g
4
s

/) 75
A Nk Leiden

=)

M’b The Netherlands

Grip on software: understanding development progress of

SCRUM sprints and backlogs
Helwerda, L.S.

Citation

Helwerda, L. S. (2024, September 13). Grip on software: understanding
development progress of SCRUM sprints and backlogs. SIKS Dissertation
Series. Retrieved from https://hdl.handle.net/1887/4092508

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4092508

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4092508

Grip on Software: Understanding development
progress of SCRUM sprints and backlogs

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op vrijdag 13 september 2024

klokke 11:30 uur
door

Leon Sebastiaan Helwerda

geboren te Voorburg, Nederland
in 1992

Promotores:
Prof.dr.ir. EJ. Verbeek
Dr. W.A. Kosters

Promotiecommissie:

Prof.dr. M.M. Bonsangue

Prof.dr. H.C.M. Kleijn

Prof.dr. S. Manegold

Prof.dr. M.R.V. Chaudron (Eindhoven University of Technology)
Dr. C. Soomlek (Khon Kaen University)

Dr. F. Niessink (Stichting ICTU)

Copyright © 2024 Leon Helwerda
Cover art by Marian Helwerda, based on photograph by Leon Helwerda
Printed by: NBD Biblion

Funded by Stichting ICTU as part of a collaboration between Leiden University and ICTU

SIKS Dissertation Series No. 2024-28
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch
Research School for Information and Knowledge Systems.

ICTVU sTis

Contents

1 Introduction

1.1 Preface e
1.2 Context oo e e
1.2.1 Software development, Agile and SCRUM
1.2.2 Machine learning, pattern recognition and predictive analytics
1.2.3 Casestudies of workflows
1.3 Designscope v v it e e e e e
1.4 Problem statement
1.5 Pipeline components e e
1.5.1 Instances e
1.5.2 Non-functional requirements
1.6 Structure of thisthesis

2 Data pipeline

2.1 Introduction
2.1.1 EBeosystem e e
2.1.2 0 Structure e e
2.2 Designo e e e
2.2.1 Distributed datasystemso
2.2.2 Agent-based communication
2.2.3 Organizational approaches,
23 Method
2.3.1 Dataacquisition
2.3.2 Furtherpipelinesteps L
2.4 Technical considerations
24.1 Generalizability
2.4.2 Continuous inte@rationo vt
243 Documentationol e
244 Novelty e
25 Results.
2.6 DisCUSSION e

3 Database construction
3.1 Introduction e
32 Relevantwork

il

Contents

33 Method 45
33.1 Datamodel 47

332 Linkingdatasources 57

34 Architecture 59
3.5 Experiments 63
351 Setup 63

352 Results e 64

3.6 Discussion. 66
4 Pattern recognition methods 69
4.1 Proposition e e e 71
42 Background 72
421 Framework 73

4.2.2 Story points and adaptations L. 74

43 Relatedwork 75
44 Approach 76
4.4.1 Featureextraction. e 77
442 Dataseto e e e 79

443 Models 80

4.5 AnalysisSstrategy 83
4.6 Results. e 84
4.6.1 Sprint classification and estimation 84

4.6.2 Backlogsize estimation 85

47 Conclusions oL e e 89
47.1 Threatstovalidity 90
4772 Proposedadditions oL oL 91

5 Information visualization 93
5.1 Preamble 95
52 Purpose e 96
5.3 Relevantconcepts oLl e 97
5.4 Dashboard framework L Lo 99
5.5 Visualizations for analytical decision support 102
5.5.1 Sprintreport e 102

552 Predictionresults 111

5.53 Timeline e 114

554 Leaderboard 118

5.6 Visualizations for ecosystem management 121
5.6.1 Collaboration graph 121
5.6.2 Processflow 125

5.63 Heatmap 128

5.64 Platformstatus L e 131

5.7 Novel backlog visualizations 134
5.7.1 Product backlog burndownchart, 134
5.7.2 Product backlog progressionchart, 135

5.7.3 Product backlog relationshipchart 0. 137

v

Contents

5.8 Evaluation e
5.8.1 ASSESSMENt e
5.82 Adoption e e
583 Conclusion
6 Discussion
6.1 Retrospective e e e e e e
6.1.1 Technical overview e
6.1.2 Main contributions e
6.2 Overall conclusion e
6.2.1 Problemstatement
6.2.2 Researchquestions
6.3 Futurework e
6.3.1 Furtherresearch
6.3.2 Generalizabilityo
Glossary
Bibliography
Appendices
A Code repositories of the Grip on Software pipeline
B Queries used in database performance experiments
Summary
Samenvatting

Curriculum Vitae

Acknowledgments

SIKS Dissertation Series

145
147
147
149
151
151
152
159
159
161

163

169

183

185

189

203

207

211

213

215

Chapter 1

Introduction

The Grip on Software research and its relation to the SCRUM
software development method

Abstract of Chapter 1

In this chapter, we present the Grip on Software research project as well as the contextual
situation of the project within specific fields of study: software engineering, quality control
and development methodologies. We describe methods and terminology that exist in this field,
in particular for the SCRUM framework. Furthermore, we provide an overview of topics in
machine learning and pattern recognition that are applicable to our study. We then introduce
the problem statement and hypotheses have resulted in our research questions.

The following problem statement is central to our research: “How can extraction and
analysis of measurable events during a SCRUM software development process as well as other
qualities of the product and team be used to significantly improve the predictability of practices
employed at software development organizations?”

We discuss the social aspects and importance of this research for our stakeholders, including
developers, project owners and quality control engineers. This surmounts to a motivation on
the actual utility of the results. We finally explain the toolset that we use for our research
as well as the scientific factors within it: reusable code components, pipeline architecture,
database modeling, machine learning, estimation models and information visualization.

Chapter 1. Introduction 1.1. Preface

1.1 Preface

Software development is a complex process. It is important that software products become stable
and maintainable assets. To that end, methodologies have been designed to support development.
We examine and extend one of these software development frameworks—S CRUM—using machine
learning methods in the hope to better understand what happens during the process, to learn from
these events, to avoid problematic situations and to improve the process as a whole.

A combination of software development and machine learning might evidently seem like a
harmonious solution, given that lots of data is available for such algorithms. Similarly, we may
easily receive feedback from a large group of involved people. However, it is still important to
properly introduce novel concepts and techniques to an existing working environment.

This thesis presents the concepts, goals, challenges, design, methods, implementation, results
and observations of the Grip on Software research study, which delves into the discovery of
unused or underused data sources in a software development environment that are valuable when
it comes machine learning. After acquisition, the data needs to be modeled and represented in a
structured manner, such that extraction of representative attributes is possible. This paves the way
to machine learning and information visualization as our research output. Consequently, interested
parties are able to look into the results, find problems in the software development process specific
to their team and adjust ahead of future challenges.

We consider problems regarding workload scheduling, particularly in modern development
frameworks; these are often faced with fast-paced changes. Given that end users become more
involved in the process of requesting and tuning desired functionality in the software, development
platforms—including quality control and other tracking systems—need to function optimally in
order to support a team in delivering the work that they commit themselves to. Typical planning
applications only provide an overview of the current situation and limited reporting options. These
prevalent deficiencies hinder key figures with prominent roles in the process from understanding
what has happened recently. We augment existing reports with more depth in time and breadth of
qualitative characteristics.

In this introduction, we first focus on the contextual description in Section 1.2, with initial
literature review and specifics on the SCRUM software development method, in particular on
how it is applied at two governmental organizations—our case studies—ICTU and Wigo4it. This
leads to a description of goals and design scope in Section 1.3. Subsequently, we introduce the
research questions of Grip on Software in Section 1.4. Next, our discussion concentrates on the
implementation aspect, with an introduction of the component-based design of the data acquisition
pipeline in Section 1.5. The remaining chapters of the thesis are finally outlined in Section 1.6.

1.2 Context

In order to properly understand the intricacies of an environment in which a research study takes
place, it is relevant to review existing literature and lay down the groundwork upon which the
analysis advances toward novel observations and results. For the Grip on Software research project,
it is a prerequisite to review the prior work regarding software development methods, in particular
SCRUM, which we introduce in Section 1.2.1. We look into the origins of this methodology and
how it is formulated. We also focus on what typically happens when SCRUM is brought into
practice. The essential terminology defined by the framework is also part of this elaboration.

Chapter 1. Introduction 1.2. Context

We also consider the concepts from machine learning that are relevant for our eventual
analytical goals in Section 1.2.2. State-of-the-art and established algorithms are discussed, while
exploring the relationship between various terms and fields. We include many approaches that
have a statistical foundation. We consider the main challenges and objectives of these types of
algorithms. This enables us to apply suitable models in our subsequent study.

This contextual description is intended to introduce the main definitions and semantics
regarding the ecosystems at software development organizations encountered during our research,
which we further illustrate through case study descriptions in Section 1.2.3. Potential practical
approaches and systematical formalizations are briefly discussed here, specifically when it comes
to software development and machine learning. These are applied throughout our research, but
in particular concerning Chapter 4. There, we provide a recap of the SCRUM framework and
expand upon our literature study, after which we introduce our contributions to feature selection
and machine learning models that solve classification and estimation problems in software
development processes. In other chapters, we explore literature relevant to the topics described
there, i.e., data acquisition pipelines in Chapter 2, database management as central topic of
Chapter 3 and Chapter 5 for information visualization.

1.2.1 Software development, Agile and SCRUM

As a complex process, people approach software development in different ways and through
various methods. Usually, a development process starts off with determining the requirements of
the system and the software that is developed to run on that system. This requirement specification
clarifies what the product in its entirety should do. Several more steps follow to analyze the
requirements into diagrams and an initial design of the software and its architecture, consisting of
a high-level structural overview. These structures become concrete by programming code that
performs the necessary actions. The code of a component in the architecture integrates with other
subsystems. Then, fests are employed to find potential problems at various levels of inspection,
e.g., with coverage of enough lines of code. In this phase, conformance checks compared to the
specified requirements are paramount. Once the product satisfies these tests, the product is made
operational through deployment—such as installation or publication—and thus made available
to the end user. Thereafter, frequent maintenance of the system is necessary to keep the product
functional in a changing ecosystem in which the software is placed.

When these steps are taken one after another, the process is classically considered to be a
waterfall model where each phase depends on the results of the previous stage. The output of
each development step is then fixed, such that it is available as a reference work to evaluate the
correctness of later steps, e.g., the verification of requirements during a test and validation of
the desired functionality. Thus the process works in one direction when strictly adhering to the
conceptual waterfall model [1]. This is commonly seen as a formalistic, contract-based top-down
system.

The rigidity of this process becomes cumbersome when users or other involved people
formulate new desires and requirements during later steps, which are then difficult to include
in the process. Even if the requested changes are postponed until a later milestone or version
release, it takes a lot of effort—thus more time—for the new idea to be fully developed. This is
problematic if the idea is related to other, well-developed features that already meet requirements
in providing desired functionality and therefore should not break. Similarly, the more important
the change is to the product, the more difficult it is to implement in the existing code. Furthermore,

Chapter 1. Introduction 1.2. Context

testing takes place very late in the process, which introduces risks of hidden bugs that surface
after a long time, with no opportunity in the model to act upon this situation. Consequently, when
strictly following a waterfall model, developers spend many hours looking back at specifications
and code written long ago—potentially by others—with no clarity regarding original intentions.
This brings along cognitive burden on top of the common workload [2].

