
Grip on software: understanding development progress of
SCRUM sprints and backlogs
Helwerda, L.S.

Citation
Helwerda, L. S. (2024, September 13). Grip on software: understanding
development progress of SCRUM sprints and backlogs. SIKS Dissertation
Series. Retrieved from https://hdl.handle.net/1887/4092508

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4092508

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4092508

Chapter 3

Database construction
GROS DB: Designing and deploying a database model using
extensible and flexible query templates as part of a
research-oriented data pipeline architecture

Portions of this chapter are also published in the following article:

• Leon Helwerda et al. “Query compilation for feature extraction in MonetDB”, 2024.
Pending submission.

Abstract of Chapter 3

Introduction: Software development teams use several systems that form a development
ecosystem to keep track of data related to their projects. We use a data acquisition pipeline to
collect records from these systems for research into patterns and outcomes of the process. We
store this information in a consolidated MonetDB database with column-based storage. This
setup allows us to perform extensible queries.

Research questions: How can we reliably collect data regarding SCRUM software develop-
ment practices and consolidate the resulting artifacts inside a central database that constantly
grows and allows adaptable queries?

Modeling: We define a data model which contains discrete portions corresponding to
systems that provide the data, such as issue trackers, version control systems and quality
control dashboards. The model consists of entities and relationships that describe states, events
and dependencies. We enhance the model with links between different portions, which are not
available in the separate systems.

Architecture: We enhance the data selection through the introduction of a query template
compiler. Data from different systems and organizations is properly selected and combined
into a single data set by adjusting the query parameters for the appropriate context on a high
level. We implement more functionality in the database component to handle backups and
exports to a central instance of the pipeline.

Experiments: Our initial selection of MonetDB is put to the test. We establish a repre-
sentative workload of six query templates, each with a refined version and an older version
without the changes. We measure the performance of the MonetDB database by comparing two
scenarios, one where the queries have been seen by the database several times and one where
the database has not created auxiliary internal structures based on the queries. Each version
of each query is run in both scenarios ten times. The results show that both our refinement of
the query templates and the optimized scenario for MonetDB improve the run times of the
queries, justifying the selection for MonetDB and making frequent analysis of the data set
during SCRUM sprints feasible.

Chapter 3. Database construction 3.1. Introduction

3.1 Introduction

In order to consistently, reproducibly and frequently perform analytical studies regarding patterns
and outcomes of SCRUM software development processes, we design a consolidated location for
the data acquired from several systems used by multiple software development projects. As part
of the pipeline that we introduced in Chapter 2, we identify a need for a highly-available storage
location that allows for a steady stream of additions in order to reflect the situation as experienced
by the development teams. Furthermore, the structures and events described by the data should be
available for data analysis using various attributes in order to output different reports for involved
people.

There is a necessity for a model which describes the interactions between the different artifacts
during SCRUM sprints, including product backlogs, code repositories, quality reports and release
builds. Often, developers are able to navigate between these items in their current state, but they
are hindered by design flaws of the systems when tracking down what they looked like at a specific
date, during a sprint from months ago. It is complicated to understand what a metric refers to
when it is stored at a separate system without a proper reference point. Thus, our data storage for
Grip on Software should have a temporal aspect, where time is a first-class data type with many
available functions. It should further allow filters or aggregate operations to determine which
factors define a sprint most pertinently.

We consider existing data stores which already implement features that we desire. A relational
database management system (RDBMS) offers a table-based storage with rows and columns,
where some entries refer to other columns in another table. In addition, the RDBMS provides
operations in order to add, remove, adjust and search within the relations, allowing manipulation as
well as selection. These operations support combining tables in a query, with additional arithmetic
or programming operators to alter which data points are added, adjusted or retrieved.

This sort of system enables much flexibility towards modeling complex relationships of data
structures that reflect dynamics of software development ecosystems. Both the mapping from
artifacts to table-based storage as well as the operations involved in manipulating the data are part
of the modeling problem, which differs for each subject area.

Another side of using a database system is the management and architecture of technical
components in the pipeline. This technical aspect largely consists of ensuring that the database has
enough hardware resources in order to perform its operations, including establishing connectivity
with other components. This further enables exports, backups, migrations and upgrades to take
place. These maintenance tasks should not affect the typical performance of the pipeline. The
database needs to remain consistent and resilient, with no loss of data due to downtime, for
example.

When building a database that should function at more than one organization, there are
additional concepts surrounding the architecture problem. We consider the integration of the
database component in the pipeline and the overall development ecosystem that exists at an
organization, the centralization of data of multiple organizations using a separate research pipeline,
the administration of privacy-sensitive data and the optimization of queries performed on the
database. Meanwhile, the solution needs to support a complex data model based on multiple
specialized development platforms. It is important that the solutions for these considerations do
not affect the model’s restrictions on the outcome of the query operations, among other things.

We summarize the pertinent points of a database system that we find useful for our purposes
by proposing a number of objectives for the usefulness of the technical database component:

43

Chapter 3. Database construction 3.1. Introduction

• We should be able to design a single data model that addresses several complex SCRUM
ecosystems, allowing us to easily recognize the original entities and relationships, but also
introduce new links between data from previously separate systems.

• The query language allows us to utilize the data model to retrieve relevant data, spread
across tables for entities and relationships, with many existing functions for grouping
and aggregation as well as opportunities for extending the queries, for example through
user-defined functions (UDFs).

• The RDBMS should be efficient enough to perform under high load of parallel updates
from independent data acquisition agents, while allowing frequent analysis with complex
queries.

• The database component should function as a part of a larger pipeline which operates in
different environments, without hindering the existing use of the software development
ecosystem.

• Typical guarantees by database systems, such as atomicity of transactions and resilience to
crashes, are considered a prerequisite to an operational database, along with management
interfaces.

These desirable qualities of a database bring us back to the questions regarding the need and
usability of such a system in the overall Grip on Software pipeline, aimed at collecting and
understanding metrics regarding SCRUM software development processes. We therefore consider
the addition of the following two sub-questions to the research question, mentioned before in
Section 2.1, regarding the data acquisition and consolidation pipeline:

RQ1 How can we reliably collect data regarding SCRUM software development practices
and consolidate the resulting artifacts inside a central database that constantly grows
and allows adaptable queries?

RQ1c How can we model the relationships between different data artifacts acquired
from dynamic systems regarding SCRUM software development in order to
properly deduce information about their state during different sprints?

RQ1d Which technical challenges are relevant when deploying a database component
as part of a pipeline for multiple organizational ecosystems?

The remainder of this chapter focuses on this two-sided problem of database design and architec-
ture. First, we consider existing modeling structures and management systems in Section 3.2. In
Section 3.3, we introduce the Grip on Software database (GROS DB), including the data model
in Section 3.3.1. The entities and relationships are shown step-by-step, based on subdivisions of
the model. The relations between different originating systems are considered in Section 3.3.2.
For the architecture problem, we describe how we administer, optimize, engineer and adjust the
behavior of the database system in Section 3.4, including a novel query language overloading
extension. Section 3.5 presents some experiments regarding optimization and performance of
resource usage. Finally, we discuss the entirety of the Grip on Software database as a component
of the data acquisition pipeline in Section 3.6.

44

Chapter 3. Database construction 3.2. Relevant work

3.2 Relevant work

Databases are used in a variety of applications and come in many forms. In the scientific field, an
RDBMS is often used to persistently store data using a known model. This way, further analysis
profits from efficient lookups of the data.

An area of interest within database architectures is the use of column-based storage. This
technique helps with efficiently retrieving attributes of a large number of entities stored in tables.
Such queries occur regularly when performing analytical research with large amounts of data.

One column-based database store of interest is MonetDB [38], which is used in various
research contexts. We find that there are applications of MonetDB for machine learning [40]
and statistical analysis [41]. Novel functionalities to database stores allow streaming updates for
processing live data, such as in software quality analytics [42].

The architecture underlying MonetDB integrates with programming languages in order to
create UDFs [43]. Support for languages such as Python and R has led to seamless integration
with more software packages used in data science [44], such as reuse of existing columnar vector
formats in libraries like TensorFlow [45].

Some methods for improving the efficiency of in-database operations avoid copying data
between memory locations. Such zero-copy integration has shown to work well for statistical prob-
lems [46]. Extensions with other systems to provide better query filters using multi-dimensional
indexes also exhibit performance improvement [47].

With all these improvements on integration, extensibility and memory usage, it is often another
challenge to provide experimental results on database performance. It is relevant to test similar,
reproducible configurations. Further, there should be additional tests with baseline situations
where the database system has not had the chance use caches and to process the type of query
workload [48]. For specific applications, providing a reasonable representation of the query
workload serves as a relevant, localized benchmark [49].

We also look into the use of database systems in the context of analysis of SCRUM software
development data. We find that there exist models that look into integration of data from multiple
sources, such as quality metrics [50]. Similar approaches with transformations of originating data
lead to a model which allows generating dashboards for monitoring performance for SCRUM
teams [51]. Sometimes, the goal of data-driven software development is reached through the use
of an extensive ontology describing the aspects of SCRUM [52].

3.3 Method

We introduce the technical component which handles database storage, imports, exports and
management. This component is a continuation of the data acquisition pipeline introduced in
Section 2.3. This pipeline is deployed in an existing software development ecosystem at an
organization that is involved in the Grip on Software research. An outline of the pipeline is shown
in Figure 3.1, with the components of interest for this chapter highlighted with red and blue colors.
Multiple instances of this pipeline reside independently at different organizations. Another version
of the database plus the remaining machine learning and information visualization components
are placed in a central location. Other pipelines send encrypted backups of the database contents—
without any readable personal information—to this central database, so that multiple organizations
are combined into one data set for further generalized analysis.

