12.7 19.9 136.5 14.1 12
satimage-2 15 14.8 17.8 7.9 9 9.9 524.8 12.4 4
smtp 3 20.9 34.4 5.6 7 19.2 16.7 13.9 3
thyroid 3 18.9 28.1 16.4 4.2 9.7 73.1 13.4 7.8
tic-tac-toe 25.2 411.9 410.8 29.2 42.3 81.1 101.7 13.5 28.9
vowels 25.2 58.9 147.8 14.1 13.5 22.6 141.9 14.3 8.7
waveform-2 4.2 165.6 406.3 19.3 20.5 79.4 522.2 11.2 12
wdbc 9 8 2.5 3.2 2 4.4 337.6 7.6 2
anuran — 80.9 1284.3 90.7 11 264.8 346.1 12.4 100.2
avila — 3460.4 7795.9 939.8 707.2 1297.4 181.3 14 726
car — 659.8 776.1 56.4 171.7 72 307.6 13.5 132
contracept — 1268.1 5536.2 12 14.7 221.8 5 16.8 12.6
drybeans — 2481.6 7039.4 105.8 153.3 1280.6 202.3 13.2 182.4
glass — 24.8 20 5.2 14 7.8 171 11.3 6
heartcleveland — 245.7 410.2 6.6 5.5 42.1 522.2 14 5.7
iris — 15.2 13 2.8 5.9 8.4 26.7 10.4 2.3
pendigits — 1274.9 1689.7 142.3 260.9 430.4 561.7 15.6 174.5
vehicle — 560.6 760.3 25.4 46.9 175.5 741.1 11.6 23
waveform — 2782.9 3520 125.7 143 970.5 75.6 14.4 160.6
wine — 22 15.5 5 8.9 7.5 103.8 14.4 4.6

Table 3.5: Total number of literals in the rule set, rule list, or decision tree. Smaller fonts
indicate that the model learned by a certain algorithm gives the ROC-AUC score substantially
worse than TURS does, and the results in bold indicate the smallest total number of literals
(excluding those models with substantially worse ROC-AUC scores).

Local testing # rules rule length ROC-AUC MDL-based score train/test prob. diff.
No 12.48(±1.56) 5.597(±0.42) 0.722(±0.02) 2191.189(±65.91) 0.049(±0.01)
Yes 1(±0) 1(±0) 0.724(±0.01) 2050.087(±68.88) 0.007(±0)

Table 3.6: Results of ablation study on local testing. We report the mean (± standard
deviation) over 100 repetitions.
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Chapter Abstract
Interactive machine learning systems that can incorporate human feedback

for automatic model updating have great potential use in critical areas such as
health care, as such systems can combine the strength of data-driven modeling and
the prior knowledge from domain experts. Designing such a system is a challeng-
ing task as it must enable mutual understanding between humans and computers,
which hence relies on interpretable and specifically easily comprehensible models.
Specifically, we consider the problem of incorporating human feedback for model
updating in rule set learning for the task of predicting readmission risks for ICU
patients. Building upon the TURS model described in the previous chapters, we
further propose a certain format for feedback for rules, together with an auto-
matic model updating scheme. We conduct a pilot study and demonstrate that
the rules obtained by updating the TURS model learned from the ICU patients’
data can empirically incorporate human feedback without sacrificing predictive
performance. Notably, the updated model can exclude conditions of rules that
ICU physicians consider clinically irrelevant, and thus enhance the trust of physi-
cians.
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4.1 Introduction

In critical areas such as health care, developing machine learning models that
domain experts can comprehend and trust potentially has great societal impact.
Specifically, in intensive care units (ICU) where patients are monitored intensively,
conditions of patients are to a large extent recorded digitally, which provides the
foundations for building decision support systems with data-driven models (Hond
et al. 2023).

We consider the problem of predicting the probability of readmission to the
ICU within a short period (7 days) after a patient is discharged from the ICU and
moved to a normal ward. Such readmission risk for patients is clinically relevant,
as it is observed that patients who are readmitted often become much worse in
comparison to their condition when they were in the ICU previously (Kramer
et al. 2013; Woldhek et al. 2017). Thus, the readmission itself is a key factor that
is highly correlated with the patient’s condition; as a result, predicting the read-
mission risk can both facilitate efficient ICU resource management and prevent
discharging patients improperly. In practice, beds in the ICU are a very scarce
and costly resource; thus, discharging patients from the ICU smartly can help
distribute the resource to patients who need it more.

As physicians are responsible for estimating the risk of discharging a patient
from the ICU, data-driven models only brings benefits if physicians trust the
model and are willing to use it in practice. To build trust, the data-driven model
needs to have interpretability for domain experts to comprehend what is going
on (Li et al. 2023). Further, beyond interpretability, the situation when physicians
and machine learning models disagree must be properly handled (Holzinger 2016;
Mosqueira-Rey et al. 2023; Teso and Kersting 2019). That is, when the model
gives a probabilistic prediction together with explanations, what if the physician
disagrees with the prediction and/or the explanation? For instance, the model
could identify a factor that is known to be irrelevant clinically as important for
predicting readmission risk for a single patient. In this situation, it would be
ideal if the physician would give this feedback to the machine learning model;
further, if the model can be automatically updated when receiving the feedback
from human, the physician could trust the model next time when the model gives
the same explanation and prediction for a similar patient in the future.
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Thus, interaction between humans (i.e., physicians in the ICU in this case)
and the machine learning model is crucial in such a scenario, which requires the
human to understand the machine, and at the same time, the machine to un-
derstand the human. While rule-based models, and especially truly unordered
rule set (TURS) models, are in principle comprehensible to domain experts, the
challenges remain unresolved that 1) how and in what formats feedback from do-
main experts can be incorporated, and 2) how rule-based models can be updated
according to human feedback.

To tackle these challenges, we introduce a human-guided rule updating scheme
based on the TURS model. The TURS model paves the way towards an interac-
tive rule learning process with the following two advantages over existing methods
for learning rule lists (in which rules are explicit ordered) and rule sets (in which
external and ad-hoc methods are mostly used to handle the conflicts caused by
overlaps).

The first advantage is that rules in the TURS model can be empirically re-
garded as truly unordered and hence independent from each other. Thus, deleting
and/or editing one rule (that a domain expert dislikes) has little influence on other,
potentially overlapping rules. In contrast, for rules with (implicit) orders obtained
by other existing methods, editing or deleting one rule may cause “a chain of ef-
fects” on how instances covered by other rules are modeled. Secondly, the TURS
model reduces the workload for domain experts to find out which rules need to
be edited. Specifically, when comprehending a single rule, there is no need to go
over all other rules that are ranked (explicitly or implicitly) higher, as unlike other
existing methods, our TURS model does not impose any order among rules.

In the following, we conduct an empirical pilot study by applying the TURS
model to a dataset collected at the ICU of Leiden University Medical Center
(LUMC) in the year 2020. To this end, we ask a domain expert from LUMC to
identify rules with clinically irrelevant variables, and we also propose an updating
scheme for the TURS model.

4.2 Updating Rule Sets with Human Feedback

We now describe in what format we allow ICU physicians to give feedback,
and how the TURS model can be updated automatically with the feedback.

92



Chapter 4 Case Study: Towards Interactive Rule Learning for ICU
Readmission Analysis

4.2.1 Human feedback format

Although it seems tempting to allow feedback in flexible formats (and the
most flexible format would be in natural language), we argue that it is desir-
able to constrain human feedback to have certain formats, in order to transform
the feedback into transparent human guidance to the algorithm for updating the
model. In other words, we aim to propose certain human feedback formats so
that the consequence of such human feedback can be easily explained to domain
experts.

However, such feedback format should also allow domain experts to express
clearly and sufficiently why they dislike the current model. This requires a
deep understanding about what might cause dissatisfaction from domain experts.
Hence, how to design such feedback formats may depend on the application task
at hand, and may require collaboration between computer scientists and domain
experts.

Focusing on the task of ICU readmission risk analysis, we constrain ourselves
to a simple yet fundamental feedback format and leave as future work incorpo-
rating other feedback formats. Formally, given a truly unordered rule set model
with K rules denoted as M = {S1, ..., SK}, we consider feedback from domain
experts in the following form: remove rule Sj due to irrelevant variables {Xi}i∈I ,
in which Sj denotes a single rule and I denotes an index set. Notably, feedback
in this format contains not only information regarding whether a rule is disliked,
but also the reason why a rule is disliked.

4.2.2 Updating a rule set

We now present how we can equip the TURS model with an “self-updating”
scheme after receiving feedback from a domain expert.

Removing a rule. Given the rule set M = {S1, ..., SK}, assume that a domain
expert gives the feedback that rule Si does not make sense as it contains irrele-
vant variable Xj . Then, removing Si from M is straightforward as there exist no
implicit or explicit orders among rules. That is, following the procedure of formal-
izing a rule set as a TURS model, we simply have a new rule set M ′ = M \ {Si},
for which the likelihood can be calculated according to how the TURS model is
defined.
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We next analyze for which instances the empirical class probabilities are
affected. First of all, when Si is eliminated from model M , it has an effect on
the estimated probabilities of both 1) instances covered by Si, and 2) instances
not covered by any rule (i.e., covered by the else rule). Specifically, instances
previously covered by Si only (i.e., before removing Si) are now combined with
instances originally covered by the else-rule, which are now used for obtaining
new class probability estimates for the new else rule after eliminating Si from M .
Meanwhile, for instances covered by the overlap of Si and some other rule(s), the
class probability estimates will be updated accordingly.

Learn a new rule with constraint. Building upon the new TURS model M ′,
we next consider learning a new rule that can be added to M ′ as the replacement
for the removed rule, for which we leverage the dual-beam diverse-patience algo-
rithm for learning the next “best” rule given the current status of a rule set, as
proposed in Chapter 3.

As the conditional likelihood of class labels can be calculated given the dataset
and the rule setM ′ given the definition of the TURS model, the MDL-based model
selection score for the rule set M ′ can be calculated accordingly. Further, when
adding a rule S′ to M ′, the model selection score can be calculated for M ′ ∪ {S′}
as well.

Thus, the algorithm can search for the next best rule S′ such that when adding
S′ to M ′ the learning speed score r(S′) is optimized (as defined in Chapter 3), in
which r(S′) measures how much the MDL-based model selection score decreases
per extra covered instance when adding S′ to M ′.

4.3 An Empirical Pilot Study

We conduct a pilot study in collaboration with Leiden University Medical
Center (LUMC) using the real-world patient dataset to showcase how the TURS
model together with the model updating scheme can be used for interactive rule
learning with humans in the loop. We next describe the experiment setup and
present our results.
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4.3.1 Experiment setup

Dataset description. We specifically considered the dataset collected at the
ICU of LUMC in the year 2020, in which the patients who are readmitted within
7 days are labelled as “positive”.

The original dataset is multi-modal and contains information in different
forms, including time series measurements (e.g., cardiology monitor records), lab
results over time (e.g., blood tests), medication use records, as well as static in-
formation for each patient (e.g., age, gender, etc). This dataset was described
and pre-processed into a tabular dataset by an external expert in previous re-
search (Van der Meijden 2021). The resulting processed dataset was further split
randomly for training and test, which contains 9737 and 2435 patients respectively
(approximately 80%/20% splitting), with 550 feature variables. The dataset is
very imbalanced, as the overall probability of readmission is roughly 0.07.

Human feedback collection. We ask one domain expert from LUMC to give
feedback to the rules, with the procedure as follows. First, a TURS model is
learned on the training set, with beam width set as 5 and the number of candidate
cut points (for continuous-valued features) set as 20, which is the “default” setting
that we also used in Chapter 3.

Second, the rule set is shown to the domain expert; specifically, the condition
of each rule together with the class probability estimates (obtained using the train-
ing set) are shown to the domain expert. Moreover, the algorithm configuration
(e.g., the beam width) is revealed to the domain expert as well.

Next, we ask the domain expert to go through each of all rules, and to give
feedback to the ruleset in the format as we described in Section 4.2. Subsequently,
the feedback is used to update the TURS model, and we use the test set of the
ICU dataset for assessing the predictive performance of the TURS model before
and after the human feedback. We refer to the latter as the human-guided model.
Lastly, note that the test set of the whole dataset is only used for this final
assessment step, and therefore the domain expert has no access to it during the
procedure of giving feedback to rules.
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4.3.2 Rule set for the ICU dataset

Learning a TURS model using our proposed method in Chapter 3, we obtain
a surprisingly simple rule set with 5 rules only, which has average rule length of
2. The obtained rule set is shown in Table 4.1:

Rule Conditions Prob. of Readmission # Patients
Ureum-max-all ≥ 12.1 0.223 494Ademfrequentie-median-value-last24h ≥ 23.5
APTT-max-all ≥ 43.1 0.199 548Ureum-mean-all ≥ 16.338
Leukocyten-mean-last ≥ 20.81 0.162 464
Kalium-count-first ≥ 6.0 0.131 1979specialty-Organization-value-sub-ICCTC = FALSE
Trombocyten-count-first ≥ 2.0

0.019 3922Ureum-last-last < 9.2
specialty-Organization-value-sub-ICCTC = TRUE
None of the above 0.059 3220

Table 4.1: Rule sets describing the probability of readmission for LUMC ICU patients.

The literals contain feature names that are mostly consisting of three parts,
with the first part indicating the basic meaning of this feature variable (in Dutch).
For instance, “Ureum” indicates the “Urea” in blood. The second part of feature
names indicates how the results are aggregated, among which “count”, “mean”,
“median”, and “max” are commonly used. Last, the third part of feature names
indicates the time window for which the aggregated values are obtained, in which
“first” represents the first 24 hours, “last” represents the last 24 hours, and “all”
represents the whole period in ICU. A detailed explanation of the feature names
can be found in previous work (Van der Meijden 2021).

4.3.3 Rule-based competitor methods

To benchmark the performance of the TURS model induced from the training
dataset, we apply several commonly used probabilistic rule-based models to the
ICU dataset. The motivation for such benchmark is to show that the TURS
model has competitive predictive performance and thus implicitly describes the
data relatively well, which is the foundation for involving humans in the loop.

The comparative predictive performance is summarized in Table 4.2. Notably,
the TURS model shows advantages over competitor methods in several aspects.
First, the results with respect to ROC-AUC and PR-AUC show that the ICU
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dataset is difficult to model using widely used rule-based models (as listed in
the table), since the ROC-AUC of C4.5 and RIPPER are roughly equal to 0.5.
Further, the TURS model shows its robustness in achieving the best ROC-AUC
and PR-AUC, and notably with significantly simpler rules (except when compared
to RIPPER, which seriously “underfits” the data).

Moreover, rules in the TURS model generalize best to the unseen instances
in the test set (excluding RIPPER for its low ROC-AUC scores). Specifically,
we calculate the difference between the class probability estimates obtained using
the training and test dataset, as also reported in the table. We hence conclude
that the probability estimate for each single rule of the TURS model shown to
physicians are most reliable and trustworthy.

Algorithm CN2 CART RIPPER C4.5 TURS
ROC-AUC 0.641 0.690 0.514 0.539 0.705
PR-AUC 0.114 0.137 0.084 0.076 0.164

Train/test prob. diff. 0.041 0.031 0.001 0.054 0.006
# rules 851 25 1 249 5

Avg. rule length 2.5 4.2 5.0 16.8 2.0

Table 4.2: Rule-based model results on ICU dataset.

4.3.4 Human-AI collaboration

We now showcase that our TURS model can be equipped with the model
updating scheme to generate human-guided rule sets. Notably, our approach is
very different than existing model editing approaches (Wang et al. 2022), as the
end user is not allowed to directly edit the model in our model updating scheme;
instead, we only allow user to provide feedback, and the updated model is still
learned in a data-driven manner. That is, we let the data always take the leading
role, in order to avoid arbitrary (or adversarial) model editing.

Specifically, we consider the rule set obtained in Section 4.3.2, and we col-
lected two pieces of feedback from the domain expert: 1) the domain expert
dislikes the 5th rule due to the first variable, and 2) the domain expert dislikes
the 3rd rule which contains only one literal.

We thus discard the 5th rule from the rule set, and we next search for a new
rule to be added to the rule set, with the constraint that the first variable in the 5th
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rule must not be included. We present the new human-guided rule together with
the original rule in Table 4.3. We show that our TURS model indeed makes such
an interactive process possible, and specifically that it can handle feedback that
can be transformed into constraints with respect to excluding certain variables.
Further, we demonstrate that for the rule set induced from the ICU patients’
dataset, editing a rule based on the human feedback (without the necessity to
modify other ‘overlapping’ rules), can indeed discard certain variables but at the
same time keep the predictive performance at the same level.

Note that the updated rule and the original rule are coincidentally very sim-
ilar; that is, the feedback to the TURS model is only about discarding the first
literal of the 5th rule, without asking it to keep the other literals and/or variables
in the original rule.

Human-guided No Yes
Rule If Trombocyten-count-

first ≥ 2.0; Ureum-last-
last < 9.2; specialty-
Organization-value-sub-
ICCTC = TRUE →
Probability of Readmis-
sion: 0.019, Number of
patients 3922

If Leukocyten-count-first
≥ 2.0; Ureum-last-
last < 9.2; specialty-
Organization-value-sub-
ICCTC = TRUE →
Probability of Readmis-
sion: 0.019, Number of
patients 3958

ROC-AUC (rule set) 0.705 0.706
PR-AUC (rule set) 0.164 0.164

Table 4.3: Comparison between the rule before and after a domain expert feedback,
together with the ROC-AUC and PR-AUC of the resulting new rule set. Changes in rules
conditions before and after human feedback are shown in red and blue respectively.

Next, for examining the effect of the second feedback, we remove the 3rd
rule from the original purely data-driven rule set, and search for another rule by
excluding the variable “Leukocyten-mean-last” from the search space. We present
the results in Table 4.4, which shows that the new rule covers 375 more patients
than the original rule. Again, without the need for further modifying other rules,
editing the 3rd rule in the original rule set with the updated rule keeps the ROC-
AUC and PR-AUC at the same level.

98



Chapter 4 Case Study: Towards Interactive Rule Learning for ICU
Readmission Analysis

Human-guided No Yes
Rule Leukocyten-mean-last

≥ 20.8 → Probability
of Readmission: 0.162,
Number of patients 464

CRP-mean-last-missing
= 1 → Probability of
Readmission: 0.030,
Number of patients 839

ROC-AUC (rule set) 0.705 0.704
PR-AUC (rule set) 0.164 0.172

Table 4.4: Another comparison between the rule before and after a domain expert feed-
back.

4.4 Conclusion and Discussion

We studied the problem of estimating readmission risk for patients in ICU as
an applied machine learning task. In order to resolve the difficult situation when
domain experts (physicians) dislike certain rules, which can result in the lack
of trust for such data-driven models, we aimed for developing a human-guided
rule learning scheme based on our method for learning truly unordered rule set
(TURS) models.

We presented a pilot empirical study using the patients data collected at
Leiden University Medical Center (LUMC) in the year 2020. Specifically, we
firstly presented the learned rule set from the ICU dataset, and compared the
predictive performance against other widely used rule-based competitor models,
which demonstrated the superiority of the TURS model in terms of both predictive
performance and model complexity. This result set the foundation for using the
TURS model as a basis for interactive rule learning.

Next, we asked a domain expert from LUMC to give feedback to the purely
data-driven rules, and we proposed a simple model updating scheme to incorporate
the feedback to induce human-guided rules. We showcased that such a process
can lead to new rules as replacements for rules that the domain expert disliked,
without sacrificing the predictive performance of the whole model. Notably, the
properties of the TURS model enables straightforward, transparent, and efficient
model editing, without the need for re-training other rules in the model. We next
discuss potential future research directions.
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4.4.1 Discussion for future work

We have shown that the truly unordered rule set (TURS) model is “ready”
for interactive rule learning, i.e., in a straightforward way it can be equipped with
a model updating scheme that incorporates human feedback in certain formats.
Following this research line, it may be with great potential to explore the following
research questions.

User feedback formats. One natural but crucial question is in what formats
we allow domain experts to give feedback to the data-driven model, and further
how to inspire and elicit feedback with tools that allow an end user to investigate
the data and the rule-based models.

For instance, it may be beneficial to allow domain experts to “zoom in”
for each single rule, and examine values of other features for each corresponding
subset of patients. While all instances in each rule share the same class probability
estimate, domain experts may find one single “typical” patient who should have
a different probability estimate than the rest. This may induce feedback in the
form of “modifying a given rule by excluding a certain instance from its cover”.

Further, we could allow domain experts to name risky factors within each rule;
i.e., to allow the domain experts to suggest informative feature to be included in
a single rule. Thus, we may allow feedback in the form of “for all patients covered
by this rule, those patients whose feature value for variable Xi is larger than a
certain threshold may have a higher risk of readmission”. Such feedback is useful
for 1) obtaining single rules with variables that are congruent with the domain
knowledge, and 2) more interestingly, understanding the limits of the data (since
the “best” rule with the suggested variables may result in a “worse” score according
to the model selection criterion).