Faced with these practical shortcomings, software engineers have considered alternative
processes for development. Recent software development frameworks or methodologies apply a
frequent, iterative cycle of development. Another important factor of modern software development
is the increased attention to individuals and teams, less on intermediate artifacts that specify
requirements in complete detail. Team interactions include collaborating on code, holding informal
conversations to inform each other on progress and meeting with end users or representatives to
discuss newly-developed features rather than formal documents.

These proposals accumulate into a short list of values, known as the Manifesto for Agile
Software Development [3]:

* Individuals and interactions over processes and tools;
* Working software over comprehensive documentation;
» Customer collaboration over contract negotiation; and
* Responding to change over following a plan.

The manifesto continues to explain that there is still value in the latter topics, but the
activities mentioned first in each item are considered more valuable.

Several novel software development methods are designed with these principles in mind. Generally,
they focus on describing the core of their approach—given that not all situations, in the spirit of
the Agile Manifesto, should be documented fully—often explicitly allowing the method to be
extended or adjusted accordingly. Agile methodologies are typically flexible, with no preference
for specific software that aids planning [4], while not restricting additional systems that support
the specified values and goals [5]. One of such Agile software development methods is the SCRUM
framework [6], its name being a metaphor derived from the team sport of rugby. We given an
overview of the basic SCRUM framework. Many adaptations exist that focus on different team
sizes, such as scaled Scrum, Scrum of Scrums and Scrumban. These variants often play a role in
multiple teams working on the same project, for example in our case studies in Section 1.2.3.

In SCRUM, definitions are given for roles, events and artifacts. A small development team may
consist of, e.g., developers, architects, analysts and planners, but any person can take on one or
more of these roles, improving their skills in practical situations. One person with a fixed role,
operating between the team and the organizations involved during the development, is the Product
Owner (PO). The progress toward a valuable product falls under the responsibility of the PO, who
oversees several artifacts. The team also has a Scrum Master (SM)—a role which may alternate
between developers or be appointed to a coach—who leads the team in implementing the SCRUM
framework and removing impediments that hinder the progress.

SCRUM defines a number of events that take place as part of a cyclic, fixed-length time
span known as a sprint [7]. Each new sprint typically starts after another finishes, but before a
sprint, the team and PO hold meetings to improve and select the planned work for the sprint,

Chapter 1. Introduction 1.2. Context

respectively during a refinement and sprint planning. During a sprint, the developers briefly meet
every working day at a fixed moment in a Daily Scrum, where they customarily discuss what they
have been—and are—working on as well as any impediments that they encounter.

A sprint ends with two further meetings, namely the review and retrospective. The review
is meant to allow the team to present, demonstrate and discuss the results of the sprint with
representatives of the end user. Through collaboration, further work toward a finished product
is inventorized. The retrospective is meant for the team members themselves to improve the
effectiveness of the process. They consider how the previous sprint progressed and discuss how to
keep their focus on the important elements. Additionally, changes may be made to the way the
team uses SCRUM. The general workflow of a SCRUM sprint, including the events surrounding it,
is shown in Figure 1.1.

Product Development .
Owner (PO) Team Daily Scrum
Product || Refinement and Sprint
Backlog || Sprint Planning Backlog Product
Increment
Sprint Review and

Retrospective

Figure 1.1: Workflow of a sprint in the SCRUM framework, showing events (red arrows), artifacts
(blue) and the broad scope of some of the roles.

The team and PO self-manage the amount of work through several artifacts that list potential
improvements to the product [8 app. 2]. One of the tasks of the PO is to collect desired features
mentioned by the users or their representatives and place them on the product backlog (PB). The
work items on this backlog are often called user stories that describe what the feature request
entails in a simple format. Refinements bring forth further details and breakdowns into smaller
stories, related to each other through links or epic tasks. The team regularly gives user stories a
relative sizing, e.g., story points, indicating the complexity of development, based on available
information and compared to other stories [9]. Once a user story is prepared enough to be ready—
with the team agreeing that the work is not too difficult at the current time—it is added to a sprint
backlog (SB), where work of an upcoming sprint is tracked.

The members of the development team commit themselves to collectively work on the selected
features that make up the sprint goal (SG) objective. This is a subset of the future work on
the product backlog, which has its own, encompassing product goal (PG). To find if work fits
thematically and in terms of workload, diagrams like burndown charts help track the progression.
The team also has a commitment to a unified, measurable way to determine if a task is complete.
This Definition of Done (DoD) also describes quality measurements that changes made to the
product should meet, such as unit tests, associated coverage of the lines of code, complexity and
code style. The user stories that are completed according to this definition make up an increment
of the product. Increments are provided to the users, perhaps as milestone versions. In Table 1.1,
an overview of the artifacts, roles and commitment objectives defined by SCRUM is given.

Chapter 1. Introduction 1.2. Context

ARTIFACT ITEMS RESPONSIBLE ROLE COMMITMENT

Product backlog (PB) Stories Product Owner Product goal (PG)

Sprint backlog (SB) Refined stories Development team Sprint goal (SG)

Product increment Features Development team Definition of Done (DoD)

Table 1.1: Overview of artifacts defined in the SCRUM framework, what they consist of, who is
responsible for the contents and how the progress is agreed to be measured.

1.2.2 Machine learning, pattern recognition and predictive analytics

The study of algorithms that automatically analyze large amounts of data to perform tasks is
commonly known as machine learning (ML). In this field, many different types of problems are
under consideration, Sometimes, solutions are provided that find new application in generalized
settings. Machine learning typically considers problems where entries—or samples—in a data set
describing some kind of object, situation or event are in need of a label that describes the object
in a numerical or categorical manner. A solution is to perform this labeling operation through
a predictive method that provides a statistically likely answer. These algorithms, also referred
to as models, are widely considered to be form of artificial intelligence (Al), where a computer
is able to demonstrate skills similar to cognitive beings—such as humans—when it comes to
understanding information and acting upon it [10]. This broad field is constantly changing, with
novel concepts, algorithms and applications rapidly being developed.

Machine learning depends on the availability of a comprehensive data set, where there is a
sizable quantity of entries as well as plenty of qualitative aspects of each record through relevant
attributes. The data set should reflect a broad distribution of possible samples, encompassing
uncommon instances and avoiding bias due to overrepresented cases.

In order to obtain an adequate data set, machine learning is combined with data acquisition
methods to obtain enough raw data to start with. Usually, this data needs to be structured and
filtered in order to select appropriate attributes for the eventual data set. Sometimes, data mining
helps with extracting new properties from the data through the use of similar learning algorithms
used in machine learning [11], but not necessarily with the goal of labeling in mind. This use of
preprocessing algorithms is also found in dimensionality reduction [12], where attributes that do
not contribute to the meaning of the sample—through some inherent metrics—are filtered out
or combined into more relevant features that describe measurable observations about a specific
sample in a data set. Additional feature selection helps with making the data set more refined by
working on a relevant subset of the features [13].

The primary machine learning problems when it comes to making predictions are classification,
estimation and clustering problems, where the goal is to find a label for an unlabeled sample
that is either selected from a limited set of classes, from a numeric range or by grouping similar
samples together, respectively. A supervised learning algorithm is able to use a (random) portion
of labeled samples from the data set to learn patterns and understand relations between features in
order to generate better labels in the future, in a process known as training. The other portions of
the data set are then used to fest a trained model with a similar distribution or as validation that
the model was well-tuned. In contrast to these processes relying on already-known target labels,
unsupervised learning makes use of samples without labels, which is applicable to clustering
problems, for example.

Chapter 1. Introduction 1.2. Context

A well-known group of ML algorithms typically associated with classification problems in
particular are neural networks (NNs). These models are architecturally composed of layers, where
the sample is fed as an input to a layer, which performs mathematical operations based upon
weights and potentially other variables stored for that layer, producing an output of possibly
different dimensionality. Multiple layers lead to larger networks, with the final layer providing a
classification or estimation [14]. During training, the output is used to adjust the weight factors
through a learning algorithm such as backpropagation [15], hopefully improving the accuracy of
the labeling. With more layers and specialized architectures of each layer [16], such NN models
are contemporarily known as deep neural networks (DNNs).

Aside from determining labels through classification and estimation algorithms, there is
an interest in finding similar situations in the data set. Especially when it comes to repetitive,
temporal data, regular occurrences of situations provide relevant insight in the underlying meaning
of a final classification. Research in these regularities and peculiarities is known as pattern
recognition (PR), which supports the labeling task by providing strong, new features in the
data set. Pattern recognition on its own also helps with further analysis of the data set and
extraction of clusters or related information [17]. Separately, anomaly detection also improves
understanding of why rare situations take place, how to describe them in the data set and how to
approach them in the further machine learning process [18].

Another method of advancing knowledge about patterns and relations is regression analysis,
where data points are estimated using a function that closely fits most of the observations [19].
If the regression function is a line, then we specifically deal with linear regression and a trend
becomes visible, but analysis with higher polynomials and other functions exist as well. One can
also include data points in probabilistic distributions and generate new points based on probability
density functions, such as with the Monte Carlo method (MC), using random number generation
to draw potential new samples during many simulations [20].

While some of these statistical approaches are more remote from the concept of machine
learning, they still play an important role in fundamental research as well as the construction of
larger models. One challenge in machine learning is making results explainable. This means that
we do not just obtain a classification or estimation, but are also able to trace back how model
generates the label, e.g., which inputs end up being most relevant in the internal computation.
Enhancements to a model should allow for more means of explaining the output instead of
hindering this. Similarly, models constructed from existing algorithms in order to form an ensemble
model that combined multiple outputs—for example through a majority vote—should still expose
how the inner methods operate [21]. Recombining algorithms at a meta-level may help with
specific objectives, such as in the analogy-based effort estimation algorithm (ABE), which
identifies which attributes are most prominent in predicting the workload of developing code [22].
In Table 1.2, we provide an overview of the mentioned algorithms and the categories of problems
that they are usually applied to.

In summary, machine learning attempts to achieve multiple predefined objectives for a specific
application, where accuracy, bias reduction, relevance of features and explainable models are
important goals. Additional factors such as privacy and other sensitive information are relevant
as well. Proper care should be taken in this regard when constructing, training and evaluating
the algorithms. Together, ensemble models allow more problems to be solved while increasing
the descriptiveness and retaining forecasting power. For business-oriented problems, such as the
software development life cycle, this logical approach yields an innovative process known as
predictive analytics [23].

Chapter 1. Introduction 1.2. Context

ALGORITHM CLASSIFICATION ESTIMATION TREND
Neural network (NN) v v X
Deep neural network (DNN) v v X
Linear regression (Lin) X v v
Monte Carlo simulation (MC) X v v
Analogy-based effort estimation (ABE) X v X

Table 1.2: Types of machine learning and statistical algorithms, with an indication of applicability
to some problems. Through discretization, use of raw outputs or other enhancements, some
algorithms are usable for more goals than indicated here.

