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Glossary

Acronyms
ABE anology-based effort estimation; see pages 8, 9, 38, 76, 80, 81, 84, 111, 112, 149, 155

and 156

AI artificial intelligence; see pages 7 and 89

API application programming interface; see pages 14, 30, 32, 36, 37, 75, 80, 113, 126, 153, 158
and 162

AUC Area Under Curve; see page 111

CI continuous integration; see page 37

CPU central processing unit; see pages 39, 64–66 and 131

CSS Cascading Style Sheets; see page 100

CSV comma-separated values; see pages 61 and 106

DNN deep neural network; see pages 8, 9, 81, 111, 155 and 156

DoD Definition of Done; see pages 6, 7, 73 and 125

ER entity–relationship diagram; see pages 47–50

FTE full-time equivalent; see pages 49 and 122

GPU graphics processing unit; see pages 37, 38 and 149

HCI human-computer interaction; see page 95

HTML HyperText Markup Language; see pages 100, 106, 128 and 138

HTTPS HyperText Transfer Protocol Secure; see pages 33, 61 and 138

InfoVis information visualization; see page 97
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Glossary Acronyms

JDBC Java Database Connectivity; see page 59

JSON JavaScript Object Notation; see pages 30, 37, 38, 60, 100, 103, 106 and 153

LDAP Lightweight Directory Access Protocol; see pages 36, 47, 48, 58 and 59

Lin linear regression algorithm; see pages 8, 9, 80, 82 and 86

LSTM Long Short-Term Memory; see pages 91 and 160

MC Monte Carlo simulation; see pages 8, 9, 76, 80, 82, 86, 103 and 135

ML machine learning; see pages 7, 8, 12, 71, 76 and 89

NN neural network; see pages 8, 9, 80, 81 and 149

PB product backlog; see pages 6, 7, 10, 72 and 73

PDF Portable Document Format; see pages 106 and 110

PG product goal; see pages 6 and 7

PO Product Owner; see pages 5–7, 10, 52, 72–74

PR pattern recognition; see pages 8 and 71

RAM random access memory; see pages 39 and 64

RDBMS relational database management system; see pages 43–46, 63, 66 and 154

SB sprint backlog; see pages 6, 7, 10, 72 and 73

SDM software delivery manager; see pages 10 and 79

SG sprint goal; see pages 6, 7 and 52

SM Scrum Master; see pages 5, 10 and 73

SP story point; see pages 6, 10, 11, 52, 74, 83 and 153

SQL Structured Query Language; see pages 46, 59, 61, 63, 66, 77 and 149

SSH Secure Shell; see pages 31 and 153

SUS System Usability Scale; see pages 141 and 143

UDF user-defined function; see pages 44–46

UI user interface; see pages 98, 99, 101 and 139

UML Unified Modeling Language; see page 50

URL Uniform Resource Locator; see pages 32, 38, 52, 59, 106, 112 and 129

VCS version control system; see pages 58 and 59

VM virtual machine; see pages 31, 39 and 60
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Glossary Software development terminology

Software development terminology
architecture high-level structural overview of a software system, as a design specification;

see page 4

artifact a document or different byproduct that specify specific requirements, parts of the design
or architecture, at greater detail; see page 5

burndown chart time-based diagram that displays lines and points that refer to certain events
taking place in a sprint regarding changes to the number of story points left to work on from
each point onward; see pages 6, 114 and 134

code textual files containing lines with instructions written in a programming language which
perform actions that are part of a software system; see pages 4, 6, 10, 34, 37, 71, 73, 91
and 125

coverage percentage of statements or lines of code that is being executed during tests of a software
product, as a measurement of how likely it is that problems and edge cases are detected;
see pages 4, 6, 20, 35, 37, 73 and 91

Daily Scrum short meeting in SCRUM held every working day where the development team
discusses what that have done during the sprint so far, what they are working on and
possible impediments that hinder their tasks; see pages 6, 10, 73, 74 and 121

deployment installation or publication of a software product so that it is available to users;
see pages 4, 10, 11 and 18

ecosystem environment in which code may be written (software development ecosystem) or a
deployed product may be placed, where the developed software interacts with other systems
and is dependent on a platform providing support for its functionality; see page 4

epic task that explains relationships between smaller tasks, such as user stories; see pages 6, 79
and 80

feature aspect of a software product that allows the system to perform something by providing
certain functionality; see pages 4, 7 and 73, not to be confused with feature (Machine
learning terminology)

guild meeting of a group of people across an entire organization with an interest in a particular
topic, but available for everyone, with discussions ranging from Agile development methods
to testing code and improving quality; see pages 10, 11 and 121

impediment any cause of delay and hindrance in the software development progress, which needs
to be resolved before developers can continue with a certain task; see pages 5, 10 and 73
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Glossary Software development terminology

increment result of a software development cycle such as a SCRUM sprint that adheres to pre-set
goals, consisting of changes from all the resolved items during that period, and may become
a deployment (Potentially Shippable Product Increment) or released version, even when
early in development (minimum viable product); see pages 6, 7, 11, 14, 72 and 73

maintenance regular adjustment of a software product after deployment in order to keep the
product functioning in the environment in which the software is placed; see page 4