Transparent model updating. Introducing the human in the loop extends the
meaning of transparency of a machine learning method. Previously, transparency
roughly referred to whether the process of obtaining a model based on a given
dataset is comprehensible to humans; in contrast, we argue that transparency
is also applicable to describing whether the process of model updating based on
human feedback is comprehensible to humans. Thus, it is a natural question to
ask whether the trust between domain experts and data-driven models depends
not only on the interpretability and transparency of the model but also on that
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of the model updating scheme.
Further, while it is very transparent to incorporate human feedback as con-

straints like those we proposed, other ways of processing human feedback are to be
explored. For instance, except for considering human feedback in certain formats
as constraints, we may also translate human feedback to “prior” preferences.

User study for trust. Trust between domain experts like ICU physicians and
data-driven models is a fundamental requirement for deploying a decision-support
system in critical areas like health care, because, for instance, if physicians do not
trust the data-driven model, they tend to simply ignore the data-driven predic-
tions.

While the goal of involving humans in the loop to obtain human-guided rules
to increase the trust by obtaining rules that are (more) congruent with the domain
knowledge, whether trust is indeed increased can only be evaluated empirically
via user studies. Thus, an interesting research question is how to formally define
trust in the task of predicting readmission risk, inevitably with subjectiveness. As
a result, it remains a challenge to design questionnaires for evaluating the trust
between domain experts and data-driven models.
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Chapter 5

Summarizing
Two-dimensional Data with
MDL-based Discretization
by Histograms

This chapter has been published as Yang, L, Baratchi, M, and van Leeuwen, M Unsupervised discretiza-

tion by two-dimensional mdl-based histogram. Machine Learning, 2023: 1-35.
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Chapter Abstract
Unsupervised discretization is a crucial step in many knowledge discovery

tasks. The state-of-the-art method for one-dimensional data infers locally adap-
tive histograms using the minimum description length (MDL) principle, but the
multi-dimensional case is far less studied: current methods consider the dimen-
sions one at a time (if not independently), which result in discretizations based
on rectangular cells of adaptive size. Unfortunately, this approach is unable to
adequately characterize dependencies among dimensions and/or results in dis-
cretizations consisting of more cells (or bins) than is desirable.

To address this problem, we propose an expressive model class that allows
for far more flexible partitions of two-dimensional data. We extend the state of
the art for the one-dimensional case to obtain a model selection problem based
on the normalized maximum likelihood, a form of refined MDL. As the flexibil-
ity of our model class comes at the cost of a vast search space, we introduce a
heuristic algorithm, named PALM, which partitions each dimension alternately
and then merges neighboring regions, all using the MDL principle. Experiments
on synthetic data show that PALM 1) accurately reveals ground truth partitions
that are within the model class (i.e., the search space), given a large enough
sample size; 2) approximates well a wide range of partitions outside the model
class; 3) converges, in contrast to the state-of-the-art multivariate discretization
method IPD. Finally, we apply our algorithm to three spatial datasets, and we
demonstrate that, compared to kernel density estimation (KDE), our algorithm
not only reveals more detailed density changes, but also fits unseen data better,
as measured by the log-likelihood.
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5.1 Introduction

Discretization, i.e., the transformation of continuous variables into discrete
ones, is part of numerous data analysis workflows, making it a crucial step for
a wide variety of applications in knowledge discovery and predictive modeling.
However, many different discretization methods exist and it is often not easy to
determine which method should be used. As a result, naïve methods such as equal-
length and equal-frequency binning are still widely used, often with the number of
bins chosen more or less arbitrarily, which can lead to suboptimal discretization.

A good discretization strikes a balance between the amount of preserved
information and the complexity of the representation of the discretized data, so
as to avoid discretizations that are either too coarse—resulting in severe loss of
information—or too fine-grained—resulting in a bin per data point in the extreme
case.

Achieving an optimal balance has been thoroughly studied for supervised
discretization, i.e., discretization using additional information from a target vari-
able. Optimal discretizations have been formalized using 1) statistical quantities,
e.g., Pearson’s chi-square (Boullé 2004), 2) information-theoretic scores based on
entropy or the minimum description length (MDL) principle (Fayyad and Irani
1993; Jin et al. 2009), and 3) Bayesian approaches (Boullé 2006).

In contrast, unsupervised discretization, which does not assume a target vari-
able, has long been understudied (Kotsiantis and Kanellopoulos 2006). It serves a
different purpose: supervised discretization aims to reduce the loss of information
about the distribution of the target variable conditioned on the features (Boullé
2004; Fayyad and Irani 1993; Kerber 1992), whereas unsupervised discretization
aims to preserve information about the probability distribution of the variable to
be discretized (Biba et al. 2007; Schmidberger and Frank 2005).

This makes histograms well-suited to unsupervised discretization, and partic-
ularly adaptive histograms. An adaptive histogram is a probabilistic model that
approximates probability density by piecewise constant densities, partitioning the
data into bins such that 1) the probability density within each bin is approximately
uniform (otherwise finer bins are needed), and 2) probability densities of neigh-
boring bins are significantly different (otherwise they should be merged). Kon-
tkanen and Myllymäki (2007b) formalized this goal for one-dimensional adaptive
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histograms based on the minimum description length (MDL) principle (Rissanen
1978), which is now considered to be the state-of-the-art univariate discretization
method (Kameya 2011; Marx et al. 2021; Nguyen et al. 2014).

The MDL principle (Grünwald and Roos 2019; Rissanen 1978) is arguably
one of the best off-the-shelf approaches for model selection tasks such as selecting
a histogram model for given data, as it provides a means to naturally trade-
off goodness-of-fit with model complexity. It achieves this by defining the “best”
probabilistic model for given data as the model that results in the best compression
of data and model together, which has been widely used in data mining and
machine learning tasks (Galbrun 2020).

Flexible multi-dimensional discretization. Traditional discretization methods are
defined for one-dimensional (or univariate) data, and multi-dimensional (or multi-
variate) data is typically discretized by separately and independently discretizing
each dimension, which ignores any dependencies between the dimensions. Mul-
tivariate discretization methods aim to take such dependencies into account, but
they suffer from two problems. First, most methods focus on supervised dis-
cretization (Bay 2001; Ferrandiz and Boullé 2005; Kurgan and Cios 2004; Kwedlo
and Kretowski 1999). Second, existing methods produce an adaptive grid based
on the Cartesian product of the discretization results of individual dimensions.
This approach ignores that the density of one dimension may change more dras-
tically for certain values of another dimension; hence, appropriate binning of one
dimension may depend on the values of the other dimensions.

For instance, consider a two-dimensional synthetic dataset sampled from a
mixture of Gaussians as shown in Figure 5.1 (leftmost)1. To adequately discretize
data from this distribution, the binning of the x-axis should be different depend-
ing on whether y is above or below the black dashed line, in order to capture the
different density changes for the Gaussian distribution (above) and the Gaussian
mixture (below). Similarly, the binning of the y-axis should be different depend-
ing on whether x is left or right to the red dashed line. This motivates us to
consider partitions that are more flexible than adaptive grids: we consider all
partitions that can be obtained by clustering the “cells” of a fine-grained fixed-
grid. The remaining three plots in Figure 5.1 show the density plots obtained by

1For reproducibility, the data is generated by the mixture of N [
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] with all mixing coefficients 0.25; sample size is 40 000.

106



Chapter 5 Summarizing Two-dimensional Data with MDL-based
Discretization by Histograms

1) IPD (Nguyen et al. 2014), the state-of-the-art multivariate unsupervised dis-
cretization method, 2) the one-dimensional MDL-based histogram method (Kon-
tkanen et al. 1997) applied independently on each dimension, and 3) our method.
Our method produces the density estimation that most resembles the shape of the
original contour, as we allow the bins of one dimension to depend on the value of
another dimension.

Figure 5.1: Distributions of a two-dimensional dataset simulated from a mixture of
Gaussian distributions; from top-left to bottom-right: 1) true probability density contour,
2) partitioning by IPD (Nguyen et al. 2014), 3) partitioning by separately discretizing each
dimension with the MDL histogram (Kontkanen and Myllymäki 2007b), 4) flexible parti-
tioning by PALM, our algorithm.

Approach and contributions. We consider the problem of learning two-dimensional
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histogram models that enable far more flexible partitions than regular adaptive
grids. That is, we allow any partition that can be obtained by iteratively merging
adjacent cells of a fixed grid, which allows for learning models that provide accu-
rate density estimates while not having more bins than strictly necessary (thereby
avoiding overfitting and providing clear region boundaries, i.e., adjacent bins must
have different density estimates).

We formalize the two-dimensional histogram construction problem as a model
selection task using the MDL principle. For this we build on the one-dimensional
MDL-based histogram selection problem as introduced in the seminal work by
Kontkanen and Myllymäki (2007b), because it is both theoretically elegant and
practically fast. Specifically, it adopts the normalized maximum likelihood (NML)
encoding scheme, a form of refined MDL (Grünwald 2007; Grünwald and Roos
2019) that provides minimax regret, and employs a fast dynamic programming
algorithm to find the optimal solution.

The existing approach for one-dimensional histograms cannot be trivially
extended to multiple dimensions though, hence we make a number of technical
contributions.

First, we solve the challenge of computing the so-called parametric complexity
(Grünwald and Roos 2019) for the multi-dimensional case.

Second, we observe that efficiently finding the MDL-optimal two-dimensional
histogram is infeasible and propose PALM, a heuristic algorithm for learning two-
dimensional histograms. PALM combines top-down (partition) and bottom-up
(merge) search strategies by 1) first partitioning the data by iteratively splitting
regions, and 2) then iteratively merging neighboring regions if their densities are
similar. In each step, the MDL principle is used as decision criterion; as a result,
our algorithm requires neither hyper-parameters2 nor any pre-defined stopping
criterion to be specified. It automatically adapts to both local density structure,
as shown in the example in Figure 5.1 and, later, in Sections 5.7 and 5.8.

Third, we make several improvements to the dynamic programming algorithm
used for the one-dimensional MDL histogram, which we use as a building block
for our algorithm. Specifically, as described in Section 5.5, we 1) correct a minor
theoretic flaw related to computing the code length that is needed to encode the
histogram model, and 2) reduce the time complexity by simplifying the dynamic

2The precision with which the data is recorded can be used to set the granularity of the initial base grid.
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programming recursion.
We perform extensive experiments to show that our algorithm 1) accurately

recovers ground truth histograms, 2) approximates well ground truth partitions
that are not within the model class, and 3) outperforms IPD (Nguyen et al. 2014),
the state-of-the-art algorithm for unsupervised multi-dimensional discretization.
Further, case studies on spatial data show that, compared to kernel density esti-
mation (KDE), our algorithm not only reveals more detailed density changes, but
also fits unseen data better, as measured by the log-likelihood.

We restrict the scope of this chapter to two-dimensional data for three rea-
sons. First, two-dimensional discretization methods have many potential applica-
tions in the domain of spatial data analysis, e.g., using GPS data, where ad-hoc
discretization methods are still widely used (Cao et al., 2014). The case studies
demonstrate that our method can successfully reveal interesting patterns from
GPS data. Second, as our approach uses more flexible partitions than adaptive
grids, the search space is very large even for two-dimensional data. Our algo-
rithm for the two-dimensional case should be regarded as a step towards solving
the algorithmic challenge for higher dimensions, but does not solve it completely.
Third, focusing on the two-dimensional case allows us to more easily examine the
results empirically, e.g., to verify desired properties such as adaptivity to sample
size and local density structure.

5.2 Related work

We briefly review previous work concerning discretization methods, histogram
models, and tree-based models for density estimation.

Unsupervised univariate discretization. Most unsupervised univariate dis-
cretization methods are rather straightforward and concern equal-width or equal-
frequency binning, which in practice usually involve ad-hoc choices for the number
of bins or for the frequency in each bin.

Clustering techniques such as k-means (Friedman et al. 2001) or Bayesian
clustering (Kontkanen et al. 1997) are also used in discretization; however, they ig-
nore the possible heterogeneity within the cluster and choices of hyper-parameters
are usually required.

More advanced criteria rely on density estimation and specifically construct-
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ing adaptive histograms. Apart from the MDL-based histogram (Kontkanen and
Myllymäki 2007b) already mentioned in Section 5.1, Schmidberger and Frank
(2005) proposed to construct adaptive histograms by recursive binary partition
with cross-validation. A local heuristic is used to decide the cut point, and cross-
validation is used to choose the number of intervals; in contrast, the MDL-based
histogram (Kontkanen and Myllymäki 2007b) uses a global score with a dynamic
algorithm that optimizes the cut points and the number of bins simultaneously.
Moreover, an adaptive histogram can also be selected as the one whose density
estimation result is closest to the result of kernel density estimation (Biba et al.
2007), where cross-validation is used to prevent overfitting. As the true density
is apparently not known, cross-validation is performed by Monte Carlo sampling-
based methods. However, cross-validation is known to be computationally ex-
pensive, and the influence of choosing different kernels on discretization is not
reported.

Bayesian approaches have been widely used in adaptive histograms (Gasparini
1996; Liu and Wong 2014; Lu et al. 2013; Scricciolo 2007; Van Der Pas and
Rocková 2017). These methods treat all possible histograms as the model class and
put a prior distribution on it, and the resulting posterior distribution is directly
used for density estimation (by calculating the marginal distribution). Therefore,
although these Bayesian approaches often provide theoretic guarantees as density
estimation methods, they do not provide an individual adaptive histogram that
can be used for discretization.

Unsupervised multivariate discretization. Since discretizing each dimension
of multivariate data independently will ignore the dependencies among different
dimensions, some methods attempt to reduce the dependencies by PCA- or ICA-
based methods (Kang et al. 2006; Mehta et al. 2005)3. However, as both methods
are based on linear transformation of the random vector, they may fail to eliminate
nonlinear dependencies. Note that extending these methods to nonlinear PCA or
nonlinear ICA may not be suitable for unsupervised discretization tasks, as the
uniform distribution is not invariant under nonlinear transformation, and hence we
cannot obtain an adaptive histogram of the original data by inversely transforming
the adaptive histogram constructed on the nonlinearly transformed data.

3Note that the ICA-based method (Kang et al. 2006) is designed for supervised discretization, but we
noticed that the ICA transformation there is not restricted to supervised discretization only.
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Lud and Widmer (2000) proposed the so-called “relative unsupervised dis-
cretization”. The core of this method is to perform clustering on an individual
dimension, using different subsets of values. These different subsets are obtained
by filtering the dataset using other dimensions, in order to keep the dependency
among different dimensions. However, this method does not control the infor-
mation loss about the probability distribution of the dimension that is to be
discretized.

Further, methods trying to optimize the discretization of all dimensions si-
multaneously exist. One approach is to start from a very fine grid, and merge
neighboring subintervals for each dimension if the multivariate probabilities of
the data within these two consecutive subintervals are similar (Bay 2001; Nguyen
et al. 2014). These methods are based on certain choices of similarity metrics, and
require explicit specification of the similarity threshold. We empirically show in
Section 5.7 that IPD, the method by Nguyen et al. (2014) that is also based on the
MDL principle and is considered the state-of-the-art multivariate discretization
method, does not converge in practice.

Finally, Kameya extended the one-dimensional MDL-histogram (Kameya
2011) specifically for time series data, who proposed to discretize time series data
by iteratively adjusting the cut points on each dimension until convergence, using
the coordinate descent optimization approach.

All these multivariate discretization methods try to optimize the adaptive grid
and produce (hyper)rectangular regions. Our method, in contrast, is proposed to
produce far more flexible segmentation, which allows the binning of one dimension
to be dependent on the values of other dimensions.

Density estimation tree. Algorithmically, our method is very similar to meth-
ods using tree models for density estimation (Liu and Wong 2014; Ram and Gray
2011; Yang and Wong 2014), as partitioning the data space by iteratively par-
titioning each dimension is identical to growing a tree. However, these density
estimation trees were developed by adapting the scores used in growing, stopping,
and pruning (supervised) decision and regression trees. That is, while our algo-
rithm employs a consistent MDL-based framework for selecting the best model,
these density estimation trees use separate optimization scores respectively to fit
the model and to control the model complexity, often with user-specified hyper-
parameters and/or computationally expensive cross-validation.
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Moreover, these density estimation trees, as is like most supervised tree
models, only do binary partitioning in a greedy manner. On the contrary, our
method can split a dimension into multiple bins (from 1 to a pre-determinedKmax)
instead of just two, which is not only more flexible, but also more interpretable,
as after partitioning on a certain dimension, within each bin the data points on
that dimension can be regarded as approximately uniform.

Finally, our method has an additional merging step, which creates much
more flexible partitions of data, resulting in models that are more informative for
pattern mining and exploratory data analysis.

Supervised discretization. When discretization is needed for a supervised
task such as classification, we can use supervised discretization, which means that
the target variable is used to assess how much information on the target the
discretization maintains. Several criteria can be put in this category, which are
mostly based on statistical hypothesis testing or entropy, as summarized in the
survey paper by Kotsiantis and Kanellopoulos (2006). The MDL principle has
also been used for supervised discretization (Fayyad and Irani 1993; Ferrandiz
and Boullé 2005; Gupta et al. 2010; Pfahringer 1995; Zhang et al. 2007), but
all of them use the so-called crude MDL principle (Grünwald 2007), which is
theoretically suboptimal.

5.3 Problem Statement

Informally, we consider the problem of inferring the best two-dimensional
histogram for a given sample of continuous data. To make this problem precise,
we start off by introducing our notation and definitions. Note that all log(·) should
be read as log2(·) unless specified otherwise.

5.3.1 Notation and definitions of data, model, and model class

Consider as data a vector of length n, i.e., xn = (x1, ..., xn), sampled inde-
pendently from a random variable X.

The sample space of X, denoted as S, is a bounded subset of R2. Although
the sample space of a random variable, e.g., a Gaussian, can be infinite in theory,
we always assume it to be a bounded “box” when dealing with a given dataset.
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The task of estimating S from the data directly is another research topic, usually
referred to as “support estimation” in statistical literature (Cuevas, Fraiman, et
al. 1997), and hence is out of the scope of our main focus in this article.

Conceptually, a histogram—no matter whether it is one- or multi-dimensional—
is a partition of the sample space S, denoted by S̃ and parametrized by a vector
f⃗ = (f1, . . . , fK). A partition S̃ is defined as a set of disjoint subsets of S,
and the union of all these subsets is S itself, i.e., S̃ = {S1, S2, . . . , SK}, where
∀j ∈ {1, . . . ,K}, Sj ⊆ S,

⋃K
j=k Sj = S, and ∀j, k ∈ {1, . . . ,K}, Sj ∩ Sk = ∅. We

also call these subsets, i.e., elements of S̃, as regions.
Next, we assume that the probability density of X, denoted by f(X), is given

by
f(X) =

∑
j∈{1,...,K}

1Sj
(X)fj , (5.1)

where 1{·}(·) is the indicator function. Each fj is a constant and f⃗ satisfies∑K
i=1 fj |Sj | = 1, where |Sj | denotes the geometric area of Sj , i.e., when X ∈ Sj ,

f(X) = fj . We refer to any partition S̃ as a histogram model that contains a
family of probability distributions; i.e., ∀f⃗ ∈ RK , we denote a single probability
distribution by S̃f⃗ .

We denote the model class as M, representing all possible partitions with K

regions that can be obtained by clustering cells of a fixed grid covering S, where
K ∈ {1, . . . ,Kmax}. The granularity of the grid, denoted as ϵ, and Kmax are fixed
in advance, but note that they can be set arbitrarily small and large, respectively.

Geometrically, this is equivalent to drawing inner boundaries within S along
the fixed grid. In practice, ϵ can represent the precision up to which the data
is recorded or that is useful for the given task. Although the model class we
consider only has inner boundaries consisting of line segments, we will show that
such a model class is flexible enough to approximate curved inner boundaries in
Section 5.7.

5.3.2 Histogram model selection by the MDL principle

We now formally define the task of two-dimensional data discretization as an
MDL-based model selection task, using histogram models as the model class.

The MDL principle is arguably one of the best off-the-shelf model selec-
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tion methods and has been successfully applied to many machine learning tasks
(Grünwald 2007; Hansen and Yu 2001). It has solid theoretical foundations in in-
formation theory and naturally prevents overfitting as the optimization criterion
always includes the model complexity, defined as the code length (in bits) needed
to encode that model (Grünwald 2007).

The basic idea is to losslessly encode the model and data together, by firstly
encoding the model and then compressing the data using that model. The model
resulting in the shortest total code length is defined to be MDL-optimal, i.e.,

S̃∗ = argmin
S̃∈M

L(xn, S̃) = argmin
S̃∈M

(L(S̃) + L(xn|S̃)), (5.2)

where L(S̃) and L(xn|S̃) are respectively the code length of the model and the
code length of the data compressed by that model. Note that L(·|·) denotes the
conditional code length (Grünwald 2007); informally, L(A|B) represents the code
length of the message a decoder needs to receive in order to be able to losslessly
reconstruct message A after having already received message B.

We will show in Section 5.4 that properly encoding the model and calculating
its corresponding code length L(S̃) turns out to be very difficult. As a result, we
unfortunately cannot regard our model selection task simply as an optimization
problem.