1.2.3 Case studies of workflows

Software development and machine learning are both very widely researched fields, with a large
scientific foundation in understanding their functioning. When it comes to specific frameworks,
methods and models, it is essential to find out how well one can apply these in a practical
setting. The SCRUM development method allows teams to make precise adjustments in order to
improve interactions and results. Furthermore, organizations use different ecosystems for SCRUM.
This includes tracking backlogs and sprint progress, means for collaboration—such as version
control systems with code review functionality—quality control and build platforms. Differences
in selected systems mean that it is not straightforward to perform data acquisition and pattern
recognition. Careful consideration is required in order to allow for generalization. We need to
first discover how approaches of teams and organizations affect the way the data is stored, before
considering what this entails for our predictive research.

We introduce two software development organizations from the Netherlands: Stichting ICTU
and Wigodit. Both organizations develop software applications exclusively for other government
agencies, but are officially separate, non-profit entities. ICTU was established by the Dutch
government as a foundation to be an implementing body (Dutch: ICT-Uitvoeringsorganisatie),
while Wigo4it is operated by the four largest municipalities of the country.

These two organizations implement their own interpretations of the SCRUM development
methodology. Additionally, they have their own work culture and regulations, which may lead to
differences in teams, for example how much they need to collaborate and the number of external
independent contractors among the developers. We observe how some of the development teams
work during a sprint, in particular the approach to meetings and the methods used to track their
progress. We interviewed some key roles in teams and support staff, as a means to survey what
they consider to be critical processes, meetings, technology and data points. This helps us expand
upon the fundamental concepts of software development and machine learning. We construct
a plan to collect relevant data points while retaining a generalized view. We discuss the most
important aspects of the two case studies in this section.

ICTU

In order to gain initial insight in how the development teams at ICTU* apply SCRUM during their
work and how the systems support this process, we observed a specific project’s meetings. At the

*https://ictu.nl/

https://ictu.nl/

Chapter 1. Introduction 1.2. Context

start of our research, we followed two teams working on the same project in a scaled manner,
with the first team focusing mostly on the user interface and the second team handling mainly
architecture and data interfaces; both are not limited to these expertises. The teams use Jira [1] to
track user stories and develop code which a developer updates in a Git repository [II] stored on
GitLab [111], reviewed by peers before being made available on a test branch. Automated tests take
place at all stages of development through Jenkins [1V], with results showing up in SonarQube [V]
and a quality monitoring tool developed by ICTU [VI]. A version is released to the client for
further acceptance testing and potential deployment to a production environment.

The schedule of a sprint for the two teams is mostly according to the SCRUM framework, with
refinements sometimes preceded by additional pre-refinement meetings to further work out stories
on the backlog for the project (PB). In order to facilitate sharing knowledge between teams, some
meetings are held together, such as an overall sprint planning followed by a per-team planning to
determine the team’s backlog for that sprint (SB). The review is also held together, in order to
demonstrate all the new features. The retrospective follows a similar format as the planning, with
the two teams dividing after a collective meeting, but also discussing their findings across teams.
The Product Owner (PO) takes the leading role in most meetings, although during planning some
team members can act as a “story owner” to select fitting stories for their team. Also, the per-team
Daily Scrum is operated by a team member at a large screen. In particular, the retrospective is
coached by the Scrum Master (SM), who moves between teams when they are split up.

Additional meetings take place to work out specific details, such as sparring groups and
technical meetings, which sometimes involve other experts in the organization, such as when it
comes to automation, design and quality control. ICTU also organizes cross-team discussions on
particular topics known as guilds. Most guilds are available for everyone, though usually aimed at
specific roles.

When it comes to the systems in use, the teams usually try to spend only the necessary time
to optimize them, keeping the focus on the product itself rather than meta-development. One
problem they face is the performance provided by the development platform used by ICTU, back
then known as BigBoat [VII]. Certain impediments caused by this limitation are escalated to those
responsible for finding a solution, such as a support team or the software delivery manager (SDM),
a role specific for ICTU, who ensures that the product can be released at various milestones.

Aside from the normal user story format, additional metadata is stored in Jira, such as story
points, priority—often also achieved by ranking the stories relative to each other—and status,
including readiness, i.e., how far into the refinement process the future task is. We find that
sometimes administrative changes to the status of a story are made during a meeting after the
story was already worked on, such as marking a story as done during a Daily Scrum the day after,
which also leads to the change being registered by a different team member.

Eventually, data from the two teams of this overview did not become a part of our data set,
which avoids bias on their specific work method or an early change of behavior due to the
development team being observed as part of an experiment [24]. We however found that other
teams at ICTU also have to deal with limitations of their development platforms. We validate that
they make changes to progress trackers, in particular marking stories as done, during meetings,
by cross-referencing these moments with teams’ reservations. Despite these potential differences
between actual events and registered data, we consider it possible to develop a data acquisition
pipeline for the goal of classification and estimation of elements of the process. By focusing on
lower time resolutions for stories, sprints and backlogs, threats to validity are avoided. We initially
construct this pipeline for ICTU, while keeping generalization to more organizations in mind.

10

Chapter 1. Introduction 1.3. Design scope

Wigodit

At Wigo4it', we initially find that the application of the SCRUM framework has many parallels
to how it is used at ICTU, with both organizations developing products for national and local
government agencies. Differences do exist at detailed levels, such as the systems in use that
enable software development. For Wigo4it, all teams make use of Azure DevOps [VIII], a
platform that was also formerly known as Team Foundation Server (TFS) or Visual Studio Team
Services (VSTS). This system allows tracking user stories in the form of work items, with similar
metadata fields for priorities, effort values using story points, and state of the work item, among
others. TFS also provides collaboration on code changes and building increments for tests on a
central Jenkins instance. Quality control results are stored in SonarQube much like ICTU does,
but without additional reporting tools.

A major difference between ICTU and Wigo4it is the number of clients and associated projects
that the teams work on. Whereas most teams work on different projects at ICTU, Wigo4it develops
a central system for providing social welfare assistance to beneficiaries, with changes requested
by municipal governments included into the same product. Individual teams work on components
of the system or perform testing and deployment on a task-based level. Still, SCRUM is central to
the teams’ working method, including the roles and events belonging to the core framework.

Wigod4it also regularly holds guilds, with interested parties meeting to attend presentations on
specific topics. This fosters innovation and enables developers and other roles to consider more
of the larger design of the product. Aside from the cross-organization guilds, most of the formal
inter-team coordination is handled via intermediaries.

We include the data from the teams at Wigo4it in our research, alongside ICTU. This approach
provides a helpful perspective on potential differences in working methods, including team
compositions and development ecosystems, allowing us to augment our data set with more
instances. Specifically, this broadens our scope from just a single organization, which is taken
in consideration at all stages of research process. Ultimately, this diversification enables more
cross-validation in our approach.

1.3 Design scope

From our initial findings during the case studies as well as earlier proposals, we observe that
modern software development produces a rich set of data. This data should be utilized in order to
support and improve the trajectory of the software development process toward a finished product.
Our research is motivated by contributing novel techniques that support the improvement of the
quality of software development processes.

Software development processes make use of various systems to monitor progress and keep an
overview of software issues to resolve. We reveal the patterns in the considerable amount of data
produced during the development process, which in turn improves understanding of this process.
Because the data is dispersed across the systems and the focus of the development team rarely
deviates from the main tasks, this data is often left unconnected and undiscovered. By combining
sources and considering events across longer time spans, we find emerging results that, when
identified and put into practice, help teams and key people in an organization make informed
decisions more swiftly.

Thttps://www.wigodit.nl/

11

https://www.wigo4it.nl/

Chapter 1. Introduction 1.3. Design scope

Pipeline for . Classification and
Database Feature selection R
data acg on estimation models

Privacy and security
A
Integration Generalizaﬁon

Figure 1.2: Aims and requirements as steps that are part of the design scope for the Grip on
Software research, showing data mutation processes (red), technical artifacts (blue), external
considerations (green) and some dependency relations.

Based on this scope, we further define the methods and objectives of the Grip on Software
research project. Each of these objectives builds upon earlier ones in order to formulate the entirety
of our approach. In Figure 1.2, we display the aims of the project and their relationship to each
other. This includes data acquisition, database construction and feature selection to feed machine
learning models. These components and processes are followed by steps toward generalization,
integration, visualization and finally dissemination. As a general requirement, we consider privacy
and security of the data during all phases of the process. We further specify these goals by
describing the following requirements for each of the subtopics:

1. Pipeline aimed at acquiring a data set for ML: Machine learning—based on various
algorithms like neural networks and probabilistic simulation—has shown strengths in
various fields when it comes to finding relevant patterns and understanding diverse data
sets. As the number of SCRUM projects that join our research increases and their completed
sprints accumulate, we let our data set steadily grow over time. This dynamic approach
allows for the models to be trained further and become more generalized. An integrated
pipeline facilitates data acquisition and feature extraction, supporting frequent and rapid
model training and validation.

2. Database: A pipeline must also contain a consolidated database with data from multiple
originating systems. This database enables us to make links between different types of
entities that we preserve. The augmented data allows us to fulfill a need of automatically and
easily finding emergent patterns from large amounts of related information. For example,
after collecting code quality measurements, we are able to relate them to code changes
that took place before them; these code changes implement specific user stories which the
developer marks as done. All these events occur during a short time span in the same sprint,
but would otherwise not be linked to each other.

3. Feature selection: An essential part of machine learning with large data sets is to properly
select features that best describe the characteristics of the artifacts, events and processes
behind them. We evaluate how the features contribute toward a certain classification or
estimation. Along the way, we resolve potential errors in the data, such as when developers
indicate that a certain task is currently unfeasible by awarding it with an abnormal number

12

Chapter 1. Introduction 1.3. Design scope

of story points, as described in Section 1.2.1. Subsequently, we produce a feature set that
meets criteria regarding reduction of dimensionality, accuracy and understandability for
our research and feedback purposes, which are relevant in machine learning studies as
introduced in Section 1.2.2.

4. Classification and estimation models: We aim to train multiple models with this data,
targeting classification and estimation of sprint outcomes as well as estimation of backlog
sizes over time. From our observations, providing solutions for both decision problems is
most beneficial to our objective and thus a logical step in our approach. The models take
into account that possible workload differs between teams and sprints due to a wide variety
of factors, not limited to team size, focus of development activities and current planning
status. The models use the data sets to learn from multiple teams while taking into account
the current and recent sprints, specifically significant situations involving story backlogs.
This leads to a contribution to several decision problems in the field of Agile software
development planning.

5. Generalization: By including project data from multiple software development organiza-
tions to our data set, we are able to further cross-validate our approaches and models. As
such, we expand the data acquisition to encompass aspects of more SCRUM development
processes, leading to a heterogeneous and well-balanced data set. This also allows for
generalization of the models, leading to applications in more situations. Furthermore, a
larger data set means reduction of bias and overfitting due to practices that are limited to few
teams. The introduction of independent elements from different teams and organizations in
our data set helps bring forward the application of the research to a wider audience.