45

Chapter 3. Database construction 3.3. Method

Version control

Issue tracker

Quality metrics

Gather
Python

Collection
JSON

Import
Java

Database
MonetDB

Extract
R/SQL

Prediction
TensorFlow

Visualisation
D3.js

Figure 3.1: High-level overview of the Grip on Software pipeline, with the database system shown
as a blue box and relevant technical components as red arrows.

The database uses MonetDB for storage and low-level administration [38]. MonetDB focuses
on storage of large-scale analytical information. In contrast to many database management systems
that existed at the time of selection, MonetDB is a column-based RDBMS. This means that in
this database, all data of a column is stored consecutively, instead of storing row data together.
Efficient retrieval of attributes is a main factor in initially selecting MonetDB. Since MonetDB’s
introduction, other databases such as MariaDB introduced options for column-based storage.

MonetDB is similar to other relational database management systems in that it supports the
Structured Query Language (SQL). This query language implements the operations needed for
retrieving and manipulating data provided by the database. We consider three main types of
invocable queries: (a) data definition statements using CREATE as the initial keyword, (b) data
manipulation using INSERT or UPDATE, and (c) data access with a SELECT statement. Thus, we first
define the tables representing entities and relationships, with columns for attributes of different
numerical, textual and temporal data types. Then, during the operation of the data pipeline, we
manipulate the database by filling it with fresh data and altering old data to reflect the most recent
situation. We finally access the data, selecting subsets for further analysis using combinations of
tables through JOIN operations and other expressions that filter, order, aggregate, partition and
combine data. Such a selection is performed in one go, without having to execute several queries.
These features are provided by MonetDB, extending the common SQL language.

The database connection protocols that we use for importing data also support prepared
statements in SQL. This allows another system to indicate a query that is to be performed multiple
times with different parameters. This reduces the overhead of sending the statement to the database,
compiling and optimizing it every single time it is used. For example, we use multiple prepared
statements that verify if data did not already exist or needs an update. Then, we respectively insert
new rows and perform batched updates for fresh instances of entities.

In addition to query language support, an important feature of MonetDB is integration with
other programming languages. The data analysis component of the pipeline connects to the
database in order to perform queries. Through UDF integration, a language like R [X] augments
the queries with operations specific for our purposes, reducing the need for post-processing. At
the moment of implementation, we chose to use R. Since then, MonetDB extended support to
Python UDFs as well [53]. Nevertheless, they also continued integration with R [54].

As mentioned in Section 3.2, MonetDB offers more options for extensions as well as in-
depth performance optimizations. However, by default, the column-based storage already has
compression and dictionary encoding for frequently stored textual values with specified or arbitrary
lengths. In this way, the lookup speed and reduction of memory usage are balanced, enabling the
modeling of large data sets. The SQL queries themselves are the input of an internal optimizer
pipeline, which transforms it to a MonetDB-specific assembly language supported by a relational
algebra that works on the internal table structure [55].

46

Chapter 3. Database construction 3.3. Method

3.3.1 Data model
We design a model for GROS DB, a database containing events, artifacts and other relevant
elements from SCRUM software development processes. This model is based on the representation
of the same entities and relationships as in the systems that we have extracted them from.

An overview of the most relevant entities has been shown during the introduction of the
pipeline, in Table 2.1. There, we described from which type of system they originate. This includes
issue trackers, version control systems, associated code review, quality control dashboards and
build platforms. The aforementioned overview did not mention entities that only exist in relation
to another or provide context to a development project, e.g., a software component that an issue
applies to. In our survey, we found that some systems contain similar data, such as developers
having accounts on multiple services. These systems often refer to each other with an indirect,
temporal association: a code commit takes place during a certain sprint.

Software development organizations that use Agile approaches do not always have the same
development ecosystem; the same applies to their development teams. As an example, we take
the two organizations of our study. At ICTU, there is a frequent use of Jira [I] as an issue tracker,
GitLab [III] for version control and code review, SonarQube [V] plus self-made quality dashboards
alongside the BigBoat [VII] and Jenkins [IV] build platforms. For Wigo4it, the workflow of refining
and implementing stories takes place on TFS/VSTS/Azure DevOps [VIII], with SonarQube for
quality control. We summarize the distribution of systems in the two organizations in Table 3.1.
Other potential systems in use by such organizations are, e.g., GitHub [XIII] for open source
projects or TOPdesk [XV] for internal project asset management.

SYSTEM ICTU WIGO4IT

Issue tracker Jira Azure DevOps
Version control Git (some Subversion and TFS) TFS (Git/TFVC)
Code review GitLab (most projects) TFS/VSTS/Azure DevOps
Quality control Quality time, SonarQube SonarQube
Build platform BigBoat, Jenkins Azure Server
Personnel records LDAP, Seat counts Azure DevOps

Table 3.1: Overview of systems in software development ecosystems at two organizations.

In order to model the entities and their interactions in these diverse ecosystems, we first
design a rudimentary entity–relationship (ER) diagram. In Figure 3.2, the entities are shown in
a fundamental model, excluding attributes, but with most relationships. In order to obtain some
“shortcut” relationships, we follow a chain of them, such as an issue belonging to a certain project
via the sprint entity. Specific entities, including those based on the issue tracking systems of
Jira and Azure DevOps/VSTS/TFS, as well as entities from various types of code repositories,
are considered implementations of a class diagram relationship; here, they are condensed into a
generic form.

The focus of this section is to model the entities in such a way that we are able to extract
a database schema, which defines how the tables are created. One relevant matter is the nature
of the relationships between entities. In the diagram, we indicate the type of mapping between
entities using cardinalities as labels of the relationship’s lines. A one-to-one relationship, indicated
by two 1’s on either side, is similar to a bijective function, whereas a one-to-many relationship,

47

Chapter 3. Database construction 3.3. Method

where one side is not limited and includes an asterisk ? in its cardinality indicator, is like a
function with no specific properties, its domain originating from the entity on the side with the 1.
A many-to-many relationship is best regarded as a multivalued function to either side. Some
cardinalities are optional, when a side is shown with a 0/1 or simply an asterisk as indicator. Then,
some instances of the entity on an optional side may not participate in a relationship. Table 3.2
provides an overview of the cardinalities by means of examples that are visible in Figure 3.2.

Comment

Issue

*

1

JIRA/TFS developer Code developer
1 1..*

Sprint
1..* 1..*

Project

1

1..*

Code commit

*

1

0/1 1..*

*

1..*

Updated

Code repository
* 1

1

1..*

* *
Issuelink

Metric Metric valueMetric target

*

1

1 1..*1..* 1
Reservation

0/1 *

Merge request

1

*

Note
1 *0/1 *

* 0/1
Subtask

*

1..*

Component

*

1

Tag

1

*

Platform status

LDAP developer

0/1

*

1 0/1
Seat count

Figure 3.2: An entity-relationship diagram of the main entities and primary relations that are stored
in the database. Colors used in this diagram and others indicate the sources of groups of entities:

dark blue are retrieved from Jira, grayish blue from either Jira or TFS/VSTS/Azure DevOps
(light gray in other diagrams), white from version control systems, gray from code review
systems, pink from quality dashboards, green from build platforms, light green from LDAP,

yellow from TOPdesk and light blue from spreadsheets. Not shown here are entities for source
tracking and database consistency, colored purple and orange in other diagrams, respectively.

CARDINALITY EXAMPLE TARGET REFERENCE

One-to-one (1↔ 1) Encryption of a project project project_salt

Optional one-to-one (1↔ 0/1) Seat count of a project project seats

One-to-many (1↔ 1..?) Sprints during a project project sprint

Optional one-to-many (1↔ ?) Comments on an issue sprint comment

One-to-many optional (0/1↔ 1..?) Commits during a sprint sprint commits

One-to-many all-optional (0/1↔ ?) Reservations of projects project reservation

Many-to-many (1..?↔ 1..?) Issues in sprints sprint issue

Many-to-many optional (1..?↔ ?) Issues updated by users developer issue

Many-to-many all-optional (?↔ ?) Issues linked to issues issue (2×) issuelink

Table 3.2: Cardinalities of relationships that are noticeable in the ER diagrams of the data model.
For each cardinality, an example is shown with the entity table that is the target of the reference
and the table where we store the reference attribute.

48

Chapter 3. Database construction 3.3. Method

As a typical example, we introduce two additional data sources—meant to validate data from
our primary sources—for meeting reservations and numbers of full-time equivalents (FTEs),
including seat counts. These entities show two different cardinalities in their relationship: a project
has any number of reservations—and a meeting reservation is related to at most one project—while
a singular seat count is related to a unique project, if known. These are respectively a one-to-many
all-optional and an optional one-to-one relationship. A many-to-many all-optional relationship is
found in issues possibly linking to each other; here, domain and codomain are equal, self-links
excluded.

The complex issue entity has other many-to-many relationships: the issue could be worked
on during different sprints, by various developers and for certain software components. Entities
having multiple versions exhibit such complicated interactions. This is also dependent on the
level of detail that the originating system provides in the earlier versions of the entity. Similarly,
attributes for an issue from Jira differ from work items in TFS/VSTS/Azure DevOps.

All these entities with attributes and relationships have a specific role. Despite the complexity,
it is important to model the GROS DB in such a way that it reflects reality, describing the situation
as it is in other systems as genuinely as possible. If, early on, we would discard attributes and
elaborate relationships, then the analysis that we perform in later stages is more cumbersome. We
find it easier to leave out sensitive data—such as personal information and project names—during
an export, so shrinking to the necessary fields afterward is a better trade-off.