To alleviate this, we divide the model selection task into two steps, namely
1) partitioning alternately and 2) merging.

Figure 5.2: An illustration of the partitioning and merging steps. From left to right:
alternatively partitioning each region until compression cannot be further improved, and
finally merging some of the neighboring regions to further improve compression.

First, we alternately split each region within partition S̃ (initially S̃ = {S})
in one of the two dimensions, then update S̃ accordingly, and repeat the process.
In other words, in each iteration we further split each region within S̃ in one
dimension (i.e., horizontally or vertically), which is equivalent to selecting the
best set of horizontal or vertical cut lines.

Denote the subset of data points within a certain region S′ ∈ S̃ as {xn ∈ S′}.
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We formally define the task of selecting the set of MDL-optimal cut lines set as

C∗
S′ = arg min

CS′∈CS′
L({xn ∈ S′}, CS′)

= arg min
CS′∈CS′

(L(CS′) + L({xn ∈ S′}|CS′)),
(5.3)

where CS′ are all possible sets of cut lines, containing K = {0, 1, . . . ,Kmax} cut
lines, for the certain region S′ ∈ S̃ in one certain dimension (i.e., horizontal or
vertical), and Kmax is predetermined a priori to be “large enough” given the task
at hand.

In Section 5.5, we will show that searching for the MDL-optimal cut lines
for (a subset of) two-dimensional data is the same as searching for the MDL-
optimal cut points for the one-dimensional data that is the projection of the
two-dimensional data onto the x- or y-axis.

The partitioning step will automatically stop once for each region the MDL-
optimal set of cut lines is the null set, i.e., no further partitioning is needed.

Second, we search for all possible clusterings of neighboring regions gained in
the previous partitioning step, in a greedy manner. In other words, we consider all
possible clustering of regions of the partition gained by the previous partitioning
step, which is actually a subset of the full model class M as defined in Section
5.3.1. We denoted this constrained model class by Mc, and we formally define the
merging step as selecting the MDL-optimal model within Mc, i.e.,

S̃∗
merge = arg min

S̃∈Mc

L(xn, S̃) = arg min
S̃∈Mc

(L(S̃) + L(xn|S̃)). (5.4)

Figure 5.2 shows an illustrative example of the partitioning and merging process.

5.4 Calculating the code length

We now discuss the details of the code length (in bits) needed to encode the
data and the model.

We first show the calculation of code length of data given a histogram model,
encoded by the normalized maximum likelihood (NML) code (Grünwald 2007;
Grünwald and Roos 2019). Specifically, we show that the parametric complex-
ity term in the code length is independent of data dimensionality, which is an
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important observation that makes it feasible to compute the NML code length.
Next, we discuss in detail the difficulties of encoding all possible models

S̃ ∈ M if we would want to directly optimize over the full model class M using
Equation (5.2), which motivates our (more pragmatic) solution of dividing the
model selection task into two separate steps.

Finally, we discuss the calculation of the code length of a model in the par-
titioning and merging step respectively, i.e., L(CS′) and L(S̃) of Equations (5.3)
and (5.4).

5.4.1 Code length of the data

Extending the work that was previously done for the one-dimensional case
(Kontkanen and Myllymäki 2007b), we use the same code—i.e., the Normalized
Maximum Likelihood (NML) code—to encode the two-dimensional data. This
code has the desirable property that it is theoretically optimal because it has
minimax regret. The code length of the NML code consists of two terms, namely
the maximum likelihood and the parametric complexity (also referred to as regret),
and is given by

L(xn|S̃) = − log

P (xn|S̃ ˆ⃗
f(xn)

)

COMP(n, S̃)

 , (5.5)

where P (xn|S̃ ˆ⃗
f(xn)

) is the probability of the data given S̃ ˆ⃗
f(xn)

, i.e., the parameters
f⃗ = (f1, ..., fK) are estimated by the maximum likelihood estimator given dataset
xn, denoted as ˆ⃗

f(xn) = (f̂1, . . . , f̂K). The term COMP(n, S̃) is the so-called
parametric complexity, which is defined as

COMP(n, S̃) =
∑

yn∈Sn

P (yn|S̃ ˆ⃗
f(yn)

), (5.6)

where
∑

yn∈Sn is the sum over all possible sequences yn within the Cartesian
product of sample space S that can be generated by the histogram model S̃, i.e.,
the order of individual values within vector yn does matter.

We will now first describe the calculation of P (xn|S̃ ˆ⃗
f(xn)

), and then the cal-
culation of COMP(n, S̃).

For any single data point xi ∈ xn, let xi = (xi1, xi2) denote the pair of values
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for its two dimensions. We then have

P (xn|S̃ ˆ⃗
f(xn)

) =
n∏

i=1

P (xi|S̃ ˆ⃗
f(xn)

) =
K∏
j=1

 ∏
xi∈Sj

P (xi|S̃ ˆ⃗
f(xn)

)

 , (5.7)

as the data points are assumed to be independent. Note that K represents the
number of regions of S̃.

Since we assume our data to have precision ϵ, we can define the probability
of the data, also referred to as its maximum likelihood, as

P (xi|S̃ ˆ⃗
f(xn)

) = P (X ∈ [xi1−
ϵ

2
, xi1+

ϵ

2
]× [xi2−

ϵ

2
, xi2+

ϵ

2
] | S̃ ˆ⃗

f(xn)
) = f̂jϵ

2. (5.8)

The maximum likelihood estimator for the histogram model (Scott 2015) is

f̂j =
hj

n |Sj |
, ∀j, (5.9)

where hj is the number of data points within Sj , and |Sj | is the area of Sj . Thus,
following Equations (5.7),(5.8), and (5.9),

P (xn|S̃ ˆ⃗
f(xn)

) =

K∏
j=1

(f̂j ϵ
2)hj =

K∏
j=1

(
hj ϵ

2

n |Sj |
)hj . (5.10)

Next, we describe the calculation of COMP(n, S̃). Although it may be sur-
prising at first glance, we show that

Proposition 3. The parametric complexity COMP(n, S̃) of a histogram model is a
function of sample size n and the number of bins K. Given n and K, COMP(n, S̃)
is independent of the dimensionality of the data.

We leave the formal proof to Appendix A, but the proposition is based on
the following important observations. First, as Kontkanen and Myllymäki (2007b)
proved, COMP(n, S̃) is a function of sample size n and the number of bins K for
one-dimensional histograms. The remaining question is whether this holds for
two (and higher) dimensional histograms as well. Observe that the maximum
likelihood given a two-dimensional histogram model for any data is a function
of hj and |Sj |/ϵ2, respectively representing the number of data points in each
region, and the total number of possible positions of data points in each region,

117



Calculating the code length

which are both some form of “counts” and hence are “dimensionality free”. Finally,
COMP(n, S̃), as defined in Equation (5.6), is just the sum of maximum likelihoods.
Based on these observation, it is trivial to prove that COMP(n, S̃) has the same
form for one- and multi-dimensional histograms.

Therefore, for both one- and multi-dimensional histogram models, we can
denote COMP(n, S̃) as COMP(n,K), and as shown by Kontkanen and Myllymäki
(2007b),

COMP(n,K) =
∑

h1+...+hK=n

n!

h1!...hK !

K∏
j=1

(
hj

n
)hj , (5.11)

which turns out to be the same as the parametric complexity for the multinomial
model (Kontkanen and Myllymäki 2007a). We can calculate COMP(n,K) in
linear time (Kontkanen and Myllymäki 2007a) by means of the following recursive
formula:

COMP(n,K) = COMP(n,K − 1) +
n

K − 2
COMP(n,K − 2). (5.12)

5.4.2 Code length of the model

We first discuss in detail why properly encoding all models in the model class
is difficult, and then describe the code length of model in the partitioning step
and the merging step respectively.

Encoding all models in the model class is difficult

According to Kraft’s inequality, encoding all models in the model class is
equivalent to assigning a prior probability distribution to all models (Grünwald
2007). This prior distribution should reflect the model complexities (Grünwald
2004), especially when there exists some hierarchical structure in the model class.
For models with similar model complexity, the prior distribution should be non-
informative. Particularly, a common practice is to divide the model class into
sub-classes according to the hierarchical structure, and then assign the prior dis-
tribution to each model by first assigning some prior to all the sub-classes and
then assigning a uniform prior to all models within each sub-class.

The model class of all histogram models (i.e., all partitions of S) has an ap-
parent hierarchical structure with respect to model complexity. That is, the model
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class could be divided into sub-classes based on a combination of two factors: 1)
the number of regions, and 2) the number of line segments composing the inner
boundaries. Nevertheless, it is extremely challenging to assign a proper (or even
an intuitively “natural”) prior distribution based on this complexity hierarchical
structure, because of the following two reasons.

First, it is difficult to specify a joint prior distribution on the number of
regions and the number of line segments, as they are dependent on each other,
though specifying marginal prior distributions for each of the factors may be
feasible.

Second, given the number of regions, denoted by K, and the number of
line segments composing the inner boundaries, denoted by T , it is challenging
to count the number of models with K regions and T line segments. Hence,
the prior probability of each model (with the uniform prior) within this sub-
class is also difficult to obtain. On one hand, there is no analytical formula
to obtain such count (to the best of our knowledge). On the other hand, to
count this number algorithmically, we would first need to decide how many line
segments each region has, i.e., to assign positive integers to {T1, . . . , TK} such
that T1 + . . . + TK = T . The number of possible values of {T1, . . . , TK} grows
exponentially as K increases. Further, we would need to decide where to put these
line segments to form K regions. The number of possible positions is enormous
if ϵ is reasonably small. Finally, we would need to go over all individual cases to
check for repeated counting for T , since regions can share line segments, which
makes the counting computationally infeasible.

Code length of the model in the partitioning and merging steps

As properly encoding all possible models within M turns out to be too diffi-
cult, we now discuss how to calculate the code length of the model separately for
the partitioning and merging step.

Partitioning. For a region S′ ∈ S̃, assume that there are E candidate positions
for cut lines, either horizontally or vertically. To encode the set of cut lines, we first
encode the number of regions K ∈ {1, . . . ,Kmax}, where Kmax is predetermined.
We assign a uniform prior to K, and thus the code length needed to encode K

becomes a constant, which has no effect on the result of the partitioning step.
Given K, we then encode the positions of (K − 1) cut lines, with again a uniform
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prior to all possible sets of (K − 1) cut lines. The code length needed in bits is

L(CS′) = log
(

E

K − 1

)
(5.13)

Merging. Next we discuss the code length of encoding all models in the con-
strained model class Mc, which contains all possible models that can be obtained
by merging neighboring regions of the partition after the partitioning step.

We argue that we should have a non-informative prior on Mc. First, as
discussed before, it is challenging to specify a joint prior to both the number
of line segments and the number of regions. Second, if neighboring regions are
merged, the partition of the sample space tends to have fewer regions but more
geometric complexity. Hence, there exists no obvious ways to compare model
complexities, even in an intuitive manner.

Thus, we treat the model complexities to be roughly equivalent and we assign
a uniform prior to all models in Mc. As a result, the code length of all models
within Mc is a constant and has no effect on the result of the merging step. In
other words, we only consider the code length of data in the merging step.

5.5 Revisiting MDL histograms for one-dimensional
data

In this section, we elaborate the link of our work to the MDL-based his-
tograms to one-dimensional data.

We first show that searching for the best cut lines on one certain dimension
of given two-dimensional data is equivalent to searching for the best cut points
for the corresponding one-dimensional data. We then review the algorithm for
inferring MDL histograms for one-dimensional data as proposed by Kontkanen
and Myllymäki (2007b), and describe how we improve it both theoretically and
practically.

Notation and relation to our problem. To be able to distinguish it from two-
dimensional data xn, we denote one-dimensional data as zn = (z1, ..., zn), with
precision equal to ϵ. Further, we define the sample space of zn as [min zn,max zn].

We define the one-dimensional histogram model with K bins as a set of
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cut points, denoted as CK = {C0 = min zn, C1, ..., CK = max zn} ⊆ Ca, with
K ∈ {0, 1, . . . ,Kmax}, where Kmax is pre-determined and Ca is defined as

Ca = {min zn,min zn + ϵ, ...,min zn + E · ϵ,max zn}, (5.14)

with E = ⌊max zn−min zn

ϵ
⌋. Note that we assume all subintervals to be closed on

the left and open on the right, except that the rightmost subinterval is closed on
both sides.

The code length needed to encode the model CK is

L(CK) = log
(

E

K − 1

)
, (5.15)

which is the same as Equation (5.13). Further, based on the calculation of maxi-
mum likelihood given any histogram model (Section 5.4.1) and Proposition 3, the
code length needed to encode zn given CK by the NML code is

L(zn|CK) = − logP (zn|CK) + logCOMP(n,K)

= − log
K∏
j=1

(
hj ϵ

n (Cj+1 − Cj)
)hj + logCOMP(n,K).

(5.16)

If we compare L(zn|CK) and L(CK) with Equations (5.10) and (5.13), we can
see that the definition of the two-dimensional MDL-optimal cut lines and the
one-dimensional MDL-optimal cut points only differ by a constant. Thus, given
a two-dimensional dataset xn = {(x11, x21), . . . , (x1n, x2n)}, the optimization task
of searching for the MDL-optimal vertical (or horizontal) cut lines is equivalent
to the task of searching for the MDL-optimal one-dimensional cut points based
on one-dimensional dataset zn = {x11, . . . , x1n} (or zn = {x21, . . . , x2n}). That is,
zn is the projection of xn on the x- or y-axis.

In other words, the algorithm for constructing MDL-based one-dimensional
histograms proposed by Kontkanen and Myllymäki (2007b) can be directly applied
to the partitioning step of our model selection task. We now briefly review this
algorithm and show how we improve it both theoretically and practically.

Improved one-dimensional MDL-based histograms. We improve the one-
dimensional algorithm proposed by Kontkanen and Myllymäki (2007b) in two
ways. First, in their previous work, the candidate cut points, denoted as C ′

a, are
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chosen based on the data zn, i.e., C ′
a =

⋃n
i=1{zi ± ϵ}, and hence the code length

of model is calculated dependent on given dataset, i.e., L(CK |zn) is calculated
instead of L(CK), which is theoretically sub-optimal, because generally

L(zn, CK) = L(zn|CK) + L(CK) ̸= L(zn|CK) + L(CK |zn). (5.17)

In practice, this will cause significantly worse results when the sample size is very
small. In such cases, the size of the set C ′

a will be very small, and hence the code
length of model will be significantly underestimated, leading to serious overfitting.
We fix this problem by encoding the model independent of the data, as defined
by Equations (5.14) and (5.15).

Further, we show that we do not need to consider all candidate cut points
within Ca, but just those cut points with a data point near it from left or right,
without other cut points in between. That is, we have the following.

Proposition 4. For any two cut points Ci, Ck ∈ Ca, suppose Ci < Ck and no
data points exist in the interval [Ci, Ck], then any cut point Cj ∈ [Ci, Ck] would
not be in the MDL-optimal set of cut points, i.e., we can skip all such Cj during
the search process.

This reduces the search space to a subset of Ca, and hence reduces the com-
putational requirements. We include the proof in Appendix B.

Finally, we simplify the recursion formula for the dynamic programming pro-
posed by Kontkanen and Myllymäki (2007b) in their original paper, which signif-
icantly reduces empirical computation time.
Dynamic programming algorithm. Kontkanen and Myllymäki (2007b) de-
rived the recursion formula based on the total code length L(zn, CK), i.e.,

L(zn, CK) = L(zn|CK) + L(CK)

= − log(P (zn|CK) + logCOMP(n,K) + log
(

E

K − 1

)
.

(5.18)

We show that we can simplify the recursion by only including the proba-
bility of the data, i.e., P (zn|CK), instead of L(zn, CK). Observe that when the
number of bins K is fixed, L(CK) and COMP(n,K) become constant. Then, for
fixed K, minimizing L(zn, CK) is equivalent to minimizing {− log(P (zn|CK)},
i.e., maximizing the likelihood.
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Therefore, minimizing L(zn, CK), for all K ∈ {1, . . . ,Kmax}, can be done in
two steps: 1) find the maximum likelihood cut points with fixed K, denoted as
ĈK , for eachK, using the following dynamic algorithm; and 2) calculate L(zn|ĈK)

for each K, and find the K̂ ∈ {1, . . . ,Kmax} that minimizes L(zn, ĈK). Then,

ĈK̂ = arg min
K∈{1,...,Kmax},CK∈Ca

L(zn, CK). (5.19)

Now we describe the dynamic programming algorithm for finding ĈK for each
K ∈ {1, . . . ,Kmax}. The (log) probability of zn given any cut points is

logP (zn|CK) =
n∑

i=1

logP (zi|CK)

=
K∑
j=1

∑
zi∈[Cj−1,Cj)

logP (zi|CK)

=
K−1∑
j=1

∑
zi∈[Cj−1,Cj)

logP (zi|{CK \ CK}) +
∑

zi∈[CK−1,CK ]

logP (zi|CK)

= logP (znCK−1
|{CK \ CK}) +

∑
zi∈[CK−1,CK ]

logP (zi|CK)

(5.20)

where znCK
is a constrained dataset containing all data points smaller than CK ,

i.e.,
znCK−1

= {z ∈ zn|z < CK−1}. (5.21)

Given the previous, the recursion formula is given by

max
CK⊆Ca

logP (zn|CK) = max
CK∈Ca

[ max
{CK\CK}⊆Ca

logP (znCK−1
|{CK \ CK})

+
∑

zi∈[CK−1,CK ]

logP (zi|CK)]
(5.22)

and hence a dynamic programming algorithm can be applied to search all K ∈
{1, . . . ,Kmax}. In practice, Kmax is pre-determined, and larger Kmax should be
investigated if K̂ = Kmax.

The disadvantage of implementing the dynamic programming algorithm based
on L(zn, CK), ∀K ∈ {1, . . . ,Kmax}, is that we would need to calculate the para-
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metric complexity COMP(·) for every constrained dataset. Our improved version,
in contrast, involves only P (zn|CK), and thus we only need to calculate COMP(·)
for the full dataset zn when calculating L(zn, ĈK) for each K, which will be much
faster in practice.

The essential component of the dynamic programming algorithm is to con-
struct the constrained dataset znCK−1

, ∀K ∈ {1, . . . ,Kmax}. These constrained
datasets are easy to construct in the one-dimensional case with a natural order,
but infeasible for two or higher dimensional cases. Hence we resort to the heuristic
algorithm presented in the next section.

5.6 The PALM Algorithm for Partitioning and
Merging

We propose a heuristic algorithm named PALM, which infers histogram
models for two-dimensional data by decomposing the overall model selection prob-
lem into two steps: 1) partition space S alternately based on the discretization
result from previous iterations until it stops automatically; and then 2) merge
neighboring regions if their densities are very similar. Both steps use the MDL
principle as the decision criterion, with the code length defined in Section 5.4.

The PALM algorithm is given in Algorithm 5. Specifically, we first initiate
S̃ = {S} and choose the starting direction (line 1); then we iterate over all regions
in S̃ and partition each of them by searching for the MDL-optimal cut lines in
the chosen direction (lines 3–5), and update S̃ accordingly (lines 8–10); then, we
keep iterating until S̃ is no longer updated (lines 2 and 6–7), which completes the
partitioning step.

Next, the merging step searches, in a greedy manner, for the MDL-optimal
partition of S over all possible partitions that can be obtained by merging any
two neighboring regions of the partition that is obtained in the partitioning step.
That is, we list all the neighboring pairs of regions in S̃, i.e., two regions that
share part of their boundaries (line 15); then, we merge the pair that compresses
the data most (or equivalently, decreases the MDL score most) and update the
neighboring pairs list (lines 21–23); finally, we stop the merging step when no
better compression can be obtained by merging any neighboring two pairs in S̃

(lines 19–20).
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Algorithm complexity. We now discuss the worst-case algorithm complexity
for the partitioning and merging step respectively, and we will show the empirical
runtime in Section 5.7.6.

For the first iteration of the partitioning step (i.e., when S̃ = {S}), the
algorithm has a complexity of O(KmaxE

2), the same as the one-dimensional case
(Kontkanen and Myllymäki 2007b), where E is the number of possible locations for
vertical (or horizontal) lines within the whole sample space S, based on the fixed
grid with granularity ϵ. The second iteration has a worst-case time complexity
of O(K2

maxE
2) when the first iteration produces exactly Kmax regions. Following

this line, the worst-case time complexity of the partitioning step is O(KI
maxE

2),
where I is the number of iterations.

As for the merging step, the time complexity is bounded by KpK0, where
K0 denotes the number of regions after the partitioning step, and Kp denotes the
number of neighboring pairs. That is, we can merge at most (Kp − 1) times, and
each merging requires going over all the neighboring pairs.

Although the worst-case time cost for the partitioning step is exponential,
and K0 and Kp could be large in practice, we will show in Section 5.7.6 that the
empirical runtime may scale much better than exponential growth.