6. Integration and tracking: It is important to consider how to construct and integrate
algorithms for a real-world use case. When it comes to a decision-making process part of
SCRUM, developers desire qualitative and correct data to support arguments and discussions.
Outcomes of algorithms should be reproducible and transparent. The factors used as
inputs to a neural network—or in general the data set for training such models—should
be easily understood. This means that each feature used in the data set should have a
clear correspondence with the originating data and any additional transformations, query
selections and other operations. As such, our pipeline needs to track metadata across
different stages.

7. Visualization: To increase the impact of the results produced during the Grip on Software
research, we want to provide the development teams access to intuitive representations of
the data, the features and the outcomes. We develop information visualizations that display
situations and events that are relevant to teams and projects. Each visualization focuses on a
certain category of decision problems and provides systematic support underlying a SCRUM
software development process. By performing proper data selection, we zoom into the events
and situations from different viewpoints. The visualizations are not simply static renderings,
but instead allow for interaction. The user further manipulates what is being displayed
through filter controls, specialized zoom handling, dragging of elements, hoverable tooltips,
timelapse animations and other motion-based actions. Through our visualization approach,
we transform our detailed data set into extensive forms of information, that people use to
gain knowledge when they are properly presented to them.

13

Chapter 1. Introduction 1.4. Problem statement

8. Dissemination: Next to visualization, we provide the results in other formats as well.
Through integration with existing quality control systems, the predicted classifications and
estimations are brought to a central point where developers are easily able to include it in
their workflow. We link back to the visualization hub and provide details about the specific
prediction at easily available places. By writing an application programming interface (API)
with an open specification, we allow more programs to use the predictions without much
work. Additionally, the features are made available as an open data set, thus enabling further
external research and dissemination.

Throughout the domain-aware pipeline, additional requirements focus on privacy and security
considerations. Sensitive data is collected under agreement with the organizations, clients and
teams. We have a need to temporarily collect personally identifiable information in order to link
the profiles of developers spread across systems. Seeing each team member as unique allows for
some deeper understanding of the data. However, it is not our goal to perform analysis on a person-
by-person basis. The data needs to be accessible only where it is necessary. We use one-way
encryption techniques in order to turn details like names and email addresses into pseudonymous
records early.

In the end, we intend to provide valuable feedback to the stakeholders. They are the most
relevant parties who have an interest in the software development project. Stakeholders interact
with each other through various decision-making processes and benefit the most from the progress.
In our case, the primary stakeholders of the research are the members of the development team,
including Scrum Masters, but also quality control engineers and project managers or similar roles.
Meanwhile, the successful development and release of the software product benefits multiple
distinct entities, namely the entire software development organization, the users and the client.
The latter acts as the eventual owner of the product when the development organization fulfills
a contractor role. Our research helps shape an improved digital information ecosystem where
software development becomes more reliable, standardized and cost-efficient. These motivat-
ing factors are relevant in particular for governmental software projects, but also for software
development in general.

1.4 Problem statement

To recap on the contextual description in Section 1.2.1, SCRUM is an Agile software development
framework aimed at improving a software product according to the needs of the end user, by
gradually implementing the most desired features in order to make increments. Additionally,
by evaluating the product and the process frequently, adjustments can be made early on. In
order to perform such reviews and retrospectives, development teams often make use of both
objective metrics such as project progress tracking and code quality indicators, but also individual
experiences, e.g., how difficult a story ended up being. This mix of expert judgment and in-depth
evaluation helps improve the eventual product and customize the process.

Due to its nature as an iterative process, SCRUM has many repetitive events and actions.
This produces loads of data which, when put to good use, may further improve the review and
retrospective activities. In fact, by analyzing patterns from emerging properties and training
algorithms to learn from a broad data set of teams working on software projects, we propose to
take a step further in helping stakeholders make swift decisions during the development cycles.

14

Chapter 1. Introduction 1.4. Problem statement

The objective of the Grip on Software research project is to allow software development teams
and other stakeholders involved in the process to receive the most relevant indicators from large
amounts of data produced from their own development project. These indicators are then backed
by analysis on a larger data set with different projects and organizations. Altogether, we aim to
improve planning of story points during sprints and backlogs as a whole, even early on in the
process.

The following problem statement is central to our research: “How can extraction and
analysis of measurable events during a SCRUM software development process as well as
other qualities of the product and team be used to significantly improve the predictability of
practices employed at software development organizations?”

< 4

This question leads to several more questions that each address a different aspect of our research
approach. The questions for each topic also have more specific sub-questions which expand
further upon the steps and objectives for the subject matter. The main research question, the
topical questions and their sub-questions are the foundation of the multi-faceted research that
together form the Grip on Software project. We briefly describe the importance and aims of these
questions in this section. The research questions are further addressed in their own chapters. We
introduce the specific questions and supplemental points here:

RQ1 How can we reliably collect data regarding SCRUM software development practices and
consolidate the resulting artifacts inside a central database that constantly grows and allows
adaptable queries?

RQ1a Based on relevant design principles from distributed data systems and agent-based
networking, how do we design a data acquisition pipeline applied to multiple organi-
zational ecosystems?

RQ1b Which objectives related to inspection, curation and disclosure do we achieve with a
data acquisition pipeline when taking our formulated requirements in mind?

RQI1c How can we model the relationships between different data artifacts acquired from
dynamic systems regarding SCRUM software development in order to properly deduce
information about their state during different sprints?

RQ1d Which technical challenges are relevant when deploying a database component as part
of a pipeline for multiple organizational ecosystems?

Our first topical question relates to the technical aspect of the Grip on Software research. In
order to acquire relevant data from SCRUM processes and to safely store and update the data with
incoming updates, it is necessary to have one or more computing systems in order to accomplish
these goals. Additionally, we formulate requirements that potential designs for such systems
should adhere to. This question is important on its own, because it lays down the foundation for
further research, which depends on the proper collection and storage of the data, that, in turn,
forms the input of the further analysis.

There are two technical topics that we distinguish primarily in these specific questions: (i) the
acquisition of data from the source systems at the organizations and (ii) the construction of a
database with a query-based interface that supports selecting data. Our research into these topics

15

Chapter 1. Introduction 1.4. Problem statement

includes literature reviews in order to find relevant approaches. This leads to development of novel
techniques as well as potential for reuse of existing systems that are applicable to these goals.
Both topics have several phases in selection and development: designing principles and models,
directing systems to work according to specified objectives, de-duplicating approaches for similar
source data and deploying the compound system in several software ecosystems.

The goal of resolving these sub-questions is to construct a complete pipeline that works in
multiple circumstances and according to functional and non-functional requirements. We validate
the success of this approach through metrics from experiments that demonstrate the performance
and applicability of the GROS pipeline when it comes to representative workloads of acquiring,
storing and retrieving real-life data, in the context of complex models that describe events of a
SCRUM process.

RQ2 How can we improve the predictability of SCRUM software development practices, specif-
ically the progress of sprints and backlogs—based on analysis of data selected from the
development process—and how do we validate our approach?

RQ2a Which features can we select based on ongoing data from the software development
process that are most indicative of the progress?

RQ2b What kinds of learning algorithms can we introduce to this problem, which learn from
these features and provide feedback on what kinds of decisions can be taken?

RQ2c¢ How do we predict the likelihood of timely and properly finishing a currently-running
sprint or a longer-running period aimed at resolving a product backlog within a
development project, even before it has started?

RQ2d How do we validate that the predictions and recommendations are within our expecta-
tions and based on relevant, explainable factors?

Our second research question describes the aspects of machine learning and pattern recognition,
which is a central theme of the Grip on Software research. Based on the database filled with data
acquired through our pipeline, we perform data analysis related to the main research question,
which pertains the predictability of SCRUM processes. Through our analysis, we formulate and
select relevant features based on scoring algorithms.

These features then form a data set for novel machine learning algorithms. We base these
algorithms on known-to-work classification models as well as reimplementing them on earlier
estimation models specific for this purpose. We also implement regression models and generative
algorithms that make use of different time scales that tie in with SCRUM. We determine several
predictive tasks to be relevant; for SCRUM sprints, we perform classification based on planned
story points as well as estimation of story points that could be finished during that sprint—and
provide predictions for these tasks before the sprint has started—while for longer periods, we
generate future sprints that simulate working on backlogs in order to predict a date at which the
work is completed.

An important quality of the machine learning algorithms is to allow the predictions to remain
explainable to the development team and other stakeholders, by including as many details and
metrics on how the classification, estimation or generation came to be in the end result. We
further perform studies into the workings of the algorithms, through the use of external accuracy
measures and evaluating the effects of data set sizes and generated distributions on the quality of
the predicted outcomes of the sprints and backlogs.

16

Chapter 1. Introduction 1.5. Pipeline components

RQ3 How can we effectively introduce visual representations of results and recommendations
from our analysis of data collected from the SCRUM development process to the involved
parties?

RQ3a Which concepts and goals are relevant when designing information visualizations for
patterns analyzed from a software development process?

RQ3b How do we integrate results from predictive models within existing development
practices?

RQ3c Which effects do the introduction of results from predictive models and other interme-
diate analyses have on the development process, validated across multiple ongoing
projects?

RQ3d What is the overall assessment of the proposed information visualizations, considering
automated measurements for usability and the adoption according to interviews and
surveys?

Our third and final question describes the presentational aspect of the research performed in the
Grip on Software project. We wish to allow the producers of the data—namely, the development
teams and the overall software development organization—to gain new insights in what the
events and patterns describe and uncover. A visual format of relevant data points improves the
understanding of the overall research among users. In particular, we construct several information
visualizations that we integrate in a hub. This helps us bring selections of data to another level by
enriching them with context to form information, rendering it to form a viewpoint that reflects
reality and augmenting the view with interactive controls, so that people gain knowledge from the
visualizations.

We incorporate results and characteristics of the predictive models within specialized and
generalizable visualizations. We also build visualizations that help in other situations involved
in the SCRUM process as well as software development ecosystem management. The complete
system from data acquisition to visualization of predictive patterns enables a feedback loop of
actionable results. We perform several interview-style discussions and usability surveys as part
of our user tests, but also consider proactive requests from teams for extensibility. We finally
include automated and survey-based usability metrics in our evaluation of the novel information
visualizations, which help determine if the visualizations are understandable for the people using
them, including developers with color blindness, for example.

1.5 Pipeline components

A core contribution of our research is the development and deployment of the Grip on Software
data acquisition pipeline. We construct the pipeline in order to collect relevant data regarding
events that take place during a SCRUM software development process. The data is consolidated
in a database which is designed to model the entities and relationships, using new links between
previously disconnected artifacts. Using novel query templating functions and integrations, we
extract features for a data set that is used for training machine learning models in order to find
patterns in the data. Finally, we make the data processed by the pipeline accessible through
information visualizations, which allow users to gain a deeper understanding of SCRUM activities
at various levels of detail.

17

Chapter 1. Introduction 1.5. Pipeline components

The sources of the data used in the GROS pipeline already exist as part of the software
development ecosystem at the organizations involved with this research. From our case studies
in Section 1.2.3, we observe that the two software development organizations use a selection of
systems with various interconnections between them. However, commonly these systems operate
independently. In order to fulfill tracking and automation for a SCRUM team, separate systems are
often available. A digital version of the backlog and planning board is realized by an issue tracker.
The team collaborates on writing code and tracking releases using a certain version control system.
For quality assurance, build platforms are able to generate metrics on how well a particular version
of the software product behaves.