In Figure 3.3, the entities with all attributes and relationships are shown¶. The colors of
tables correspond to the grouping in the smaller ER diagram. Some tables now have specialized
implementations for their source systems. Attributes in this diagram have key indicators for
primary keys that uniquely indicate the entity. Yellow icons are local while red icons indicate a
reference to another table. Non-key attributes have diamond icons, with only an outline if the
value is optional. A line indicates a relationship; the line is dashed if no primary key is involved
in the references between the two tables. The origin of the relationship—where the reference
attribute is stored—is indicated with a triangle at the endpoint. The endpoint is a circle if the
reference is a temporal data type.

We introduce relationships which involve multiple attributes in order to properly reference the
tables. When primary keys are concerned, the relationship is usually one-to-one or one-to-many.
In this visualization, we intentionally left out some lines, with only the endpoints remaining in the
diagram. This either means that this relationship is a shortcut or that multiple attributes refer to the
same table. This reduces the complexity of the representation, which would otherwise have many
more crossing lines. The full diagram is obtainable from the database administration pipeline
component [d] using MySQL Workbench [XVI], allowing more inspection and reuse in other
database systems.

These additional references make it easier for us to design queries that combine data from
multiple entities, while preserving database normalization at the necessary level to fulfill the
details of the entities. For example, we could assume that a story is always worked on in the
project that a sprint belongs to. However, there may be situational differences in which the story
was moved between projects. This discrepancy could not be modeled without tracking the project
in each version of the issue. Thus, we track this data through more direct references.

We address specific parts of the larger, encompassing diagram in more detail in the following
subsections. In particular, we examine the entities and relationships from Jira, version control
systems with their associated code review, TFS/VSTS/Azure DevOps and quality control systems.

¶The diagram is also available at https://gros.liacs.nl/database-model.pdf

49

https://gros.liacs.nl/database-model.pdf

Chapter 3. Database construction 3.3. Method

issue

issue_id INT

changelog_id INT

key VARCHAR(20)

title TEXT

type INT

priority INT

resolution INT

fixversion INT

bugfix TINYINT

watchers INT

created TIMESTAMP

updated TIMESTAMP

description TEXT

duedate DATE

project_id INT

status INT

reporter VARCHAR(64)

assignee VARCHAR(64)

attachments INT

additional_information TEXT

review_comments TEXT

story_points DECIMAL(5,2)

resolution_date TIMESTAMP

sprint_id INT

updated_by VARCHAR(64)

rank_change TINYINT

epic VARCHAR(20)

impediment TINYINT

ready_status INT

ready_status_reason TEXT

approved TINYINT

approved_by_po TINYINT

labels INT

version INT

expected_ltcs INT

expected_phtcs INT

test_given TEXT

test_when TEXT

test_then TEXT

test_execution INT

test_execution_time INT

environment VARCHAR(100)

external_project VARCHAR(20)

encryption INT

Indexes

issuetype

id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

status

id INT

name VARCHAR(100)

description VARCHAR(500)

category_id INT

Indexes

status_category

category_id INT

key VARCHAR(32)

name VARCHAR(100)

color VARCHAR(32)

Indexes resolution

id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

developer

id INT

name VARCHAR(64)

display_name VARCHAR(100)

email VARCHAR(100)

local_domain TINYINT

encryption INT

Indexes
project_developer

project_id INT

developer_id INT

name VARCHAR(64)

display_name VARCHAR(100)

email VARCHAR(100)

encryption INT

team_id INT

Indexes

project_salt

project_id INT

salt VARCHAR(32)

pepper VARCHAR(32)

Indexes

fixversion

id INT

project_id INT

name VARCHAR(100)

description VARCHAR(500)

start_date DATE

release_date DATE

released TINYINT

Indexes

priority

id INT

name VARCHAR(100)

Indexes

relationshiptype

id INT

name VARCHAR(100)

Indexes

component

project_id INT

component_id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

issue_component

issue_id INT

component_id INT

start_date TIMESTAMP

end_date TIMESTAMP

Indexes

issuelink

from_key VARCHAR(20)

to_key VARCHAR(20)

relationship_type INT

outward TINYINT

start_date TIMESTAMP

end_date TIMESTAMP

Indexes

subtask

id_parent INT

id_subtask INT

Indexes

ready_status

id INT

name VARCHAR(100)

Indexes test_execution

id INT

value VARCHAR(100)

Indexes

metric

metric_id INT

name VARCHAR(100)

base_name VARCHAR(100)

domain_name VARCHAR(100)

domain_type VARCHAR(32)

Indexes

metric_value

metric_id INT

value FLOAT

category VARCHAR(100)

date TIMESTAMP

sprint_id INT

since_date TIMESTAMP

project_id INT

Indexes

metric_version

project_id INT

version_id VARCHAR(100)

developer VARCHAR(64)

message TEXT

commit_date TIMESTAMP

sprint_id INT

encryption INT

Indexes

metric_target

project_id INT

version_id VARCHAR(100)

metric_id INT

type VARCHAR(100)

target INT

low_target INT

comment TEXT

Indexes

metric_default

base_name VARCHAR(100)

version_id VARCHAR(100)

commit_date TIMESTAMP

direction TINYINT

perfect FLOAT

target FLOAT

low_target FLOAT

Indexes

sprint

sprint_id INT

project_id INT

name VARCHAR(500)

start_date TIMESTAMP

end_date TIMESTAMP

complete_date TIMESTAMP

goal VARCHAR(500)

board_id INT

Indexes

project

project_id INT

name VARCHAR(100)

main_project VARCHAR(100)

github_team VARCHAR(100)

gitlab_group VARCHAR(100)

quality_name VARCHAR(100)

quality_display_name VARCHAR(100)

is_support_team TINYINT

jira_name VARCHAR(100)

Indexes

commits

version_id VARCHAR(100)

project_id INT

commit_date TIMESTAMP

sprint_id INT

developer_id INT

message TEXT

size_of_commit INT

insertions INT

deletions INT

number_of_files INT

number_of_lines INT

type VARCHAR(100)

repo_id INT

author_date TIMESTAMP

branch VARCHAR(255)

team_id INT

Indexes

comment

comment_id INT

issue_id INT

message TEXT

author VARCHAR(64)

date TIMESTAMP

updater VARCHAR(64)

updated_date TIMESTAMP

encryption INT

Indexes

ldap_developer

project_id INT

name VARCHAR(64)

display_name VARCHAR(100)

email VARCHAR(100)

jira_dev_id INT

encryption INT

Indexes

vcs_developer

alias_id INT

jira_dev_id INT

display_name VARCHAR(500)

email VARCHAR(100)

encryption INT

Indexes

repo

id INT

repo_name VARCHAR(1000)

project_id INT

type VARCHAR(32)

url VARCHAR(255)

Indexes

change_path

repo_id INT

version_id VARCHAR(100)

file VARCHAR(1000)

insertions INT

deletions INT

type VARCHAR(1)

size INT

Indexes

tag

repo_id INT

tag_name VARCHAR(100)

version_id VARCHAR(100)

message TEXT

tagged_date TIMESTAMP

tagger_id INT

sprint_id INT

Indexes

vcs_event

repo_id INT

action VARCHAR(20)

kind VARCHAR(20)

version_id VARCHAR(100)

ref VARCHAR(100)

date TIMESTAMP

developer_id INT

Indexes

tfs_developer

project_id INT

display_name VARCHAR(100)

email VARCHAR(100)

alias_id INT

encryption INT

Indexes

tfs_sprint

sprint_id INT

project_id INT

repo_id INT

team_id INT

name VARCHAR(100)

start_date TIMESTAMP

end_date TIMESTAMP

Indexes

tfs_team

team_id INT

project_id INT

repo_id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

tfs_team_member

team_id INT

repo_id INT

alias_id INT

name VARCHAR(100)

display_name VARCHAR(100)

encryption INT

Indexes

tfs_work_item

issue_id INT

changelog_id INT

title TEXT

type VARCHAR(64)

priority INT

created TIMESTAMP

updated TIMESTAMP

description TEXT

duedate DATE

project_id INT

status VARCHAR(64)

reporter VARCHAR(100)

assignee VARCHAR(100)

attachments INT

additional_information TEXT

story_points DECIMAL(5,2)

sprint_id INT

team_id INT

updated_by VARCHAR(100)

labels INT

encryption INT

Indexes

gitlab_repo

repo_id INT

gitlab_id INT

description TEXT

create_date TIMESTAMP

archived TINYINT

has_avatar TINYINT

star_count INT

Indexes

github_repo

repo_id INT

github_id INT

description TEXT

create_date TIMESTAMP

private TINYINT

forked TINYINT

star_count INT

watch_count INT

Indexes

github_issue

repo_id INT

issue_id INT

title TEXT

description TEXT

status VARCHAR(100)

author_id INT

assignee_id INT

created_date TIMESTAMP

updated_date TIMESTAMP

pull_request_id INT

labels INT

closed_date TIMESTAMP

closer_id INT

Indexes

github_issue_note

repo_id INT

issue_id INT

note_id INT

author_id INT

comment TEXT

created_date TIMESTAMP

updated_date TIMESTAMP

Indexes

merge_request

repo_id INT

request_id INT

title TEXT

description TEXT

status VARCHAR(100)

source_branch VARCHAR(255)

target_branch VARCHAR(255)

author_id INT

assignee_id INT

upvotes INT

downvotes INT

created_date TIMESTAMP

updated_date TIMESTAMP

sprint_id INT

Indexes

merge_request_review

repo_id INT

request_id INT

reviewer_id INT

vote INT

Indexes

merge_request_note

repo_id INT

request_id INT

thread_id INT

note_id INT

parent_id INT

author_id INT

comment TEXT

created_date TIMESTAMP

updated_date TIMESTAMP

Indexes

commit_comment

repo_id INT

version_id VARCHAR(100)

request_id INT

thread_id INT

note_id INT

parent_id INT

author_id INT

comment TEXT

file VARCHAR(1000)

end_line INT

line INT

line_type VARCHAR(100)

created_date TIMESTAMP

updated_date TIMESTAMP

Indexes

source_environment

project_id INT

source_type VARCHAR(32)

url VARCHAR(255)

environment VARCHAR(500)

version VARCHAR(32)