milestone moment in a software development plan that indicates an important step in the progress,
usually when a new version is released or a deployment is scheduled; see pages 4 and 10

product the result of software development, fulfilling a need of users; see pages 4, 10 and 14

readiness quality of a story or other task in that it has been prepared enough during refinement
meetings to be detailed enough to work on, with the team agreeing that is it not too
complicated (ready for selection); see pages 6, 10, 72 and 153

refinement meeting in SCRUM to improve details of planned work for an upcoming sprint
development cycle; see pages 6, 10, 71, 73 and 125

requirement specification of what a system, software and entire product should do (functional re-
quirement) or should adhere to with regards to its environment (non-functional requirement);
see pages 4, 16 and 19

retrospective meeting in SCRUM where the development team discuss internally how the previous
sprint progressed and improve focus on important factors; see pages 6, 10, 14, 71–73

review meeting in SCRUM where the development team presents and discusses the results of
the previous sprint with representatives of the end user, usually including a display of new
functionality (demo); see pages 6, 10, 14, 71–73

sprint time span in a SCRUM development process, with specific meetings and goals, which
repeats itself to work on more tasks; see pages 5, 6, 10, 72 and 73

sprint planning meeting in SCRUM to select tasks to be worked on during the next sprint devel-
opment cycle; see pages 6, 10, 71 and 73

stakeholder people and parties with the most interest in a software development process, including
members of the development teams, managerial roles or others in the organization, but
also the end users and the client, who fulfills the role of eventual owner of a product;
see pages 14, 95, 100, 102, 121 and 142

story request for a task related to developing code for a new software feature in a product and
other relevant work, described in a simple format, usually in a single sentence describing a
desire (user story); see pages 6, 7, 10, 72, 73 and 153

technical debt projected amount of effort, time or expenses in order to resolve a current, subpar
situation so that a better solution is implemented in a software product which would require
less maintenance in the future, whereas if the debt is not resolved, it will become harder to
address later on, often used in the context of code style; see pages 56, 75, 79, 91 and 104
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Glossary Machine learning terminology

test method of comparing a software product to the specified requirements at various levels of
inspection, such as small components (unit test) or interaction of systems in the software
ecosystem (integration test); see pages 4, 10, 11, 20, 34, 37, 71, 73, 91, 125, 138 and 141,
not to be confused with test (Machine learning terminology)

velocity metric used as a guideline for the number of story points to plan for a sprint, where the
sum of the story points of all stories that were done during the past three sprints is divided
by 3 (three-sprint velocity); see pages 74, 77, 78, 80, 82 and 83

Machine learning terminology
classification problem where the goal is to find a label for an unlabeled sample selected from a

limited set of classes using a machine learning model (classification algorithm); see pages 7,
79–81, 84 and 91

clustering problem where the goal is to group similar samples from a data set together using a
machine learning model; see pages 7, 81 and 109

data set collection of (usually different) records that describe objects, situations or events that are
typically from a similar domain, with various properties mmaking up each sample record;
see pages 7, 71, 79 and 90

ensemble model method to compose various machine learning algorithms together and to use
their output, e.g., using a majority vote to choose the result, for solving machine learning
problems; see pages 8 and 83

estimation problem where the goal is to find a label for an unlabeled sample that seems to fit the
features using a machine learning or statistical model; see pages 7, 80–84 and 91

explainability quality of a machine learning algorithm, either inherent to the model used or
achieved through external methods, that allows tracing back how a label or estimation was
generated, for example which inputs were most relevant or which samples are most similar;
see pages 8, 81, 84, 90, 152, 156 and 160

feature measurable observation about a specific sample in a data set; see pages 7, 76, 81 and 83,
not to be confused with feature (Software development terminology)

feature selection process where a subset of the features from a data set are chosen based on
scoring or other criteria, leading to a more refined working set; see pages 7, 72, 76, 78
and 84

label description of an object in a numerical or categorical manner, which is the goal of some
machine learning problems in order to understand the data better (labeling), and when
already available in the data set, is the expected outcome of the model given the sample
input (target label); see page 7
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Glossary Machine learning terminology

model algorithm used in machine learning in order to solve a problem, such as providing a label
to an object; see pages 7, 71, 76, 78, 80, 81, 83, 84 and 90

regression analysis method used to perform estimation of relationships between labels and the
associated features of samples in a data set, using a function that closely fits most of the
observed data points; see pages 8, 76, 103 and 109

sample entries in a data set that describe a particular object, situation or event, which may be
used separately or in bulk as input for a machine learning model by selecting subsets of
records (sampling); see page 7

supervised learning algorithm that is able to use labeled samples and extract statistical relations
in order to learn patterns and generate numerical labels; see pages 7 and 76

test process where a portion of labeled samples from the data set (test set) is used to obtain
accuracy metrics of the trained model, with a similar distribution; see pages 7, 78–81
and 84, not to be confused with test (Software development terminology)

training process where a portion of labeled samples from the data set (training set) is used to
learn a model what patterns and relations between features exist in order to generate better
labels in the future; see pages 7, 76, 79–81 and 84

trend outcome of a regression analysis, most typically a linear regression where the overall
direction of temporal data is shown as a line, allowing for an estimation of future data
points; see pages 8, 89, 103 and 109

unsupervised learning algorithm that uses unlabeled samples to extract statistical relations in
order to learn patterns and similarities; see pages 7 and 109

validation process where a portion of labeled samples from the data set (validation set) is used to
check if the model is well-tuned and not biased toward the samples from the training set;
see pages 7, 79–81, 84 and 103
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Appendix A. Code repositories of the Grip on Software pipeline

The references listed here are supplemental to the technical resources found in the bibliography. We
provide these separate from the bibliography, given their nature of being contributions in addition
to—and in support of—our research. The references indicate locations of code repositories that
contain implementations, documentation and tests for the components of the GROS pipeline used
throughout our research. In Section 2.3.2, we provide descriptions and further details for each of
the code repositories.