Choosing the hyper-parameter settings. We now briefly discuss how to
choose ϵ and Kmax in practice. First, we should set ϵ to be the same as the
precision of the data by default; data is always recorded up to a precision in
practice. Further, when prior knowledge exists given a specific task, ϵ may be
larger than the recording precision, because the domain expert or data analyst
may decide that the data is only meaningful up to a more coarse precision.

Second, theoretically we should set Kmax to be sufficiently large, and hence
in practice Kmax is a “budget” rather than a hyper-parameter like the threshold
or stopping criterion in other discretization methods (e.g., Nguyen 2014, Kerber
1992). That is, unlike these hyper-parameters, which can be either too large or
too small and hence need to be carefully tuned, Kmax can be simply picked to be
as large as possible.

This makes our method practically hyper-parameter-free, in the sense that—
given the guidelines above—no tedious hyper-parameter tuning should be neces-
sary to obtain the best possible results.
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5.7 Experiments

In this section, we investigate the performance of PALM using synthetic data,
after which we will apply it to real-world data in the next section. We show that
PALM can construct two-dimensional histograms that are adaptive to both local
densities and sample size of the data.

We start off by defining the “loss” that we use for quantifying the quality of
the “learned” partitions. We then present experiment results on a wide variety of
synthetic data. Although our algorithm relies on heuristics, we show that it has
a number of desirable properties, as follows.

First, if the data is generated by a histogram model within our model class
M, PALM is able to identify the “true” histogram given a large enough sample
size. The results are discussed in Section 5.7.2.

Second, in Section 5.7.3 we show that PALM has the flexibility to approximate
histogram models outside the model classM. Specifically, we study the behavior of
PALM on a dataset generated as follows: we set the sample space S = [0, 1]×[0, 1],
and partition it by a sine curve; we then generate data points uniformly distributed
above and below the sine curve, with different densities.

Third, we study the performance of PALM on data generated by two di-
mensional Gaussian distributions in Section 5.7.4. We show that it inherits the
property of the one-dimensional MDL histogram method (Kontkanen and Myl-
lymäki 2007b) that the bin sizes of the histogram are self-adaptive: the two-
dimensional bin sizes become smaller locally where the probability density changes
more rapidly.

Fourth, in Section 5.7.5 we compare PALM with the IPD algorithm (Nguyen
et al. 2014), using a simple synthetic dataset that is almost identical to what has
been used to study the performance of IPD (Nguyen et al. 2014).

Note that we always set ϵ = 0.001, and all simulations are repeated 500 times
unless specified otherwise4. The initial partitioning direction is fixed as vertical,
to make the visualizations of the inferred partitions comparable.

4The code is available at: https://github.com/ylincen/PALM
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5.7.1 Measuring the difference between two-dimensional his-
tograms

As PALM produces a histogram model and can be regarded as a density esti-
mation method, one of the most intuitive “loss” functions is the Mean Integrated
Squared Error (MISE) (Scott 2015), defined as

MISE(f̂) = E[
∫
S

(f(x)− f̂(x))2dx], (5.23)

where f is the true probability density and f̂ is the histogram model density
estimator. We report the empirical MISE by calculating the integral numerically,
and estimating E[·] by the empirical mean of results over all repetitions of the
simulation.

As MISE cannot indicate whether there are more “bins” than necessary, we
also propose two “loss” functions that directly quantify the distances between the
inner boundaries of the learned and true partitions of a sample space S. We first
break up the line segments of the inner boundaries into pixels with a precision
set to 0.01 = 10ϵ (merely to speed up the calculation). Then we introduce two
loss functions based on the idea of Hausdorff distance, considering false positives
and false negatives respectively. Namely, we propose Llearn, based on the learned
partition, and Ltrue, based on the true partition:

Llearn =
∑
p∈P

minq∈Q||p− q||2;Ltrue =
∑
q∈Q

minp∈P ||p− q||2 (5.24)

where || · || denotes the Euclidean distance and P and Q are the sets of pixels on
the line segments of the learned partition and the true partition, respectively.

The intuition for Llearn is that, for a given pixel on a line segment of the
learned partition, we find on the line segments of the true partition the pixel
closest to it, and measure their distance; for Ltrue it is the other way around.
Thus, if Llearn is large, the learned partition must have unnecessary extra line
segments, whereas if Ltrue is large, the learned partition fails to identify part of
the line segments that actually exist.
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5.7.2 Revealing ground truth two-dimensional histograms

We describe the settings for simulating the data and then our experiment
results, to empirically show that our algorithm can identify the “true” histogram
model if the data is generated by it.

Experiment settings. To randomly generate the “true” partitions, we use a
generative process that is very similar to the search process of our algorithm: we
fix a rectangular region, S = [0, 1]× [0, 1], randomly generate vertical cut lines to
split it into K1 regions, and randomly generate horizontal cut lines to split each
of the K1 regions into (K21, ...,K2,K1

) regions respectively. Then, for each pair of
neighboring regions, we merge them with a pre-determined probability Pmerge.

We set these hyper-parameters as follows:

K1 = K21 = K22 = ... = K2,K1
= 5;Pmerge = 0.4; ϵ = 0.001. (5.25)

With these hyper-parameters, our generative process is able to generate a diverse
subset of M, as Pmerge is chosen delicately to be not too small or too large. Fig-
ure 5.3 shows four random examples of the true partitions and learned partitions.
These learned partitions are produced with the sample size set as 10 000.

After the partition is fixed, we generate “true” density parameters for the
histogram model using a uniform distribution, i.e.,

fj ∼ Uniform(0, 1), ∀i = 1, 2, ...,K; (5.26)

and normalize them such that
∑K

j=1 fj |Sj | = 1, where K is the number of regions
in total and |Sj | is the geometric area of Sj . Note that we do not force the fj to
be different from each other.

Results. Figure 5.4 shows that MISE is already small for small sample size, and
converges to almost 0 as the sample size increases. We also show, in Figure 5.5,
that Llearn and Ltrue converge to almost zero except for some outliers.

The outliers of Llearn are due to sampling variance when generating data
points, the number of which decreases significantly as the sample size grows.

The outliers of Ltrue, however, are due to the random generation of the density
parameters fj . As we do not force all fj ’s to be different, they could accidentally
turn out to be very similar. In that case, some of the “true” inner boundaries are
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Figure 5.3: Random examples of true (black solid) and learned partitions (red dashed)
of the experiment in Section 5.7.2, mainly to show that our experiment settings can produce
very flexible partitions of [0, 1] × [0, 1]. Note that the sample size is set as 10 000, which is
not enough for MISE (Equation 5.23) to converge to almost 0, but the learned partitions by
PALM already look promising: it can partly identify the true partitions.

actually unnecessary, and our algorithm will “fail” to discover them. Table 5.1
confirms that this is the cause of outliers when the sample size is large (≥ 1e5):
when PALM fails to identify part of the “true” inner boundaries and Ltrue > 1, the
learned histogram still estimates the density very accurately. The only explanation
is then that some regions of the true partition accidentally have very similar fj ’s.

Moreover, when the sample size is moderate, e.g., 5000, Llearn is already
small, meaning that PALM can partly identify the true partition quite precisely,
and rarely produces unnecessary extra regions. As the sample size increases, Ltrue

decreases, indicating that the learned partition becomes more and more complex;
i.e., it is shown that the model selection process is self-adaptive to sample size.
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Figure 5.4: Sample size vs MISE: MISE converges to almost 0 when the sample size
becomes larger than 100 000. The range between the 5th and 95th percentiles is shown in
blue.
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Figure 5.5: Boxplots showing the sample size versus Llearn and Ltrue as defined in Equa-
tion (5.24). Note that the y-axis has a logarithmic scale. Llearn is generally much smaller
than Ltrue, meaning that it is very rare that PALM produces unnecessary extra regions.
When the sample size is large enough for MISE to converge (n ≥ 1e5), outliers of Ltrue are
due to sampling variance when generating the true parameters fj defined in Equation (5.26),
see Table 5.1; the number of outliers for Llearn decreases rapidly as the sample size becomes
larger, as they are due to sampling variance when generating the data.

5.7.3 Approximating histogram models outside model class M

We now investigate the case where the true model is not within model class
M, while the data is still generated uniformly within each region.

We show that, although the model class M is based on a grid, it is indeed
flexible and expressive: in practice, the learned partitions can approximate true
partitions outside M, and the approximation becomes more and more accurate as
the sample size increases.

Experiment settings. As an illustrative example, we partition S = [0, 1]× [0, 1]

by several sine curves, defined as

g(x) =
1

4
sin 2mπx+

1

2
(5.27)

and where m is a hyper-parameter.
We randomly generate data from a uniform distribution above and under the

sine curve, and we set the probability density above g(x) to be twice as large as
below g(x), i.e., we uniformly sample 2

3
n data points above g(x), and 1

3
n data

points below g(x), where n is the total sample size.

Results. We empirically show that the learned partitions approximate the sine
curves quite precisely, though occasionally a few extra undesired regions are
produced. Figure 5.6 (left) shows the learned partitions on single simulated
datasets, with m ∈ {2, 4, 6} to control the degree of oscillation, and sample size
n ∈ {1e4, 1e5, 1e6}. We see that, as the sample size grows, our approximation
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Figure 5.6: (Left) Sine curve defined in Equation (5.27) (red), with m ∈ {2, 4, 6} from
left to right on each row, and the learned partition by PALM (black). Data is randomly
generated by uniforms distribution above and below the sine curve, within S = [0, 1]× [0, 1].
Densities above and below the since curve are 2:1. From top to bottom, the sample sizes of the
simulated data are n ∈ {1e4, 1e5, 1e6}. (Right) 50 partition results of 50 different simulated
datasets are plotted together. It shows that PALM is not guaranteed to be absolutely stable,
as it occasionally produces undesired extra line segments, but the line segments of the learned
partitions mostly gather around the true sine curve.

becomes more and more accurate.
However, since our algorithm is greedy in nature, there is no guarantee to find

the partition with the global minimum score. In practice, PALM will occasionally
produce undesired, extra line segments. Thus, to investigate the stability of the
learned partitions, we repeat the simulation 50 times for each combination of m
and n, and plot all partition results in one single plot in Figure 5.6 (right).

Figure 5.6 (right) shows that the undesired extra regions are produced more
frequently as m increases, but seems independent of sample size n. However, as
sample size increases, the learned partitions become indeed more stable as they
gather around the sine curves more closely.

5.7.4 Gaussian random variables

In this section, we show the performance of our algorithm on data generated
from a two-dimensional Gaussian distribution. Specifically, we consider two of
them, i.e., N [( 0

0 ), (
1 0
0 1 )] andN [( 0

0 ), (
1 0.5
0.5 1 )], of which the key difference is whether
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the two dimensions are independent. We assume S = [−5, 5]× [−5, 5], as the true
Gaussian density outside such S is negligible.

Figure 5.8 shows the learned partitions as well as the learned empirical densi-
ties from a random simulated dataset with different sample sizes, n ∈ {5 000, 10 000,
50 000}. Note that bin size is self-adaptive with regard to sample size and local
structure of the probability density. We also mention that the empirical runtime
for a single dataset generated by such Gaussian distributions is at most a few
minutes, for all n ≤ 50 000.

To quantify the quality of the learned partitions by PALM, we compare the
MISE of PALM to the MISE of fixed equally-spaced grid partitions with different
granularities. Figure 5.7 shows the mean and standard deviation of MISE for
different cases, and we conclude that, to achieve roughly the same level of MISE
with a fixed grid, a fixed grid needs to have five times as many regions as a
partition learned by PALM.

Independent: N [( 0
0 ), (

1 0
0 1 )] Dependent: N [( 0

0 ), (
1 0.5
0.5 1 )]

PALM 1x 2x 3x 5x 10x *1x PALM 1x 2x 3x 5x 10x *1x
0.000

0.005

0.010

0.015

number of cells

M
IS
E

sample size
5000
10000
50000

Figure 5.7: For data generated from a two-dimensional Gaussian distribution, described in
Section 5.7.4, the mean and standard deviation of MISE is calculated for different partitions:
(from left to right) PALM, fixed grid with the same number of regions as PALM (denoted as
‘1x’), fixed grid with two times number of regions as PALM (denoted as ‘2x’), ..., and fixed
grid with the same number of regions before the merging step of PALM (denoted as ‘*1x’).
We assume S = [−5, 5]× [−5, 5], as the true Gaussian density outside S is negligible.

5.7.5 Comparison with IPD

Since—to the best of our knowledge—no existing discretization method can
produce partitions as expressive as PALM, it seems not so meaningful to compare
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Figure 5.8: Learned partitions and estimated densities by PALM. The data is generated
from two-dimensional Gaussian distributions, with sample size n ∈ {5 000, 10 000, 50 000},
from left to right. The top and bottom row is respectively generated from independent and
dependent two-dimensional Gaussian distributions.

with any existing algorithm. However, we do include a comparison with the IPD
algorithm (Nguyen et al. 2014), mainly to show that our algorithm not only can
produce more flexible partitions by definition, but also beats this state-of-the-
art algorithm on a “simple” task, i.e., when the “true” partition is an adaptive
two-dimensional grid.

We use simple synthetic data, similar to one of the synthetic datasets used to
study the performance of IPD (Nguyen et al. 2014). The data is generated to be
uniform within four regions in S = [0, 1] × [0, 1]. These regions are produced by
partitioning S by one vertical line x = Vx and one horizontal line y = Hy, where
Vx,Hy ∼ Uniform(0, 1). The number of data points within each region is equal.
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We compare the loss, as defined in Equation (5.24), and we show in Figure 5.9
that 1) PALM has better performance on small datasets, and 2) as the sample size
gets larger, PALM converges but IPD partitions S into more and more regions,
as can be witnessed from an increasing Ltrue.
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Figure 5.9: Comparison of PALM and IPD, using the box-plot and the mean of Llearn
and Ltrue, as defined in Equation (5.24). PALM not only performs better when the sample
size is small, but also converges as the sample size increases, while IPD does not converge.

5.7.6 Empirical runtime

We next discuss the empirical runtime with respect to Kmax, the maximum
number of bins to search, and E, the number of candidate cut points.

Specifically, we use two-dimensional datasets simulated from independent
standard Gaussian distributions to examine the relationship between Kmax and
runtime, with fixed sample size equal to 500 and ϵ = 0.001. The results are il-
lustrated in Figure 5.10, showing that the runtime increases linearly with Kmax.
Further, to investigate the relationship between E and the runtime, we again sim-
ulate from two-dimensional Gaussian distributions with different variance σ2 to
control the E 5. We fixed the sample size to be 1 000 and ϵ = 0.001. The results
show that, the runtime grows quadratically with E (as shown by the blue dashed
curve), but the second-order coefficient is quite small (as it is very close to the red
dashed line with a linear trend). We report the runtime based on 500 repetitions.

5For reproducibility, we first simulate 10 000 data points from N [
(

0
0

)
,
(

0 σ2

σ2 0

)
], where σ2 = Eϵ/2,

where E is the desired number of candidate cut points. Since the corresponding desired data range with
E candidate cut points is [−Eϵ/2, Eϵ/2], we next remove the data points outside this desired data range,
and we finally randomly select 1 000 data points from the remaining data points.
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Figure 5.10: Empirical time complexity on simulated two-dimensional Gaussian data,
with respect to E, the number of candidate cut points, and the runtime, and Kmax, the
maximum number of bins we search.

5.8 Case study

We now show the results of applying our algorithm to real-world spatial
datasets. We start with describing the three datasets we use in Section 5.8.1.
Next, we describe our case study tasks in Section 5.8.2. Specifically, we inspect
the results by visualizing the histograms, to illustrate that our method can be
used as an explanatory data analysis (EDA) tool. We also compare with kernel
density estimation (KDE), arguably the most widely used EDA method for spatial
datasets, both for the visualizations and the goodness-of-fit on unseen data. In
Section 5.8.3, we report our results and show that 1) PALM can produce partitions
that characterize more detailed density changes than KDE, and 2) PALM fits
better on unseen data (i.e., a test dataset), in the sense that the partition of
PALM has larger log-likelihood on the test dataset than KDE. Finally, we report
the runtimes and detailed algorithm settings, respectively in Section 5.8.4 and
5.8.5.
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5.8.1 Datasets

We consider three diverse real world datasets: locations of Airbnb housing
in Amsterdam6, GPS locations of destinations of DiDi taxi queries in Chengdu,
China7, and GPS recordings of visitors’ movement in an amusement park8.

Visitors movement data in the DinoFun amusement park. All visitors
at the amusement park need to carry a device or use a smartphone app to check
in at different attractions (e.g., roller coasters). Further, the amusement park is
segmented into 100× 100 cells (all of them are roughly 5 meters × 5 meters), and
each cell has a sensor which can track the position of each visitor. The device (or
the mobile app), together with the sensors, checks the position of the visitor every
few seconds and records the position if the visitor moves to another cell. Thus,
applying PALM on this dataset will reveal the densities of places that people have
been in the amusement park. This data has a sample size of 9 078 623, in which
every row represents a single position that one individual visitor visited (or passed
by), with information like visitor’s ID, timestamp, and location.

Amsterdam airbnb locations. This data has a sample size of 20 244, and the
location of each house is recorded by its longitude and latitude. Applying PALM
on this dataset shows the distribution of Airbnb housing in Amsterdam.

DiDi taxi data in Chengdu. The sample size of the data is 107 573, which
collects the longitude and latitude of taxi destinations. Applying PALM on this
dataset shows the densities of different regions that people visited by taxi in
Chengdu, China.

5.8.2 Case study tasks

Explanatory data analysis and visualizations. We first partition the three
two-dimensional datasets by PALM and estimate the densities of all regions, using
the full datasets. We visualize the densities by the heat maps in Figure 5.11, and
compare the visualizations obtained by two-dimensional kernel density estimation
(KDE) (Duong et al. 2007), also with the full dataset. We also include the vi-
sualization results of the discretization obtained by IPD (Nguyen et al. 2014) for

6http://insideairbnb.com
7https://gaia.didichuxing.com
8http://vacommunity.org/VAST+Challenge+2015
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comparison, although IPD is not primarily designed for two-dimensional datasets.
The background of Figure 5.11 are the map of the DinoFun amusement part (pro-
vided together with the dataset), and the map of Amsterdam and Chengdu (from
Google Maps API and the R package “ggmap” (Kahle and Wickham 2013)).

Comparison of KDE and PALM on the goodness-of-fit. Further, to quan-
titatively compare how KDE and PALM fit unseen data, and thus generalize to
the underlying data distribution, we randomly split each dataset into training and
testing set, obtain the PALM and KDE result from the training set, and compare
the log-likelihoods on the testing dataset. We repeat the random splitting 100
times9.

5.8.3 Case study results

We first analyze the result on each dataset respectively, based on which we
give our concluding remarks for the case study at the end of this section.

Visitors movement data in the DinoFun amusement park. As shown
in Figure 5.11, both KDE and PALM reveal the walking path of the amusement
park purely from the movement data (i.e., without knowing the map as additional
information). Although KDE seems to capture more density changes, we show
that it fits unseen data much worse than PALM, measured by the log-likelihood
on the test dataset, shown in Table 5.2. Thus, we conclude that KDE may overfit
on this dataset.

Amsterdam airbnb locations. The visualizations of PALM and KDE look
generally similar: if we treat red and orange regions in the center as the “dense
region”, the rigid boundary between the dense region and the rest obtained by
PALM approximates well the corresponding curve boundary obtained by KDE.
However, note that more density changes are captured within the dense region,
and PALM revealed two dense spots outside the central areas that KDE neglects,
respectively on the top right and the bottom right of the map10. Further, as shown
in Table 5.2, the (average) log-likelihood of PALM and KDE on the test set is

9To speed up the process, we randomly sampled a subset of the Chengdu taxi dataset that contains 10%
of the full sample size; also, for the amusement park movement dataset, we only use the subset of the data
that is between 4 hours and 5 hours after the opening of the park, with sample size 713 846. Note that this
is only for the comparison of goodness-of-fit but not for the visualizations and empirical runtime evaluation

10The top right dense spot is close to the “AMSTERDAM NOORD” text on the map (on the “T”), and
bottom right dense spot is near “Amstel Business Park”.
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almost the same, which indicates that PALM does not overfit on this dataset, i.e.,
the dense spots revealed by PALM are valid.

DiDi taxi data in Chengdu. The visualizations of PALM and KDE lead to
different understandings of this dataset: while KDE reveals several hot clusters
of taxi destinations, PALM shows that the density can change drastically within
very small range of areas. As PALM fits better on the testing dataset, we conclude
that PALM does not overfit but KDE may over-smooth this dataset.

By default the PALM algorithm always starts by splitting the x-axis. Starting by
splitting the y-axis leads to slightly different models, and thus somewhat different
visualizations, but those differences are so minimal that they can be ignored for
practical purposes. That is, the differences mostly appear in sparse regions, with
very low densities, where no interesting patterns occur. To demonstrate that the
differences are negligible, we compare the log-likelihoods obtained on unseen data
when starting splitting on either the x-axis or the y-axis. The log-likelihoods are
indeed very similar for both starting directions, as shown in Table 5.2, confirm-
ing that the resulting histogram models can only be different in sparse and less
important regions; otherwise the log-likelihoods would be substantially different.

