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Abstract 

Purpose: Multi-shot diffusion-weighted EPI allows an increase in image resolution and 

reduced geometric distortions and can be combined with chemical-shift encoding (Dixon) to 

separate water/fat signals. However, such approaches suffer from physiological motion-

induced shot-to-shot phase variations. In this work, a structured low-rank-based navigator-

free algorithm is proposed to address the challenge of simultaneously separating water/fat 

signals and correcting for physiological motion-induced shot-to-shot phase variations in 

multi-shot EPI-based diffusion-weighted MRI.  

Methods: We propose an iterative, model-based reconstruction pipeline that applies 

structured low-rank regularization to estimate and eliminate the shot-to-shot phase variations 

in a data-driven way, while separating water/fat images. The algorithm is tested in different 

anatomies including head-neck, knee, brain and prostate. The performance is validated in 

simulations and in-vivo experiments in comparison to existing approaches. 

Results: In-vivo experiments and simulations demonstrated the effectiveness of the proposed 

algorithm compared to extra-navigated and an alternative self-navigation approach. The 

proposed algorithm demonstrates the capability to reconstruct in the multi-shot/Dixon hybrid 

space domain under-sampled datasets, using the same number of acquired EPI shots 

compared to conventional fat-suppression techniques but eliminating fat signals through 

chemical-shift encoding. In addition, partial Fourier reconstruction can also be achieved by 

using the concept of virtual conjugate coils in conjunction with the proposed algorithm. 

Conclusion: The proposed algorithm effectively eliminates the shot-to-shot phase variations 

and separates water/fat images, making it a promising solution for future DWI on different 

anatomies.  
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6.1 Introduction 

Diffusion-weighted imaging (DWI) is a widely used MRI technique that probes tissue 

microstructure7,20. However, the presence of fat can often be a confounding factor, especially 

in EPI-based DWI due to the chemical-shift effect14,41,77, and particularly in areas outside the 

brain, where conventional fat-saturation techniques may be prone to failure41,74,76,115. In 

addition, the multi-peak nature54,116 of the fat spectrum makes it often difficult to fully 

eliminate all present fat signals under diffusion contrast14,41,78,115. To address these challenges, 

previous studies proposed to combine DWI with chemical-shift encoding (Dixon), to allow 

the separation of water and fat signals14,41,77,79,115,117. 

In recent years, multi-shot EPI (ms-EPI) has gained popularity in DWI due to its ability to 

increase spatial resolution and to reduce geometric distortions39,67,68,118. However, multi-shot 

EPI suffers from physiological motion-induced shot-to-shot phase variations which require 

corrections using extra navigation, leading to increased scan times63,67,68. Additionally, 

navigation-free methods47–52,119,120 have also been proposed to address the phase variations. 

Specifically, one series of developed approaches aimed to explicitly estimate the phase map 

for each shot47,48,71. More recently, techniques inspired by parallel imaging have used 

structured low-rank constraints121–123 to reconstruct the ms-EPI data without explicit phase 

calculation in either k-space51,52,119,120 or image-space49,50.  

Additionally, several approaches have been proposed to combine Dixon and multi-shot EPI 

to obtain fat-free, high spatial resolution DWI41,79,115. However, addressing shot-specific 

phase issues with extra-navigation can be particularly challenging as the presence of 

displaced fat signals, overlapping water tissues, can cause phase ambiguities in the 

reconstruction process41,77,115. Improved approaches, like the Model-based Self-Navigated 

water/fat Decomposition (MSND)115, allow the self-navigation of the shot-specific phase 

variations while performing water/fat separation, but it requires an explicit, non-linear shot-

to-shot phase estimation which requires appropriate initialization. 

In this study, we propose a novel iterative model-based reconstruction approach to combine 

Dixon imaging and multi-shot DWI, using structured low-rank constraints applied to the 

water and fat channels to leverage the redundancy across both the chemical shift encoding- 

and the multi-shot / segmentation dimension. The performance of the new method is 

compared to the 2D-navigated reconstruction41 and the navigator-free MSND115 algorithm on 
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various anatomies and simulations. A disadvantage of using additional Dixon is that it 

requires multiple echo-shifted scans to fully encode and separate water/fat signals. To address 

this issue, we investigate the performance of our method regarding under-sampling in the 

Dixon/multi-shot dimensions. While achieving comparable image quality to conventional fat-

saturated multi-shot DW EPI, our method improves scan efficiency due to the elimination of 

the fat saturation pulse. Finally, we enabled partial-Fourier (pF) sampling in combination 

with water/fat separation using the virtual conjugate shot (VCS) concept52,124. 

6.2 Theory 

6.2.1 Water/fat separation for ms-EPI based DWI by chemical-shift encoding (Dixon) 

In the Dixon-DW-ms-EPI sequence, the acquisition is repeated 𝑁 times (typically 𝑁 = 3) at 

varying Δ𝑇𝐸𝑛  to facilitate additional encoding of water and fat signals. The Δ𝑇𝐸𝑛  is the 

chemical shift encoding spacing between the EPI readout window's center and the actual 

spin-echo. The resulting complex ms-EPI signal 𝑏𝑛,𝑙,𝑗(𝑡) can be expressed as follows115:  

𝑏𝑛,𝑙,𝑗(𝑡) 

= ∫ [𝑠𝑗(𝑟)𝜌𝑤(𝑟) + ∑ 𝛼𝑚𝑠𝑗(𝑟)𝜌𝑓(𝑟)𝑒−𝑖2𝜋𝜓𝑓,𝑚(Δ𝑇𝐸𝑛+𝑡)