[a] Leon Helwerda. Modules used to gather data from different data sources in software de-
velopment processes. ICTU and Leiden University. DOI: 10.5281/zenodo.10911862.
URL: https://github.com/grip-on-software/data-gathering.

[b] Leon Helwerda. Web-based data gathering agent configuration. ICTU and Leiden
University. DOI: 10.5281/zenodo.11115708. URL: https://github.com/grip-
on-software/agent-config.

[c] Leon Helwerda. Data gathering agent status web application. ICTU and Leiden
University. DOI: 10.5281/zenodo.12533335. URL: https://github.com/grip-
on-software/status-dashboard.

[d] Leon Helwerda, Enrique Larios Vargas, Thomas Helling and Thomas Prikkel. Importer
of gathered data into a MonetDB database. ICTU and Leiden University. DOI: 10.
5281/zenodo.12583196. URL: https://github.com/grip- on- software/
monetdb-import.

[e] Leon Helwerda. Export tables from a MonetDB database for backups or exchanges.
ICTU and Leiden University. DOI: 10 . 5281 / zenodo . 12723675. URL: https :
//github.com/grip-on-software/monetdb-dumper.

[f] Leon Helwerda. Tools for securely uploading files to a remote server via HTTPS
and GPG. ICTU and Leiden University. DOI: 10.5281/zenodo.12773659. URL:
https://github.com/grip-on-software/export-exchange.

[g] Leon Helwerda. Encrypted file upload server. ICTU and Leiden University. DOI:
10.5281/zenodo.12784820. URL: https://github.com/grip-on-software/
upload.

[h] Leon Helwerda. Requesting (anonymized/aggregate) data from a filled MonetDB
database and processing for data mining or visualization. ICTU and Leiden Univer-
sity. DOI: 10.5281/zenodo.12935240. URL: https://github.com/grip-on-
software/data-analysis.

[i] Leon Helwerda. Algorithms to predict, classify and analyze features and labels of
Scrum data. ICTU and Leiden University. DOI: 10.5281/zenodo.12942716. URL:
https://github.com/grip-on-software/prediction.
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[j] Leon Helwerda. Integrated visualization hub. ICTU and Leiden University. DOI:
10.5281/zenodo.13208936. URL: https://github.com/grip-on-software/
visualization-site.

[k] Leon Helwerda. Common visualization UI fragments. ICTU and Leiden University.
URL: https://github.com/grip-on-software/visualization-ui.

[l] Leon Helwerda. Dynamic sprint report generator in comparison visualization formats.
ICTU and Leiden University. DOI: 10 . 5281 / zenodo . 13208969. URL: https :
//github.com/grip-on-software/sprint-report.

[m] Leon Helwerda. Human-readable output of sprint predictions. ICTU and Leiden
University. DOI: 10.5281/zenodo.13209623. URL: https://github.com/grip-
on-software/prediction-site.

[n] Leon Helwerda. Interactive visualization of temporal data from a software development
process. ICTU and Leiden University. DOI: 10.5281/zenodo.13220620. URL:
https://github.com/grip-on-software/timeline.

[o] Leon Helwerda and Laurens C. Groeneveld. Project statistics as a leaderboard. ICTU
and Leiden University. DOI: 10.5281/zenodo.13220623. URL: https://github.
com/grip-on-software/leaderboard.

[p] Leon Helwerda and Laurens C. Groeneveld. Graph of relations between project
members and the projects they work on. ICTU and Leiden University. DOI: 10 .
5281/zenodo.13220626. URL: https://github.com/grip- on- software/
collaboration-graph.

[q] Leon Helwerda. Flowchart display of story status. ICTU and Leiden University. DOI:
10.5281/zenodo.13220648. URL: https://github.com/grip-on-software/
process-flow.

[r] Leon Helwerda and Laurens C. Groeneveld. Visualization of project commit activity
over time. ICTU and Leiden University. DOI: 10.5281/zenodo.13220681. URL:
https://github.com/grip-on-software/heatmap.

[s] Leon Helwerda and Laurens C. Groeneveld. BigBoat platform reliability graphs.
ICTU and Leiden University. DOI: 10 . 5281 / zenodo . 13220696. URL: https :
//github.com/grip-on-software/bigboat-status.

[t] Cas H. J. Dekkers. Effort burndown chart for product backlogs. ICTU and Leiden
University. URL: https://github.com/grip-on-software/backlog-burndown.