Based on the analysis above, we conclude that 1) although PALM partitions
the dataset with rigid boundaries, PALM fits the data better than KDE when the
datasets have drastic local density changes, such as the Chengdu taxi dataset and
the amusement park dataset; 2) when we have smoother two-dimensional data
such as the Amsterdam housing dataset, PALM and KDE fit the data equally
well; 3) when we look at the visualizations, PALM tends to capture more density
changes than KDE, and PALM can reveal dense spots that KDE neglects; in other
words, KDE tends to over-smooth the dataset.

Last, we include the visualizations of the IPD discretization in Appendix C, in
which we demonstrate that the discretization results obtained by IPD have much
coarser granularity. Hence, our discretization results preserve more information
from the original datasets.

5.8.4 Empirical runtime

We examine the empirical runtime on these three datasets in Table 5.3 (using
the full datasets, without the split of training and testing set). We conclude that
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KDE is generally much faster, except on the amusement park dataset, which has
a very large sample size but small E.

Note that the runtime of KDE highly depends on the number of evaluation
points, the bandwidth selection methods, and whether to use the binned kernel
estimation as an approximation to the exact kernel estimation for bandwidth
selection and/or density estimation. The runtime we report here is based on
the following settings: 1) the number of evaluation points is the same as the
number of pixels evaluated by PALM, i.e., the pixels on the fixed grid with the
granularity ϵ; 2) the binned approximation for the plug-in bandwidth selection
is used; otherwise it becomes too slow11; 3) the binned approximation for the
density estimation is not used. Note that we use these same settings not only
for the runtime evaluation, but also for visualizations and calculating the log-
likelihood on the testing datasets.

5.8.5 Algorithm settings

We now describe some additional algorithm settings for reproducibility for
PALM and KDE.

Kernel density estimation (KDE). We choose the Gaussian kernel for KDE,
the most commonly used kernel by default. We also experiment with several
bandwidth selection methods, including both plug-in methods and cross-validation
methods. We find that plug-in methods are generally both more stable and much
faster in these three cases, and we choose the one that is specifically designed for
two-dimensional cases (Duong and Hazelton 2003).

Also, we visualize the KDE results by directly plotting the density of each
“pixel”; another common practice is to use a contour function, which will further
smooth the KDE results and hence hamper the straightforward comparisons with
the PALM results.

PALM. We set ϵ = 1 and Kmax = 100 for the amusement park dataset, as
the amusement park is divided into a 100 × 100 grid, so the data is recorded at
precision of 1 and the maximum number of bins cannot exceed 100. For the other
two datasets, the precision of the dataset is set as ϵ = 0.001, which is roughly

11It cost more than 10 minutes for the Amsterdam housing data, and more than two days for the amuse-
ment park data, both on the full dataset (no splitting for training and testing set).
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100 meters. During the partitioning step, we set Kmax = 300 to make sure that
K̂ < Kmax.

5.9 Conclusions

We proposed to discretize two-dimensional data by histograms with far more
flexible partitions than adaptive grids, as we observed that the appropriate binning
of one dimension may depend on the value of the other dimension.

Next, we formalized this task based on the MDL principle. Building upon
the one-dimensional MDL histogram, we made several technical contributions so
as to extend both the formulation and algorithm to the two-dimensional case.
Specifically, we solved the problem of calculating the parametric complexity for
multi-dimensional cases. Also, we revisited and improved the algorithm for one-
dimensional dataset by 1) correcting a minor flaw related to the model encoding,
and 2) simplifying the dynamic programming recursion and hence improving the
time complexity.

Further, we proposed a novel heuristic algorithm PALM, which combines
the top-down and bottom-up search strategies, and we extensively examined the
performance of the PALM algorithm on both synthetic and real-world datasets.
That is, we verified our algorithm on various synthetic datasets, and showed that:
1) PALM reveals the ground-truth histogram and converges, in contrast to IPD
that produces more and more bins as sample size increases; 2) PALM approximates
well to the partitions outside the model class; 3) PALM is self-adaptive to local
density structures and sample sizes.

Finally, we applied our algorithm on three diverse real-world spatial datasets,
and demonstrated that PALM not only captures more densities changes than
KDE, but also fits the unseen data better than KDE, as measured by the log-
likelihood.

5.10 Appendix A: Proof of Proposition 3

Proposition 3: The parametric complexity COMP(n, S̃) of a histogram model
is a function of sample size n and the number of bins K. Given n and K,
COMP(n, S̃) is independent of the dimensionality of the data.
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Assume S ⊂ Rl, S̃ is any partition of S with K regions, and ∀Sj ∈ S̃, |Sj |
represents the (hyper-)volume of Sj ; for any yn that can be generated by S̃, hj(y

n)

denotes the number of data points in region Sj .

COMP(n, S̃) =
∑

yn∈Sn

P (yn|S̃
f⃗=

ˆ⃗
f(yn)

)

=
∑

yn∈Sn

[
K∏
j=1

(
hj(y

n) ϵl

n |Sj |
)hj ]

=
∑

h1+...+hK=n,hj≥0,∀j

∑
{yn:hj(yn)=hj ,∀j}

[
K∏
j=1

(
hj(y

n) ϵl

n |Sj |
)hj ]

(5.28)

To count the elements in the set {yn : hj(y
n) = hj , ∀j}, we observe that the num-

ber of possible ways of distributing (h1, ..., hK) data points into each region of S̃
respectively is(

n

h1

)(
n− h1

h2

)
. . .

(
n− h1 − . . .− hK−1

hK

)
=

n!

h1!...hK !
. (5.29)

As we assume the precision to be ϵ, for any Sj , the number of possible locations
for those hj(y

n) points is equal to ( |Sj |
ϵl

)hj . Thus, the number of elements in the
set {yn : hj(y

n) = hj , ∀j} is

n!

h1!...hK !

K∏
j=1

(
|Sj |
ϵl

)hj

(5.30)

Therefore,

COMP(n, S̃) =
∑

h1+...+hK=n

[
n!

h1!...hK !

K∏
j=1

[(
|Sj |
ϵl

)hj

K∏
j=1

(
hj · ϵl

n · |Sj |
)hj ]

=
∑

h1+...+hK=n

[
n!

h1!...hK !

K∏
j=1

[(
|Sj |
ϵl

)hj (
hj · ϵl

n · |Sj |
)hj ]

=
∑

h1+...+hK=n

n!

h1!...hK !

K∏
j=1

(
hj

n

)hj

,

(5.31)

which completes the proof.
Note that for continuous data yn, COMP(n, S̃) becomes an integral over
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yn ∈ Sn, but by the definition of Riemann integral, (which always exists since ϵ

cancels out), the result of COMP(n, S̃) is the same as Equation (5.31).

5.11 Appendix B: Proof of Proposition 4

Proposition 4: For any two cut points Ci, Ck ∈ Ca, suppose Ci < Ck and no
data points exist in the interval [Ci, Ck], then any cut point Cj ∈ [Ci, Ck] would
not be in the MDL-optimal set of cut points, i.e., we can skip all such Cj during
the search process.

Consider one-dimensional data zn, and a partition of the data space S, by
a set of cut points, denoted as CK = {C0 = min zn, C1, ..., CK = max zn}, the
probability of data is

P (zn|CK) =
K∏
j=1

(
hj ϵ

n |Sj |
)hj (5.32)

where hj is the number of data points within the subinterval Sj , and |Sj | is the
length of the subinterval Sj .

We regard P (xn|CK) as a continuous function of the vector S⃗ = (|S1|, ..., |SK |),
i.e., we forget about the granularity ϵ for now, and clearly all hj ’s are fixed once
we fix the S⃗.

On the other hand, if we keep all hj ’s fixed, we can still “move” all the cut
points to change S⃗ while keeping the hj ’s fixed, i.e., we can move a cut point Vx

within some closed interval, denoted as [a, b], within which no data points exist.
We prove that the maximum of P (xn|CK) will always achieved when Vx = a

or Vx = b as we keep other cut points fixed. By doing this, we also prove that,
given candidate cut points, we only need to consider cut points that are near to
the data points, i.e., if for any candidate cut point, it is another two cut points
that are closest to it, other than one or more data points, we can then skip this
candidate cut point.

Since when we move one single cut point, it only affects the subinterval left
and right to that cut point, while all other |Sj |’s remain the same, it is sufficient
to just prove for the case K = 2.

Since now C0 = mini∈[n] xi1 and C2 = maxi∈[n] xi1, P (xn|C2) becomes a
function of C1, and equivalently a function of |S1|, where both C1 and |S1| are
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bounded as we need to keep h1 and h2 fixed, i.e.,

logP (xn|C2) = log
((

ϵh1

n|S1|

)h1
(

ϵh2

n(|S| − |S1|)

)h2
)

(5.33)

where we assume |S1| ∈ [a, b] for some certain closed interval [a, b]. As we want
to maximize logP (xn|C2), it is equivalent to minimizing

F (|S1|) := h1 log |S1|+ h2 log(|S| − |S1|) (5.34)

as other terms in Equation (5.33) are constant. Since

F ′(|S1|) =
h1(|S| − |S1|)− h2|S1|

(|S| − |S1|)|S1|
, (5.35)

by setting F ′(|S1|) = 0, we have

|S1|∗ =
h1

h1 + h2

L. (5.36)

We also have

F ′′(|S1|) =
−(h1 + h2)|S1|2 + 2h1|S||S1| − h1|S|2

(|S| − |S1|)2|S1|2
< 0 (5.37)

because 1) the denominator is always positive apparently, and 2) the numerator
is a simple quadratic function which is always negative. The reason is that 1)
−(h1 + h2)|S1| < 0 and 2) the numerator has no real roots, since

(2h1|S|)2 − 4(−(h1 + h2))(h1|S|2) = −4h2h1|S1|2 < 0. (5.38)

Therefore, if |S1|∗ ̸∈ [a, b], F (|S1|) is monotonic within [a, b]; if |S1|∗ ∈ [a, b], |S1|∗

reaches the maximum. In both cases, the minimum of F (|S1|) will be either a or
b, which completes the proof.
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5.12 Appendix C: IPD visualizations on case study
datasets

Figure 5.12 shows the visualization of the IPD discretization results on two
of the case study datasets.
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Algorithm 5: PALM
Input: data xn, data precision ϵ, sample space S, maximum number of

splits per partitioning step Kmax

Output: S̃, a partition of S
1 dir ← 0 or 1;
2 while true do
3 foreach Sk ∈ S̃ do
4 Partition Sk as S̃k by finding the optimal cut lines for Sk in

direction dir;
5 C∗

Sk
= argminCSk

L({xn ∈ Sk}, CSk
);

6 if S̃k = {Sk} for all Sk ∈ S̃ then
7 break;
8 else
9 S̃ ←

⋃
S̃k;

10 dir ← 1− dir;

11 S̃merge ← S̃;
12 Kmerge ← the number of regions of S̃merge;
13 while true do
14 Get all neighboring pairs of regions of S̃merge,

Pairs← {(Sj , Sk), . . .};
15 foreach (Sj , Sk) ∈ Pairs do
16 S̃′

j,k ← merge the pair (Sj , Sk) in S̃merge;
17 Calculate

L(xn, S̃′
j,k) = − log

(
P (xn|S̃′

j,k)
)
+ logCOMP(n,Kmerge − 1);

18 if minS′
j,k

L(xn, S̃′
j,k) > L(xn, S̃merge) then

19 return S̃merge;
20 else
21 S̃merge ← argmin

S̃′
i,j

L(xn, S̃′
i,j);

22 Kmerge ← Kmerge − 1;
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Sample size MISE for subgroup: Ltrue > 1 overall MISE
100 000 0.00148 0.00148
300 000 0.00055 0.00074
500 000 0.00051 0.00065
700 000 0.00019 0.00069

1 000 000 0.00023 0.00058
3 000 000 0.00017 0.00055
5 000 000 0.00006 0.00051

Table 5.1: The average MISE of cases when Ltrue > 1, and the overall mean of MISE. We
show that, when PALM fails to identify part of the true partitions, the learned histogram
model still estimates the probability density accurately. The only explanation for these cases
is that some neighboring regions in the true partitions have very similar “true” fj as defined
in Equation (5.26), as a result of which PALM does not deem it necessary to further partition
these regions.

Dataset lpalm l′palm lkde (lpalm − lkde)/lkde
1 Amsterdam housing 29976.36 29983.31 30069.78 -0.00
2 Amusement park 270.56 262.0688 227.22 0.19
3 Chengdu taxi 14904.28 14742.05 14073.42 0.06

Table 5.2: The log-likelihood of PALM with partitioning vertically first, lpalm, and with
partitioning horizontally first, l′palm, and the log-likelihood of KDE, lkde, on the test set for
each of the three datasets.

Dataset sample size PALM KDE
1 Amsterdam housing 20 244 106.821 6.73
2 Amusement park 9 078 623 1134.581 2017.215
3 Chengdu taxi 107 573 60977.285 29.197

Table 5.3: Empirical runtime (in seconds) for the three case study datasets.
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Figure 5.11: Estimated densities on three real-world datasets using PALM (left) and
KDE (right); from top to bottom: DinoFun amusement park, Amsterdam Airbnb housing,
and taxi destinations in Chengdu.
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Figure 5.12: Visualization of the IPD discretization results on two of the case study
datasets (we fail to obtain the result of IPD on the Amusement Park data within four
hours).
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Chapter 6

Interpretable Conditional
Mutual Information
Estimation with Adaptive
Histograms

This chapter has been published as Marx, A, Yang, L, and van Leeuwen, M Estimating Conditional Mu-

tual Information for Discrete-Continuous Mixtures using Multi-Dimensional Adaptive His-

tograms. In: Proceedings of the SIAM Conference on Data Mining 2021 (SDM’21), SIAM, 2021.
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Chapter Abstract
Estimating conditional mutual information (CMI) is an essential yet chal-

lenging step in many machine learning and data mining tasks. Estimating CMI
from data that contains both discrete and continuous variables, or even discrete-
continuous mixture variables, is a particularly hard problem. In this chapter, we
show that CMI for such mixture variables, defined based on the Radon-Nikodym
derivative, can be written as a sum of entropies, just like CMI for purely discrete
or continuous data. Further, we show that CMI can be consistently estimated for
discrete-continuous mixture variables by learning an adaptive histogram model.
In practice, we estimate such a model by iteratively discretizing the continuous
data points in the mixture variables. To evaluate the performance of our estima-
tor, we benchmark it against state-of-the-art CMI estimators as well as evaluate
it in a causal discovery setting.
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6.1 Introduction

In many research areas, such as classification (Lee and Kim 2013), feature
selection (Vinh et al. 2014), and causal discovery (Spirtes et al. 2000), estimating
the strength of a dependence plays a key role. A theoretically appealing way
to measure dependencies is through mutual information (MI) since it has several
important properties, such as the chain rule, the data processing inequality, and—
last but not least—it is zero if (and only if) two random variables are independent
of each other (Cover and Thomas 2012). For structure identification, such as
causal discovery, conditional mutual information (CMI) is even more interesting
since it can help to distinguish between different graph structures. For instance, in
a simple Markov chainX → Z → Y , X and Y may be dependent, but are rendered
independent given Z. Vice versa, a collider structure such as X → Z ← Y may
introduce a dependence between two marginally independent variables X and Y

when conditioned on Z.

While estimating (conditional) mutual information for purely discrete or con-
tinuous data is a well-studied problem (Cover and Thomas 2012; Darbellay and
Vajda 1999; Gao et al. 2016; Han et al. 2015; Paninski and Yajima 2008), many
real-world settings concern a mix of discrete and continuous random variables,
such as age (in years) and height, or even random variables that can individually
consist of a mixture of discrete and continuous components. Although several
discretization-based approaches that can estimate MI for a mix of discrete and
continuous random variables have recently emerged (Cabeli et al. 2020; Man-
dros et al. 2020; Suzuki 2016), so far only methods based on k-nearest neighbour
(kNN) estimation were shown to work on mixed variables, which may consist of
discrete-continuous mixture variables (Gao et al. 2017; Mesner and Shalizi 2020;
Rahimzamani et al. 2018).

Regardless of the success of kNN-based estimators, discretization-based ap-
proaches have attractive properties, e.g., with regard to global interpretation.
That is, a natural and understandable way to discretize a continuous random
variable is via creating a histogram model, where we cut the sample space of the
continuous variable in multiple non-overlapping parts called bins (Scott 2015), or
(hyper)rectangles for multi-dimensional variables. Within a bin, we consider the
distribution to be constant, which allows us to estimate the density function via
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Riemann integration by making the bins smaller and smaller (Cover and Thomas
2012). This definition, however, is less straightforward when mixed variables are
involved.

In this chapter, we approach the problem as follows: we first extend the def-
inition of entropy for a univariate discrete-continuous mixture variable given by
Politis (Politis 1991) to multivariate variables. Using this definition, we show that
CMI for mixed random variables can be written as a sum of entropies that are
well-defined through the Radon-Nikodym derivative (see Section 6.2). Exploiting
this property, we propose a consistent CMI estimator for such data that is based
on adaptive histogram models in Section 6.3. To efficiently learn adaptive his-
tograms from data, in Section 6.4 we define a model selection criterion based on
the minimum description length (MDL) principle (Grünwald 2007). Subsequently,
we propose an iterative greedy algorithm that aims to obtain the histogram model
that minimizes the proposed MDL score in Section 6.5. We discuss related work
in Section 6.6 and in Section 6.7, we empirically show that our method performs
favourably to state-of-the-art estimators for mixed data and can be used in a
causal discovery setting.

6.2 Entropy for Mixed Random Variables

We consider multi-dimensional mixed random variables, of which any indi-
vidual dimension can be discrete, continuous, or a discrete-continuous mixture.
Further, we call a vector of such mixed random variables a mixed random vector.
For a mixed random vector (X,Y ), where X and Y are possibly multivariate, we
need to adopt the most general definition of mutual information (MI), i.e., the
measure-theoretic definition:

I(X;Y ) =

∫
X×Y

log dPXY

dPXPY

dPXY ,

where dPXY /(dPXPY ) is the Radon-Nikodym derivative, dPXY the joint measure,
and PXPY the product measure. It has been proven that PXPY is absolutely
continuous with respect to PXY (Gao et al. 2017), i.e., PXY = 0 whenever PXPY =

0; and therefore, such a Radon-Nikodym derivative always exists and I(X,Y ) is
well-defined. This measure-theoretic definition can be extended to CMI using the
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chain rule: I(X;Y |Z) = I(X; {Y, Z})− I(X;Z).
It is common knowledge that for purely discrete or continuous random vari-

ables, CMI can be written as a sum of entropies, i.e., I(X;Y |Z) = H(X,Z) +

H(Y, Z) − H(X,Y, Z) − H(Z). What is not clear, however, is if this formula
also holds when (X,Y, Z) contains discrete-continuous mixture random variables.
We investigate this problem in two steps. We first define the measure-theoretic
entropy for a (possibly multi-dimensional) discrete-continuous mixture random
variable and prove it to be well-defined, though previous work claimed the oppo-
site (Gao et al. 2017). Second, using this definition, we prove that (conditional)
MI for a mixed random vector can be written as the sum of measure-theoretic
entropies, just like purely continuous or discrete random vectors.

6.2.1 A Generalized Definition of Entropy

The measure-theoretic entropy is defined only for one-dimensional random
variables (Politis 1991). Building upon this definition, we give an explicit proof
that such a one-dimensional measure-theoretic entropy is well-defined, and then
extend this definition to the multi-dimensional case, which we prove is also well-
defined.

Generalized One-Dimensional Entropy

We start off by reviewing the existing definition for the one-dimensional
case (Politis 1991). Given a one-dimensional random variable X, entropy H is
defined as

H(X) =

∫
R

dPX(x)

dv(x)
log dPX(x)

dv(x)
dv(x), (6.1)

where v(·) is a measure defined on all one-dimensional Borel sets (Politis 1991).
If v(·) is the Lebesgue measure, which we denote as u(·), H(X) becomes the
differential entropy. Alternatively, if v(·) is a counting measure, H(X) becomes
the common (discrete) entropy.

If, however, X is a discrete-continuous mixture variable, v is defined as fol-
lows. We split R into three disjoint subsets s.t. R = Sd ∪ Sc ∪ So. First, So is the
subset of R on which X has zero probability measure, i.e., PX(So) = 0. Second,
the set Sd contains all discrete points, i.e., Sd is countable and ∀x ∈ Sd, PX(x) > 0.
Third, Sc covers the continuous points, hence PX(Sc) + PX(Sd) = 1 and for any
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Borel set A ⊆ Sc satisfying u(A) = 0, we have PX(A) = 0. Based on these three
subsets Sd, Sc, and So, we can define v as

v(A) = u(A ∩ Sc) + |A ∩ Sd| , (6.2)

where |A ∩ Sd| is the cardinality of this intersection.
To show that the generalized one-dimensional entropy is well-defined, we need

to prove that the Radon-Nikodym derivative dPX/dv always exists. This we show
in the following lemma.