𝑀

𝑚=1

] 𝑒−𝑖2𝜋𝐵0(𝑟)Δ𝑇𝐸𝑛𝑒−𝑖𝜑𝑛,𝑙(𝑟)𝑒−𝑖𝑘𝑡∙𝑟𝑑𝑟 ,  

(1) 

where 𝑘𝑡 is the k-space sample at time t, with shot or interleave index 𝑙, coil 𝑗, sampled for 

the 𝑛 -th Dixon point. 𝜌𝑤(𝑟)  and 𝜌𝑓(𝑟)  represent the complex-valued DW water/fat 

components at spatial location 𝑟, whereas coil sensitivities are indicated by 𝑠𝑗(𝑟). For an M-

peak fat model, the relative amplitude and fat off-resonance for each peak 𝑚 are indicated by 

𝛼𝑚  and 𝜓𝑓,𝑚 , respectively. 𝐵0(𝑟)  denotes the B0 inhomogeneity (in Hz), and 𝜑𝑛,𝑙(𝑟) 

represents the physiological motion-induced shot-to-shot phase variation for each interleave 𝑙 

and Dixon point 𝑛. The term in the square brackets models the chemical shift effect of fat 

relative to the water that is assumed to be on resonance. Furthermore, it is assumed that B0-

induced dephasing occurring during the readout process can be ignored by approximating 

e−i2πψB(r)(t+ΔTEn) ≈ e−i2πψB(r)ΔTEn.  
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Assuming one data set is acquired with a 𝐽 element coil, 𝑁 Dixon points, and 𝐿 shots, to solve 

for Eq.1, the forward model of the Dixon-based water/fat DW-ms-EPI problem can be 

written as115: 

𝐴0𝑥 = 𝐾[ 𝐼  𝐼] [ 
𝐹𝑆𝛹𝐵𝑃

0
    

0
𝛹𝑓𝐹𝑆𝛹𝐵𝑃 ] [

𝑥𝑤

𝑥𝑓
] , (2) 

Where matrix/operator 𝐾 indicates the shot-specific k-space trajectory which is applied for 

masking out unacquired k-space lines of each shot/Dixon point, 𝐼 is the identity matrix for 

combining water/fat channels, 𝐹  is the Fourier transform, 𝛹𝑓  adds fat off-resonance, 

according to the chosen multi-peak fat spectrum model41,53,54, 𝑆 adds the coil sensitivity 

weighting, 𝛹𝐵  adds the B0 inhomogeneity-induced phase, 𝑃 adds the physiological motion 

induced phase of each shot/Dixon point and 𝑥 = [𝑥𝑤, 𝑥𝑓]𝑇  represents the joint water/fat 

magnitudes to be reconstructed. In 𝛹𝐵 and 𝛹𝑓, the multiple Δ𝑇𝐸𝑛 are included in the phase 

terms 𝑒−𝑖2𝜋𝐵0(𝑟)Δ𝑇𝐸𝑛 and 𝑒−𝑖2𝜋𝜓𝑓,𝑚(Δ𝑇𝐸𝑛+𝑡) for Dixon as shown in Eq.1. More details about 

the construction of all operators can be found in the Supporting Information Table S.1.1.  

6.2.2 Structured low-rank constraints for Dixon-DW-ms-EPI DWI 

In MUSSELS51,52, which was proposed to reconstruct fat suppressed ms-EPI DW images 

without extra navigation, the low-rank constraint leverages redundancy across shots by 

assuming that the underlying magnitude components are equal, whereas the shot-to-shot 

phase can be different. Under the assumption that the physiological motion-induced phase 

varies smoothly in image space, one can construct such a block-Hankel matrix, from the 

stacked and lifted k-space shot data with the annihilating filter in k-space. The resulting 

block-Hankel matrix has a non-zero null space and is thus low-rank as described in ref. 51. 

Therefore, the low-rank structure can be enforced to guide the reconstruction by minimizing 

its nuclear norm, sharing magnitude information between the different shots while 

maintaining shot-specific phase informatio51,52,119. Such low-rank regularization can also be 

applied to Dixon-DW-ms-EPI data, with the aim to jointly reconstruct water and fat 

magnitudes and to correct the fat chemical-shift-induced displacements along with shot-to-

shot phase estimation.  

First, Eq.2 can be rewritten into a form in which the series of shot-individual water/fat 

complex images are estimated jointly: 
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𝐴𝑥̂ = 𝐾[ 𝐼  𝐼] [ 
𝐹𝑆𝛹𝐵

0
    

0
𝛹𝑓𝐹𝑆𝛹𝐵

 ] [
𝑥̂𝑤

𝑥̂𝑓
] , (3) 

where 𝑥̂ = [𝑥̂𝑤, 𝑥̂𝑓]𝑇 are the complex water/fat shot images (including shot-to-shot phase 

variations as described by 𝑃 in Eq.2), having 𝐿 shots and 𝑁 Dixon points, forming a two-

dimensional encoding space (multi-shot/Dixon). Like MUSSELS, it is assumed that the water 

magnitude and fat magnitude images are constant within a dataset but that the phase varies 

for different shots/Dixon points. The cost function of the Dixon-DW-ms-EPI reconstruction 

with structured low-rank constraints can subsequently be written as: 

{𝑥̅̂𝑤, 𝑥̅̂𝑓} = argmin
𝑥̂𝑤,𝑥̂𝑓 ∈ ℂ𝑄×𝑁×𝐿

‖𝐴𝑥̂ − 𝑑‖2
2 + 𝜆1‖𝐻(𝐹𝑥̂𝑤)‖∗ + 𝜆2‖𝐻(𝐹𝑥̂𝑓)‖

∗
, (4)