Indexes

source_id

project_id INT

domain_name VARCHAR(100)

url VARCHAR(255)

source_type VARCHAR(32)

source_id TEXT

domain_type VARCHAR(32)

Indexes

jenkins

project_id INT

host VARCHAR(255)

jobs INT

views INT

nodes INT

Indexes

bigboat_status

project_id INT

name VARCHAR(100)

checked_date TIMESTAMP

ok TINYINT

value FLOAT

max FLOAT

Indexes

reservation

reservation_id VARCHAR(10)

project_id INT

requester VARCHAR(500)

number_of_people INT

description TEXT

start_date TIMESTAMP

end_date TIMESTAMP

prepare_date TIMESTAMP

close_date TIMESTAMP

sprint_id INT

encryption INT

Indexes

seats

project_id INT

sprint_id INT

date TIMESTAMP

seats FLOAT

Indexes

update_tracker

project_id INT

filename VARCHAR(255)

contents TEXT

update_date TIMESTAMP

Indexes
sprint_features

project_id INT

sprint_id INT

component VARCHAR(100)

name VARCHAR(200)

value FLOAT

details TEXT

update_date TIMESTAMP

Indexes

Figure 3.3: Complete ER diagram of the entities and relationships, based on the table schema,
depicted as UML classes.

50

Chapter 3. Database construction 3.3. Method

Many software projects arrange their development process using these systems. Some of the
smaller portions of the model are not mentioned in full detail, while additional tables for source
tracking and internal up-to-dateness checks are out of scope here. Connections between data
retrieved from separate data sources are described in Section 3.3.2. Some entities include sensitive
data fields that are considered for pseudonymization or excluded from exports. We discuss how
we encrypt these specific attributes in Section 3.4.

Jira

The core of our database model consists of entities and relationships extracted from the Jira
issue tracker. This system is used by most of the SCRUM software development projects that
participate in our research, with the primary goal of tracking backlogs of stories and other types of
tasks—commonly known as issues—during sprints. All projects at ICTU use Jira, while Wigo4it
instead uses the work item tracking provided by TFS/VSTS/Azure DevOps. Our design approach
initially focused on the Jira system, but expansions to the model allowed us to store data acquired
from other systems as well. Figure 3.4 displays the central portion of the model that describes the
data from Jira, including most of the references between the involved entities.

issue

issue_id INT

changelog_id INT

key VARCHAR(20)

title TEXT

type INT

priority INT

resolution INT

fixversion INT

bugfix TINYINT

watchers INT

created TIMESTAMP

updated TIMESTAMP

description TEXT

duedate DATE

project_id INT

status INT

reporter VARCHAR(64)

assignee VARCHAR(64)

attachments INT

additional_information TEXT

review_comments TEXT

story_points DECIMAL(5,2)

resolution_date TIMESTAMP

sprint_id INT

updated_by VARCHAR(64)

rank_change TINYINT

epic VARCHAR(20)

impediment TINYINT

ready_status INT

ready_status_reason TEXT

approved TINYINT

approved_by_po TINYINT

labels INT

version INT

expected_ltcs INT

expected_phtcs INT

test_given TEXT

test_when TEXT

test_then TEXT

test_execution INT

test_execution_time INT

environment VARCHAR(100)

external_project VARCHAR(20)

encryption INT

Indexes

issuetype

id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

status

id INT

name VARCHAR(100)

description VARCHAR(500)

category_id INT

Indexes

status_category

category_id INT

key VARCHAR(32)

name VARCHAR(100)

color VARCHAR(32)

Indexes resolution

id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

developer

id INT

name VARCHAR(64)

display_name VARCHAR(100)

email VARCHAR(100)

local_domain TINYINT

encryption INT

Indexes
project_developer

project_id INT

developer_id INT

name VARCHAR(64)

display_name VARCHAR(100)

email VARCHAR(100)

encryption INT

team_id INT

Indexes

fixversion

id INT

project_id INT

name VARCHAR(100)

description VARCHAR(500)

start_date DATE

release_date DATE

released TINYINT

Indexes

priority

id INT

name VARCHAR(100)

Indexes

relationshiptype

id INT

name VARCHAR(100)

Indexes

component

project_id INT

component_id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

issue_component

issue_id INT

component_id INT

start_date TIMESTAMP

end_date TIMESTAMP

Indexes

issuelink

from_key VARCHAR(20)

to_key VARCHAR(20)

relationship_type INT

outward TINYINT

start_date TIMESTAMP

end_date TIMESTAMP

Indexes

subtask

id_parent INT

id_subtask INT

Indexes

ready_status

id INT

name VARCHAR(100)

Indexes test_execution

id INT

value VARCHAR(100)

Indexes

sprint

sprint_id INT

project_id INT

name VARCHAR(500)

start_date TIMESTAMP

end_date TIMESTAMP

complete_date TIMESTAMP

goal VARCHAR(500)

board_id INT

Indexes

project

project_id INT

name VARCHAR(100)

main_project VARCHAR(100)

github_team VARCHAR(100)

gitlab_group VARCHAR(100)

quality_name VARCHAR(100)

quality_display_name VARCHAR(100)

is_support_team TINYINT

jira_name VARCHAR(100)

Indexes

comment

comment_id INT

issue_id INT

message TEXT

author VARCHAR(64)

date TIMESTAMP

updater VARCHAR(64)

updated_date TIMESTAMP

encryption INT

Indexes

tfs_team

Figure 3.4: Entities and relationships that model data retrieved from Jira.

51

Chapter 3. Database construction 3.3. Method

Jira is the prime data provider for a common entity that other portions of the model heavily
rely on: the project. The main attributes describe how each project is named in the issue tracker,
such as the prefix used by the issue numbering system and the human-readable name. The table
also tracks dependent relationships to a parent project, although this is formally a weak reference,
since the parent might even be missing from the data set. Through external means, we have more
advanced methods of combining projects worked on by the same development team. The project
entity is augmented to include attributes deduced from other sources, for more ways to refer to the
project or its main assets.

The second pivotal entity is the sprint, which tracks important events. The start and end
dates are predefined by the Product Owner (PO) when determining which stories to work on.
Meanwhile, the completion date of a sprint is deduced from the moment that the team finishes the
last of its stories, possibly before or after the planned end date. Other attributes are the description
of the sprint goal (SG) and an identifier to the board that we use to construct a URL to the sprint
at the issue tracker.

Jira is also a source for determining which developer works on which project. Personal data
from the user profile, such as name and email address, is stored and encrypted in this table.
A second table acts as a relationship between developer and project, using a project-specific
encryption key for the duplicated attributes with personal information. This allows later imports
and reports to cross-reference the existing data, as long as the encryption keys are available.
Section 3.3.2 describes the encryption and linking of personal data in more detail.

The largest entity of the model is the issue. Each version of an issue is stored, containing many
attributes where a few have been altered compared to the previous version, such as the description
or the estimated story points. Some of these are complex, meaning that additional attributes about
each of them are stored in a separate table. This includes what type of issue it is, what software
component it is for, priority-related attributes, which release version it is or will be fixed in, the
status it is in and—if it is done—what resolution it was given. An organizational instance of Jira
is often extended with custom fields. The attributes currently modeled are sometimes specific to
ICTU, but configuration allows treating the fields differently for another organization. The data
acquisition component [a] of the Grip on Software pipeline provides a mapping from custom
fields to the recognized attributes. Beyond that, we acquire the comments made on issues, with
metadata on developer and time. Finally, developers link issues to others through different types
of relationships, with one specialized relation for subtasks. Some of the complex attributes and
relationships track their own metadata and chronological information.

Version control

Software development uses generic systems like Git [II] and Subversion [XIV] for version control.
Despite differences in how these two systems track changes to code, they are conceptually similar
enough to facilitate an abstraction in our data model. In Figure 3.5, we show the entities and
relationships that make up this portion of the model.

A version control system provides development teams with the possibility to store and alter
code collaboratively. Code related to the same software component is placed in a repository,
sometimes abbreviated as repo. This entity is central in our modeling of this portion of the
database schema. A URL attribute helps with tracking where the code is hosted.

In the context of a repository, a change to the code is considered a commit, with increments
of commits leading to the most recent version of the code upon a branch. Usually, there is one

52

Chapter 3. Database construction 3.3. Method

commits

version_id VARCHAR(100)

project_id INT

commit_date TIMESTAMP

sprint_id INT

developer_id INT

message TEXT

size_of_commit INT

insertions INT

deletions INT

number_of_files INT

number_of_lines INT

type VARCHAR(100)

repo_id INT

author_date TIMESTAMP

branch VARCHAR(255)

team_id INT

Indexes

vcs_developer

alias_id INT

jira_dev_id INT

display_name VARCHAR(500)

email VARCHAR(100)

encryption INT

Indexes

repo

id INT

repo_name VARCHAR(1000)

project_id INT

type VARCHAR(32)

url VARCHAR(255)

Indexes

change_path

repo_id INT

version_id VARCHAR(100)

file VARCHAR(1000)

insertions INT

deletions INT

type VARCHAR(1)

size INT

Indexes

tag

repo_id INT

tag_name VARCHAR(100)

version_id VARCHAR(100)

message TEXT

tagged_date TIMESTAMP

tagger_id INT

sprint_id INT

Indexes

tfs_team

Figure 3.5: Entities and relationships that model data retrieved from version control systems.

main branch which is meant to remain stable, while code for different stories is often developed
and tested on separate branches. The branch that the code is initially worked on is stored as an
attribute in our model, along with other metadata about the date, message and size of commit.
Separately, we track the path to a file that was changed by the commit as an entity related to the
commit, with specific statistics similar to the size of the commit.