Lemma 1. Given a one-dimensional discrete-continuous random variable X with
probability measure PX , PX is absolutely continuous w.r.t. v, i.e., PX = 0 when-
ever v = 0, and hence dPX/dv always exists.

We provide the proof of Lemma 1, as well as for Lemmas 2 and 3 in Supple-
mentary Material 6.9.1.

Generalized Multi-Dimensional Entropy

In the following, we extend the measure-theoretic entropy definition to a
mixed k-dimensional random vector W = (W1, . . . ,Wk). For each Wi, we define
Si
d, S

i
c, S

i
o and measure vi as above, and also define the product measure v for the

k-dimensional random vector as v = v1 × . . . × vk. Then, define the entropy for
W as

H(W ) =

∫
Rk

dPW (w)

dv(w)
log dPW (w)

dv(w)
dv(w). (6.3)

To prove that such entropy is well-defined, we show that dPW/dv always exists.

Lemma 2. Given a mixed k-dimensional random vector W = (W1, . . . ,Wk) with
probability measure PW , dPW/dv always exists.

Last, based on Lemma 1 and 2, we can prove that just like for a purely
continuous or discrete random vector, conditional mutual information for a mixed
random vector can be written as a sum of entropies.

Lemma 3. Given a mixed random vector (X,Y, Z) with joint probability measure
PXY Z , we can write I(X;Y |Z) = H(X,Z)+H(Y, Z)−H(Z)−H(X,Y, Z), where
each entropy can be defined as in Equation (6.3).
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As a direct implication of the above proof, it follows that mutual information
can also be written as the sum of entropies, since it is a special case of CMI with
Z = ∅. With this generalized definition, we can now show how to estimate CMI
using adaptive histogram models.

6.3 Adaptive Histogram Models

Adaptive histogram models have been thoroughly studied for continuous ran-
dom variables (Scott 2015); however, to the best of our knowledge, there exists
no rigorous definition of histograms for mixed random variables. Thus, to use
histogram models as a foundation to estimate the measure-theoretic (conditional)
MI, we need to rigorously define histograms for mixed random variables. We start
with the one-dimensional case.

6.3.1 One-Dimensional Histogram Models

A histogram model is typically defined based on a set of consecutive intervals
called bins (Scott 2015). However, to deal with discrete-continuous mixture ran-
dom variables, we define the set of bins, denoted as B, such that each bin is either
an interval or a set containing only a single point. That is, B = B′ ∪ B′′, where
B′ and B′′ are sets of subsets of R, with B′ consisting of countable consecutive
intervals and B′′ consisting of countable single point sets. Last, we define the
“width” of a bin using the measure v as defined in Equation 6.2, i.e., for a bin
Bj ∈ B we have

v(Bj) = u(Bj ∩B′) + |Bj ∩B′′| . (6.4)

As any Bj ∈ B′′ contains only a single discrete point, v(Bj) = 1 for all Bj ∈ B′′.
Further, we define a histogram model M as a set of bins equipped with a

parameter vector of length K, where K = |B| is the number of bins. That is,
a histogram model M is a family of probability distributions PX,θ, parametrized
by the vector θ = (θ1, . . . , θK). Each element of θ represents the Radon-Nikodym
derivative (or density) of each bin. Note that this definition generalizes to purely
continuous random variables when B′′ = ∅ and also to discrete random variables
if B′ =  ∅. For the latter case, the histogram model degenerates to a multinomial
model.
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6.3.2 Multi-Dimensional Histograms

First, we define the set of multi-dimensional bins. For a mixed k-dimensional
random vector W = (W1, . . . ,Wk), we define the set of bins for each Wi as in
Section 6.3.1, denoted as Bi. Consequently, we can define a set of k-dimensional
bins, denoted B, by the Cartesian product B = B1 × . . .×Bk.

Since each Bi is countable, B is also countable, and we can hence assume
B is indexed by j. Then, we split B in a similar way as in the one-dimensional
case, i.e., B = B′ ∪ B′′, where B′′ contains only discrete values. That is, for any
k-dimensional bin Bj ∈ B′′, each dimension of Bj is a set that contains a single
one-dimensional point. Note that, however, for any Bj ∈ B′, each dimension
of Bj can either be a one-dimensional interval or a one-dimensional single-point
set. Further, we define the volume of a multi-dimensional bin Bj ∈ B using the
product measure v(Bj) (see Section 6.2.1).

Similar to one-dimensional histograms, a multi-dimensional histogram model
M can be described by a probability distribution PW,θ parametrized by the vector
θ = (θ1, . . . , θK), where K is the number of bins and θi is the Radon-Nikodym
derivative for each bin.

6.3.3 Maximum Likelihood Estimator

Given a possibly multi-dimensional histogram with K bins, we denote the
Radon-Nikodym derivative dPW,θ/dv as fh

θ and its maximum likelihood estimator
as fh

θ̂
. Observe that for any parameter θj ∈ θ, the product θjv(Bj) follows a multi-

nomial distribution. Thus, given a dataset D = {Di}i=1,...,n, with Di representing
a row, the maximum log-likelihood is denoted as and equal to

lM (D) = log fh
θ̂(D)

(D) = log
K∏
j=1

(
cj

n · v(Bj)

)cj

, (6.5)

where cj and v(Bj) are respectively the number of data points and the bin volumes
of bin j ∈ {1 . . .K}. Notice that this maximum likelihood generalizes to the purely
discrete case (i.e., multinomial distribution) where all v(Bj) = 1, and to the purely
continuous case (Scott 2015) where v becomes the Lebesgue measure.

156



Chapter 6 Interpretable Conditional Mutual Information Estimation
with Adaptive Histograms

6.3.4 Conditional Mutual Information Estimator
Combining all previous theoretical discussions, we can now estimate condi-

tional mutual information for three (possibly multivariate) random variables X,Y

and Z by
Ih(X;Y |Z) = Hh(X,Z)+Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z) .

The corresponding measure-theoretic entropies are estimated from k-dimensional
data over (X,Y, Z), where kX , kY and kZ are the corresponding number of di-
mensions of X,Y and Z. We estimate the entropies as

Hh(X,Y, Z) = −
∫
Rk

fh
θ̂
(x, y, z) log(fh

θ̂
(x, y, z))dv

Hh(X,Z) = −
∫
RkX+kZ

fh
θ̂
(x, z) log(fh

θ̂
(x, z))dv

Hh(Y, Z) = −
∫
RkY +kZ

fh
θ̂
(y, z) log(fh

θ̂
(y, z))dv

Hh(Z) = −
∫
RkZ

fh
θ̂
(z) log(fh

θ̂
(z))dv

(6.6)

in which fh
θ̂
(x, y, z) is the maximum likelihood estimator given the data, while we

obtain fh
θ̂
(x, z), fh

θ̂
(y, z), and fh

θ̂
(z) via marginalization from fh

θ̂
(x, y, z). Next,

we will prove that Ih is a strongly consistent estimator for conditional mutual
information on mixed data.

Theorem 1. Given a mixed random vector (X,Y, Z) with probability measure
PXY Z ,

lim
v′→0

lim
n→∞

Ih(X;Y |Z) = I(X;Y |Z)

almost surely, where n refers to the sample size and v′ refers to the maximum of
the histogram volumes for bins in B′ (defined in Section 6.3.2).

The proof is provided in Supplementary Material 6.9.1. Informally, our proof
is based on the following key aspects: 1) All volume-related terms in Ih cancel
out, 2) discrete empirical entropy converges to the true entropy almost surely
(Antos and Kontoyiannis 2001), and 3) in the limit, differential entropy can be
obtained by discretizing a continuous random variable into “infinitely” small bins
Cover and Thomas 2012, Theorem 8.3.1. Notably, the order of the double limit
in Theorem 1 inherently indicates that n should grow faster than the number of
bins (Rudin et al. 1964), which is also required for histograms on purely continuous
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data to converge (Scott 2015).

6.4 Learning Adaptive Histograms from Data
To efficiently estimate a histogram model that inherits the consistency guar-

antees from Theorem 1 we need to consider the following requirements. First of
all, we need to ensure that we learn a joint histogram model over (X,Y, Z). This
is due to the fact that we obtain the lower-dimensional entropies such as Hh(X,Z)

by marginalization over the likelihood estimator fh
θ̂
(x, y, z). If we would not learn

a joint model, the volume-related terms in Hh(X,Y, Z),Hh(X,Z),Hh(Y, Z), and
Hh(Z) would not cancel out. In addition, we need to make sure that the number
of bins is in o(n) and increases if we were to increase the number of samples n,
while at the same time the size of the bins decreases.

One way to achieve those properties would be to fix the bin width or the
number of bins depending on the number of samples. However, such an ap-
proach is not very flexible and does not allow for variable bin widths. To allow
for a more flexible model, we formally consider the problem of constructing an
adaptive multi-dimensional histogram as a model selection problem and employ
a selection criterion based on the minimum description length (MDL) principle
(Rissanen 1978). MDL-based model selection has been successfully used for learn-
ing one-dimensional (Kontkanen and Myllymäki 2007b) and two-dimensional his-
tograms (Kameya 2011; Yang et al. 2023), demonstrating adaptivity to both local
density changes and sample size.

We now briefly introduce the MDL principle and define the MDL-optimal
histogram model. Specifically, while previous work (Kameya 2011; Kontkanen
and Myllymäki 2007b; Yang et al. 2023) only considers purely continuous data (or
more precisely, data with arbitrarily small precision), we apply the MDL principle
to mixed-type data, based on our rigorous definition of histogram models for mixed
random variables. On top of that, we empirically show that our score fulfils the
desired properties—i.e. the number of bins grows as o(n).

6.4.1 MDL and Stochastic Complexity

The minimum description length principle is arguably one of the best off-
the-shelf model selection criteria (Grünwald 2007), which has been successfully
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applied to many machine learning and data mining tasks. The general idea is to
assign a code length to data D compressed by a model M , e.g., a histogram model.
Given a collection of candidate models, denoted as M, MDL selects the model
M∗ that minimizes the joint code length of the model and the data. Formally,
our goal is to find

M∗ = arg min
M∈M

L(D|M) + L(M), (6.7)

where L(D|M) denotes the code length1 of the data given the model, while L(M)

denotes the code length needed to encode the model.
The optimal way of encoding data D given M , in the sense that it will

result in minimax regret, is to use the normalized maximum likelihood (NML)
code (Grünwald 2007). Accordingly, the code length of the data is called stochas-
tic complexity (SC), which is defined as the sum of the negative log-likelihood
−lM (D), defined in Equation 6.5, and the parametric complexity (also called re-
gret) logR(n,K) (Grünwald 2007). The parametric complexity of a histogram
model with K bins is given by (Kontkanen and Myllymäki 2007b; Yang et al.
2023)

R(n,K) =
∑

c1+···+cK=n

n!

c1! · · · cK !

K∏
i=1

(ci
n

)ci
,

and can be computed in sub-linear time (Mononen and Myllymäki 2008).

6.4.2 Code Length of the Model

Given a dataset D with n rows and k individual columns Dj , we now define
the model class M. First, we create fixed bins according to B′′ (as defined in
Section 6.3.2) per discrete value that occurs inDj . Next, we enumerate all possible
bins for B′ with fixed precision ϵ. To this end, denote the remaining non-discrete
data points in Dj as Dc

j . If Dc
j is empty Dj corresponds to a discrete variable

and we can stop here. Otherwise, we create all possible cut points for Dc
j as C0

j =

{min(Dc
j),min(Dc

j)+ϵ, . . . ,max(Dc
j)}. By selecting a subset of cut points Cj ⊆ C0

j ,
we get a valid solution for B′. We can enumerate all possible segmentations by
enumerating each Cj ⊆ C0

j .
By repeating this process for each dimension, we obtain our model classM.

1The code length L denotes the number of bits needed to describe the given object. Hence, all logarithms
are to base 2 and 0 log 0 = 0.
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Further, we get the code length for a model M ∈M by encoding all combinations
of cut points for each dimension (Kontkanen and Myllymäki 2007b), i.e.,

L(M) =
∑

j∈{1,...,k}

L(Cj) =
∑

j∈{1,...,k}

log
(
|C0

j |
|Cj |

)
. (6.8)

This completes the definition of our final optimization score L(D|M) + L(M).
To proof consistency for this score, we need to show that the number of

selected bins grows at rate o(n). Since the theoretical analysis is rather difficult,
we instead empirically demonstrate this property for Gaussian distributed data in
Supplementary Material 6.9.3. In the next section, we present an iterative greedy
algorithm that optimizes our MDL score.

6.5 Implementation

In this section, we describe our algorithm to estimate the joint entropy
H(X1, . . . , Xk) for a k-dimensional discrete-continuous mixture random vector.

6.5.1 Algorithm

To discretize a one-dimensional random variable X, we first create bins for
the discrete values of X and then discretize the continuous values. We detect
discrete data points by checking if a single value x in the domain X of X occurs
multiple times. If a user-defined threshold t, e.g., 5 is reached, we create a bin for
this point. To discretize the remaining continuous values, we start by splitting
X into Kinit equi-width bins, which we can safely choose from the complexity
class o(

√
n) (see Supplementary Material 6.9.3). Using dynamic programming,

we compute the variable-width histogram model M that minimizes L(D,M) in
quadratic time w.r.t. Kinit (Kontkanen and Myllymäki 2007b).

Since the runtime complexity to compute the optimal variable-width his-
togram over a multi-dimensional random variable would grow exponentially w.r.t.
k, we opt for an iterative greedy algorithm (we provide the pseudocode in Sup-
plementary Material 6.9.2). We start by initializing the optimization: for every
dimension, we fix bins for the discrete values and put the remaining continuous
values into a single bin. Then, in each iteration, we compute a candidate dis-
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cretization for each dimension and keep the discretization of that dimension that
provides the highest gain in compression. To compute a candidate discretization
for a dimension Xj , we extend the one-dimensional algorithm described above.
That is, we determine those cut points for Xj that provide the highest gain in
L(D,M), while keeping the bins for the remaining dimensions fixed. We repeat
this until the maximum number of iterations imax is reached or we cannot further
decrease L(D,M).

6.5.2 Complexity

The complexity of discretizing a univariate random variable is in O(Kmax ·
(Kinit)

2) and depends on the number of initial bins Kinit and the maximum num-
ber of bins Kmax, which we typically chose as a fraction of Kinit (both in o(

√
n)).

In a multi-dimensional setting we have to multiply this complexity by the current
domain size of the remaining variables, since we have to update each bin condi-
tioned on those. In the worst case, this number is equal to (Kmax)

k−1. Overall,
we apply this procedure—if all variables are continuous—imax · k times.

6.6 Related Work

We discuss related methods for adaptive histograms and (conditional) mutual
information estimation.

Both theoretical properties and practical issues of density estimation us-
ing histograms have been studied for decades (Scott 2015). Various algorithms
have been proposed for the challenging task of constructing an adaptive one-
dimensional histogram, among which the MDL-based histogram (Kontkanen and
Myllymäki 2007b) is considered to be the state-of-the-art, as it is self-adaptive
to both local density structure and sample size and does not have any hyperpa-
rameters. Learning adaptive multivariate histograms is even harder due to the
combinatorial explosion of the search space. One approach is to resort to the
dyadic CART algorithm (Klemelä 2009); various methods designed for specific
tasks also exist (Kameya 2011; Weiler and Eggert 2007). Our algorithm is similar
to that of Kameya (Kameya 2011), but they only consider the two-dimensional
case.
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For discrete data, (conditional) mutual information estimation is a well-
studied problem (Cover and Thomas 2012; Han et al. 2015; Marx and Vreeken
2019; Paninski 2003; Valiant and Valiant 2011) and it has been shown that mutual
information can be estimated using the 3H principle (Han et al. 2015). An im-
portant observation is that for discrete data, the empirical estimator for entropy
is sub-optimal (Paninski 2003), which encouraged the design of more efficient en-
tropy estimators with sub-linear sample complexity (Han et al. 2015; Valiant and
Valiant 2011).

For estimating (conditional) mutual information on continuous data or a mix
of discrete and continuous data, three classes of approaches exist. The first class
concerns kernel density estimation (KDE) methods (Gao et al. 2016; Paninski and
Yajima 2008), which perform well on continuous data; however, no KDE-based
MI and CMI estimation methods exist that are designed for discrete-continuous
mixture random variables. Moreover, bandwidth tuning for KDE can be com-
putationally expensive, which becomes even worse for mixed data, as different
bandwidths may be needed for discrete random variables. The second class of
methods relies on k-nearest neighbour (kNN) estimates (Frenzel and Pompe 2007;
Kozachenko and Leonenko 1987; Kraskov et al. 2004), which have been established
as the state of the art (Gao et al. 2017; Rahimzamani et al. 2018). kNN approaches
can be applied not only to a mix of discrete and continuous variables, but can
also be used as consistent MI (Gao et al. 2017) and CMI (Mesner and Shalizi
2020; Rahimzamani et al. 2018) estimators for discrete-continuous mixtures. The
third class of methods first discretizes the continuous random variables and then
calculates mutual information from the discretized variables (Cover and Thomas
2012; Darbellay and Vajda 1999; Suzuki 2016). Two recent approaches based
on adaptive partitioning for mixed random variables have been proposed (Cabeli
et al. 2020; Mandros et al. 2020). While Mandros et al. (2020) focus on mutual
information and its application to functional dependency discovery, Cabeli et al.
(2020), similar to us, build upon an MDL-based score to estimate MI and CMI, to
which we compare in Section 6.7. The key difference is that Cabeli et al. (2020)
compute I(X;Y |Z) as (I(X; {Y, Z})− I(X;Z) + I(Y ; {X,Z})− I(Y ;Z))/2 and
maximize each of the four terms (with penalty terms) directly, while we first learn
a joint histogram.

To the best of knowledge, we are the first to propose a CMI estimator for
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discrete-continuous mixture variables based on discretization or histogram den-
sity estimation. Our method can consistently estimate CMI on mixed random
variables containing discrete-continuous mixtures. We focus on histogram-based
models instead of kNN estimation, since histograms are more interpretable (Scott
2015) and do not require tuning of the parameter k, which can have a large impact
on the outcome.

6.7 Experiments
In this section, we empirically evaluate the performance of our approach.

First, we will benchmark our estimator against state-of-the-art CMI estimators
on different data types. After that, we evaluate how well our estimator is suited to
test for conditional independence in a causal discovery setup. For reproducibility,
we make our code available online.2

6.7.1 Mutual Information Estimation

On the mutual information estimation task, we compare our approach to the
state-of-the-art MI estimators. In particular, we compare against FP (Frenzel and
Pompe 2007), RAVK (Rahimzamani et al. 2018) and MS (Mesner and Shalizi
2020), which all rely on kNN estimates, and MIIC (Cabeli et al. 2020), which is
a discretization-based method. All of those can be applied to our setup, but only
the authors of RAVK and MS specifically consider discrete-continuous mixture
variables. We apply MIIC using the default parameters and use k = 10 for
all kNN-based approaches.3 For our algorithm, we set the maximum number of
iterations and the threshold to detect discrete points in a mixture variable to 5, set
Kinit = 20 logn and Kmax = 5 logn. To comply with the literature, we compute
all entropies in this section using the natural logarithm.

Experiment I-IV

As a sanity check, we start with an experiment on purely continuous data.
That is, for Experiment I, letX and Y be Gaussian distributed random variables

2https://github.com/ylincen/CMI-adaptive-hist.git
3We evaluated all approaches with k = 5, 10, 20. Since k = 10 had the best trade-off and is close to

k = 7 as used by Mesner and Shalizi (Mesner and Shalizi 2020), we report those results.
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with mean 0, variance 1, and covariance 0.6. Consequently, the correlation ρ

betweenX and Y is 0.6 and true MI can be calculated as I(X;Y ) = − 1
2
log(1−ρ2).

In Experiment II,X is discrete and drawn from Unif(0,m−1), withm = 5 and Y

is continuous with Y ∼ Unif(x, x+ 2) for X = x. Therefore, I(X;Y ) = log(m)−
(m−1) log 2

m
(Gao et al. 2017). Next, for Experiment III, X is exponentially

distributed with rate 1 and Y is a zero-inflated Poissonization of X—i.e., Y = 0

with probability p = 0.15 and Y ∼ Pois(x) for X = x with probability 1− p. The
ground truth is I(X;Y ) = (1− p)(2 log 2− γ −

∑∞
k=1 log k · 2−k) ≈ (1− p)0.3012,

where γ is the Euler-Mascheroni constant (Gao et al. 2017). Last, in Experiment
IV, we generate the data according to the Markov chain X → Z → Y (see
Mesner and Shalizi (Mesner and Shalizi 2020)). In particular, X is exponentially
distributed with rate 1

2
, Z ∼ Pois(x) for X = x and Y is binomial distributed with

size n = z for Z = z and probability p = 1
2
. Due to the Markov chain structure,

the ground truth I(X;Y | Z) = 0.
For each of the above experiments, we sample data with sample size n ∈

{100, 200, . . . , 1 000} and generate 100 data sets per sample size. We run each of
the estimators on the generated data and show the mean squared error (MSE) of
each estimator in Figure 6.1. Overall, our estimator performs best or very close to
the best throughout the experiments and reaches an MSE lower than 0.001 with
at most 1 000 samples. The best competitors are MS and MIIC; however, both
are biased when we consider discrete-continuous mixture variables, as we show in
Experiment V.