[u] Cas H. J. Dekkers. Progression inspection chart for product backlogs. ICTU and
Leiden University. URL: https://github.com/grip-on-software/backlog-
progression.
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[v] Cas H. J. Dekkers. Issue relationship chart for product backlogs. ICTU and Lei-
den University. URL: https : / / github . com / grip - on - software / backlog -
relationship.

[w] Leon Helwerda. Deployment web application. ICTU and Leiden University. DOI:
10.5281/zenodo.12571035. URL: https://github.com/grip-on-software/
deployer.

[x] Leon Helwerda. Web application framework for building authenticated services with
templating support. ICTU and Leiden University. DOI: 10.5281/zenodo.11580150.
URL: https://github.com/grip-on-software/server-framework.

[y] Leon Helwerda. Cleanup of Docker, Jenkins and SonarQube services based on
build state. ICTU and Leiden University. URL: https://github.com/grip-on-
software/jenkins-cleanup.

[z] Leon Helwerda. Collect JavaScript coverage information during a test run. ICTU and
Leiden University. URL: https://github.com/grip-on-software/coverage-
collector.
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Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols , "sprint_metrics")}, COUNT(*) AS
num_metrics

2 FROM (
3 SELECT DISTINCT ${f(join_cols , "metric_value")},

metric_value.metric_id
4 FROM gros.metric_value
5 JOIN gros.${t("sprint")} ON ${j(join_cols ,

"metric_value", "sprint")}
6 WHERE metric_value.value <> -1
7 ) AS sprint_metrics
8 ${g(join_cols , "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id ,
sprint_metrics.sprint_id , COUNT(*) AS num_metrics

2 FROM (
3 SELECT DISTINCT metric_value.project_id ,

metric_value.sprint_id , metric_value.metric_id
4 FROM gros.metric_value
5 JOIN gros.sprint ON metric_value.project_id =

sprint.project_id AND metric_value.sprint_id =
sprint.sprint_id

6 WHERE metric_value.value <> -1
7 ) AS sprint_metrics
8 GROUP BY sprint_metrics.project_id ,

sprint_metrics.sprint_id

(b) Compiled

Figure B.1: All metrics (original query)
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1 SELECT ${f(join_cols , "sprint_metrics")}, COUNT(*) AS
num_metrics

2 FROM (
3 SELECT DISTINCT ${f(join_cols , "metric_value")},

metric_value.metric_id
4 FROM gros.metric_value
5 WHERE metric_value.value <> -1 AND

metric_value.sprint_id <> 0
6 ) AS sprint_metrics
7 ${g(join_cols , "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id ,
sprint_metrics.sprint_id , COUNT(*) AS num_metrics

2 FROM (
3 SELECT DISTINCT metric_value.project_id ,

metric_value.sprint_id , metric_value.metric_id
4 FROM gros.metric_value
5 WHERE metric_value.value <> -1 AND

metric_value.sprint_id <> 0
6 ) AS sprint_metrics
7 GROUP BY sprint_metrics.project_id ,

sprint_metrics.sprint_id

(b) Compiled

Figure B.2: All metrics (refined query)
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1 SELECT ${f(join_cols , "sprint_metrics")}, COUNT(*) AS
num_red_metrics

2 FROM (
3 SELECT DISTINCT ${f(join_cols , "metric_value")},

metric_value.metric_id
4 FROM gros.metric_value
5 JOIN gros.${t("sprint")} ON ${j(join_cols ,

"metric_value", "sprint")}
6 WHERE metric_value.category = 'red'
7 ) AS sprint_metrics
8 ${g(join_cols , "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id , sprint_metrics.sprint_id ,
COUNT(*) AS num_red_metrics

2 FROM (
3 SELECT DISTINCT metric_value.project_id ,

metric_value.sprint_id , metric_value.metric_id
4 FROM gros.metric_value
5 JOIN gros.sprint ON metric_value.project_id =

sprint.project_id AND metric_value.sprint_id =
sprint.sprint_id

6 WHERE metric_value.category = 'red'
7 ) AS sprint_metrics
8 GROUP BY sprint_metrics.project_id , sprint_metrics.sprint_id

(b) Compiled

Figure B.3: Red metrics (original query)
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1 SELECT ${f(join_cols , "sprint_metrics")}, COUNT(*) AS
num_red_metrics

2 FROM (
3 SELECT DISTINCT ${f(join_cols , "metric_value")},

metric_value.metric_id
4 FROM gros.metric_value
5 WHERE metric_value.category = 'red' AND

metric_value.sprint_id <> 0
6 ) AS sprint_metrics
7 ${g(join_cols , "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id , sprint_metrics.sprint_id ,
COUNT(*) AS num_red_metrics

2 FROM (
3 SELECT DISTINCT metric_value.project_id ,

metric_value.sprint_id , metric_value.metric_id
4 FROM gros.metric_value
5 WHERE metric_value.category = 'red' AND

metric_value.sprint_id <> 0
6 ) AS sprint_metrics
7 GROUP BY sprint_metrics.project_id , sprint_metrics.sprint_id;

(b) Compiled

Figure B.4: Red metrics (refined query)
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1 SELECT ${f(join_cols , "team_spirit")},
AVG(metric_value.value) AS team_spirit