A commit can be given a tag with a version number, which is an indicator that the version
of the code is used as a release version or for other purposes. We store the tag as an entity with
attributes for the tag’s name, message, the developer made the tag and when it was made. Both a
commit and a tag are linked to the sprint in which the specific entity was made.

An author of a commit or tag is considered a local developer to the version control system. We
decide to encrypt personal data like name and email address using a project-specific encryption
key, cf. Section 3.3.2.

Code review

Recent version control systems are often accompanied by web applications that allow development
teams to propose and review code changes. They are often tightly integrated with the repository

53

Chapter 3. Database construction 3.3. Method

and provide additional data about the development process. We consider three systems that provide
the review functionality for their code repositories: GitHub, GitLab and TFS/VSTS/Azure DevOps.
In Figure 3.6, the entities and relationships are shown for these specializations, with some entities
performing a generalized role for multiple systems.

commits

vcs_developer

repo

vcs_event

repo_id INT

action VARCHAR(20)

kind VARCHAR(20)

version_id VARCHAR(100)

ref VARCHAR(100)

date TIMESTAMP

developer_id INT

Indexes

gitlab_repo

repo_id INT

gitlab_id INT

description TEXT

create_date TIMESTAMP

archived TINYINT

has_avatar TINYINT

star_count INT

Indexes

github_repo

repo_id INT

github_id INT

description TEXT

create_date TIMESTAMP

private TINYINT

forked TINYINT

star_count INT

watch_count INT

Indexes

github_issue

repo_id INT

issue_id INT

title TEXT

description TEXT

status VARCHAR(100)

author_id INT

assignee_id INT

created_date TIMESTAMP

updated_date TIMESTAMP

pull_request_id INT

labels INT

closed_date TIMESTAMP

closer_id INT

Indexes

github_issue_note

repo_id INT

issue_id INT

note_id INT

author_id INT

comment TEXT

created_date TIMESTAMP

updated_date TIMESTAMP

Indexes

merge_request

repo_id INT

request_id INT

title TEXT

description TEXT

status VARCHAR(100)

source_branch VARCHAR(255)

target_branch VARCHAR(255)

author_id INT

assignee_id INT

upvotes INT

downvotes INT

created_date TIMESTAMP

updated_date TIMESTAMP

sprint_id INT

Indexes

merge_request_review

repo_id INT

request_id INT

reviewer_id INT

vote INT

Indexes

merge_request_note

repo_id INT

request_id INT

thread_id INT

note_id INT

parent_id INT

author_id INT

comment TEXT

created_date TIMESTAMP

updated_date TIMESTAMP

Indexes

commit_comment

repo_id INT

version_id VARCHAR(100)

request_id INT

thread_id INT

note_id INT

parent_id INT

author_id INT

comment TEXT

file VARCHAR(1000)

end_line INT

line INT

line_type VARCHAR(100)

created_date TIMESTAMP

updated_date TIMESTAMP

Indexes

Figure 3.6: Entities and relationships that model data retrieved from code review systems.

We acquire additional metadata regarding the code repositories at GitLab and GitHub. These
attributes are stored in specialized tables accompanying the existing entity. We obtain the descrip-
tion, creation date, access restrictions and social interactions such as the number of people giving
a star to the repository, as a measure of importance.

The code review systems also contain additional information on interactions such as pushes of
commits, tags and branches to the central repository. These events are usually not tracked in the
Git repository itself, but the time difference between a developer finishing a local code change
and publishing it has some relevance for our analysis.

The remaining entities from the code review systems are focused on comments on code,
branch merges and standalone issues. A commit comment can be made for a code commit in
order to discuss one or more lines of code, which were possibly changed by that commit. It is
usually related to a merge request, which is a discussion regarding the merge of a branch to
another—usually main—branch. Depending on the system, a reviewer is assigned to a merge
request, who then votes on whether the code that was changed on the branch is ready. Involved
developers and bots connected to the build platform and quality control systems sometimes also
leave notes on the merge request itself. Additional metadata attributes are acquired for these
requests and comments.

54

Chapter 3. Database construction 3.3. Method

These review systems are also able to track issues. This functionality is, however, not used by
most teams at ICTU, where they instead track issues in Jira. Issue tracking is done for projects
that use GitHub, in particular a few open source projects from support teams at ICTU that are of
interest to us. Wigo4it does use TFS/VSTS/Azure DevOps as a work item tracker, as explained in
the next portion of the model.

Although limited in use at the organizations in our research project, we consider tracking all
types of issues from such sources—including GitHub—to be helpful for the generalizability of our
data acquisition pipeline to other development ecosystems, where the workflow of preparing and
reviewing tasks may be conducted differently. Thus, we model those issues and notes as entities
with similar metadata as the merge requests and notes.

TFS/VSTS/Azure DevOps

The integrated system provided by Azure DevOps Server, previously known as Team Foundation
Server (TFS) and Visual Studio Team System (VSTS), encompasses version control via Git—
although some older versions only provide its own TFVC protocol—with code review, build
platforms and project management through work item tracking. This provides development teams
with various options for tracking development process and delivering product increments.

Some organizations use certain functionality of this system or use it differently. At ICTU, TFS
was only used by a few projects for version control and code review, with most preferring GitLab.
Meanwhile, Wigo4it utilizes more from TFS/VSTS/Azure DevOps by performing sprint planning
through work items, next to the version control.

We consider the portion that focuses on the work items to be separate from the version control
and code review, which is modeled as part of the other specialized review systems that our schema
supports. In Figure 3.7, we display the main entities and relationships that are extracted from the
process of work item tracking.

The Azure DevOps system groups developers into teams with their own work item boards.
These teams have team members, which have personal data that are encrypted with a common
encryption key. Because some people are not part of a team but still interact with the work
items—and conversely, we will not find every developer through work item updates—we also
acquire developers through information from the work items. This information is stored in a
secondary table, with personal data encrypted using a project-specific key. These two entities
fulfill analogous roles to the developer tables from Jira, with data acquisition taking place in a
similar way for that system.

Moreover, we acquire information regarding sprints from Azure DevOps. Due to differences
in the attributes of entities compared to sprints from Jira, we store them separately. The same
applies to the work items that stem from this system. Because the focus of our analysis was more
clear once we adjusted our data acquisition pipeline to collect the work items, we extract fewer
attributes from them. Some of the attributes also have different semantics compared to Jira issues,
so the records for work items are stored in a separate table from that system.

Due to this, some of the entities have a dedicated role. When we later want to collect attributes
or statistics from these entities, we have to select which data source is relevant to us and adjust the
queries based on the definition of the attributes, such as what the status or resolution means to the
work left on a story. We discuss some of the intricacies of this process for the way the queries are
built in Section 3.3.2.

55

Chapter 3. Database construction 3.3. Method

vcs_developer

repo

tfs_developer

project_id INT

display_name VARCHAR(100)

email VARCHAR(100)

alias_id INT

encryption INT

Indexes

tfs_sprint

sprint_id INT

project_id INT

repo_id INT

team_id INT

name VARCHAR(100)

start_date TIMESTAMP

end_date TIMESTAMP

Indexes

tfs_team

team_id INT

project_id INT

repo_id INT

name VARCHAR(100)

description VARCHAR(500)

Indexes

tfs_team_member

team_id INT

repo_id INT

alias_id INT

name VARCHAR(100)

display_name VARCHAR(100)

encryption INT

Indexes

tfs_work_item

issue_id INT

changelog_id INT

title TEXT

type VARCHAR(64)

priority INT

created TIMESTAMP

updated TIMESTAMP

description TEXT

duedate DATE

project_id INT

status VARCHAR(64)

reporter VARCHAR(100)

assignee VARCHAR(100)

attachments INT

additional_information TEXT

story_points DECIMAL(5,2)

sprint_id INT

team_id INT

updated_by VARCHAR(100)

labels INT

encryption INT

Indexes

Figure 3.7: Entities and relationships that model data related to work item planning retrieved from
TFS/VSTS/Azure DevOps.

Quality control

Code should be regularly inspected for code style issues, vulnerabilities and other indicators that
technical debt are present due to maintainability issues. A system like SonarQube [V] automatically
performs such checks. ICTU created an additional system to combine the history of those checks
as well as reports made by security scanners, build systems and Jira in a central place that is easily
accessible to team members. This system, Quality-time [VI], provides measurements in a form
that we also model in GROS DB—while remaining compatible with SonarQube directly—as
shown by the entities and relationships in Figure 3.8.

The quality control system formats the checks and measurements as a report that displays
statistics grouped by software component. Each metric has a name, based on what is being
measured and which domain object is involved. This domain object refers to other systems and
artifacts, such as a code repository, document, build server or Jira board.