Experiment V

Next, we generate data according to a discrete-continuous mixture (Gao et al.
2017). Half of the data points are continuous, with X and Y being standard Gaus-
sian with correlation ρ = 0.8, while the other half follows a discrete distribution
with P (1, 1) = P (−1,−1) = 0.4 and P (1,−1) = P (−1, 1) = 0.1. In addition, we
generate Z independently with Z ∼ Binomial(3, 0.2). Hence the ground truth is
equal to I(X;Y ) = I(X;Y | Z) = 0.4·log 0.4

0.52
+0.1·log 0.1

0.52
− 1

4
log(1−0.82) ≈ 0.352.

In Figure 6.2 (top) we show the mean and MSE for this experiment. We see
that our estimator starts by overestimating the true value, but its average quickly
converges to the true value, while the competing estimators seem to have a slightly
positive or negative bias. Especially FP and MIIC, which were not designed for
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Figure 6.1: Synthetic data with known ground truth. Ordered from top-left to bottom-
right, we show the MSE for Experiments I-IV, for our estimator and competing algorithms
MS, RAVK, FP and MIIC.

this setup, have a clear bias even for 1 000 data points. The same trend can be
observed for MSE.

Experiment VI

Last, we test how sensitive our method is to dimensionality. We generate X

and Y as in Experiment II, but fix n to 2 000 and add k independent random
variables, Zk ∼ Binomial(3, 0.5).

Figure 6.2 (bottom) shows the mean and MSE. Our estimator recovers the
true CMI up to a negligible error up to k = 2. After that, it starts to slowly
underestimate the true CMI. This can be explained by the fact that the model
costs increase linearly with the domain size and hence, we will fit fewer bins to
the continuous variable for large k. We validated this conjecture by repeating the
experiment for n = 10 000. On this larger sample size, the MSE for our estimator
remained below 0.001 even for k = 4. While MIIC is slightly more stable for
k ≥ 3, the competing kNN-based estimators deviate quite a bit from the true
estimate for higher dimensions.

Overall, we are on par with or outperform the best competitor throughout Ex-
periments I–VI. Especially on mixture data, which is our main focus, our method
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Figure 6.2: Top row: Experiment V, where we show the mean of the estimators (left)
with the true CMI as a dashed gray line and the MSE (right). Bottom row: Experiment VI,
where the sample size is constant at 2 000 and the x-axis refers to the number of dimensions
of Z. We show the mean (left) and MSE (right). The color coding is chosen as in Figure 6.1.

is the only one that converges to the true estimate.

6.7.2 Independence Testing

In theory, two random variables X and Y are conditionally independent given
a set of random variables Z, denoted as X ⊥⊥Y | Z, if I(X;Y | Z) = 0. Vice
versa, X and Y are dependent given Z, if I(X;Y | Z) > 0. In practice, we cannot
simply rely on our estimator to conclude independence: due to the monotonicity
of mutual information, i.e., I(X;Y ) ≤ I(X;Y ∪Z), estimates will rarely be exactly
zero in the limited sample regime, but only close to zero (Marx and Vreeken 2019;
Vinh et al. 2014). To address this problem, we use our algorithm to discretizeX,Y

and Z, and compute IC(X;Y |Z) := max{0, In(Xd;Yd|Zd)+Cn(Xd;Yd|Zd)}, where
Cn is a correction term calculated from the discretized variables, which is negative.
In the following, we evaluate our estimator with two different correction criteria.
The first one is a correction for mutual information based on the Chi-squared
distribution, with Cn equal to −Xα,l/2n (Vinh et al. 2014), where Xα,l refers to
the critical value of the Chi-squared distribution with significance level α and
degrees of freedom l. We can compute the degrees of freedom l from the domain
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Figure 6.3: Synthetic network with continuous (white), discrete (gray) and mixed
(shaded) random variables consisting of different causal structures, such as colliders, a chain
(C → E → G), and a fork (C ← B → D).

sizes of the discretized variables for the conditional case as l = (|X | − 1)(|Y| −
1)|Z| (Suzuki 2019), and for the unconditional case as l = (|X | − 1)(|Y| − 1).
For the second correction, we replace each empirical entropy in In(Xd;Yd|Zd)

with its corresponding stochastic complexity term as defined in Section 6.4.1.
If we subtract the regret terms for Hn(Xd, Yd, Zd) and Hn(Zd) from those for
Hn(Xd, Zd) and Hn(Yd, Zd), we are guaranteed to get a negative value, thus a
valid regret term (Marx and Vreeken 2019). In the following, we refer to the
test using the Chi-squared correction as IX 2 and to the one based on stochastic
complexity as ISC.

To test how well IX 2 and ISC perform on mixed-type and continuous data, we
benchmark both against state-of-the-art kernel-based tests RCIT and RCoT (Strobl
et al. 2019), as well as JIC (Suzuki 2016), and MIIC (Cabeli et al. 2020), which
are both discretization-based methods using a correction based on stochastic com-
plexity.4 To apply RCIT and RCoT on mixed data, we treat the discrete data
points as integers. In the following, we evaluate the performance of each test in a
causal discovery setup. In addition, we provide a more detailed description of the
data generation and experiments on individual collider and non-collider structures
in Supplementary Material 6.9.3.

Causal Discovery

To evaluate our test in a causal discovery setting, we generate data according
to a small synthetic network—shown in Figure 6.3—that consists of a mixture of
generating mechanisms that we used in experiments I-IV and includes continuous

4Note that MIIC calculates stochastic complexity based on factorized NML and JIC uses an asymptotic
approximation of stochastic complexity, while we use quotient NML for ISC (Marx and Vreeken 2019;
Silander et al. 2018).
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Figure 6.4: Precision (left) and recall (right) on undirected graphs inferred using the PC-
stable algorithm equipped with the corresponding independence test. The data is generated
from the graph shown in Figure 6.3.

and discrete (ordinal) random variables and one mixture variable, which is par-
tially Gaussian and partially Poisson distributed (for details see Supplementary
Material 6.9.3). To evaluate how well the ground truth graph can be recovered,
we apply the PC-stable algorithm (Colombo and Maathuis 2012; Spirtes et al.
2000) equipped with the different independence tests, where we use α = 0.01 for
IX 2 , RCIT and RCoT.

Fig 6.4 shows recovery precision and recall for the undirected graph, averaged
over 20 draws per sample size n ∈ {100, 500, 1 000, 2 000, 5 000, 10 000}.

We see that overall IX 2 performs best and is the only method that reaches
both a perfect accuracy and recall. While JIC also reaches a perfect recall, it finds
too many edges leading to a precision of only 80%. Although also MIIC, RCIT
and RCoT have a perfect precision, their recall is worse than for IX 2 . Neither
of the kernel-based tests manages to recall all the edges even for 10 000 samples.
After a closer inspection, this is due to the edge E → G that involves the discrete-
continuous variable G. If we compare IX 2 to ISC, we clearly see that the latter is
too conservative, which leads to a bad recall.

6.8 Conclusion

We proposed a novel approach for the estimation of conditional mutual infor-
mation from data that may contain discrete, continuous, and mixture variables.
To be able to deal with discrete-continuous mixture variables, we defined a class
of generalized adaptive histogram models. Based on our observation that CMI
for mixture-variables can be written as a sum of entropies, we presented a CMI
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estimator based on such histograms, for which we proved that it is consistent.
Further, we used the minimum description length principle to formally define

optimal histograms, and proposed a greedy algorithm to practically learn good
histograms from data. Finally, we demonstrated that our algorithm outperforms
state-of-the-art (conditional) mutual information estimation methods, and that it
can be successfully used as a conditional independence test in causal graph struc-
ture learning. Notably, for both setups, we observe that our approach performs
especially well when mixture variables are present.

6.9 Supplementary Material

The supplementary material is structured as follows. First, we provide proofs
for all lemmas and theorems. After that, we provide the pseudocode for our algo-
rithm. Last, we provide additional experiments and details for the data generation
for the causal discovery experiment.

6.9.1 Proofs

Proof of Lemma 1

Proof. Given a Borel set A ⊆ R such that v(A) = u(A ∩ Sc) + |A ∩ Sd| = 0, we
have u(A∩ Sc) = 0 due to non-negativity of any measure, as well as |A∩ Sd| = 0.
Since A ∩ Sc ⊆ Sc, by the definition of Sc we have P (A ∩ Sc) = 0. It remains to
show that A ∩ Sd = ∅, which we do by contradiction. Assume that A ∩ Sd ̸= ∅,
then there exists x ∈ A ∩ Sd s.t. for a set containing only x, |{x}| = 1. Then
|A ∩ Sd| ≥ |{x}| = 1, which contradicts |A ∩ Sd| = 0. Thus, we must have
A ∩ Sd = ∅ and then PX(A) = 0.

Proof of Lemma 2

Proof. Given a k-dimensional Borel set A, there exist one-dimensional Borel sets
A1, . . . , Ak such that A = A1 × . . . × Ak. If v(A) = 0, then there exists at least
one vi, i ∈ {1, . . . , k}, such that vi(Ai) = 0. Thus, by Lemma 1, PWi

(Ai) = 0 ⇒
PW (R× . . .× R× Ai × R× . . .× R) = 0⇒ PW (A) = 0, as A = A1 × . . .× Ak ⊆
R× . . .× R×Ai × R× . . .× R.
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Proof of Lemma 3

Proof. We first proof the statement for Z ̸= ∅, for which we can write I(X;Y |Z) =

I(X; {Y, Z})− I(X;Z) by the chain rule for mutual information. Thus, it suffices
to prove that I(X;Z) = H(X) + H(Z) − H(X,Z) and I(X; {Y, Z}) = H(X) +

H(Y, Z) − H(X,Y, Z). Next, denote v as the product measure defined based
on (X,Z), where v = v1 × . . . × vkXZ , and kXZ is the number of dimensions of
X plus that of Z; then by Lemma 2, we also have PXZ ≪ v. Then, we show
that PXPZ ≪ v. For some kXZ-dimensional Borel set A = A1 × . . . × AkXZ

satisfying v(A) = 0 there exists vi ∈ {v1, . . . , vkXZ} such that vi(Ai) = 0. Hence,
PXPZ(A) = 0 because 0 ≤ PXPZ(A) = PXPZ(A1 × . . . × AkXZ

) ≤ PXPZ(R ×
. . .R×Ai×R . . .×R) = Pi(Ai) = 0, where Pi is the marginalization of the product
measure PXPZ to the ith dimension and Pi(Ai) = 0 is because vi(Ai) = 0 by the
definition of v.

Finally, by the chain rule of the Radon-Nikodym derivative we have that

I(X;Z) =

∫
log dPXZ

dPXPZ

dPXZ (6.9)

=

∫
log dPXZ/dv

dPXPZ/dv
(dPXZ/dv)dv (6.10)

= H(X) +H(Z)−H(X,Z) . (6.11)

The proof for I(X; {Y, Z}) is equivalent. If Z = ∅, CMI reduces to I(X;Y ), for
which we can prove the statement in the same manner.

Proof of Theorem 1

To proof Theorem 1 we need several intermediate results. Lemma 6 shows
that a histogram results in a valid discretization as all terms corresponding to
volumes in Ih cancel out, and hence Ih can be written as a sum of plug-in estima-
tors of discrete entropies. Then, Lemma 4 shows a classic result that the plug-in
estimator of discrete entropies will converge to the true entropy almost surely.
Further, we show in Lemma 5 that as the volumes of histogram bins containing
continuous values go to 0, the true entropies of discretized variables (which are
discretized by the histogram) converges to the true entropy of original variables.

Definition 1. Given discrete random variables Xd, Yd, Zd (possibly multi-dimensional),
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with support SX
d , SY

d , SZ
d , and given dataset D = (xi, yi, zi)i∈{1,...,n} with sample

size n, the plug-in estimator of discrete entropy H is denoted and defined as

Hn(Xd, Yd, Zd) = −
∑

j∈SX
d ×SY

d ×SZ
d

p̂(j) log p̂(j)

with probability estimates

p̂(j) =
|{(xi, yi, zi)i∈{1,...,n} : (xi, yi, zi) = qj}|

n
,

where | · | represents the cardinality of a set, and qj is the jth element in SX
d ×

SY
d × SZ

d .

Lemma 4. Given a discrete random vector (Xd, Yd, Zd), limn→∞Hn(Xd, Yd, Zd) =

H(Xd, Yd, Zd) almost surely (Antos and Kontoyiannis 2001).

Lemma 5. Given a random vector (X,Y, Z) that contains discrete-continuous
mixture random variables, with bins B = B′ ∪ B′′ and the resulting discretized
random vector (Xd, Yd, Zd), where B′′ contains discrete data points (of which
every dimension has a discrete value) and B′ = B \B′′, we have

lim
v′→0

H(Xd, Yd, Zd) = H(X,Y, Z) ,

where v′ = maxBj∈B′(v(Bj)).

Proof. Firstly, it is well-known that this result holds if (X,Y, Z) is a continuous
random vector (Cover and Thomas 2012); then, if (X,Y, Z) contains mixture
variables,

H(X,Y, Z) = lim
v′→0

∑
Bj∈B′

PXdYdZd

v(Bj)
log PXdYdZd

v(Bj)
(6.12)

+
∑

Bj∈B′′

PXdYdZd

v(Bj)
log PXdYdZd

v(Bj)
(6.13)

= lim
v′→0

H(Xd, Yd, Zd) , (6.14)

which concludes the proof.

Definition 2. Given a random vector (X,Y, Z) that contains mixture variables,
and an adaptive grid B, we define the discretized random variable Xd, Yd, Zd, with
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probability measure (probability mass function)

PXd,Yd,Zd
((j1, j2, j3)) =

∫
Bj

dXY Z

dv
dv ,

where Bj denotes the jth bin of B.

Lemma 6. Given a k-dimensional random vector (X,Y, Z) that contains mixture
variables with an unknown probability measure PXY Z , a dataset D = (xi, yi, zi)i∈{1,...,n}

generated by PXY Z , a histogram model M , and corresponding discretized random
vector (Xd, Yd, Zd), we have Ih(X,Y |Z) is equal to

Hn(Xd, Zd) +Hn(Yd, Zd)−Hn(Xd, Yd, Zd)−Hn(Zd) .

That is, the terms corresponding to volumes in Ih cancel out and our histogram
model results a valid discretization.

Proof. Denote the adaptive grid of histogram model M as BXY Z , which is the
Cartesian product of bins defined on X,Y, Z—i.e. BXY Z = BX ×BY ×BZ , and
denote the corresponding MLE of histogram density function as fh

θ̂XY Z
. Further,

define a function vX , such that for each xi in D, vX(xi) = v(BX
j ) if xi ∈ BX

j ,
where BX

j is a bin of BX and v is defined based on the random variable X. Then,
define vY , vZ , vXZ , vY Z , vXY Z similarly.

By the definition Ih(X,Y |Z) is equal to

Hh(X,Z) +Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z) .

First consider Hh(X,Z). We write BXZ = BX × BZ , with marginal density
function fh

θ̂XZ
. W.l.o.g. suppose that BXZ consists of K bins, denoted as BXZ

j , j ∈
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{1, . . . ,K}. Then,

Hh(X,Z) = −
∫
RkX+kZ

fh
θ̂XZ

log fh
θ̂XZ

dv

= −
K∑
j=1

∫
BXZ

j

fh
θ̂XZ

log fh
θ̂XZ

dv

= −
K∑
j=1

cj log
(

cj
nv(Bj)

)

= −
K∑
j=1

cj log
(cj
n

)
+

n∑
i=1

log(vXZ(xi, zi))

= Hn(Xd, Zd) +
n∑

i=1

log(vXZ(xi, zi)) ,

(6.15)

where cj is the number of data points in Bj and vXZ(xi, zi) = vX(xi)vZ(zi). The
remaining entropies can be calculated similarly. Hence, Ih(X,Y |Z) = Hn(Xd, Zd)+

Hn(Yd, Zd)−Hn(Xd, Yd, Zd)−Hn(Zd), as the sum of the volume related terms

n∑
i=1

log(vXZ(xi, zi)) +
n∑

i=1

log(vY Z(yi, zi)) (6.16)

−
n∑

i=1

log(vXY Z(xi, yi, zi))−
n∑

i=1

log(vZ(zi)) (6.17)

is equal to zero.

To proof Theorem 1, we link the above results:

lim
v′→0

lim
n→∞

Ih(X;Y | Z)

= lim
v′→0

lim
n→∞

(Hh(X,Z)+Hh(Y, Z)−Hh(X,Y, Z)−Hh(Z))

= lim
v′→0

lim
n→∞

(Hn(Xd, Zd)+Hn(Yd, Zd)−

Hn(Xd, Yd, Zd)−Hn(Zd))

= lim
v′→0

(H(Xd, Zd)+H(Yd, Zd)−H(Xd, Yd, Zd)−H(Zd))

=I(X;Y | Z) .

(6.18)
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6.9.2 Implementation Details

As discussed in Section 6.5, our goal is to find that discretization that min-
imizes the joint entropy over a set of k random variables via an iterative greedy
algorithm. We provide the pseudocode in Algorithm 6. As input, we are given
a dataset D = {D1, . . . , Dk} consisting of n rows and k columns, representing
a sample of size n from a k-dimensional random vector X, and a user-specified
parameter imax specifying the maximum number of iterations. First, we initialize
the discretization Xd (line 1) by creating single bin histograms for the continuous
points in Dj and a bin with bin-width 1 per discrete point. To detect the latter,
we check if there exist |{x ∈ Xj | Dj = x}| ≥ t, where t is a user-defined thresh-
old. After that, we iteratively update the discretization for that Xj providing the
highest gain in stochastic complexity, until either the score cannot be improved or
the maximum number of iterations has been reached (lines 3 – 13). To update the
discretization of a variable Xj we call the function refine (line 6), which receives
as input the data Dj and the discretization after iteration i. It then re-discretizes
Xj using an extension of the dynamic programming algorithm by Kontkanen and
Myllymäki (2007b). In essence, instead of simply discretizing Xj independently
of the remaining variables, we keep the discretizations for all Xi ̸= Xj fixed and
find the optimal histogram model M∗ over Xj s.t. the overall score L(D,M) is
minimized.

6.9.3 Data Generation and Additional Experiments

In the following, we first provide an empirical analysis on how the number
of bins depends on the number of samples, then we give the details of the data
generation for the experiments carried out on the synthetic causal network and
last we provide additional experiments to evaluate IX 2 and ISC.

Sample Size and Number of Bins

As discussed in Section 6.3, an important requirement to ensure consistency
is that the number of bins grows as a sub-linear function w.r.t. the number
of samples. We demonstrate that MDL-optimal histograms have this desirable
property when learned on one-dimensional Gaussian distributions in Figure 6.5:
the number of bins K grows with n, but slower than

√
n. In addition, for multi-
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Algorithm 6: Discretization of a Mixture Model
Input: Data D = {D1, . . . , Dk} representing a sample from a

k-dimensional random vector X, maximum number of iterations
imax

Output: Discretization Xd

1 Xd ← init(D) ▷ Initialize the discretization;
2 i← 1;
3 while Xd changes ∧ i ≤ imax do
4 Xi

d ← Xd;
5 for j ∈ {1, . . . , k} do
6 Xij

d ← refine(Dj | Xd) ▷ Refine discretization;
7 if Score(Xij

d ) < Score(Xi
d) then

8 Xi
d ← Xij

d ;

9 Xd ← Xi
d;

10 i← i+ 1;

11 return Xd ▷ Return final discretization;

dimensional data, for which we can only approximate the histogram model that
minimizes L(D,M), we observe that if the number of dimensions increases, the
average number of bins per dimension decreases if we keep n fixed.

Synthetic Network

Here, we describe the data generation for the synthetic network shown in
Figure 6.3. The source nodes of the network are A and B. A is generated as
A ∼ Exp(1) and B ∼ Unif(0, 4) (discrete). To get B → C we generate C as
C ∼ Binom(b, 0.5) for B = b, for B → D we sample D as D ∼ N(b − 2, 1) for
B = b and E is sampled is exponentially distributed with rate 1

c+1
for C = c. F is

generated as a function of C and D. First, we generate C ′ by rounding the values
of C and then we write F as F = D

C′
2 +N(0, 1). Last, we generate G as the zero

inflated Poissonization of A. Let E′ = sign(E−1)+1
2

, which ensures that E′ is either
zero or one dependent on the value of E. Then G ∼ N(a, 1) if E′ = 0 and A = a,
and G ∼ Poisson(a) for A = a if G = 1.
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Figure 6.5: Left: Average number of bins k to discretizeX ∼ N(0, 1) for increasing sample
sizes (20 repetitions). Right: Per dimension of a multivariate Gaussian distribution with
Xi⊥⊥Xj and Xi ∼ N(0, 1), we show the average number of bins (n = 2000, 20 repetitions).