These are just generic descriptions of the ecosystem in place at an organization, which our
pipeline potentially encounters. A novel research approach is to consider not just one system
as a single viewpoint of SCRUM activities, but to include many aspects from multiple sources.
Additionally, when we specialize toward one product, we take similar solutions into account for
other software. By using distinct components that only need to interact with a limited environment
surrounding each of them, we deal with differences between the interfaces and the data they
provide at early stages. This splits up the workload and simplifies the progress toward a uniform
data set.

In Figure 1.3, we show a schematic outline of the GROS pipeline. We identify the systems
that provide data on SCRUM activities. Then, the data acquisition pipeline gathers updates into
a collection in a simplified exchange format. This allows us to import the newly-obtained data
into a database. Another component provides domain-specific data analysis and extraction. This
component either generates a data set for prediction using machine learning or provides data
to interactive information visualization, both as separate components. These final components
present outputs that are usable by development team members and other involved stakeholders.

Issue tracker Prediction

Gather Collection | | Import Database Extract TensorFlow
ersion contro
YO — Jaig MonetDB RSQR Visualisation

Quality metrics D3 js

Figure 1.3: High-level overview of the full Grip on Software pipeline, with the primary SCRUM
data sources (green), active components (red) and resulting artifacts (blue) highlighted.

1.5.1 Instances

We set up several instances of the pipeline during our research. We provide separate pipelines at
each organization discussed in Section 1.2.3, with updates provided during deployments of new
versions. At ICTU, we use the complete pipeline in order to collect data from a large number of
software development projects, including some projects that are maintained by internal support
teams. Many teams at ICTU have their own virtual network in which the development environment
is situated, with one centralized issue tracker known as Jira [1]. We design and implement an agent-
based data acquisition component, where each team has their own agent service for collecting
data. Personal data is anonymized at the earliest stage. Further data processing takes place in an
isolated network. The results from the predictions as well as the visualizations are made available
to the teams again.

18

Chapter 1. Introduction 1.5. Pipeline components

The other organization introduced in Section 1.2.3 is Wigo4it, where a score of teams work
on a composite project. They all make use of an integrated development platform provided by
Azure DevOps Server [VIII]. Here, we simply acquire the data at a single location.

Finally, an instance of the pipeline is maintained at Leiden University, where we assemble a
combined data set. At regular intervals, the pipelines at the organizations upload data dumps to
the central instance using secure exchange protocols and only after encrypting sensitive data. The
pipeline at Leiden University is therefore deployed from the database component onward, which
allows us to perform further analysis. This combined data set helps validate whether our approach
would work at other organizations as well.

1.5.2 Non-functional requirements

The pipeline is designed to be reusable and extensible in order to fit with different software
development ecosystems. Components are able to be arranged separately across internal and
external networks. Additional configuration enables running on different virtualized platforms
and selecting the systems to use as data sources. Detection of more data sources is possible while
the system is active, simplifying the process of gathering relevant data.

Several programming languages, exchange formats and query template constructs are involved
in the workings of the GROS pipeline. We use the strengths of each computing language in the
places where they work best. By following common practices, code style guidelines and novel
techniques for tracking data types and integrating functions, we support the maintainability of the
components while promoting the use of state-of-the-art techniques.

These qualitative aspects of software are often called non-functional requirements. In Table 1.3,
we indicate more aspects that we find important in the context of the GROS pipeline. We look
into how we accomplish these requirements for the components, including the ones shown in
Figure 1.3 as well as some subcomponents, such as the data acquisition agent, the secure export
exchange and visualizations provided as plugins. We expand upon these components and their
characteristics further in later chapters—in particular in Chapter 2—with the references to code
repositories in Appendix A.

COMPONENT TESTS PERFORMANCE DoC INTEGRITY PRIVACY
Coverage
Gather [a] Unit v Section 2.5 v Trackers =
Agent [b, c] Unit v ’ ~ Config v
Import [d] Unit e Timing v Trackers v
Exchange [e-g] Unit v v Dumps v
Database Schema v Section 3.5 v Dumps v
Extract [h] Style X ’ ~ Database v
Prediction [i] Builds X Section 4.6 v Data set v
Visualization [j—s] Integration v . v Data set v
Plugins [t—v] Typing X Section 5.8.1 X Jira v

Table 1.3: Overview of some non-functional requirements regarding the pipeline components,
some measurable solutions and experiments that demonstrate how we meet these requirements
and how they adhere to our criteria (v is good, ~ limited, X bad/missing).

19

Chapter 1. Introduction 1.6. Structure of this thesis

We perform unit tests for components as well as integrated tests with an entire pipeline, both
on a frequent schedule and when deploying new portions. By tracking which parts of the code are
actually executed during such tests, we measure the coverage of those tests, indicating how well
we were able to test all edge cases.

We also perform tests and experiments to measure the performance, i.e., find out how many
resources the pipeline uses and whether the component provides the resulting data quickly enough
for output or further processing. This is done during stress tests and representative workloads on
the platforms that the components run on. In most chapters, we focus on demonstrating that tests
and user interactions perform smoothly rather than reporting in-depth performance analysis.

Further, we assess the quality of the code style and the technical documentation provided with
the components. In Section 2.4, these considerations as well as other topics such as generaliz-
ability of the components and applicability of continuous integration for rapid development and
deployment of the pipeline into various software ecosystems.

Perhaps the most important aspect of the data acquisition pipeline is how it handles the
collected data. The pipeline should not lose data or lose track of its state, so that it is able to
recover its integrity from an earlier point in case of an interruption. Finally, privacy and sensitivity
of data such as personally identifying information should be handled carefully. We do this by
making certain fields unintelligible through one-way encryption of the original information.

1.6 Structure of this thesis

In the next four chapters, we address different themes, objectives and research questions related to
the central topic of that chapter. Based on literature review, we discuss the primary concepts and
relevant work, providing the necessary context. We introduce objectives, design approaches and
implementations for our technical components and models. Through experiments, we validate our
approach and provide results. Each chapter also comes with its own summarized abstract at the
beginning of the chapter as well as specific conclusions with topical further research.

Most chapters of this thesis correspond to the technical components of the GROS pipeline. In
Chapter 2, we discuss the data acquisition pipeline, with a focus on the initial components that
collect and consolidate data artifacts. Chapter 3 continues the technical overview with a thorough
description of the database design and architecture, which form the second pipeline component
and artifact.

For Chapter 4, we shift our attention to the later parts of the pipeline, where we extract
features using a novel database query compilation system, select the features and transform them
into a data set for machine learning classification and estimation models, allowing us to provide
predictive results. Chapter 5 then describes the development and deployment of information
visualizations for analytical decision support and ecosystem management to help gain insight in
SCRUM processes, using the database as a source for many relevant subject-matter artifacts, such
as backlogs and sprints.

Together, these chapters discuss the placement of the research in the larger software develop-
ment ecosystem, including the sources of data and the users who benefit from the outcomes. We
introduce and discuss each chapter’s central topic by referring to both the main problem statement
and some of the specific research questions and sub-questions as proposed in Section 1.4. In
Table 1.4, we outline the chapters as well as the associated research questions and components,
which were briefly introduced in Section 1.5.

20

Chapter 1. Introduction 1.6. Structure of this thesis

PART TOPICS AND RESEARCH QUESTIONS COMPONENTS

Chapter 2 Data acquisition pipeline (RQ1a, RQ1b) Data sources, Gather, Collection
Chapter 3 Database modeling (RQ1c, RQ1d) Import, Database, Extract
Chapter 4 Predictive analytics (RQ2) Extract, Prediction

Chapter 5 Information visualizations (RQ3) Extract, Visualization

Table 1.4: Overview of the principal chapters, the research questions that they focus on as well as
the technical components and artifacts of the pipeline that play a central role in each chapter.

Supplementary to the technical solutions, we take a deeper look into the data artifacts that
are applicable for the chapter. We describe the data sources, model the entities, determine new
relationships between them, select descriptive attributes and complex associations, generate
data sets and determine which features in the data set make a machine learning model or an
information visualization more understandable and helpful to the user. This data-driven approach
enables an objective, methodical and goal-oriented view in our research.

In each of the chapters, there are differences and similarities to the focus and setup of the
various experiments, where we validate the approach, compare the functionality and behavior
of the system with the stated objectives and provide results that are available at that point of
the pipeline. For the chapters regarding the data acquisition pipeline and database construction,
the measurements and results are often meaningful for the research project internally, relating
to the performance of the system. The chapters on prediction and information visualization
further lead to observations and evaluations that allow reuse by the stakeholders. We achieve
this through multiple levels of detail and different ways to look at our data set, both visually and
algorithmically.

We wrap up the body of the thesis in Chapter 6. Through the use of the research questions,
implementations, experiments and results, we formulate a retrospective and discuss the main
conclusions that encompass all the work described in the preceding chapters, by reflecting on the
research questions, approaches and results. Additionally, we mention possible future research in
the field of predictive software engineering.

21

Chapter 2

Data pipeline

GROS gatherer: Agent-based acquisition of high-frequency data
updates within existing dynamic software development ecosystems

Abstract of Chapter 2

Introduction: Research into software development processes relies on collecting frequent
updates to data stored in systems that help with planning, development and quality control. For
this purpose, we design and implement a novel data acquisition pipeline that fits in the existing
software development ecosystem.

Research questions: How can we reliably collect data regarding SCRUM software develop-
ment practices and consolidate the resulting artifacts inside a central database that constantly
grows and allows adaptable queries?

Abstraction: We assess which existing concepts regarding pipeline construction, data
collection and distributed data processing are relevant for our objective. We consider existing
designs with asymmetric communication between agents and a controller, including where
the “knowledge” is kept, which connections to other systems are established, how the status is
tracked and what kind of processing steps are possible.

Implementation: We implement several components that collect data from issue trackers,
version control systems, code review, quality control and other platforms. The distributed
setup allows early linking of related entities, encryption of sensitive data and portability within
networked setups. The components are configurable through an interface and the status is
tracked in a dashboard. Further steps toward database import, data analysis and information
visualization have their own components with novel highlights.

Discussion: Experiments show that the pipeline components are able to work within
different setups at two organizations and in a central research location. The frequent collection
runs do not impact the performance of the ecosystem’s platform during normal usage. Steps
were taken to allow further generalization and adaptation.

Chapter 2. Data pipeline 2.1. Introduction

2.1 Introduction

As part of Grip on Software, our research into patterns and outcomes within SCRUM software
development processes, we find that there is a need to collect data about activities of software
developers related to SCRUM principles. Often, multiple systems are used by development teams
in order to handle various aspects of the development process. This includes project management
systems that keep backlogs of user stories, bugs and other tasks to work on—usually referred
to as an issue tracker—but also version control of code repositories, automated quality control
checks of the code and other artifacts, platforms to test a compiled build of the code and other
organizational tools for access control.

Limited communication exists between these systems. Often, a change in one system cannot be
firmly related to another, such as a quality measurement for a code change based on the resolution
of a user story. This makes it difficult to get a complete picture of the situation in the development
process, let alone understand past SCRUM sprints.