 

where 𝑄 is the number of voxels, 𝑑 is the k-space raw data, and 𝜆1/𝜆2 denote regularization 

factors for water/fat channels. ‖𝐻(𝐹𝑥̂𝑤/𝑓)‖
∗
are the block-Hankel regularization terms for 

water and fat images, respectively. The minimization of the nuclear norm is reformulated as 

an iterative reweighted least-square (IRLS)52,125 approach for acceleration. The 

implementation details can be found in Supporting Information Table S.1.2. It should be 

noted that water/fat signals experience the same water-fat-combined phase offset115, after 

correcting for the spatial displacement of fat. These water/fat combined, but shot-specific 

phases, calculated as [𝜑1,1, . . . , 𝜑𝑁,1, . . . , 𝜑1,𝐿, . . . , 𝜑𝑁,𝐿]𝑇 = ∠(𝑥̂𝑤 + 𝑥̂𝑓),  are updated 

individually for each shot. To enforce the magnitude similarity47,49–52,115,119, the water/fat 

magnitude images for different shots are replaced by their averages (i.e., 𝑥̃𝑤/𝑓 =

∑ ∑ |𝑥𝑤/𝑓,𝑛,𝑙|
𝐿
𝑙=1

𝑁
𝑛=1 /(𝑁 × 𝐿), where 𝑥̃𝑤/𝑓 are averaged magnitudes of the water/fat images) 

after each iteration to help preventing the optimization from getting stuck in a local minimum 

and to guarantee convergence. This additional step, which is different from MUSSELS, is 

newly proposed in this work. The updated complex water/fat shot images can therefore be 

formulated as:  

𝑥𝑢𝑝𝑑𝑎𝑡𝑒𝑑 =  

[𝑥̃𝑤𝑒𝑖𝜑1,1 , … , 𝑥̃𝑤𝑒𝑖𝜑𝑁,1 , … , 𝑥̃𝑤𝑒𝑖𝜑1,𝐿 , … , 𝑥̃𝑤𝑒𝑖𝜑𝑁,𝐿 , 𝑥̃𝑓𝑒𝑖𝜑1,1 , … , 𝑥̃𝑓𝑒𝑖𝜑𝑁,1 , … , 𝑥̃𝑓𝑒𝑖𝜑1,𝐿 , … , 𝑥̃𝑓𝑒𝑖𝜑𝑁,𝐿]
𝑇

. (5) 

 

The whole pipeline is described in figure 1. Assuming similar B0 conditions for b=0 s/mm2 

and b>0 s/mm2 measurements, a B0 map can be estimated based on the b=0 s/mm2 data, 
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serving as a prior for the diffusion case115. Each b>0 s/mm2 dataset is reconstructed 

individually in the current pipeline.  

6.2.3 Enabling partial-Fourier acquisition by using virtual conjugate shots (VCS) for 

water/fat separation 

To achieve shorter TE, Partial-Fourier is an option, but it represents a challenging problem in 

both Dixon and DW ms-EPI reconstructions, since it requires the signal under estimation to 

be real-valued91. In this case, the conjugate symmetry property50,52,124 can be used to 

reconstruct the partial-Fourier k-space data by adding the VCS when constructing the 

water/fat Hankel matrices as: 

𝐻(𝐹𝑥̂𝑤/𝑓) = [𝐻𝑤/𝑓,1,1, … , 𝐻𝑤/𝑓,𝑛,1, … , 𝐻𝑤/𝑓,𝑛,𝑙, 𝐻𝑤/𝑓,1,1
†, … , 𝐻𝑤/𝑓,𝑛,1

†, … , 𝐻𝑤/𝑓,𝑛,𝑙
†],         (6) 

where 𝐻𝑤/𝑓,𝑛,𝑙 = 𝐻(𝐹𝑥𝑤/𝑓,𝑛,𝑙) indicates the Hankel matrix of the 𝑛-th Dixon point and 𝑙-th 

shot (𝑛 = 1,2, … , 𝑁; 𝑙 = 1,2, … , 𝐿) and † indicates the conjugate flipping of the k-space data 

along both directions50,52,124. This operation enables the reconstruction of partial-Fourier data 

to fill the missing k-space lines while performing water/fat separation.  
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Figure 1. Reconstruction pipeline of the proposed algorithm. The matrix A is first computed using 

information from a non-diffusion scan. In each iteration, two series of water/fat shot images 

(consisting of N Dixon points and L shots) are calculated using Hankel matrices as regularization 

terms. The water/fat combined phase maps are then computed by combining the water/fat shot 

complex images and extracting their phases. Additionally, the water/fat magnitudes of all  shots are 

averaged to generate one joint water magnitude and one joint fat magnitude, to accelerate the 

convergence. The updated water/fat complex shot images are then generated using the combined 

phase maps and the joint water/fat amplitude images through Eq.5. Then, in the next iteration the two 

SVD are performed for water/fat channels separately, with the iterative reweighted least-square (IRLS) 

parameters calculated and updated. The pseudo-code can be found in Supporting information 

Table.S.1.2. 
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6.3 Methods 

6.3.4 Simulations 

A simulation was performed to evaluate the performance of 2D-navigated-, MSND-, and the 

proposed structured low-rank based approaches, under different SNR conditions. Shepp-

Logan water-fat k-space data were simulated, according to Eq.2, assuming an 8-element 

cylindrical head coil with simulated coil-sensitivity maps (CSM). Dixon-ms-EPI datasets 

with 4-shots and 3 Dixon points (Δ𝑇𝐸=0.2/1.0/1.8ms) were simulated to match the in-vivo 

scans of this work. The physiological motion induced shot-to-shot phase variations were 

simulated based on 12 measured 2D-navigators of a fat-suppressed brain scan, using 

interpolation/extrapolation to cover the whole phantom. SNR was varied by adding complex 

Gaussian noise to the simulated water/fat images for each coil and every shot/Dixon point. 