Detecting Collider and Non-Collider Structures

To evaluate how well IX 2 and ISC can identify conditional (in)dependencies,
we evaluate both variants on various generating mechanisms that involve collider
and non-collider structures. Those structures are at the core of causal discovery,
since collider structures can be inferred by detecting conditional dependencies,
while non-collider structures impose conditional independencies. As in the causal
discovery experiment, we set α = 0.01 for IX 2 , RCIT and RCoT.

Collider Structures We generate data according to a collider structure, which
can be represented by a directed acyclic graph as, e.g., X → Z ← Y . Accord-
ing to this structure, we model X and Y by some distribution and write Z as a
non-deterministic function of X and Y . We generate data for different generating
mechanisms, including two continuous and four mixed settings.

1. X ⊥⊥Y and X,Y are either drawn from N(0, 1) or Uniform(−2, 2). Z is an
additive function of polynomials up to degree three or the tangent function
plus additive noise N ∼ N(0, 0.1)—e.g. Z = X3 + tan(Y ) + N . We pick
the type of the distribution of X,Y , as well as the function type, uniform at
random.

2. X,Y are drawn from a standard Gaussian distribution, with X ⊥⊥Y and
Z = sign(X · Y ) · Exp(1/

√
2).

3. X,Y ∼ N(0, 1) with X ⊥⊥Y and Z = sign(X ·Y ), where we randomly assign
a z ∈ Z to 10% of the values in Z to make the function non-deterministic.
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Figure 6.6: Accuracy for detecting continuous (left) and mixed-type (right) dependen-
cies in collider structures (top) and independencies in non-collider structures (bottom) for
different sample sizes.

4. X ∼ N(0, 1), Y ∼ Poisson(λ), with parameter λ selected uniformly at
random from {1, 2, 3}. We generate Z as X modulo Y and assign 10% of
the data points randomly.

5. X,Y are unbiased coins. Z ′ = X ⊕ Y , where ⊕ denotes the xor operator.
From Z ′ we calculate Z as N(0, 0.1) if Z ′ = 0 and Poisson(5) · N(0, 0.1)

under the condition that Z ′ = 1.

6. We generateX,Y and Z ′ as above, but this time we generate Z as Poisson(5)+
N(0, 0.1) if Z ′ = 1 and as N(0, 0.1) if Z ′ = 0.

For each generating mechanism, including two purely continuous and four mixed
mechanisms, we generate 100 data sets and report the averaged results, separately
for the continuous and mixed data, in Figure 6.6 (top). On the continuous data,
both of our approaches perform on par with RCIT and JIC for more than 400

data points, whereas MIIC has a slightly better performance and RCoT is not
able to detect the dependence for the sign function and hence has an accuracy of
about 50%. Since the functions for mixed data include an xor and the modulo
operator, it is difficult to treat all discrete variables as ordinal and hence RCIT
only reaches up to 80% accuracy—which is mostly due to an xor determining the
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scaling of a Gaussian distributed variable. On the other hand, both of our tests
perform very well and only need 400 samples to obtain an accuracy close to 100%.
JIC and MIIC perform on par with our tests.

Non-Collider Structures Similar to collider structures, there also exist non-
collider structures of the form X → Z → Y or X ← Z → Y . In both cases, the
ground truth is that X ⊥⊥Y | Z. To simulate data according to these graphs,
we consider two continuous mechanisms based on polynomial functions and two
mixed generating mechanisms.

1. X ∼ N(0, 1), Z is an additive noise function of X and Y is an additive noise
function of Z. The functions can be polynomials up to degree three or the
tangent function.

2. Z ∼ N(0, 1), X and Y are independent additive noise functions of Z, as
defined above.

3. X,Y and Z are generated as in Experiment IV.

4. X and Y are generated according to Experiment II and Z ∼ N(µ, x) for
X = x and µ ∈ [−4, 4].

In essence, Figure 6.6 (bottom) shows that both our tests obtain almost perfect
accuracies for the continuous and mixed data, whereas RCIT and RCoT fail to
detect up to 20% of the independencies for continuous data, MIIC does not detect
up to 11% and JIC seems to generally overestimate dependencies for those test
cases. If we consider these results in comparison to the results for detecting depen-
dencies for the collider setting, we suspect that both MIIC and JIC have a larger
tendency to falsely detect dependencies, while our approach is more conservative
and hence needs more samples to detect true dependencies.
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Summary

The importance of interpretability is widely accepted in machine learning
tasks in which humans are responsible for making a decision for taking action.
In such scenarios, it is crucial for domain experts to trust the machine learning
model. As a result, research on interpretable machine learning has received a
lot of attention in recent years. This dissertation contributes to this area by
proposing intrinsically interpretable and transparent methods for supervised and
unsupervised tasks, both for predictive modeling and for knowledge discovery.

In this Chapter we provide our conclusions.

7.1 Summary

Truly Unordered Rule Sets. In the field of rule set models, we considered
the problem of increasing the interpretability of rule set models by removing the
ad-hoc schemes for handling conflicts caused by overlaps of rules, in which an
overlap refers to a subset of instances covered by multiple rules simultaneously.

In order to achieve this goal, we first considered allowing overlaps for express-
ing uncertainty and exception, which eliminated the need for imposing implicit
orders among rules. Building upon it, we next formally defined truly unordered
rule set (TURS) models, which informally only “allow” rules with similar outputs
to overlap. Lastly, we showcased through a case study with patient data collected
at Leiden University Medical Center that our TURS model paves the way to in-
teractive rule learning. That is, the rule set model can be automatically updated
with feedback from domain experts.

Multi-dimensional MDL-based Histograms. We studied multi-dimensional
MDL-based histograms, which can be used as a transparent tool for various tasks
in machine learning and data mining, including density estimation, explanatory
data analysis, discretization, entropy estimation, and conditional mutual informa-
tion estimation. With a series of papers, we first extended the one-dimensional
MDL-based histogram to the two-dimensional case and showcased its use for ana-
lyzing spatial datasets. Secondly, we extended MDL-based histograms for analyz-
ing multi-dimensional and mixed-type datasets (with discrete-continuous mixture
variables), specifically for analyzing its dependency structures via conditional mu-
tual information estimation.
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7.2 Answers to Research Questions

In the following, we revisit the proposed research questions and provide our
answers and a discussion for each of them.

Research Question 1: How can we formalize rule sets as probabilistic models such
that rules are independent of each other? Further, how to learn such a model from
data?

A set of rules, when put together, can form a global model for the whole
dataset. While defining a single rule as a local probabilistic model is straightfor-
ward (given that the target variable is discrete for classification tasks), defining
a global model for a rule set is far more complicated, mostly due to the nuisance
caused by overlaps, i.e., one instance covered by multiple rules at the same time.

To remove implicit and explicit orders among rules, we treated rules equally,
i.e., one rule does not have a higher “quality” than the other. We started by
considering the informal implication of an overlap of two rules; i.e., what is the
implication of the overlap in the sense that why the instances covered by the
intersection of these two rules cannot form a rule on itself (by concatenating
the conditions of the two rules)? This leads to our justification of the overlap:
if the class probabilities of the instances covered by the overlap are not very
different from those of the instances covered by each single rule respectively, it is
not desirable to separate the instances in the overlap to nether of the two rules.
Informally, this can be caused by close class probability estimates and/or by a
small sample size of the overlap (which leads to a large variance). In this case, we
interpret overlaps as “uncertainty”, in the sense that we do not have enough data
to decide that the instances covered by the overlap “belong” to a single rule.

Thus, our first answer to Research Question 1 is that we treat over-
lap as uncertainty when formalizing rule sets as probabilistic models.
This approach is very different from previous methods, which either minimize the
size of overlaps or takes post-hoc conflict resolving schemes.

Further, when regarding an overlap as uncertainty, an overlap of two rules,
e.g., rule Si and rule Sj , can be interpreted as “instances that are covered by the
overlap “belong” to rule Si or rule Sj”, in which the “or” represents uncertainty.
This intuition motivated us to consider taking the union of rules for modeling
instances covered by the overlap, which leads to our second answer to the proposed
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research question.
Our second answer to Research Question 1 is that we formally de-

fine a probabilistic model for any given rule set that may have overlaps,
i.e., the truly unordered rule set (TURS) model. The key innovation
is to define

P (Y = y|X = x) := P (Y |{X ∈ ∪Si}), ∀x ∈ ∩Si.

In this way, the likelihood of a TURS model incorporates how different the
class probability estimates of rules that form an overlap are. Thus, we now only
“allow” overlaps that have similar class probability estimates by penalizing the
situation when two rules with very different class probability estimates overlap.

Lastly, as learning a TURS model from data requires taking into consideration
modeling overlaps, existing formalizations of the problem of learning rules from
data cannot be applied to learning a TURS model. Also, existing rule learning
algorithms cannot be used directly or with modification easily.

Therefore, our third answer to Research Question 1 is that we
formally defined the problem of learning a TURS model as an MDL-
based model selection problem, and we developed a novel heuristic
algorithm for finding good models.

Introducing the MDL principle removes the regularization parameter for con-
trolling the model complexity. Setting such regularization parameters in an ad-
hoc way reduces the algorithm transparency, while tuning it with cross-validation
can be time-consuming. Moreover, our algorithm is equipped with several al-
gorithmic innovations, including 1) taking “patience” into account, 2) using a
dual-beam, and 3) using a look-ahead strategy based on a MDL-based local test.
Our algorithm is shown to have competitive predictive performance and simple
model complexity; further, more importantly, the TURS models learned by our
algorithm are shown to be empirically “truly unordered”, in the sense that the
predictive performance is hardly affected by randomly chosen rules for making
predictions for instances covered by overlaps.

Research Question 2: How can we construct parameter-free two-dimensional his-
tograms with transparent and informative patterns (bins)?

Eliminating user-defined parameters for controlling the bin sizes of histograms
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increases the transparency of how a histogram model is obtained from data.
Hence, the ambiguity to data analysts caused by different histograms showing
different data summarization is removed.

In order to remove parameters that control the bin sizes of histograms, we
formalize the problem of learning such histogram models as an MDL-based model
selection problem. That is, we adopted the MDL principle to define the “optimal”
model for such an unsupervised task and formalized the best model as the one
that leads to the best compression of data and model together.

In addition, to obtain more interpretable bins (patterns) in the sense that
1) instances within each bin can be considered to have homogeneous density,
and 2) neighboring bins have different densities, we proposed a greatly flexible
model class that includes any data partition formed by unions of disjoint rect-
angles. Lastly, we developed an efficient algorithm that combines top-down and
bottom-up search, and showcased that the learned two-dimensional histograms
carry meaningful patterns that generalize well to unseen data, both on simulated
datasets with known ground truth and real-world case study datasets.

Thus, our answer to Research Question 2 is to formalize the prob-
lem of learning a two-dimensional histogram based on the MDL prin-
ciple, and to obtain more informative patterns (bins) by 1) considering
dependencies between dimensions and 2) using more flexible data par-
titions.

Research Question 3: How can we construct a multi-dimensional adaptive histogram-
based model for interpretable CMI estimation?

Learning dependency structure via estimating the conditional mutual infor-
mation (CMI) is a challenging task, especially when the data contains mixed types
(discrete, continuous, and possibly also discrete-continuous mixtures).

To construct histograms for mixed type data, we first formalized the problem
of estimating CMI for mixed type data. Specifically, we adopted measure-theoretic
tools to prove that the CMI for mixed-type data can be written as the sum of
four entropy terms, just like the CMI for purely continuous and discrete data.

Further, we proposed an entropy estimator based on multi-dimensional his-
togram models, and consequently a plug-in estimator for CMI. Next, we for-
malized the problem of learning a multi-dimensional adaptive histogram as an
MDL-based model selection task. Leveraging the MDL principle reduced the
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hyper-parameters to be set and hence increased the transparency of how a model
is obtained. Lastly, we proposed an alternating algorithm for learning such a
multi-dimensional histogram from data and showcased the effectiveness of such
an approach by benchmarking against competitor methods in various tasks that
involve CMI estimation.

In conclusion, our answer to Research Question 3 is 1) to adopt
the MDL principle to formalize the learning problem, 2) to leverage
the measure-theoretic definition of entropy for mixed-type of data, and
3) to design an alternating algorithm for learning such a histogram
form data.

7.3 Future Work

We conclude this chapter by discussing a few possible future work directions
following this dissertation.

First, we consider a crucial problem to formally define human comprehensibil-
ity as a measure in interpretable machine learning, which characterizes how easy a
machine learning model can be comprehended by a human. Notably, the concept
of human comprehensibility may be defined both for intrinsically interpretable
models and explainable artificial intelligence (XAI) methods that provide post-
hoc explanations for black-box models. One key challenge is to properly define
the “required level” of human comprehension, which can be different for various
machine learning tasks.

Second, it is a fundamental research question to formalize as an optimization
problem the task of automatic model updating given human feedback, which is the
cornerstone of any interactive machine learning system. One potential approach
is to borrow the idea from the subjective interestingness in information-theoretic
data mining (De Bie 2011a,b). However, subjective interestingness in data mining
is, informally, about maximizing the “surprisingness” to the data miner based on
their prior “beliefs” about the dataset. Thus, the goal is to search the pattern with
the maximum amount of information in the data that the user does not know. In
contrast, to formalize automatic human-guided model updating, the goal could be
set as searching for a model that maximizes the “trust” from human users. As an
example, such a model could be a probabilistic rule set that contains rules that
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the user knows or considers trustworthy.
Third, further research about how to develop a flexible interactive data explo-

ration system may be another crucial component for human-in-the-loop machine
learning systems. It may be useful for building trust between humans and models
if we allow human users to explore subsets of datasets with the help of specific
types of machine learning models, including examining the statistical characteris-
tics of (subsets of) datasets.
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Summary

Data is recorded wherever digital systems are. For instance, websites and
mobile phone applications record how people interact with them. Sensors measure
and record parameters (such as temperature) of the manufacturing process of
industrial products. Financial computer software systems record transactions of
financial activities. Similarly, healthcare information management systems record
conditions of patients.

Such data can be used to reveal information about the physical process that
‘generates’ them. Research in the field of data mining and machine learning con-
cerns developing models and algorithms that can extract and leverage information
contained in the dataset effectively and efficiently.

For instance, the information revealed from the medical records of a large
number of patients in a hospital can be used to understand why a certain con-
dition is very risky for one type of patient but not for the rest. Additionally,
monitoring systems can be developed to automatically alert medical staff to dan-
gerous situations for hospitalized patients

This dissertation focuses on developing new methods that can construct
partition-based models from data. By partitioning a dataset into subsets where
each subset is homogeneous from certain perspectives, a partition-based model
extracts data regularities, such as patterns indicating which types of patients in
hospitals are at risk for certain diseases. It also makes data-driven predictions,
such as raising alarms for potentially dangerous situations. Thus, the goal is to
develop data mining and machine learning methods that partition the data at
hand ‘properly’—the concept of properness in this dissertation is defined based
on an information-theoretic approach.

Specifically, we focus on studying partition-based models for different tasks,
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including interpretable multi-class classification, data discretization and summa-
rization, and dependency structure learning. First of all, for interpretable multi-
class classification, we develop an interpretable machine learning algorithm that
can extract probabilistic rules from data. As an example, a probabilistic rule could
be If weather is foggy and flight time is before 9 am, Then the probability of a
flight delay is 10%. Moreover, our developed method is applied to a case study to
predict the risk of patients in the ICU of a hospital being readmitted to the ICU
after they are discharged, in which we showcase that the model can improve itself
by incorporating feedback from medical experts—a pilot study towards human-AI
collaboration.

Further, we consider the task of discretization and summarization of two-
dimensional datasets, with the potential use case of summarizing destinations of
trajectories recorded by GPS devices. The corresponding research question is
how to partition datasets that record the locations with a self-adaptive granular-
ity, neither too coarse nor too refined, as the former means a large amount of
information is lost while the latter means noise instead of regularities in the data
is captured.

Lastly, we study the problem of understanding ‘(conditional) dependency’
structure in data, which is about developing algorithms that can automatically
draw conclusions like ‘the risk of forest fire is independent of which month it is,
conditioned on the temperature and humidity’ from data (i.e., once the tempera-
ture and humidity are known, the risk of forest fire is the same no matter what
month it is). Both theoretical and methodological research is conducted specifi-
cally for a challenging data type, i.e., the mixture of discrete and continuous val-
ues. For instance, forest fire historic data are often recorded in this type, which
contains ‘no fire’ (a discrete label) and ‘area of fires’ (a quantitative, continuous
value).

To sum up, partition-based models are studied for various tasks, with the
goal of making them more interpretable and transparent to the end-user.
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Overal waar digitale systemen zijn worden gegevens vastgelegd. Websites en
mobiele applicaties registreren bijvoorbeeld hoe mensen die gebruiken. Sensoren
meten en registreren parameters (zoals temperatuur) van het productieproces van
industriële producten. Financiële softwaresystemen registreren transacties van
financiële activiteiten. Op dezelfde manier registreren zorginformatiebeheersyste-
men de condities van patiënten.

Dergelijke gegevens kunnen worden gebruikt om informatie over het on-
derliggende fysieke proces dat deze data ‘genereert’ bloot te leggen. Onderzoek
op het gebied van data mining en machine learning houdt zich bezig met het on-
twikkelen van modellen en algoritmen die effectief en efficiënt informatie uit een
dataset kunnen extraheren.

Zo kan informatie die wordt gevonden in de medische dossiers van grote
aantallen patiënten in een ziekenhuis gebruikt worden om te begrijpen waarom
een bepaalde conditie zeer risicovol is voor één type patiënt maar niet voor de rest.
Daarnaast kunnen monitorsystemen ontwikkeld worden om medisch personeel te
waarschuwen voor gevaarlijke situaties bij gehospitaliseerde patiënten.

Deze dissertatie richt zich op het ontwikkelen van nieuwe methoden die partitie-
gebaseerde modellen uit gegevens kunnen construeren. Door een dataset te parti-
tioneren in subgroepen, waar elke subgroep homogeen is vanuit bepaalde per-
spectieven, extraheert een op partities gebaseerd model patronen in de data,
zoals patronen die aangeven welke typen patiënten in ziekenhuizen risico lopen
op bepaalde ziektes. Het maakt ook data-gedreven voorspellingen mogelijk, zoals
het activeren van alarmen voor potentieel gevaarlijke situaties. Het doel is dus
om data mining en machine learning methoden te ontwikkelen die de data ‘juist’
partitioneren—het concept van juistheid in deze dissertatie is gedefinieerd op basis
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van een informatie-theoretische benadering.
Specifiek richten we ons op het bestuderen van partitie-gebaseerde mod-

ellen voor verschillende taken, inclusief interpreteerbare classificatie met meerdere
klassen, discretisatie en samenvatten van data, en het leren van afhankelijkheids-
structuren. Voor interpreteerbare classificatie met meerdere klassen ontwikkelen
we een interpreteerbaar machine learning algoritme dat probabilistische regels uit
gegevens kan extraheren. Een probabilistische regel zou bijvoorbeeld kunnen zijn:
Als het weer mistig is en de vluchttijd is voor 9 uur ’s ochtends, dan is de kans
op vluchtvertraging 10%. We passen de door ons ontwikkelde methode toe op een
casestudy om het risico van patiënten op de intensive care van een ziekenhuis te
voorspellen om opnieuw te worden opgenomen nadat ze zijn ontslagen, waarmee
we onder andere laten zien dat het model kan leren van feedback van medische
experts—een pilotstudie naar mens-AI samenwerking.

Verder onderzoeken we de taak van discretisatie en samenvatten van twee-
dimensionale datasets, met als potentieel gebruiksscenario het samenvatten van
bestemmingen van trajecten geregistreerd door GPS-apparaten. De onderzoek-
svraag hierbij is hoe datasets van geregistreerde locaties te partitioneren met een
adaptieve granulariteit. Dit moet noch te grof noch te verfijnd, aangezien het
eerste betekent dat een grote hoeveelheid informatie verloren gaat, terwijl het
laatste betekent dat ruis in plaats van patronen in de gegevens worden ontdekt.

Tot slot bestuderen we het probleem van het begrijpen van de structuur
van (conditionele) afhankelijkheden in gegevens. Dit gaat over het ontwikke-
len van algoritmen die op basis van data automatisch conclusies kunnen trekken
zoals ‘het risico op bosbrand is onafhankelijk van de maand, geconditioneerd op
de temperatuur en vochtigheid uit gegevens’ (d.w.z., zodra de temperatuur en
vochtigheid bekend zijn, is het risico op bosbrand hetzelfde ongeacht de maand
van het jaar). We doen zowel theoretisch als methodologisch onderzoek voor
een uitdagend gegevenstype, namelijk de mix van discrete en continue waarden.
Historische gegevens van bosbranden worden bijvoorbeeld vaak op deze manier
geregistreerd, waar de data zowel ‘geen brand’ (een discreet label) als een opper-
vlakte van een brand (een kwantitatieve, continue waarde) bevat.

Samengevat, op partitie-gebaseerde modellen voor verschillende taken worden
bestudeerd, met als doel ze interpreteerbaarder en transparanter te maken voor
de eindgebruiker.
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