The metrics are checked at high frequency for updated information from external systems.
A metric value comes with metadata about when the check happened, when the value has most

56

Chapter 3. Database construction 3.3. Method

metric

metric_id INT

name VARCHAR(100)

base_name VARCHAR(100)

domain_name VARCHAR(100)

domain_type VARCHAR(32)

Indexes

metric_value

metric_id INT

value FLOAT

category VARCHAR(100)

date TIMESTAMP

sprint_id INT

since_date TIMESTAMP

project_id INT

Indexes

metric_version

project_id INT

version_id VARCHAR(100)

developer VARCHAR(64)

message TEXT

commit_date TIMESTAMP

sprint_id INT

encryption INT

Indexes

metric_target

project_id INT

version_id VARCHAR(100)

metric_id INT

type VARCHAR(100)

target INT

low_target INT

comment TEXT

Indexes

metric_default

base_name VARCHAR(100)

version_id VARCHAR(100)

commit_date TIMESTAMP

direction TINYINT

perfect FLOAT

target FLOAT

low_target FLOAT

Indexes

Figure 3.8: Entities and relationships that model data retrieved from quality systems.

recently changed before then and how problematic the value is. This severity category is defined
by the target of the metric, which determines whether a lower or higher value is better. The target
of a metric also has attributes for threshold values, which determine when the metric should be
reported as acceptable, problematic or critical.

The target of a metric can be changed by a development team member or quality manager,
usually if it is considered less or more important. Metadata on the version of the metric target
is modeled as an entity. Finally, we track what the default value of each target is, based on the
version of the Quality-time system, since the default could too have been altered. Combined, these
entities allow us to deduce the context of a metric’s value at an earlier date. Namely, we check
why it was in a certain severity category back then and whether it would still be problematic now.

3.3.2 Linking data sources

The GROS DB contains data regarding events and instances of entities from different points in
time, but also from different facets regarding several SCRUM software development processes.
Work is undertaken on stories from a product backlog by refining the task description and enriching
other attributes and links. Meanwhile, the developers write code that implements the expected
change to functionality. The updated code is reviewed by their peers, in additional to quality
control systems checking if the software remains maintainable.

While the process itself appears streamlined, one hindrance is that the steps are often separated,
with limited linking between the entities and the systems they originate from. This reduces the
perceptibility of potential bottlenecks and other issues that emerge during the process, because the
ecosystem lacks a single view in which every team member is able to spot those problems. The
lack of linking limits the capability for further analysis of patterns in development projects, as
these relations are needed to gain a complete picture of the state of a project at any given moment.

Nevertheless, we automatically deduce relationships between different entities, which are then
used to combine previously unlinked data in our queries. During our data acquisition, we define
beforehand which systems, code repositories and other primary entities are in use by a certain
project. We collect the data on a project-by-project basis, keeping this identifier in mind when
importing the entities into the database. This gives the project entity a central role in our model.
While this is sufficient for some analysis, we prefer to give teams a more relevant role than projects,
when multiple projects are worked on by the same team, thus giving a better understanding of
their total workload. For such purposes, we combine them through data analysis afterward or use
the team entities from TFS/VSTS/Azure DevOps.

57

Chapter 3. Database construction 3.3. Method

Next, in order to understand what is happening during a single sprint, we compare timestamps
from the originating systems. For any event not yet linked to a sprint, such as a commit, metric
measurement or adjustment to a metric target, we determine in which sprint it took place by
finding the sprint with the closest start date before the event’s timestamp, provided that the sprint
did not end before then. It is beneficial to store this explicit link rather than attempt to find the
relevant sprint during a query, because the latter approach would possibly find multiple or even
false-positive connections, due to overlapping sprint dates. A “smarter” solution utilizing bisection
properly handles these situations by identifying the most relevant sprint.

There are still limitations to automated relationship inference. When used on user-generated
data, such practice becomes error-prone. For example, we wish to find relationships between code
commits and the stories that they are being made for. One convention is that the developer writes
the issue key or work item number in the commit message, but extracting the relevant identifier
from free-form text could lead to matching unrelated substrings or mentions of irrelevant stories.
There is also not a fixed custom for this, so it does not guarantee proper results for other projects
and organizations. This obscures the semantics and proper use of a complex many-to-many
relationship. Results from further analysis using this link would be incomplete, hard to understand
or incorrect. Therefore, we have decided not to extract relationships from unstructured, textual
attributes.

Another way to find what work is being done by the team in different systems is to determine
simultaneous actions by the same developer. Initially, our model shows that personal data regarding
each developer is scattered across portions of different systems. By linking developer entities
across systems when they refer to the same person, we find the developer’s affiliated activities in
certain time frames. This method is potentially inexact and ambiguous when combining the data,
but it allows us to filter out work that is not relevant to the developer through other means.

Problems with a person-based link arise when a developer chooses to use another name or
email address in a version control system (VCS), thus having separate profiles. One example
is a legal name in the employee records, stored in, e.g., LDAP, which differs from the name
used on a day-to-day basis. Therefore, we utilize a mapping that links developers with different
combinations of name and email address. The mapping is further employed to detect non-human
accounts, such as automated code changes, by explicitly omitting a linked primary account. We
then ignore those ‘bot’ accounts in further analysis.

Another important matter using personal data is the consideration of privacy. We prefer not to
include information that can be traced back to a specific individual. We encrypt these attributes
with a one-way encoding, in such a way that the developers are given a hash-based pseudonym.
The mapping still detects identical developers as long as the encryption keys are available; both
the mapping and encryption keys are only stored at the organization that the data originates from.
Some data is encrypted with project-specific encryption keys, so developer names are encoded
differently across systems if another key is used. For this reason, we have different tables with
data using global encryption keys and project-specific keys, as indicated in Table 3.3.

We use JOIN operations to involve multiple entities through their relationships, allowing these
queries to select attributes from several tables for further analysis. Another method of obtaining
data from multiple originating systems is to combine them afterward based on primary identifiers.
This way, distinct features have their own queries, and multiple features are combined into one
data set based on project and sprint identifiers, for example. This adds processing time after
performing the individual queries. Only after this step, the data set is made available to machine
learning, where each sample in the data set elaborately describes a sprint.

58

Chapter 3. Database construction 3.4. Architecture

SYSTEM GLOBAL ENCRYPTION TABLE PROJECT ENCRYPTION TABLE

Jira developer project_developer
TFS tfs_developer tfs_team_member
VCS None vcs_developer
LDAP None ldap_developer

Table 3.3: Portions of the database with personal data of developers as well as the tables in which
we store said data using global encryption keys and project-specific keys.

We have designed another method to select and combine data from our cross-referenced
database which takes advantage of the integration of the R programming language with MonetDB.
We augment the syntax of SQL with a templating system which allows defining which tables,
columns and relationships are involved in a query. This makes it possible to use the same query
template for data selection from Jira entities as for those from TFS/VSTS/Azure DevOps, for
instance. The columns involved in a relationship are provided separately so that the JOIN operation
remains flexible. Similarly, we reuse definitions, such as what kinds of issues are considered
stories, in more queries for other features or reports, by placing them in a central bank. Technical
details are provided in Section 3.4.

After selecting the data from the relevant entities, we also want to report which sources
were involved in the query. Tracking these sources is relevant for verifying if the information
from this query properly reflects what the originating systems display. This way, there are no
unforeseen conflicts between those systems and the database report. This also helps with making
the query more insightful for stakeholders, who otherwise only see a number or other attribute
without context. The data acquisition component of the pipeline tracks URLs of the systems that
it requests data from. Additionally, the quality control system provides metadata to describe the
code repositories and other monitored artifacts. Human-readable names make the references more
familiar to the developers. For most queries, we directly link to the specific source, which is
usually a report in the originating system showing the same information.

3.4 Architecture
The database must work properly and in accordance with our goals. Therefore, in this section,
we focus on the technical components that we design and implement, supporting the desirable
operation of the database. This includes integration of the database with the Grip on Software
pipeline, which ranges from data acquisition to machine learning and information visualization.

The main purpose of the pipeline is to frequently provide new insights into patterns found in
the wealth of data regarding SCRUM software development processes. The pipeline, including
the database, should not cause a huge strain on the existing platforms and processes. We keep in
mind that we deploy the database to multiple software development ecosystems. As such, we use
data from various issue-tracking project management systems in a similar fashion, for example. In
addition, the database component necessitates efficient data backup and recovery functionality,
allowing encrypted exports to be uploaded to a central instance for cross-organizational research.

The database administration and import component [d] plays a central role in meeting these
objectives. A Java-based program uses Java Database Connectivity (JDBC) as a straightforward

59

Chapter 3. Database construction 3.4. Architecture

method to interact with the database [XVII]. We import fields from JSON artifacts provided by the
data acquisition component. First, the program selects which tasks are relevant to be performed
for the provided collections of entities. Then, for each collection, the importer reads the objects
for the entities one by one, using a custom buffered line reader for memory efficiency. An entity in
the collection is used in a check to determine whether there is an existing row describing the same
entity. Depending on the outcome, the database is given an update with the new data using either
an INSERT or UPDATE statement. To sharply reduce the number of statements being sent to the
database during the import, the aforementioned checks and updates are performed using batched
statements [56]. Here, a subset of—or all of—the actions are performed in quick succession on
the database’s side through the use of a precompiled query template. During the import, MonetDB
fills in the sets of values to check for and/or to store in the database, saving time transferring and
compiling the query [57].

The importer program has more tasks next to revising the knowledge base on relevant entities.
We determine the relationships between data from different systems here, for example when
it comes to the sprint in which an event took place. The same applies for developer profiles,
as described in Section 3.3.2. Other tasks include normalization of metric names, tracking the
involved data sources, aligning changelog numbers and encryption of personal data.

The final encryption step takes place after the linking of developer data has been completed,
because it is impractical to find relationships when all the attributes of the involved tables are
encrypted. The data acquisition agent already encrypts personal data from version control systems
at this point, while the names and email addresses from the issue tracker are still obtainable.
Encryption keys use two attributes, a salt and pepper, which are produced by a cryptographically
strong pseudorandom number generator. The sensitive data field is then encrypted using the salt,
original value and pepper to form a SHA-256 hash [58]. The type of encryption keys used to
hash the values is stored in a bit field attribute. The bit values indicate whether the encryption
was done with a global encryption key, a project encryption key or both, in a particular order.
Double-encryption is not usually done in our database, as seen in Table 3.3.