The SNR range of each coil image was chosen between 2 to 20, with SNR defined as the 

ratio of averaged signal magnitude within the signal-bearing parts of the phantom to synthetic 

noise standard deviation. 2D-navigators were simulated for each shot via fully sampled ss-

EPI data with the fat signal displaced along phase-encoding direction, matching the 

bandwidth of the 4-shot EPI data for simplification. Please note, this is not the case for the 

real measurements since under-sampling was often used to match the bandwidth between the 

low-resolution 2D-navigator with the ms-EPI data. The signal decay due to T2 (50ms) was 

considered and simulated using TEs between image/navigator of 70ms/120ms. The 

simulation matrix size was set to 120 × 120, with bandwidth in phase-encoding direction of 

20 Hz/pixel. A multi-peak fat model was used to simulate the chemical-shift effect for fat41. 

The geometric distortion was not considered in the simulation. 

6.3.5 In-vivo experiments 

Chemical-shift encoded spin-echo diffusion-weighted 4-shot-EPI (Dixon-DW-ms-EPI) was 

employed in a series of experiments to investigate various regions, including the brain, head-

neck, knee, and prostate, in 9 healthy volunteers using a 3T Philips scanner (Best, The 

Netherlands). Informed consent was obtained from each participant and approved by the local 

ethics committee. Different coils were used for each region: a 15-channel head-neck coil for 

the brain and head-neck regions, a 16-channel knee coil for the knee, and a 16-channel 

anterior coil and a 12-channel posterior coil for the prostate. Out of the 9 volunteers, 4 were 

scanned in brain, 2 in head-neck, 1 in leg, and the remaining 2 were scanned in the prostate 
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region. Informed consent was obtained from all volunteers prior to the experiments. To 

enable 3-point water-fat chemical-shift encoding, the EPI readout window was shifted 

asymmetrically by a given ∆TE with respect to the actual spin echo41,115. All scans were 

acquired with a TR of 5s and no parallel imaging acceleration was used.  One subject's brain 

was additionally scanned with a 4-point Dixon sequence to obtain an equal number of Dixon 

points and EPI shots (4-point Dixon vs. 4-shot EPI). In this volunteer and in another one, 

scanned in prostate, additionally conventional SPIR43 fat suppressed DW 4-shot EPI were 

acquired, for comparison. All other important scan parameters are listed in Table 1. For all 

relatively high-resolution scans, an extra 2D navigator was acquired for each diffusion shot to 

allow comparison of the proposed algorithm with navigator-based reconstructions. 

Table 1. Sequence parameters 

anatomy 
resolution 

(mm3) 

matrix 

size 

TE 

(ms) 

pFa 

factor 
ΔTE (ms) 

b-value 

(s/mm2) 

Fat 

sat. 

shot readout 

duration time 

(ms) 

number of phase 

encoding lines 

per shot 

leg 1.4 x 1.5 x 4 152 × 148 69 - 0.2 / 1.0 / 1.8 0,300,600 - 27.6 37 

head-

neck 
1.4 x 1.5 x 4 152 × 148 69 - 0.2 / 1.0 / 1.8 0,300,600 - 27.6 37 

brain 1.0 x 1.0 x 4 232 × 228 103 - 0.2 / 1.0 / 1.8 0,1000 - 58.7 57 

 1.0 x 1.0 x 4 232 × 228 103 - 0.2 / 0.7 / 1.3 / 1.8 0,1000 - 58.7 57 

 1.0 x 1.0 x 4 232 × 228 103 - 0.0 0,1000 SPIR 58.7 57 

prostate 1.0 x 1.0 x 4 232 × 228 74 0.632 0.2 / 1.0 / 1.8 0,500 - 59.0 36 

 1.0 x 1.0 x 4 232 × 228 74 0.632 0.0 / 0.0 / 0.0b 0,500 SPIR 59.0 36 

 
apF factor: partial-Fourier factor along phase encoding direction 

b: no Dixon was applied but instead 3 scan averages (NSA) to match the SNR 

6.3.6 Reconstruction 

For the simulation, the 2D-navigated data was reconstructed using the model-based water/fat 

separation in MSND, adding the synthetic phase maps which have the shifted fat signal 

present, skipping the phase estimation step. The MSND method was implemented based on 

the original work but with 50 iterations for the outer Gauss-Newton loop and 20 iterations for 

the inner CG (conjugate gradient) loops. The proposed structured low-rank approach was 

running with 50 outer IRLS loops and 20 for the inner preconditioned CG using a filter size = 
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4 × 4 for the block-Hankel matrices. Following each iteration, both the MSND and the 

proposed algorithm adopted a triangular filter in k-space on the phase maps. The use of filters 

to smooth phase maps and minimize noise enhancement from iterative solvers is a common 

operation described in different studies45,47,115,126–128, particularly in low SNR scenarios. The 

triangular filter was used after each outer iteration (Gauss-Newton for MSND and IRLS for 

the proposed algorithm) with a window width of 1/4 the matrix size, which was kept constant 

for all SNR values to maintain consistent reconstruction scenarios.  

For the in-vivo measurements, a B0 map prior and coil-sensitivity maps can be 

calculated/calibrated using an image-based water/fat decomposition approach for EPI (IDE)41 

and ESPIRiT92 as described in ref.115 based on b = 0 s/mm2 data. Similar to ref.8, two masks 

(water and fat) can be created by thresholding the b = 0 s/mm2 water/fat images respectively. 