2 FROM gros.metric_value , (
3 SELECT ${f(join_cols , "metric_value")},

metric_value.metric_id , MAX(metric_value.date) AS
max_date

4 FROM gros.metric_value
5 JOIN gros.metric
6 ON metric_value.metric_id = metric.metric_id
7 JOIN gros.${t("sprint")}
8 ON ${j(join_cols , "metric_value", "sprint")}
9 WHERE metric_value.value <> -1

10 AND metric.base_name = 'TeamSpirit'
11 ${g(join_cols , "metric_value")}, metric_value.metric_id
12 ) AS team_spirit
13 WHERE metric_value.date = team_spirit.max_date AND

metric_value.metric_id = team_spirit.metric_id
14 ${g(join_cols , "team_spirit")}

(a) Template

1 SELECT team_spirit.project_id , team_spirit.sprint_id ,
AVG(metric_value.value) AS team_spirit

2 FROM gros.metric_value , (
3 SELECT metric_value.project_id , metric_value.sprint_id ,

metric_value.metric_id , MAX(metric_value.date) AS
max_date

4 FROM gros.metric_value
5 JOIN gros.metric
6 ON metric_value.metric_id = metric.metric_id
7 JOIN gros.sprint
8 ON metric_value.project_id = sprint.project_id AND

metric_value.sprint_id = sprint.sprint_id
9 WHERE metric_value.value <> -1

10 AND metric.base_name = 'TeamSpirit'
11 GROUP BY metric_value.project_id ,

metric_value.sprint_id , metric_value.metric_id
12 ) AS team_spirit
13 WHERE metric_value.date = team_spirit.max_date and

metric_value.metric_id = team_spirit.metric_id
14 GROUP BY team_spirit.project_id , team_spirit.sprint_id

(b) Compiled

Figure B.5: Team spirit (original query)
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1 SELECT ${f(join_cols , "team_spirit")}, MAX(value) AS team_spirit
2 FROM (
3 SELECT ${f(join_cols , "metric_value")}, metric_value.value ,

MAX(metric_value.date) AS end_date , ROW_NUMBER() OVER (
4 PARTITION BY ${f(join_cols , "metric_value")}
5 ORDER BY ${f(join_cols , "metric_value")},

MAX(metric_value.date) DESC
6 ) AS rev_row FROM gros.metric_value
7 JOIN gros.metric
8 ON metric_value.metric_id = metric.metric_id
9 WHERE metric.base_name = 'TeamSpirit' AND metric.domain_name

<> '' AND metric_value.sprint_id <> 0
10 AND metric_value.value > -1
11 ${g(join_cols , "metric_value")}, metric_value.value
12 ) AS team_spirit
13 WHERE rev_row = 1
14 ${g(join_cols , "team_spirit")}

(a) Template

1 SELECT team_spirit.project_id , team_spirit.sprint_id , MAX(value)
AS team_spirit

2 FROM (
3 SELECT metric_value.project_id , metric_value.sprint_id ,

metric_value.value , MAX(metric_value.date) AS end_date ,
ROW_NUMBER() OVER (

4 PARTITION BY metric_value.project_id ,
metric_value.sprint_id

5 ORDER BY metric_value.project_id , metric_value.sprint_id ,
MAX(metric_value.date) DESC

6 ) AS rev_row FROM gros.metric_value
7 JOIN gros.metric
8 ON metric_value.metric_id = metric.metric_id
9 WHERE metric.base_name = 'TeamSpirit' AND metric.domain_name

<> '' AND metric_value.sprint_id <> 0
10 AND metric_value.value > -1
11 GROUP BY metric_value.project_id , metric_value.sprint_id ,

metric_value.value
12 ) AS metric_team_spirit
13 WHERE rev_row = 1
14 GROUP BY metric_team_spirit.project_id ,

metric_team_spirit.sprint_id

(b) Compiled

Figure B.6: Team spirit (refined query)
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1 SELECT ${f(join_cols , "issue", mask=1)}, ${s(issue_key)} AS key,
MAX(${f(join_cols , "sprint", mask=2, alias=T,
sprint="interval_sprint")}) AS ${f(join_cols , "", mask=2, alias=F)},
MAX(${s(story_points)}) AS story_points , MAX(${s(fix_version)}) AS
fixversion

2 FROM gros.${t("issue")}
3 LEFT JOIN gros.${t("issue")} AS older_issue
4 ON ${j(issue_next_changelog , "issue", "older_issue")}
5 LEFT JOIN gros.${t("sprint")}
6 ON ${j(join_cols , "issue", "sprint")}
7 JOIN gros.${t("sprint")} AS interval_sprint
8 ON ${j(join_cols , "issue", "interval_sprint", 1)}
9 WHERE (${f(join_cols , "sprint", mask=2, alias="alias")} IS NULL

10 OR ${s(sprint_open)} >= ${s(sprint_open , sprint="interval_sprint")}
11 )
12 AND ${s(issue_not_done)}
13 AND ${s(issue_backlog)}
14 AND ${t("issue")}.updated > ${s(sprint_open , sprint="interval_sprint")}
15 AND (${t("older_issue")}.changelog_id IS NULL ${s(filter_inverse ,

issue="older_issue", cond_op="OR")})
16 ${g(join_cols , "issue", f("issue_key"), mask=1)}