We also consider the database component’s external security. Usually, the database is hosted
in an ecosystem with limited access from the internet. To prevent potential dependency problems
with separate firewalls, we restrict access to the port on which database connections are made.
This does not impact any legitimate uses if all the processing takes place on the same server. This
works well for a pipeline that is deployed on VMs, Docker platforms or other virtual network
ecosystems, where forwarding firewalls or port mapping further restricts access to the database
system.

Using the database administration component, we enable several maintenance tasks to be
performed on the database. The database model and its synchronicity with the live system is
important. We automatically validate the schema that is used to create the database tables against
documentation, which compares properties of columns and primary keys, such as their type. If we
want to adjust some of the properties or track a new entity, attribute or relationship, then upgrades
to both the schema and the documented model must take place. We use a data-driven approach to
determine whether the live database requires a schema change. We indicate for each portion of an
upgrade what kind of action will be taken. If the action is feasible, i.e., the table or column can be
created or adjusted compared to the current situation, then we perform the action. This avoids
performing upgrades that we already applied to the live database. Further, it allows staggered
updates which change a column of a table that is created by an earlier upgrade, without interfering
with each other. Thus, the schema changes take place in an appropriate order.

60

Chapter 3. Database construction 3.4. Architecture

Other maintenance tasks focus on database dumps, bulk imports and restoration. These
auxiliary systems are configurable for different use cases. This has allowed the dump and import
functionality to be reused in a cross-pipeline exchange setup. We do this along with a Java
program for database export specifically for our use with MonetDB [e]. This program takes care
of tables with encryption fields and large tables, so that the dump size remains manageable. The
exported dump uses a hybrid format of CSV data and SQL instructions. Another module further
encrypts the exported data using an asymmetric key-sharing setup [f]. A separate, private key
of the organization and the public key published by the central pipeline instance are involved in
the GPG encryption [IX]. The dump—without any unencrypted personal data or the encryption
keys—is then uploaded via HTTPS to the central instance. At this web server [g], the payload
is decrypted using the public key of the organization, which is known in advance, as well as
the private key of the central pipeline. This ensures that the message cannot be compromised.
Automated incremental dumps are thus regularly exported from the organizations and imported in
a central database for analysis.

Aside from the bulk importer and export handler, the main pipeline component that accesses
the database is the data analysis component [h]. We consider the feature extraction that this
component performs in more detail in Chapter 4. From a technical standpoint, we use the query
templates and definition banks introduced in Section 3.3.2 in order to determine which entity
tables, attribute columns and relationship references are involved in each query, allowing us
to build a generic and reusable data set. This integration of the R programming language with
the MonetDB database uses an interpolation-based compiler, with recursive steps to expand
contextually-defined variables and function calls into correct SQL. In Figure 3.9, the input data
and supported functions are summarized.

Query template

Definition bank

Extra patterns

Primary tables

Expansion ${ ... }

• Fields f(...)

• Grouping g(...)

• Joins j(...)

• Recursive s(...)

• Tables t(...)

Compiled query

+

Figure 3.9: Input data (green blocks) and expansion functions of the query template compiler
(red arrow), leading to a concrete query (blue block).

We show an example of a query template and a representation of the concrete queries for Jira
and TFS/VSTS/Azure DevOps in Figure 3.10. The definition bank is extensible with additional
patterns. Recursive expansion of these fields means that any template variables that they contain are
further translated. A mapping of tables that are relevant to certain templates allows for translating
the specific table where an entity is stored. For example, the issue entity expands to the issue
table for Jira or tfs_work_item for TFS/VSTS/Azure DevOps.

61

Chapter 3. Database construction 3.4. Architecture

1 SELECT DISTINCT ${f(join_cols , "issue")}, ${s(issue_key)} AS
key

2 FROM gros.${t("issue")}
3 JOIN gros.${t("sprint")} ON ${j(join_cols , "issue",

"sprint")}
4 WHERE ${s(issue_story)}
5 AND ${t("issue")}.updated > ${s(sprint_open)}
6 AND ${s(sprint_id , "issue")} <> 0

(a) Template

1 SELECT DISTINCT issue.project_id , issue.sprint_id ,
issue.key AS key

2 FROM gros.issue
3 JOIN gros.sprint ON issue.project_id =

sprint.project_id AND issue.sprint_id =
sprint.sprint_id

4 WHERE issue."type" = 7
5 AND issue.updated > COALESCE(CAST(sprint.start_date AS

TIMESTAMP), CURRENT_TIMESTAMP())
6 AND COALESCE(issue.sprint_id , 0) <> 0

(b) Compiled for Jira

1 SELECT DISTINCT tfs_work_item.team_id ,
tfs_work_item.sprint_id , CONCAT('#',
tfs_work_item.issue_id) AS key

2 FROM gros.tfs_work_item
3 JOIN gros.tfs_sprint ON tfs_work_item.team_id =

tfs_sprint.team_id AND tfs_work_item.sprint_id =
tfs_sprint.sprint_id

4 WHERE tfs_work_item."type" = 'Product Backlog Item'
5 AND tfs_work_item.updated >

COALESCE(CAST(tfs_sprint.start_date AS TIMESTAMP),
CURRENT_TIMESTAMP())

6 AND COALESCE(tfs_work_item.sprint_id , 0) <> 0

(c) Compiled for TFS/VSTS/Azure DevOps

Figure 3.10: A query that retrieves issue identifiers in each project’s sprints, for a feature that
counts the number of user stories, with different concrete versions that are expanded from the
template when selecting data from the database.

62

Chapter 3. Database construction 3.5. Experiments

3.5 Experiments
We test the GROS DB setup with regards to the performance of the database system during the
usual workload of the data collection and analysis pipeline. To do this, we propose a number of
experiments that look into the performance of MonetDB itself, as well as optimized refinements
made to the queries in our template compiler.

Our scope is not to compare MonetDB to other database management systems. We consider
the choice for MonetDB to be most reasonable at the moment when we initially created the
pipeline. We considered the strong qualities of a column-based storage, relational SQL support
and integration with a programming language for its functional deployment in a larger diverse
development and research environment. In particular, a performance comparison with another
RDBMS would require rethinking the data model for that particular database system. We would
have to decide which indexes to include in the model, whereas MonetDB does not require
manually-created indexes. Other data type constraints have been made specifically for our feature
set and would require a different representation.

Comparisons between database systems are often done with industry-level benchmarks, such
as TPC-H [XVIII]. We instead focus on a test set with a small number of queries that we have used
during the Grip on Software research. The selected queries should be representative of the usual
data collection for further analysis, machine learning and information visualization. Various parts
of the data model are involved in the queries. Varying levels of complexity are used in order to
provide the feature set and associated details in the query response.

We measure the performance of query templates that we have optimized with our compiler. In
order to find out how much these changes improve the efficiency of database system, we go back
to older versions of the query stored in our repository and include those in our test set, along with
the newer version. We retroactively apply changes that we made to the query in the meantime, but
only in case that these changes are not relevant to the performance.

3.5.1 Setup

In our performance experiments, we consider only the data access statements (SELECT), not other
kinds of queries for data definition or data manipulation. The queries that build the database and
fill it are not part of a typical workload in our consideration. In fact, the data import is already
covered by other pipeline performance measurements in Section 2.5.

We do involve new database creation and storage in our experiments by testing queries in two
situations. First, we run queries one by one on an existing database which has seen the queries
before and could create optimized structures for them. This is considered a hot-start experiment.
We test the same queries again, this time individually where we rebuild the database and import
the database, in between each query run. This cold-start experiment provides more indication of
the inherent complexity of each query for our data model.

We disregard caches in between cold-start runs. In all experiments, we disable the use of tables
that hold outcomes of long-running queries. The performance test should not be interrupted by
other processes when possible, thus other parts of the pipeline are disabled during the experiments.

Our performance test program reuses portions of the data analysis program that runs the
queries [h]. Additionally, it ensures a reproducible and consistent setting for all the queries. We
perform multiple runs of each query in order to obtain statistics on deviations. This allows us to
determine if the test setup behaves similarly between runs.

63

Chapter 3. Database construction 3.5. Experiments

The data set of ICTU is used as a representative instance upon which we apply our queries.
Some relevant dimensions of the database are listed in Table 4.1, with 192 million measurements
of quality control metrics on top of that.

The tests are performed on a Dell PowerEdge 2950 2u rack-mounted server with a Intel Xeon 8-
core X5450 CPU at 3GHz, with 2×128KiB L1 cache, 2×12MiB L2 cache, four 4GiB mem-
ory cards of DDR2 FB-DIMM RAM of Hynix HYMP351F72AMP4N3Y5 (667MHz) and a
544GiB DELL PERC 6/i SCSI storage disk with LUKS-based 512-bit AES full disk encryption
enabled. The database system under test is MonetDB v11.41.5 (Jul2021).

3.5.2 Results
We run six queries related to two large entities in our data model, namely metrics and issues. Most
queries make use of related entities, such as sprints. The query templates and compiled versions
are provided in Appendix B.

We collect the wall clock time that each query took, from the start of the query request until the
data response, as well as the system time that the database used during the full query processing.
In addition, we measure the average CPU load during the execution of the query. Finally, we
track how many database rows were included in the query. This statistic occasionally differs
between refined and original versions, due to a different method of linking with related sprints
or by filtering operations. This is because some sample rows are not used in the data set during
normal data analysis operations. Only sprints that exist are included in the data set. Thus, the
query filters such sprints beforehand.