Those have a higher SNR than the DW data. The masks were determined empirically by 5%-

thresholding the maximum signal intensity observed in the water/fat images, respectively. A 

binary dilation step was empirically performed (two iterations for fat, one for water), to 

counteract potential edge artifacts. Please note, these masks are not complementary and will 

overlap in case of substantial partial volume effects. The CSMs were then masked with these 

water/fat masks to stabilize the reconstruction, similar to previous works60,86,115. For all 

reconstructions, a multi-peak fat model41 was used.  

When reconstructing partial-Fourier data for the prostate, direct B0 estimation can lead to 

inaccuracies due to partial-Fourier induced blurring effects. To mitigate this problem, the B0 

map was computed on a lower resolution, using the available k-space center data (roughly 1/4 

of the original matrix size). The B0 map estimated by IDE was then interpolated back to the 

original matrix size. 

For the reconstruction of the DW data, using the proposed algorithm, the outer IRLS loops 

were ran for 16 iterations and 8 iterations for CG, with a filter size of 4 × 4 for the block-

Hankel matrices and 𝜆1  = 𝜆2  = 0.002 chosen empirically. After each outer iteration, a 

triangular filter 45,47,115,126–128 with a window width equivalent to the matrix size was applied 

to the combined water/fat phase maps to mildly reduce noise propagation. For comparison, 

the IDE41 algorithm was used to reconstruct the data using phase maps extracted from the 

2D-navigators63, as an example for the navigated reconstruction. As another reference 

method, the explicit-phase-estimated MSND reconstructions were performed with all 

hyperparameters chosen the same as in the original work115.  
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The retrospectively under-sampled 4-shot/4-Dixon data were generated using different under-

sampling schemes to mimic reduction factors R=2 and R=4. The latter one, used in total 4-

shots (each using different ∆TE shifts), was compared with a conventional SPIR-on DW-ms-

EPI dataset, which utilized the same number of acquired EPI shots. Similarly, a 4-shot/3-

Dixon brain dataset was retrospectively under-sampled to assess the effects of using different 

under-sampling patterns. In addition, two fully sampled 3-point Dixon DW ms-EPI datasets 

were used to retrospectively simulate partial-Fourier (pF) data by setting the relevant parts of 

k-space to zero to mimic a partial-Fourier ratio of 0.6. For virtual conjugate shots (VCS) 

reconstruction for both in-vivo and simulated data, the regularization factors were changed to 

𝜆1 = 𝜆2 = 0.001.  

Coil compression was performed for all datasets, keeping only 8 virtual coils for 

reconstruction acceleration. All implementations were done in GPU-supported python 3.8, 

using GPU/CPU NVIDIA QUADRO RTX 6000/ Intel Xeon Gold 6234. The maximum 

reconstruction time (16 IRLS iterations) for typical 3-point Dixon /4-shot scans was 16.8 s 

for a 232×228 matrix and 7.5 s for a 152×148 matrix. Under-sampled (R=4) data took 3.7 s 

and pF with VCS took 48 s (both with a 232×228 matrix size).  

6.3.7 Evaluation criteria 

In the simulation experiment, quantitative evaluations were conducted by calculating the 

nRMSE between the reconstructed water image and the groundtruth water image (with 

synthetic noise added) for each simulation. The nRMSE was calculated by: nRMSE =

 (√∑ (𝑥̂𝑞 − 𝑥𝑞)2/𝑄𝑄
𝑞=1 )/𝑥̅𝑞, where 𝑥̂𝑞 is the groundtruth water magnitude, 𝑥𝑞 the water result, 

𝑥̅𝑞  the average amplitudes of the groundtruth and 𝑄 the number of voxels. In the in-vivo 

experiments, the nRMSE was calculated in the same manner between the reference image 

and the evaluated image. 

In addition, when comparing Dixon and SPIR data with the same number of signal averages 

(NSA), the structural similarity index (SSIM)129 was calculated to judge image quality. 

However, measuring the actual SNR is challenging. Therefore, the apparent SNR (aSNR) 

was calculated as the ratio of the mean signal intensity within a selected ROI divided by the 

corresponding standard deviation. ROIs were chosen in the frontal brain regions, primarily 

targeting white matter and assuming minimal intensity variation within each ROI. To prevent 
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data inconsistencies, caused by rigid motion between two scans, each slice of SPIR data was 

registered to the Dixon data before subsequent analysis. 

6.4 Results 

 

Figure 2. Comparison of three different reconstruction approaches (extra-navigated, MSND, and low-

rank) using simulated DWI data. (Top) Normalized root mean squared errors (nRMSE) of the water 

images for the different approaches given as a function of varying SNR in each individual coil 

element (coil SNR). The proposed low rank-based reconstruction shows better performance compared 

to MSND and navigated methods in all cases. The extra navigated approach’s nRMSE is dominated 

by the phase errors caused by the shifted fat in the navigator signal. (Bottom) Water/fat results for one 

example case (coil SNR=2), as well as the difference maps to the reference ground truth, demonstrate 

the better performance of the proposed algorithm showing less artifacts in such low SNR condition.  

Figure 2 shows a comparison of three different reconstruction approaches, based on 

simulated data with varying SNR of each individual coil element, using the nRMSE  for error 

quantification. Water results for one example (coil SNR=2) as well as corresponding 

difference maps illustrate the better performance of the proposed algorithm. The proposed 

algorithm outperforms MSND by incorporating a low-rank constraint for complex k-space 
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estimation. This approach avoids the explicit computation of the Jacobian matrix through an 

operator formulation of the Gauss-Newton loop in image space, resulting in improved 

performance, especially in low-SNR cases. Thus, the low-rank constraint provides a more 

effective solution for joint magnitude and phase reconstruction while avoiding noise 

enhancement. 