(a) Template

1 SELECT issue.project_id , issue.key AS key, MAX(interval_sprint.sprint_id)
AS sprint_id , MAX(CASE WHEN issue.story_points IN (-5, -1, 99, 100,
122, 999) THEN 0 ELSE issue.story_points END) AS story_points ,
MAX(issue.fixversion) AS fixversion

2 FROM gros.issue
3 LEFT JOIN gros.issue AS older_issue
4 ON issue.issue_id = older_issue.issue_id AND issue.changelog_id =

older_issue.changelog_id + 1
5 LEFT JOIN gros.sprint
6 ON issue.project_id = sprint.project_id AND issue.sprint_id =

sprint.sprint_id
7 JOIN gros.sprint AS interval_sprint
8 ON issue.project_id = interval_sprint.project_id
9 WHERE (sprint.sprint_id IS NULL

10 OR COALESCE(CAST(sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP())
>= COALESCE(CAST(interval_sprint.start_date AS TIMESTAMP),
CURRENT_TIMESTAMP())

11 )
12 AND COALESCE(issue.resolution , 0) NOT IN (1, 10000) AND

COALESCE(issue.status , 0) NOT IN (6, 10008)
13 AND issue."type" = 7
14 AND issue.updated > COALESCE(CAST(interval_sprint.start_date AS TIMESTAMP),

CURRENT_TIMESTAMP())
15 AND (older_issue.changelog_id IS NULL)
16 GROUP BY issue.project_id , issue.issue_id , issue.key

(b) Compiled

Figure B.7: Backlog added points (original query)
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1 SELECT ${f(join_cols , "issue", mask=1)}, ${s(issue_key)} AS
key, MAX(${f(join_cols , "sprint", mask=2, alias=T,
sprint="interval_sprint")}) AS ${f(join_cols , "",
mask=2, alias=F)}, MAX(${s(story_points)}) AS
story_points , MAX(${s(fix_version)}) AS fixversion

2 FROM gros.${t("issue")}
3 LEFT JOIN gros.${t("issue")} AS older_issue
4 ON ${j(issue_next_changelog , "issue", "older_issue")}
5 JOIN gros.${t("sprint")} AS interval_sprint
6 ON ${j(join_cols , "issue", "interval_sprint", 1)}
7 AND interval_sprint.sprint_id IN (${filter_sprint_ids})
8 AND ${t("issue")}.updated > ${s(sprint_open ,

sprint="interval_sprint")}
9 WHERE ${s(issue_not_done)}

10 AND ${s(issue_backlog)}
11 AND (${t("older_issue")}.changelog_id IS NULL

${s(filter_inverse , issue="older_issue", cond_op="OR")})
12 ${g(join_cols , "issue", f("issue_key"), mask=1)}

(a) Template

1 SELECT issue.project_id , issue.key AS key,
2 MAX(interval_sprint.sprint_id) AS sprint_id ,
3 MAX(CASE WHEN issue.story_points IN (-5, -1, 99, 100,

122, 999) THEN 0 ELSE issue.story_points END) AS
story_points ,

4 MAX(issue.fixversion) AS fixversion
5 FROM gros.issue
6 LEFT JOIN gros.issue AS older_issue
7 ON issue.issue_id = older_issue.issue_id AND

issue.changelog_id = older_issue.changelog_id + 1
8 JOIN gros.sprint AS interval_sprint
9 ON issue.project_id = interval_sprint.project_id

10 AND interval_sprint.sprint_id IN (...)
11 AND issue.updated > COALESCE(CAST(interval_sprint.start_date

AS TIMESTAMP), CURRENT_TIMESTAMP())
12 WHERE COALESCE(issue.resolution , 0) NOT IN (1, 10000) AND

COALESCE(issue.status , 0) NOT IN (6, 10008)
13 AND issue."type" = 7
14 AND (older_issue.changelog_id IS NULL)
15 GROUP BY issue.project_id , issue.issue_id , issue.key

(b) Compiled

Figure B.8: Backlog added points (refined query)
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1 SELECT ${f(join_cols , "sprint", alias=T, sprint="in_sprint")},
${t("issue")}.epic AS key, COUNT(*) AS epic_children ,
SUM(${s(story_points)}) AS story_points

2 FROM gros.${t("issue")}
3 LEFT JOIN gros.${t("issue")} AS newer_issue
4 ON ${j(issue_next_changelog , "newer_issue", "issue")}
5 LEFT JOIN gros.${t("sprint")} ON ${j(join_cols , "issue", "sprint")}
6 JOIN gros.${t("sprint")} AS in_sprint
7 ON ${j(join_cols , "issue", "in_sprint", 1)}
8 WHERE ${t("issue")}.epic IS NOT NULL
9 AND (${f(join_cols , "sprint", mask=2, alias="alias")} IS NULL OR

${s(sprint_open)} >= ${s(sprint_close , sprint="in_sprint")})
10 AND ${s(issue_story)} AND ${s(issue_not_done)}
11 AND ${t("issue")}.updated <= ${s(sprint_close , sprint="in_sprint")}
12 AND (newer_issue.updated IS NULL OR newer_issue.updated > ${s(sprint_close ,

sprint="in_sprint")})
13 ${g(join_cols , "sprint", sprint="in_sprint")}, ${t("issue")}.epic