A data acquisition pipeline helps mitigate these shortcomings within the software development
ecosystem by collecting data from multiple sources and generating artifacts explaining changes
in a simple format. We have a need for such output in order to compile a centralized, consistent
database. From this database, we produce features and relevant data points for further analysis and
reporting, respectively through pattern recognition—backed by machine learning and estimation
models—and information visualization. The choices made in this first step are important, as they
make it possible to reproduce the research within other organizational ecosystems.

We consider the following research question and a selection of two sub-questions regarding
the data acquisition pipeline, which we also refer to as the GROS gatherer:

RQ1 How can we reliably collect data regarding SCRUM software development practices
and consolidate the resulting artifacts inside a central database that constantly grows
and allows adaptable queries?

RQ1a Based on relevant design principles from distributed data systems and agent-
based networking, how do we design a data acquisition pipeline applied to
multiple organizational ecosystems?

RQ1b Which objectives related to inspection, curation and disclosure do we achieve
with a data acquisition pipeline when taking our formulated requirements in
mind?

In terms of scope, the SCRUM framework is part of the family of Agile software development
methods. Among other values, an important factor of Agile development is the focus on individuals
and their interactions within a team, more so than the processes and tools that they use within
their work [3]. When teams decide on their own how to arrange their development process,
different decisions regarding the use of these systems are made compared to other teams and
organizations. This level of autonomy should not be seen as an inconvenience to outsiders. Instead,
each application of the development method provides unique insights. For a data acquisition
pipeline that supports such a development process on a meta-level, flexibility is an important
factor in effectively applying it within multiple ecosystems.

25

Chapter 2. Data pipeline 2.1. Introduction

2.1.1 Ecosystem

An important aspect of the implementation of a data acquisition pipeline for research purposes is to
properly integrate it into the existing ecosystems that it meant to be used in. In our case, different
software development organizations have their own networks, physical computing infrastructure,
virtualization approaches, data storage solutions and security measures. A pipeline should be
generic enough to fit with multiple of such resources. However, an organization should meet some
prerequisites of the pipeline in order to be relevant for our study.

Within the SCRUM software development framework, teams are typically able to fill in how
they work on the project in a flexible manner. As an Agile software development method, SCRUM
also places the focus on the people within the team rather than the software that they use. Still,
the systems in use for development and release are helpful. The ability to track progress centrally
in an accessible manner makes the physical “wall of cards” quite outdated. It is reasonable that
the maintenance overhead is much lower with a consistent system. The applications used within
software development should aim at decreasing such workload.

The research project has a similar goal and it is sensible that a data collection pipeline avoids
such burdens. The purpose and functions of individual elements of the pipeline should be open and
understandable. At the same time, they should not place a heavy load on the existing ecosystem.

Not every organization uses the same development applications and network solutions. When
different systems are used for the same purpose, such as issue tracking or version control, the
pipeline should be versatile enough to collect data from one or more of them using similar
interfaces and provide interchangeable artifacts. We are then able to use the source data in a
comparable manner later on in our analysis. An organization chooses their own approaches in
implementing the development ecosystem on different layers, although these layers typically
contain elements of the items shown in Figure 2.1.

Resource layer \ Computation ‘ Networkin} Storage ‘

Physical/virtual layer | Platform | \ Server } \ VMs J
s ’ Internal Other External
(0} t] I/network 1 P: t .
rganizational/network layer rojec firenil Droicot(c) frenil
Systems layer Issue Version Qual}ty Build
tracker control metrics system

Figure 2.1: General layers of a software development ecosystem. Green blocks represent elements

that are the main interests of our research approach, blue shapes are supporting elements and red
arrows show interconnection elements.

26

Chapter 2. Data pipeline 2.2. Design

2.1.2 Structure

This chapter’s structure is balanced between theoretical concepts and practical implementation. In
Section 2.2, we mention design principles and relevant concepts regarding the construction of a
data collection system. We look into similar frameworks and abstractions of distributed systems,
including agent-based networks. Some practical matters relevant for pipeline deployment within
an organization’s platform ecosystem are also brought up.

In the remainder of this chapter, especially Section 2.3, the focus is on the development,
discussion and significance of the components related to the data acquisition, introduced in
Section 2.3.1. This is the first step from the software development project management tools to
intermediate data objects. Other steps within the process are discussed only briefly in this chapter.
In Section 2.3.2, we discuss these components, with some technical details of the overall Grip on
Software pipeline in Section 2.4. Section 2.5 describes some experiments and results obtained
from practical usage of the data acquisition components. We conclude our findings in Section 2.6.

Other portions of the pipeline are further described—in context of the research—in their own
chapters. Chapter 3 describes the database construction, Chapter 4 discusses feature selection for
prediction models and Chapter 5 demonstrates the use of the data in information visualization.

2.2 Design

We consider the technical implementation of a data acquisition pipeline within the context of
abstract design concepts. Often, data pipelines are constructed for a specific purpose within a
predetermined environment, for example a business analytics context. There are however methods
to make these approaches to data processing more portable and scalable. Therefore, we also
look into existing approaches and design choices for certain use cases within organizational data
acquisition. In this section, we bridge the gap between theory and established practice.

2.2.1 Distributed data systems

A data acquisition pipeline consists of multiple components that collectively allow to collect,
combine, filter, mutate and reuse one or more data sets for one or more objectives, such as
further analysis and reporting. When the original data sets—also referred to as sources—or the
components that provide, i.e., the sinks, are separated into different systems, there is a rationale
to also separate the corresponding components across systems. Sometimes this subdivision of
concerns is a necessity, for example when these systems are required to live in different networks
in practical situations.

The use of distributed systems is already established within different domains [25]. When it
comes to analysis, there already exist frameworks for data processing and computation that paral-
lelize tasks, allowing different systems to perform them simultaneously. Often, these frameworks
focus on the tasks that take place downstream in the pipeline.

When it comes to handling multiple, large data sets, distributed data acquisition plays a major
role within the pipeline. At each step, decisions are taken on how to collect, select, filter and alter
data in order to make it usable in the next phase. The data sets provided by the sources come in
different formats, which requires some overhead to make them usable in another component of the
pipeline. Such transformations can be handled for each source. They could be split up according to
the context, such as organizational units. This approach then suits existing network infrastructure.

27

Chapter 2. Data pipeline 2.2. Design

Moreover, the data format plays a role in intermediate storage. Depending on how each
component performs and interacts within the pipeline, data is often stored in a machine-readable
format before further handling. The location of this storage also differs, ranging from disk-based
files in directory structures to scalable database systems [26].

The means of data exchange between pipeline components is also based on the choices
regarding the data format. A component could signal another that new data is available, potentially
in the same format and message as the data itself.

Multiple dimensions of scalability exist in distributed systems for data collection [27]. First,
the number of components—steps in the pipeline—is adjustable. Technical burden should be
kept in mind here. A second dimension is the number of parallel workers of a single component.
This number is flexible, assuming that the component was designed for reallocating such work.
The third dimension is the number of storage locations for intermediate and final data sets. The
effectiveness of distributing such tasks is limited by the availability of physical computing systems
suitable for scaling the workload.

2.2.2 Agent-based communication

A distributed data-oriented system can be seen as a communication network. In this design,
components are agents that perform semi-independent actions. Each agent interacts with some
portion of an environment, including receiving input data. Once they have autonomously come up
with an intermediate result, they make some parts of their neighborhood aware through signals. In
some networks, the coordination of signals is handled by a control system. In another hierarchical
network, the relations between agents depend on the stages they are in, similar to a pipeline [28].

Agent-based networks have concrete purposes within real-world applications, including
motion tracking and formations of unmanned vehicles. The issues that come up in these practices
are often well-modeled and lead to generalizable solutions for addressing effects of asynchronous
updates and delays [29].

Another representation of data acquisition using distributed components is the Petri net [30].
In this type of network, nodes consume and produce tokens which are transferred between
other nodes. This way, concurrency, control and other communication aspects is modeled for
different components or agents within the network. Extensions to the basic Petri net enable the
application of semantic attributes and activation rules to tokens, nodes and arcs within the network,
making it more viable to follow the exact meaning at a less abstract level. This allows separation of
workflows [31]. Detection and avoidance of deadlocks are also be possible through extensions [32].
Further, we are able to verify certain properties of the system that is described by the Petri net,
enabling reasoning over a multi-agent system and making it safer to use [33].

2.2.3 Organizational approaches

Within corporate enterprises, data processing is often commonly associated with operational
systems which produce a large amount of data, such as web servers. One approach to collecting
the data from these systems is through an integrated system that passes messages around [34].
Often, the purpose of the data collection is to be further analyzed for business intelligence goals,
leading to visualizations and reports.

In these circumstances, some terminology comes in place that lack a clear, generalized
definition. Big data often does not refer solely to the size of the data set, but rather to the

28

Chapter 2. Data pipeline 2.3. Method

complexity in establishing relations and discovering patterns. This complexity often leads to the
introduction of data management systems that augment common databases, which are able to
model or at least store the data types. Whereas a data warehouse stores data that is homogeneous
in shape, leading to a common data model, often another option is taken where textual, visual,
temporal and diverse data types are stored in potentially separate systems, leading to a data
lake [35]. The disadvantage of this approach is that raw data is not easily processed and combined
into a single model.

Other concerns for large-scale businesses in the area of data processing are auditing, access
restrictions, on-premise versus cloud-based platforms and off-site archival systems [36]. The
collected data might contain personally identifying information, which requires assessment and
mitigation of the impact on privacy of users and staff members. Separation of components into
virtual networks helps with reducing the possibility of unauthorized access. Still, both raw and
processed data constitutes sensitive information for the organization. Accordingly, early encryption
within the data pipeline helps addressing concerns regarding privacy and business information
security.

2.3 Method

Prior to discovering what kind of patterns exist that provide indications of progress within a
software development process, we need to determine which data holds these patterns and how
we collect the appropriate data sets. As mentioned in Chapter 1, we focus on extracting these
patterns from SCRUM software development processes, although the collection of data from
multiple systems does not rely specifically on the presence of SCRUM terminology in the disclosed
information. In fact, not all systems that we consider relevant to the process are specific to one
development framework, as some are commonly used within software development for version
control, source code quality checking and issue tracking.

The pipeline we design consists of multiple phases, where the data acquisition is the first
step towards consolidation in a database, allowing the combined data set to be analyzed for
various purposes within the domains of machine learning and information visualization. Figure 2.2
provides an overview of the pipeline at an abstract component level. In this figure, blocks represent
states that data can be in, including potential data sources such as issue trackers, version control
systems for source code repositories and quality control systems, which are used during the
software development process. Later on in the pipeline, the blocks indicate intermediate artifacts
and results. The arrows are actions that select, transform and move the data to its next state. These
actions are performed by software components that we develop in several programming languages,
including query languages. The code is fine-tuned for specific purposes within the pipeline.

Issue tracker Prediction

Gather Collection | | Import Database Extract TensorFlow
ersion contro.
Python JSON Java MonetDB R/SQL Visualisation

Quality metrics D3 js

Figure 2.2: High-level overview of the Grip on Software pipeline, with the data sources (green),
data acquisition components (red) and resulting artifacts (blue) highlighted. Gray elements are
described in later chapters.