 

Figure 3.  Water/fat resolved DWI results for three various anatomies (knee and neck at b = 600 

s/mm², and brain at b = 1000 s/mm²) reconstructed with three different reconstruction methods. (Top 

row) b = 0 s/mm2 images included for anatomical reference. It should be noted that some signal non-

stationarities, caused by unsuppressed CSF pulsatility or flow, may result in further aliasing in the 

reference images. (Second row) water/fat results for a phase-blind SENSE reconstruction (i.e., 

reconstructing without any shot-specific phase information). (Third row) result obtained using the 

extra-navigator, and (fourth row) result obtained using the proposed algorithm. The red arrows 

highlight the artifacts created when using extra-navigators in which the displaced fat signals are 

present. The proposed method addresses the issue of inaccurate phase information resulting from 

shifted fat in certain regions and produces better results. For the mid-resolution head-neck scan, the 

shot duration without/with navigators was 85/117 ms, respectively, illustrating the gain in acquisition 

efficiency. 

Figure 3 shows representative in-vivo results of knee, head-neck, and brain data, 

reconstructed using measured navigators and the proposed navigator-free approach. In all 

phase-blind reconstructions, the neglected physiological motion-induced phase variations 

heavily degrade the water/fat separation quality. In the navigated results, artifacts are clearly 

visible mainly caused by unsuppressed fat signal present in the extra-navigators115. In 

contrast, the water/fat separation results from the proposed method achieved the best quality 
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for all anatomies. Additional slices, showing similar results, can be found in Supporting 

Information Figure S.1. 

 

Figure 4. Low-rank reconstructed water/fat-resolved head-neck images with and without magnitude 

averaging (b=600 s/mm2). The final shot-combined water/fat images and the 1st, 8th and 16th outer 

iteration water images and diffusion-induced shot phase maps (water/fat combined) of three example 

EPI shots (12 in total) are shown. Applying structured low-rank regularizations without magnitude 

averaging produced some fat-related artefacts in the shot-combined water channel (marked by red 

arrows). Probably, the optimization suffered from the low spatial-SNR, causing the phase estimation 

trapped into some erroneous local minima (red arrows). The implementation of the proposed 

magnitude averaging step results in a better conditioned optimization problem. This process 

eliminates such artifacts, giving significantly improved water/fat separated images. 

Figure 4 illustrates the convergence behavior of an example head-neck slice using the 

proposed algorithm, with and without the magnitude averaging step. The observed 

improvement in the results with magnitude averaging is due to several factors. First, it 

reduces the number of unknowns in the optimization problem by seeking only two averaged 

water and fat magnitudes across all images/Dixon points while maintaining different phase 

maps. This leads to a higher SNR in each estimation iteration, which in turn prevents the 

algorithm from being compromised by noise and getting trapped in a local minimum. As a 

result, the problem is better conditioned and it converges in all analyzed cases. 
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Figure 5. Comparison between MSND and the low-rank regularized approach for DWI (b = 600 

s/mm²) in the head-neck region of two slices from one subject. The non-diffusion (b = 0 s/mm2) 

water/fat separated data are shown as anatomical reference (first column). In some critical regions, 

some artifacts and signal cancellation can be observed (red arrows) when using MSND but can be 

avoided using the low-rank method. These effects can also be seen in the associated ADC maps. The 

abnormal ADC values in the marked regions (red arrows) in MSND were corrected in the low-rank 

reconstructions. Due to the low diffusivity of fat signals, the ADC values in fat regions are close to 

zero (green arrows). 

Figure 5 shows in-vivo data in the head-neck region of two subjects comparing MSND and 

the proposed low-rank-based approach. Although both algorithms rely on the same signal 

model, the proposed algorithm, that includes low-rank constraints, shows better performance 

in some challenging regions (red arrows). Furthermore, a comparison of the phase maps 

acquired by using measured extra-navigators, MSND and the proposed algorithm is shown in 

Supporting Information Figure S.2. 
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Figure 6. Low-rank partial-Fourier (pF) water/fat-resolved reconstructions of (A) one subject's brain 

data (b=1000 s/mm2) and (B) another subject’s cerebellum (b=600 s/mm2, head-neck scan). Fully 

sampled DW images are shown for anatomical reference, along with proposed structured low-rank-

based solutions with and without (simply zero-padded) VCS, with water at the top, fat in the middle, 

and water close-ups in the bottom row. The loss of spatial resolution (blur) in the zero padded-

reconstructions is obvious in comparison to the fully sampled solution. However, the application of 

VCS can effectively improve the reconstruction, bringing the image much closer to the quality of the 

fully sampled case. Furthermore, the slight loss in SNR in the pF data is visible. The red arrows point 

to the same brain anatomy to ease comparison. 

Figure 6 shows retrospectively generated partial-Fourier 4-shot data of one subject’s brain 

and one subject’s cerebellum (from a head-neck scan), reconstructed with/without VCS. This 

is compared to the fully sampled reconstruction. With the help of VCS, the image blurring 

caused by missing data in partial-Fourier was reduced. 

Figure 7(A) compares under-sampled 4-shot brain images with conventional fat-suppressed 

(SPIR) ms-EPI data (no Dixon dimension), using the nRMSE related to the R=1 case to 

indicate the SNR loss due to under-sampling. The R=1 and R=2 cases benefited from 

inherent signal averaging during reconstruction, resulting in higher SNR. The R=4 case 

improves acquisition efficiency by eliminating fat saturation, resulting in image quality 

comparable to SPIR data (having the same NSA=1). Figure 7(B) compares the under-

sampling in the Dixon-shot encoding space using 3-point Dixon and 4-shot data with 

different under-sampling patterns. The R=3 case covered the entire k-space despite two shots 

have the same Δ𝑇𝐸. Two R=4 cases show that covering more lines in k-space results in 

smaller nRMSE and fewer artefacts (yellow arrows). A comparison between MSND and the 
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proposed method for under-sampled data (R=3) is shown in Supporting Information Figure 

S.3. 