The performance measurements of the test results on a hot-start database are provided in
Table 3.4 for the original queries and Table 3.5 for the refined versions, with 10 runs for each
query. We report the mean and standard deviation of the values obtained from those runs. It is
clear that the queries that we refined are faster, even if the database also optimizes the queries
itself. Our optimization also appears to help with reducing the variance between runs, allowing
for queries to run frequently and in a stable rate during research.

QUERY WALL TIME RUN TIME CPU LOAD ROWS

All metrics (Figure B.1) 11.29±0.32 11.02±0.33 81.3±3.0 1898
Red metrics (Figure B.3) 2.01±0.14 1.74±0.13 72.1±5.7 1775
Team spirit metric (Figure B.5) 10.77±0.34 10.50±0.35 76.4±3.3 1063
Backlog added points (Figure B.7) 1.20±0.03 0.93±0.02 38.3±1.1 16823
Backlog epic points (Figure B.9) 7.98±0.09 7.70±0.09 44.4±0.7 32246
Backlog story points (Figure B.11) 5.61±0.15 5.35±0.13 33.5±0.7 153685

Table 3.4: Results of performance tests of original versions of queries, using a hot-start database
system. Times are provided in seconds, CPU load in percentages.

The queries related to metrics use more processing power in order to generate the result.
Consequently, they take longer to produce the resulting data set. The queries that calculate
product backlog sizes at different moments in time have a large data set, but perform relatively
efficiently compared to the metrics queries. With larger data sets from each query, CPU load and
in particular query response times decrease. This indicates that query optimization through the
template compiler serves a practical use, when queries are rerun many times.

64

Chapter 3. Database construction 3.5. Experiments

QUERY WALL TIME RUN TIME CPU LOAD ROWS

All metrics (Figure B.2) 5.76±0.08 5.48±0.09 81.2±1.5 1899
Red metrics (Figure B.4) 1.76±0.04 1.49±0.03 79.3±1.6 1776
Team spirit metric (Figure B.6) 2.54±0.56 2.28±0.04 79.5±1.3 1063
Backlog added points (Figure B.8) 0.88±0.04 0.62±0.02 31.4±1.3 16823
Backlog epic points (Figure B.10) 3.83±0.07 3.57±0.07 26.8±0.9 25833
Backlog story points (Figure B.12) 4.05±0.06 3.79±0.06 27.4±1.2 88032

Table 3.5: Results of performance tests of refined versions of queries, using a hot-start database
system. Times are provided in seconds, CPU load in percentages.

We measure the performance of the same queries in a cold-start setup, where the database
is restarted and all system caches are removed. The original and refined versions of the six
queries in our test set are each run ten times again. The results of these experiment are shown in
Tables 3.6 and 3.7.

QUERY WALL TIME RUN TIME CPU LOAD ROWS

All metrics (Figure B.1) 50.92±0.53 50.86±0.53 20.1±0.6 1898
Red metrics (Figure B.3) 32.03±0.20 31.97±0.21 10.8±0.4 1775
Team spirit metric (Figure B.5) 69.79±0.39 69.80±0.39 15.1±0.3 1063
Backlog added points (Figure B.7) 2.02±0.10 1.97±0.10 22.1±1.1 16823
Backlog epic points (Figure B.9) 8.53±0.09 8.46±0.10 41.2±0.6 32246
Backlog story points (Figure B.11) 6.40±0.11 6.34±0.11 29.6±0.5 153685

Table 3.6: Results of performance tests of original versions of queries, using a cold-start database
system. Times are provided in seconds, CPU load in percentages.

QUERY WALL TIME RUN TIME CPU LOAD ROWS

All metrics (Figure B.2) 49.47±0.49 49.41±0.48 13.2±0.4 1899
Red metrics (Figure B.4) 33.05±0.25 32.99±0.25 10.0±0.0 1776
Team spirit metric (Figure B.6) 59.89±0.70 59.82±0.69 10.0±0.0 1063
Backlog added points (Figure B.8) 1.61±0.15 1.55±0.16 17.5±2.2 16823
Backlog epic points (Figure B.10) 4.45±0.08 4.38±0.08 23.2±0.6 25833
Backlog story points (Figure B.12) 4.93±0.17 4.86±0.18 22.7±0.8 88032

Table 3.7: Results of performance tests of refined versions of queries, using a cold-start database
system. Times are provided in seconds, CPU load in percentages.

Again, we observe that the refined variants have a decreased query processing duration and
load, although the effect is not as significant compared to the hot-start setup. One query, used to
calculate the number of problematic red quality control metrics, is slightly slower.

All queries are faster to process in the hot-start situation than with the cold-start setup. This
should be expected, given the presence of additional index-like structures that MonetDB generates

65

Chapter 3. Database construction 3.6. Discussion

and reuses between the runs of the queries on a hot-start system. The queries that involve the
metrics are several times slower in the cold-start setup, while the effect is less extreme for the
backlog queries compared to the hot-start test. The average CPU load is however much lower
during the cold-start experiment, for all queries. This may be due to longer run times spreading
out the actual execution until enough data is obtained from disk. Another potential bottleneck is
memory synchronization times between queries, allowing the overall load to decrease. In addition,
there is less usage of intricate data structures that help with speeding up the query resolution but
use more complex instructions.

Overall, the combination of a hot-start MonetDB database system and the refined queries
seems to provide the most benefit to shorter query processing times and advantageous usage of the
available resources. The higher load does not impact the system much, given that other processing
cores are still available for other portions of the pipeline to be run. This allows us to use the
GROS DB at various software ecosystems, which come with different hardware constraints and
virtualization options.

3.6 Discussion

In this chapter, we build upon the introduction of the pipeline components in Chapter 2 and further
detail the database system as a central component of the pipeline. During the Grip on Software
research, there is a need to store information from several systems that are commonly used for
SCRUM software development. We focus on modeling and integrating these data sources such that
we link previously disconnected entities and perform frequent analysis on the data set.

MonetDB satisfies our purposes and requirements as an extensible RDBMS suitable in
academic and corporate environments. The data model of GROS DB makes use of various data
types provided by MonetDB, including timestamps and references between entities. MonetDB
supports SQL as a core query language, but also enables extensions through the integration
with programming languages such as R and Python. As a database system oriented to analytical
processing, we find MonetDB to be the most applicable option for our research.

Our data model for the SCRUM software development process has many connections between
different portions that roughly correspond to the systems that the data originates from. Initially,
systems such as a project’s issue tracker, version control system and quality dashboard lack
substantial interaction. Through chronological information about events that make changes to
entities, we build new relationships, where the sprint acts as a central entity. This model allows us
to more easily extract metrics and features regarding this time frame.

Other links exist through the use of personal information, such as when a developer commits
some code and resolves a story. We take privacy in mind by encrypting names and other identifiable
attributes, with one-way encoding using project-specific encryption keys. We preserve links by
using local translation mappings and comparing the hashes.

We enhance the selection of data from the model by introducing a query template compiler.
This allows us to write queries that select the same kind of data, such as the number of stories
worked in a sprint, while staying agnostic to the underlying portion of the data model used in the
actual query. Depending on the organization and project, the templates are compiled to use, e.g.,
Jira or TFS/VSTS/Azure DevOps as a source. The relevant entities—stories versus work items as
well as different types of sprints—plus the references used in JOIN operations on their tables are
then automatically used in the proper locations.

66

Chapter 3. Database construction 3.6. Discussion

There are technical challenges to make the database system stable, maintainable, interoperable
with other parts of the pipeline and applicable in a wide range of software development ecosystems
without many changes or influences on the existing infrastructure. Additional functionalities of
the GROS DB allow us to fulfill these requirements, along with tasks for upgrading and exporting
data to a central instance of the pipeline.

We test the performance of the database system through the use of a number of queries that are
representative of our usual workload, along with older, non-refined versions that perform the query
in a different way. We observe that the refined versions use less time to execute. Additionally,
we show that MonetDB itself performs optimizations through the use of structures created when
queries are run more often, which benefits our resource usage during our research. We easily
perform our queries repeatedly whenever new data comes in. This is performed by a scheduled
job system that runs hourly or even more frequently, depending on the other pipeline components.

More performance experiments could be done by comparing MonetDB to other potential
database systems, such as MySQL, Postgres and SQLite [49]. In particular, MariaDB, as a fork of
MySQL that includes options for column-based storage, is a consideration for further research
options. Overall, the storage and performance options of MonetDB have proven to be helpful in
our data modeling needs, as recognized throughout analytical processing problems.

We also consider an alternate solution where we integrate MonetDB with more Python
programming, rather than with R. There exist many modules that make Python work well with
column-based feature data, which allows deeper integration with machine learning purposes with
fewer intermediate steps. Still, our query template compiler overcomes some issues that would
need to be reimplemented in Python. We did purposefully design our query templates to not
contain specifics of the language that the compiler is implemented in, in particular regarding the
syntax of the expansion functions.

Our data model should be suitable for a large range of software development projects. Some
portions are focused on a specification of data originating from specific systems, such as Jira
and TFS/VSTS/Azure DevOps. Still, we easily support more integrated issue trackers and review
systems, with GitLab and GitHub already part of the database model. Existing entities and
relationships are proper templates as a starting ground for such extensions.

In summary, our research objectives are more easily attainable with the GROS DB database
system based on MonetDB and extended with our query template compiler. We efficiently
extract data sets based on the entities and relationships in our data model, with interconnections
between portions based on discrete systems used in SCRUM software development. This data set
accommodates different organizations while using the same query template, by taking advantage
of the generic and flexible design of our data model and the technical component architecture.
Thus, our pipeline remains adaptable to various development ecosystems. The performance of
the pipeline component allows involved team members to benefit from recurring, large-scale
machine learning and information visualization applications. By making the model inherently
more understandable, the goals for improving predictability of the software development process
become more feasible as well.

67