29

Chapter 2. Data pipeline 2.3. Method

The main goal of our research is to improve software development practices by extracting,
combining and analyzing data that would otherwise be left in separate systems, with no intercon-
nection between the applications that the data originates from. As such, there are some important
objectives when it comes to inspection, curation and disclosure of the data and the results:

* When data from different sources refer to the same entity, such as a team, project, component,
developer or code change, we should establish this link as soon as possible. This way, we
ensure that the equivalence or relationship is known for later components in the pipeline,
when this was not available before the introduction of the pipeline. Additionally, this allows
encryption of personal or project-sensitive data to take place early on.

¢ The pipeline has to work within different ecosystems. The existing infrastructure should
remain unchanged, i.e., there are no additional requirements that stem from the pipeline. We
split up components across networks without performance bottlenecks or difficult firewall
configuration, by using typical connection protocols. Projects that are in separate networks
have their own agent which collects relevant data. Intermediate artifacts are exchanged
using an easily interpretable data interchange format to a central controller.

* Because the data comes from different sources, depending on which organization, team or
project is involved, there should be an easy and versatile method of configuring the means
of collection. This configurator indicates which web applications are approached by the
data acquisition agents. It then stores the credentials to use and provides specific status
information regarding the agent, which helps with control and monitoring of the pipeline.

 The pipeline’s entire state should be easily visible within an overview. A status dashboard
indicates problematic situations. This includes recentness of data collection by the agents
as well as access to error logging. The dashboard also allows adjustments to scheduling in
order to rerun specific tasks, for example if they failed.

There are further design principles and non-functional requirements that we consider when
implementing the pipeline and its individual components. The pipeline should internally track
when the most recent update of different data sources was successfully performed, so that we
avoid loss of data. There should not be a performance impact on the usual development process of
the teams included in the study, i.e., it should not lead to availability problems or other interference
of the systems used as a source of data. Several more considerations help with reproducibility of
the pipeline setup, such as testability and proper documentation of components and methods.

2.3.1 Data acquisition

We collect data regarding the progress of multiple SCRUM software development projects from
various systems. In order to do so in accordance with our objectives, we introduce new components
for our data acquisition pipeline.

The agent component connects to various application programming interfaces (APIs), using
queries and filters to determine whether there are any changes since the most recent moment that
data was collected for a project. The agent then produces structures that describe the fresh data
using the JavaScript Object Notation (JSON) format. Table 2.1 lists some types of data collected
from different categories of data sources. Additional components configure the data acquisition

30

Chapter 2. Data pipeline 2.3. Method

ENTITY TRACKER VERSION CONTROL REVIEW QUALITY BUILD

Issue (story, etc.)
Sprint

Comment

Person (developer)
Commit version
Release tag

Merge request
Metric measurement
Metric target

Usage status

*X X X X X X NN\
> X X X NN N X X X%
XX XN XX NN XX
> NN X X X X X X X
NX X X X X X X X X

Table 2.1: Types of data that are collected by the data acquisition components and the category
of systems that provide this data (v') or not (X). Some types of data—metadata and dependent
entities—are left out of this overview.

process, ensuring proper authentication at the defined systems. The components also track the
frequency of the data collection runs. The agent passes errors through to a monitoring dashboard.

This setup allows us to deploy the components in separate ecosystems. For example, at one
of the organizations involved in our research, ICTU, each software development project has its
own virtualized network where resources such as a build platform, version control and quality
monitoring systems are made available. The platform allows additional systems to be set up
through a Docker-based setup [37]. The Docker instances were managed through a specialized
interface known as BigBoat [VII] developed by the organization, although they later replaced it
with another interface for practical purposes. Two data acquisition components—an agent which
regularly collects data from known systems in the same network and a configurator that selects
the systems and authentication. Together, the agent and configurator form the GROS gatherer,
with one for each virtual network as a distributed system.

The intermediate artifacts are passed by each agent to a centralized controller within another
network. A Secure Shell (SSH) connection protocol is specifically allowed through a firewall and
adjusted to only accept secure data transfer from the agents. The controller provides additional
environment information to the agents at the start of a data collection run, so that these do not
need to be configured separately. The controller also acts as an additional checkpoint to adjust
the collection interval, as a form of a preflight checklist. If this preflight check succeeds, then the
controller provides encryption keys for early encryption of personal data.

Once the collection and transfer phases are complete, the resulting data is imported into a
database hosted at the organization. Certain data that is not retrieved by the agent, e.g., from a
centralized or cloud-based issue tracker, is retrieved by another instance of the gatherer running
on a virtual machine (VM) or Jenkins [1V] instance. The controller sends a frigger notification to
this instance to do so. Figure 2.3 displays the components and their connections in this setup.

The combined update of the data means that the organization’s database is usable for local data
analysis, prediction algorithms and visualization. The data is also regularly exported and uploaded
to a central Grip on Software database, such that analysis also takes place using combined data
from multiple organizations in one place.

31

Chapter 2. Data pipeline 2.3. Method

Issue tracker #

API
Jenkins/VM

(Jira, Azure DevOps)

Version control
(Git, Subversion, TFVC)

Trigger Import

SSH
Code review (GitLab, APIs

GitHub, Azure DevOps)

Controller Database

Preflight

Quality metrics v
(SonarQube, Quality-time) Status

Build platform dashboard

(Jenkins, BigBoat)

HTTPS/GPG upload

Y

Central DB

Figure 2.3: Overview of the data acquisition components and their interactions within the Grip
on Software pipeline. The green blocks represent possible systems in the existing development
ecosystem. Blue blocks are components of the pipeline. Gray blocks are components that are
described in later chapters. Arrows indicate the direction that data travels in.

In other ecosystems, a distributed setup would be superfluous. When all teams work on a
number of components of the same project, hosted on one platform—such as at Wigo4it—there
is only a need for a single access point. The collected data is then either imported into a local
database or uploaded directly to the central database.

For many of the specific systems that we use as a source of software development process
data, we build modules that provide API connections to them. This makes it easier to update the
pipeline components when changes to the APIs are not backward-compatible and unfortunately
require changes within the pipeline code as well. For example, in Jenkins or older versions
of Azure DevOps—previously known as Team Foundation Server (TFS) and Visual Studio
Team System (VSTS) [VIITI]—we use specific connections to remain compatible with existing
deployments, such as the older version control component of TFS known as TFVC. We build
around these modules to define our own models for the data types, which describe the data source
systems on a higher level. This domain-based approach allows separating the authentication
configuration from the connection itself, enhancing the modularization of each step.

The pipeline mostly operates automatically based on schedules. The agent frequently attempts
to retrieve changes to the source data, as is common in a fast-paced SCRUM process. The
configurator and the status dashboard are a means to adjust how the automated runs operate,
by providing options to change how the agent connects to the other systems or to reschedule
the agent’s execution if earlier operations failed due to problems that have since been amended.
The agent will then collect data as of the most recent finished run. The configurator provides a
systematic access to this part of the pipeline. Figure 2.4 displays how the configurator looks like
to the user—most likely researchers who monitor the pipeline’s progress, but possibly including
team members involved in the project that the agent collects data from.

In this interface, several systems are configurable, which includes filling in URLSs, mappings
of identifiers and authentication credentials. If code repositories or build toolchains are split up
across multiple instances, additional systems can be configured as well. For security reasons,
after the configuration is updated, the credentials in this interface are instead indicated with a
placeholder, which keeps the old credentials if it is unchanged. The credentials are still modifiable

32

Chapter 2. Data pipeline

2.3. Method

@ Project dashboard environment

BigBoat URL

[t hboard.examp|

The URL to the location of the BigBoat application dashboard.
BigBoat key |
An API key of the BigBoat application dashboard.
JIRA key prefix
[aBc |
The JIRA prefix used to identify issues in the JIRA board.

Quality report name
(1) JIRA key [ABC J
[+]

Quality name ‘MC |

The name of the project used internally by the quality report
dashboard or the application dashboard.
Use quality report O

Disable this only when the quality report is never used and
only a Quality Time instance is used.

P Version control system (1)

Version control type
| GitLab v

The type of version control system used.

Version control domain
gitlab.example |

The domain name plus optional port number where the
version control system is hosted.

hentication

| GitLab API v

Version control

The authentication scheme to use when connecting to the
version control system.

Version control usermame

The username to login to the version control system with. If
GitHub/GitLab is used, you probably want to set this to the
SSH user, git.

Version control authentication token

The password or AP| taken to login to the version control

[+(=]|& Jenkins (1)

[+](=]

Jenkins domain

The domain name and optionally port number of the Jenkins
instance used for automated bilds of the application
developed by the team.

enkins.example:8080 |

Jenkins username

The usemarme to log in to Jenkins with. This is only necessary
if Jenkins is completely restricted to logged-in users, since we
only need read access.

Jenkins token
The password or token to log in to the Jenkins API with. This
is only necessary if Jenkins is completely restricted to logged-
in users.

hoA
v

Quality Time URL systern with.
[htt lity-time.exam| 8
The URL to the landing page of the Quality Time reports or a
specific report URL.
| Update

Figure 2.4: Screenshot of the configurator, with options to set up connections to various systems
acting as a data source.

at a later moment. The agent always uses the most recently updated configuration to connect to
the defined systems. The agent also selects more relevant systems from the quality control system
and the tracked code repositories.

Personal data is collected by the agent and included in the artifacts in an encrypted manner.
The encryption keys are used to perform a one-way encoding. This means that the data—e.g., a
name or email address—can only be inspected if the attacker already has the original data as well
as the keys. Still, this form of data protection is considered to be a pseudonymization rather than
true anonymization, since it makes use of the original data for the encoding. In general, personal
data is not used during the analysis since it is not relevant for the overall SCRUM process. We
sometimes compare the resulting hashes against encrypted personal data from other systems or
from an earlier run. We use the encrypted names of developers to avoid duplicate entries of the
same person across multiple systems. Another instance of pseudonymous data use is when we
extract the domain name of an email address to check if people are employed by the organization
or by the client, for example. During exports to the centralized database, the encryption keys are
not included in the upload and remain at the organization. The data is further secured through
HTTPS and GPG encryption [IX], avoiding interception of the data during the transfer. The
analysis only uses pseudonymous data.

2.3.2 Further pipeline steps

The data acquisition components form only the first phase of a pipeline that is aimed toward
providing insight into patterns of software development processes. The proper functioning of the

33

Chapter 2. Data pipeline 2.3. Method

pipeline depends on more phases that consolidate the data of software development projects in
a (local or centralized) database and that extract relevant data points such as features from this
database. These are then used within prediction and estimation models as well as in information
visualization. These correspond to the remaining components that are colored gray in Figure 2.2.

Each phase has software in order to transfer data to the next phase and maintain the proper
functioning of the pipeline. The following components are part of the pipeline of the Grip on
Software research project. The code repositories of these components have all been made open
source. The items in the list refer to the repositories whose references are found in Appendix A.
We also indicate the programming languages and the kinds of tests for the component. The list is
grouped by the phases of the pipeline, which are described more extensively in various chapters
of this thesis.