Figure 8 compares four under-sampled Dixon water slices with corresponding SPIR slices at 

the same NSA=1 (R=4 for the 4-point Dixon / 4-shot data with full k-space coverage). In the 

four selected ROIs, the aSNR values are similar, mainly due to the same NSA in both cases. 

However, a slight decrease in aSNR for the SPIR results can potentially be attributed to the 

use of extra-measured navigators39. Across the entire FOV, no obvious fine structures are 

observed in the difference maps, except for some discrepancies at brain edges (e.g., at the 

bottom left of slices 2 and 3), possibly due to imperfect registration. In addition, the relatively 

high SSIMs and low nRMSEs between the two techniques indicate comparable image quality 

when fat suppression is effective. 

Figure 9 displays prostate water/fat results from two subjects. One subject was additionally 

scanned with SPIR (with the same NSA=3), where failures in fat suppression can be observed 

for both the main fat peak (-3.4 ppm relative to water) and the olefinic peak (0.61 ppm 

relative to water). Although the displaced subcutaneous main-peak fat signals do not cover 

crucial prostate tissue in this 4-shot EPI experiment, different scan settings could still cause 

interference (e.g., when the bandwidth is reduced in phase-encoding direction). In contrast, 

the Dixon method effectively removes most remaining fat signals, providing greater 

flexibility in choosing scan parameters. 
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Figure 7. Comparison of undersampled low-rank-reconstructed water/fat results for two 

representative subjects (DWI, b=1000 s/mm2). (A) Illustrates the differences in k-space sampling 

patterns (reduction factor R=1, 2, 4) using 4-point Dixon /4-shot data and compared to fat suppression 

(SPIR) data. The nRMSEs, relative to R=1, indicate a decrease in SNR with increasing R. For R=4, 

the Dixon scan time is comparable to a conventional fat-suppressed DW 4-shot EPI (SPIR), 

maintaining visible SNR and image quality. Note that the 2D under-sampling pattern used is 

illustrated by the small matrices to the right of each image, with filled circles indicating data used in 

the reconstruction and open circles not used. (B) Comparison of different k-space sampling patterns 

(R=1, 3, 4, 4) using 3-Dixon points / 4-shot data, with difference maps (shown top right, upscaled × 5) 

between each under-sampled case and R=1. A R=3 example is selected covering the full encoding 

space. Two different R=4 patterns were selected, resulting in different reconstruction problem 

conditions and artifact removal abilities (yellow arrow). This is reflected in the increase of nRMSE, 

given relative to the R=1, highlighting the overall SNR reduction due to under-sampling. 
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Figure 8. Comparison of low-rank-reconstructed water/fat resolved results to fat suppressed DWI 

data by means of SPIR. Water results for four retrospectively under-sampled brain DWI datasets 

(b=1000 s/mm2) using 4-point chemical shift encoding (Dixon)/4-shot data and fat suppression (SPIR) 

data with the same number of total shots. ROIs are selected in the frontal brain regions, focusing 

primarily on white matter, assuming minimal intensity variation within each ROI. The apparent SNR 

(aSNR) is given and shows good agreement between the two techniques, with a slightly lower aSNR 

for the SPIR images, possibly due to the use of additional measured navigators and potential MTC100 

from the fat suppression pulse. The difference maps show no discernible structural texture, indicating 

that no visible fat signal appeared in the water images that could have arisen due to a water-fat swap. 

Meanwhile, the overall high SSIM and low nRMSE values indicate comparable image quality in cases 

where fat suppression works well. The R=4 subsampling scheme is used corresponds to the one used 

in Fig 7(A). 
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Figure 9. Two representative examples on application of our approach for prostate imaging (two 

different subjects). For volunteer 2 additionally acquired SPIR-data is also presented. Due to large 

B0/B1
+ inhomogeneities, failure of fat suppression can be seen in the SPIR images, whereas the 

proposed method does successfully remove such remaining fat signals in the water channel (marked 

by orange arrows). In addition, the fat signals from the olefinic peak (0.61 ppm relative to the water 

line), which are not suppressed by SPIR, are successfully separated by the proposed algorithm (green 

arrows). 

6.5 Discussion 

In this work, we demonstrated the effectiveness of using structured low-rank regularization 

for navigator-free water/fat separation in DW ms-EPI. This algorithm achieved consistent 

water/fat separated DW image quality in all the acquired data across different volunteers, 

slices, b-values. Fat suppression is always demanding in DWI when using EPI due to the low 

diffusivity and the large chemical-shift displacement of fat signals. Moreover, conventional 

fat saturation can be challenging due to the multi-peak spectrum fat model14,41,78,115, which is 

difficult to be fully suppressed, via pre-saturation. In addition, fat suppression in B1
+/B0 

inhomogeneous regions41,74,76,115,130 is prone to failure and may further degrade the SNR of 

the water signals due to magnetization transfer effects100. Dixon methods, as an alternative, 

have been shown to be effective for DWI applications, as well as a smart choice for signal 

averaging, but the quality can be degraded due to shot-to-shot motion-induced phase 

variations. The proposed structured low-rank regularization method offers a solution by 

simultaneously separating water and fat signals and correcting shot-to-shot phase variations, 

without the use of navigators. Furthermore, we have shown that our approach allows for k-

space under-sampling while still covering the full multi-shot/Dixon space extent. This allows 

Dixon-based water/fat separation in DW-ms-EPI without incurring any additional scan time 

penalty. Therefore, it can be a good alternative to conventional fat-suppressed DW-ms-EPI as 

it allows improved water/fat separation "for free". Finally, building upon the VCS 
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concept50,52,119,124, the partial Fourier reconstruction demonstrated improved image quality 

while largely minimizing, though not entirely avoiding, blurring. Partial-Fourier enables a 

reduction in TE and thus, associated T2-induced signal loss and is therefore of high interest in 

DWI.   