(a) Template

1 SELECT in_sprint.project_id , in_sprint.sprint_id , issue.epic AS key,
COUNT(*) AS epic_children , SUM(CASE WHEN issue.story_points IN (-5, -1,
99, 100, 122, 999) THEN 0 ELSE issue.story_points END) AS story_points

2 FROM gros.issue
3 LEFT JOIN gros.issue AS newer_issue
4 ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =

issue.changelog_id + 1
5 LEFT JOIN gros.sprint ON issue.project_id = sprint.project_id AND

issue.sprint_id = sprint.sprint_id
6 JOIN gros.sprint AS in_sprint
7 ON issue.project_id = in_sprint.project_id
8 WHERE issue.epic IS NOT NULL
9 AND (sprint.sprint_id IS NULL OR COALESCE(CAST(sprint.start_date AS

TIMESTAMP), CURRENT_TIMESTAMP()) >= CASE WHEN in_sprint.complete_date
IS NOT NULL AND CAST(in_sprint.complete_date AS DATE) <
CAST(in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END)

10 AND issue."type" = 7 AND COALESCE(issue.resolution , 0) NOT IN (1, 10000)
AND COALESCE(issue.status , 0) NOT IN (6, 10008)

11 AND issue.updated <= CASE WHEN in_sprint.complete_date IS NOT NULL AND
CAST(in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END

12 AND (newer_issue.updated IS NULL OR newer_issue.updated > CASE WHEN
in_sprint.complete_date IS NOT NULL AND CAST(in_sprint.complete_date AS
DATE) < CAST(in_sprint.end_date AS DATE) THEN in_sprint.complete_date
ELSE in_sprint.end_date END)

13 GROUP BY in_sprint.project_id , in_sprint.sprint_id , issue.epic

(b) Compiled

Figure B.9: Backlog epic points (original query)
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Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols , "sprint", alias=T, sprint="in_sprint")},
${t("issue")}.epic AS key, COUNT(*) AS epic_children ,
SUM(${s(story_points)}) AS story_points

2 FROM gros.${t("issue")}
3 LEFT JOIN gros.${t("issue")} AS newer_issue
4 ON ${j(issue_next_changelog , "newer_issue", "issue")}
5 LEFT JOIN gros.${t("sprint")} ON ${j(join_cols , "issue", "sprint")}
6 JOIN gros.${t("sprint")} AS in_sprint
7 ON ${j(join_cols , "issue", "in_sprint", 1)}
8 AND in_sprint.sprint_id IN (${filter_sprint_ids})
9 AND ${t("issue")}.updated <= ${s(sprint_close , sprint="in_sprint")}

10 AND COALESCE(newer_issue.updated , ${s(sprint_close , sprint="in_sprint")})
>= ${s(sprint_close , sprint="in_sprint")}

11 WHERE ${t("issue")}.epic IS NOT NULL AND (${f(join_cols , "sprint", mask=2,
alias="alias")} IS NULL OR ${s(sprint_open)} >= ${s(sprint_close ,
sprint="in_sprint")}) AND ${s(issue_story)} AND ${s(issue_not_done)}

12 ${g(join_cols , "sprint", sprint="in_sprint")}, ${t("issue")}.epic

(a) Template

1 SELECT in_sprint.project_id , in_sprint.sprint_id , issue.epic AS key,
COUNT(*) AS epic_children , SUM(CASE WHEN issue.story_points IN (-5, -1,
99, 100, 122, 999) THEN 0 ELSE issue.story_points END) AS story_points

2 FROM gros.issue
3 LEFT JOIN gros.issue AS newer_issue
4 ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =

issue.changelog_id + 1
5 LEFT JOIN gros.sprint ON issue.project_id = sprint.project_id AND

issue.sprint_id = sprint.sprint_id
6 JOIN gros.sprint AS in_sprint
7 ON issue.project_id = in_sprint.project_id
8 AND in_sprint.sprint_id IN (...)
9 AND issue.updated <= CASE WHEN in_sprint.complete_date IS NOT NULL AND

CAST(in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END

10 AND COALESCE(newer_issue.updated , CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST(in_sprint.complete_date AS DATE) <
CAST(in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END) >= CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST(in_sprint.complete_date AS DATE) <
CAST(in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END

11 WHERE issue.epic IS NOT NULL AND (sprint.sprint_id IS NULL OR
COALESCE(CAST(sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP()) >=
CASE WHEN in_sprint.complete_date IS NOT NULL AND
CAST(in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END) AND
issue."type" = 7 AND COALESCE(issue.resolution , 0) NOT IN (1, 10000)
AND COALESCE(issue.status , 0) NOT IN (6, 10008)

12 GROUP BY in_sprint.project_id , in_sprint.sprint_id , issue.epic

(b) Compiled

Figure B.10: Backlog epic points (refined query)
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Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols , "sprint", alias=T, sprint="in_sprint")},
${s(issue_key)} AS key, MAX(${s(story_points)}) AS story_points ,
MAX(${s(fix_version)}) AS fixversion