In addition, our results showed that the proposed navigator-free approach leads to superior 

image quality and shorter scan times compared to extra-navigation methods. The 

unsuppressed but displaced fat signals in the measured navigators may cause artifacts, 

especially in regions where water and fat-signals are overlapping115 (shown in S.3), because 

that might lead to phase cancelations. In contrast, our low-rank regularization method can 

indirectly estimate the accurate phase variations of each shot while correcting for the fat-

displacement. 

In contrast to the water-fat resolved method (MSND) that uses an explicit shot-to-shot phase 

estimation through a Gauss-Newton method, the proposed method performs well even 

without a dedicated initialization of the phase maps. This is beneficial as the initialization 

(SENSE-based water/fat separation in MSND) can be unstable, especially in low SNR 

regions. Additionally, the minimization of the nuclear norm in the proposed approach, 

enforces the low-rankness of the Hankel matrices and recovers the individual complex shot 

images. The ability to leverage the redundant information across shots will further improve 

image quality compared to MSND, which is especially evident in the simulated low SNR 

case (Figure 2), in low SNR in-vivo cases such as those in the head-neck region (Figure.5), 

and when employing under-sampling (Figure S.3). For more detailed comparisons between 

and discussions on explicit phase map estimation methods and low-rank-based solutions, we 

refer the reader to relevant published works49–52,119. It is worth noting that these works all 

dealt with fat suppressed ms-EPI data and therefore did not include Dixon to achieve 

water/fat separation. 

In this study, there are several limitations that should be noted. One of them is the potential 

variation in the fat spectrum which depends on TE due to the different T2 decay of each fat 

peak54 and J-coupling131 and other experimental settings. In this work, a fat-spectrum model 

calibrated with a spin-echo sequence around TE=70 ms was adopted, which may not 

perfectly fit the brain scans (TE>100 ms) presented in this work. Fine calibration59,132 of the 

fat-spectrum model may be valuable for future work. Another limitation is regarding the 

macroscopic motion, which was not addressed in the current state and could affect the 



6.5 Discussion 

121 
 

reconstruction results (e.g., rigid/non-rigid motion between different images/Dixon points). 

Investigations on implementing an additional motion estimator, as demonstrated in some 

early work for fat-suppressed ms-EPI reconstruction45,46, or even using fat as a navigation 

signal133 could both be potential avenues for future research. In addition, it is important to 

emphasize that this is an initial study for reconstructing Dixon-DW-ms-EPI data using low-

rank constraint, and as such, the results of this work have only been validated on a limited 

number of healthy subjects and have not been tested on patients or other anatomies. It would 

be beneficial to evaluate the performance of the method in a larger and more diverse cohort, 

as well as under different experimental conditions (e.g., higher segmentation factors, higher 

b-values with more critical SNR), which may affect the success of the method and should be 

considered in future investigations. Additionally, the chosen scan parameters (Table 1) and 

reconstruction parameters (e.g., using the same 𝜆1 and 𝜆2 for water and fat) were selected for 

testing purposes only, and the optimal values may vary across different anatomies/b-

values/coils, necessitating further study. In cases where SNR is problematic (e.g., as 

demonstrated in S.3 with under-sampling in the head-neck region), the integration of 

denoising algorithms103,134,135 or the application of deep learning105,120, especially in an 

iterative fashion, may also be attractive topics for future research. Different under-sampling 

patterns in the multi-shot/Dixon space are conceivable. Among them, those are preferable 

that minimize the noise propagation136,137 as shown in Figure 7.  

Different from conventional fat-suppressed DW ms-EPI, the proposed acquisition and 

reconstruction scheme needs to reconstruct water / fat separated images while also estimating 

the shot-to-shot phase variations. Therefore, the magnitude average in each iteration is rather 

important to take advantage of the Dixon condition and guides the algorithm to reconstruct 

only one pair of joint water/fat magnitude images, as shown in Figure 4. Moreover, as 

illustrated in the simulation (Figure 2), when the SNR is low, the k-space filters which are 

often used in the “explicit” phase estimation methods45,47,115 can be adjusted to avoid large 

noise propagation. Further investigations, such as combining low-rank constraints in image-

space50, using phase-cycling138 with joint multi-DW-direction reconstruction or applying 

total-variation for further regularization48,71, could be attempted to boost the performance 

even more49,120. Additionally, DTI49,120 can be considered as a future application with its 

under-sampling capability as another source for acceleration. 
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6.6 Conclusion 

In this work we propose a structured low-rank-based reconstruction method for chemical-

shift encoded DW-ms-EPI to jointly separate water/fat components and correcting for 

physiological motion-induced shot-to-shot phase variations. This approach has been proven 

to support under and partial-Fourier sampling allowing to adopt chemical-shift encoding as a 

smart way of fat suppression by exploiting its signal averaging properties. This helps to make 

the Dixon-ms-DWI sequence more flexible, avoiding time-consuming fat suppression and/or 

extra-navigation, and sampling just the diffusion encoded multi-shot data.  
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