2 FROM gros.${t("issue")}
3 LEFT JOIN gros.${t("issue")} AS newer_issue
4 ON ${j(issue_next_changelog , "newer_issue", "issue")}
5 LEFT JOIN gros.${t("sprint")}
6 ON ${j(join_cols , "issue", "sprint")}
7 JOIN gros.${t("sprint")} AS in_sprint
8 ON ${j(join_cols , "issue", "in_sprint", 1)}
9 WHERE (${s(issue_open)} OR ${s(sprint_open)} >= ${s(sprint_open ,

sprint="in_sprint")})
10 AND ${s(issue_backlog)}
11 AND ${t("issue")}.updated <= ${s(sprint_open , sprint="in_sprint")}
12 AND (newer_issue.updated IS NULL OR newer_issue.updated > ${s(sprint_open ,

sprint="in_sprint")})
13 ${g(join_cols , "sprint", f("issue_key"), sprint="in_sprint")}

(a) Template

1 SELECT in_sprint.project_id , in_sprint.sprint_id , issue.key AS key,
MAX(CASE WHEN issue.story_points IN (-5, -1, 99, 100, 122, 999) THEN 0
ELSE issue.story_points END) AS story_points , MAX(issue.fixversion) AS
fixversion

2 FROM gros.issue
3 LEFT JOIN gros.issue AS newer_issue
4 ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =

issue.changelog_id + 1
5 LEFT JOIN gros.sprint
6 ON issue.project_id = sprint.project_id AND issue.sprint_id =

sprint.sprint_id
7 JOIN gros.sprint AS in_sprint
8 ON issue.project_id = in_sprint.project_id
9 WHERE (issue.status NOT IN (5,6,10008) OR COALESCE(CAST(sprint.start_date

AS TIMESTAMP), CURRENT_TIMESTAMP()) >=
COALESCE(CAST(in_sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP()))

10 AND issue."type" = 7 AND issue.story_points IS NOT NULL
11 AND issue.updated <= COALESCE(CAST(in_sprint.start_date AS TIMESTAMP),

CURRENT_TIMESTAMP())
12 AND (newer_issue.updated IS NULL OR newer_issue.updated >

COALESCE(CAST(in_sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP()))
13 GROUP BY in_sprint.project_id , in_sprint.sprint_id , issue.issue_id ,

issue.key

(b) Compiled

Figure B.11: Backlog story points (original query)
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Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols , "sprint", alias=T, sprint="in_sprint")},
${s(issue_key)} AS key, MAX(${s(story_points)}) AS story_points ,
MAX(${s(fix_version)}) AS fixversion

2 FROM gros.${t("issue")}
3 LEFT JOIN gros.${t("issue")} AS newer_issue
4 ON ${j(issue_next_changelog , "newer_issue", "issue")}
5 LEFT JOIN gros.${t("sprint")}
6 ON ${j(join_cols , "issue", "sprint")}
7 JOIN gros.${t("sprint")} AS in_sprint
8 ON ${j(join_cols , "issue", "in_sprint", 1)}
9 AND in_sprint.sprint_id IN (${filter_sprint_ids})

10 AND ${t("issue")}.updated <= ${s(sprint_close , sprint="in_sprint")}
11 AND COALESCE(newer_issue.updated , ${s(sprint_close , sprint="in_sprint")})

>= ${s(sprint_close , sprint="in_sprint")}
12 WHERE (${s(issue_open)} OR ${s(sprint_close)} >= ${s(sprint_close ,

sprint="in_sprint")}) AND ${s(issue_backlog)}
13 ${g(join_cols , "sprint", f("issue_key"), sprint="in_sprint")}

(a) Template

1 SELECT in_sprint.project_id , in_sprint.sprint_id , issue.key AS key,
MAX(CASE WHEN issue.story_points IN (-5, -1, 99, 100, 122, 999) THEN 0
ELSE issue.story_points END) AS story_points , MAX(issue.fixversion) AS
fixversion

2 FROM gros.issue
3 LEFT JOIN gros.issue AS newer_issue
4 ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =

issue.changelog_id + 1
5 LEFT JOIN gros.sprint
6 ON issue.project_id = sprint.project_id AND issue.sprint_id =

sprint.sprint_id
7 JOIN gros.sprint AS in_sprint
8 ON issue.project_id = in_sprint.project_id
9 AND in_sprint.sprint_id IN (...)

10 AND issue.updated <= CASE WHEN in_sprint.complete_date IS NOT NULL AND
CAST(in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END

11 AND COALESCE(newer_issue.updated , CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST(in_sprint.complete_date AS DATE) <
CAST(in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END) >= CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST(in_sprint.complete_date AS DATE) <
CAST(in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END

12 WHERE (issue.status NOT IN (5,6,10008) OR CASE WHEN sprint.complete_date IS
NOT NULL AND CAST(sprint.complete_date AS DATE) < CAST(sprint.end_date
AS DATE) THEN sprint.complete_date ELSE sprint.end_date END >= CASE
WHEN in_sprint.complete_date IS NOT NULL AND
CAST(in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END) AND
issue."type" = 7 AND issue.story_points IS NOT NULL

13 GROUP BY in_sprint.project_id , in_sprint.sprint_id , issue.issue_id ,
issue.key

(b) Compiled

Figure B.12: Backlog story points (refined query)
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