Data acquisition (Section 2.3.1):

* data-gathering [a]: A collection agent for data from software development processes.
The schedule-based gatherer has deployment options for different data sources and contexts.
Module-based Python 3 code with type checking. Integration test runs are possible on
Jenkins.

* agent-config [b]: A web-based configurator for the GROS data gathering agent. Intended
to be deployed with the agent in a Docker Compose system. JavaScript-based, relatively
well tested and formatted using routes, templating and some utility functions.

e status-dashboard [c]: A web-based dashboard providing an overview of data collection
agents and their status, with scheduling options. Written in Python 3 with typing.

Data import and export (Chapter 3):

* monetdb-import [d]: A schema-based database importer. Works with MonetDB [38].
Java-based package format, schemas and update files plus some Python 3 and Bash code
for database administration as well as validation. Contains some unit tests for utilities.

* monetdb-dumper [e]: A Java-based database exporter for MonetDB. The administrative
interface for importing and exporting dumps tie in with this package.

e export-exchange [f]: A module that handles export of the database and secure upload to
a centralized instance. Written in Python 3 with typing.

* upload [g]: A web server that receives secure uploads of database exports to load into a
centralized database. Written in Python 3.

Analysis and pattern recognition (Chapter 4):

* data-analysis [h]: Analysis interface for aggregating data with source traceback from
a filled MonetDB database. R-based integration [X]. Configurable, dynamic queries that
adapt to organizational differences.

e prediction [i]: Models to predict, classify, analyze and estimate features and labels
regarding SCRUM data. Python 3 with TensorFlow [XI] and Keras.

34

Chapter 2. Data pipeline 2.3. Method

Visualizations (Chapter 5):

e visualization-site [j]: Landing dashboard site for different/related visualizations. Con-
figuration backbone. Contains integration tests for deployment within a virtualized network
based on Docker compose [X11] using several web servers that could act as proxies, testing
the main site and the specific visualizations.

e visualization-ui [k]: JavaScript modules that are reused in various visualizations. In-
cludes unit tests.

* sprint-report [1]: Dynamic generator of various comparative visualizations inter- and
intra-project per-sprint.

e prediction-site [m]: Human-readable output of predictions.
e timeline [n]: Various temporal data from the software development process.
* leaderboard [o]: Project-level statistics.

* collaboration-graph [p]: Relations between development team members and projects
that they worked on.

* process-flow [q]: Flowchart of the status progress of user stories with volume and time
metrics.

* heatmap [r]: Software development code commit activity.

* bigboat-status [s]: System reliability graphs for the BigBoat development platform.
* backlog-burndown [t]: Effort burndown chart for product backlogs.

* backlog-progression [u]: Progression inspection chart for product backlogs.

* backlog-relationship [v]: Issue relationship chart for product backlogs.
Supplemental components:

* deployer [w]: A web application to deploy repositories to a managed machine, with
configuration to use a quality gate, run commands, manage secret files and restart services.
Written in Python 3 with typing.

e server-framework [x]: A Python 3 module to develop authenticated web servers.

* jenkins-cleanup [y]: Maintenance scripts to remove stale Docker, Jenkins and Sonar-
Qube data during pipeline development. Written in Python 3 with typing and Bash.

e coverage-collector [z]: A service that collects coverage information in JavaScript
during browser tests. Used in combination with the visualization site integration/unit tests.

35

Chapter 2. Data pipeline 2.4. Technical considerations

2.4 Technical considerations

We design our data pipeline with the purpose of gathering knowledge regarding SCRUM software
development processes. We deploy the pipeline within ecosystems with their own requirements
and existing behaviors. For these reasons, there are several considerations when deciding how to
design, develop, document and deploy the pipeline components.

Aside from our objective of acquiring and understanding data, we consider the pipeline itself
to be a subject for study. Based on the concepts that are realized in a distributed system, we
discuss how we generalize the implementation to other development ecosystems. Additionally,
we demonstrate how state-of-the-art algorithms augment the components.

In this section, we discuss some of these concepts and characteristics that we find relevant for
further consideration.

2.4.1 Generalizability

In principle, the components that are used for collecting, disseminating and presenting data
from different sources are able to be placed in different development ecosystems. The individual
components work on build platforms such as Jenkins [1V], Docker-based platforms, virtual
machines or servers, with a limited number of base dependencies installed. Due to this, the code
has run at two different software development organizations as well as at a university, each with
different requirements for collecting, publishing, sending and receiving data between internal and
external networks.

The sources where we collect data are specific to our research scope. This includes various
project management systems, version control systems, quality review systems, build platforms and
organizational resources. We support TES/VSTS/Azure DevOps Server [VII1], Jira [1], GitLab [111],
GitHub [XT111], Subversion [XIV], SonarQube [V], Quality-time [VI], BigBoat [VII], Jenkins [IV],
LDAP [39] and TOPdesk [XV].

As these project management products get updated or replaced in the future, the data gathering
components continue to use APIs that become outdated and eventually become unable to collect
new data. This is the main reason that it would require continuous and adaptive maintenance to
keep the software relevant.

Certain pipeline components are harder to configure in order to work in a specific ecosystem.
Setting up a MonetDB database with different parts written in Python 3, Java and R is cumbersome
if there is no proper platform. At each point that a portion of pipeline is deployed to a specific
environment, certain decisions need to be made in order to assure that the pipeline is able to work
there. Some components provide a configurator, with intuitive means of selecting and entering the
details of the connections that they make. The accompanying documentation indicates additional
configuration options.

In the end, the pipeline was set up with a specific purpose in mind: collecting data regarding
multiple development projects together in order to find relevant patterns. Some components will
not be suited for different purposes, given that the data gathering is focused on specific systems.
On some points, scalability and performance are kept in mind. The pipeline however does not work
out of the box in a completely new ecosystem without prior knowledge. Thus the components are
provided “as is”, meaning that some adjustments may be required. This is inherent to any open
source system that seeks generalization; other interested parties can contribute to make it fit in a
specific ecosystem.

36

Chapter 2. Data pipeline 2.4. Technical considerations

2.4.2 Continuous integration

The components primarily use Jenkins [1V] as a continuous integration (CI) system, which is
geared towards performing tests, building the software and collecting data automatically. Jenkins
provides an interface to view and manage these steps. Jobs are started to execute tasks based on
schedules and code changes.

Our code repositories define their own Declarative Pipeline, a syntax which indicates the
requirements and stages to build, test, analyze and deploy the code. The usual purpose of a CI
system is to allow rapid merging of development code into a stable version supported by automated
review, which is still one of the features used for our pipeline components. Builds are regularly
scheduled so that problems with changes and dependencies are found early. Several components
have unit tests and integration tests. Code analysis is performed using a SonarQube scanner [V] in
order to track the pipeline component’s code quality, which also uses information from test results
and coverage.

Jenkins usually works with a controller node—running on the server on which the CI system is
installed—and agent-based executor nodes. Each node handles one or more concurrent tasks. This
way, builds of multiple code repositories take place on separate machines, which are synchronized
with regards to the platform dependencies. Additionally, specialistic nodes are possible, for
example to perform machine learning tasks on a server equipped with a graphics processing
unit (GPU). Portions of a build take place on different nodes, which are aggregated before
publishing the results on another server.

2.4.3 Documentation

All of the pipeline components include documentation regarding deployment and configuration.
The data acquisition component is documented on function, class and module level. The database
component is documented through human-readable versions of the schema as well as individual
import modules with documentation on parameters. The prediction and information visualization
components also come with documentation for modules and methods. Data formats exchanged
between all components are documented with JSON specifications*, including API definitions®,
which allows validation of instances of data artifacts against the specified schema as well as
meta-validation.

Each code repository has some form of documentation. All components come with instructions
that help with building, configuration and installation, usually with several example options using
Docker, Jenkins or a standalone form. The documentation often describes how to start up the
component or how to run individual programs, with details on command-line arguments through
help systems. Web-based systems such as the configurator and the visualizations describe in detail
what certain controls and options do, using tooltips, for example.

Aside from the standalone documentation, the implementations of scientific analysis systems
are also documented through publications, including this thesis. Furthermore, we write comments
for code lines, methods, modules and components, considering reproducibility and maintainability
of the pipeline at each level.

*https://gros.liacs.nl/schema/
Snttps://gros.liacs.nl/swagger/

37

https://gros.liacs.nl/schema/
https://gros.liacs.nl/swagger/

Chapter 2. Data pipeline 2.4. Technical considerations

2.4.4 Novelty

As mentioned before, the components of the pipeline beyond data acquisition are described in
more detail in their own chapters. But some discussion does not fit the topic at hand when the
main focus is database modeling, pattern recognition or information visualization, for example
because this would make the narrative there too verbose and technical. Still, we find it relevant to
describe some technical details, such as a new implementations of an algorithm.

For the MonetDB database, we developed some administrative programs [d] as well as an
importer which is described in more detail in Section 3.4. The importer plays a crucial role when
the data acquisition components provide new data that should be stored in the Grip on Software
database. One potential issue that we resolved is compatibility with importing older versions
of JSON artifacts. Sometimes, these files are kept as importable source objects after a software
development project is completed and the original systems turned off. Aside from backward
compatibility, forward compatibility could also be relevant if different versions of agents and
importers were in use. Although the agents are able to check for updates—with the configurator
reporting this—and a new version of the Docker image is easily deployed, the versions could
still become desynchronized. The artifacts and importer were designed in such a way that later
additions do not hinder the import process, while missing fields due to agents that were not
updated are also handled properly. Often, these fields are filled in during a later import as well.

We frequently update the database itself to support a new schema through a program that
validates the state of the model. Based on structured information of an update, the program checks
if certain database columns or keys exist and have the proper types. Based on this detection system,
schema updates will then take place or are skipped.

In order to extract the features that describe characteristics of SCRUM sprints, as mentioned
further in Section 4.4.1, we developed an R toolkit program [h] that performs queries upon
the database. The queries are based on templates which contain variables and other structures,
enabling R code to fill in proper field names and conditions. This hybrid system within MonetDB
properly selects data and filters out noisy data, such as the practice of giving a story a very high
number of points to avoid working on it in a recent sprint. A structured list tracks the available
definitions for these fields and conditions for reuse in other places. Based on the ecosystem, this
enables some queries to select the same kind of features from different sources, such as Jira
and TFS/VSTS/Azure DevOps. The queries themselves are also tracked, including metadata
to describe the source through a specific, human-readable URL with the same data, as well as
aggregation options, labels and unit formatting preferences. These come in handy for the display
of such features in the information visualizations described in Chapter 5.

As for the pattern recognition methods, we make use of TensorFlow [XI] and related tech-
nologies to train, evaluate and predict outcomes of samples within data sets, which are made
up from the features extracted for the sprints from the filled database. We implement several
models to do so [i]. One novelty here is the use of TensorFlow to implement analogy-based effort
estimation (ABE). This algorithm, described in Section 4.4.3, does not necessarily stem from
machine learning, but still includes steps that are well-suited to be performed in batch, such as
finding similar sprints based on a distance measure to neighboring samples. Such steps can then be
performed upon a GPU using vector-based instructions generated through TensorFlow. This allows
for further use of specialized hardware within our pipeline, leading to performance improvements.
This lets us bring the estimation and prediction results to the SCRUM team members more quickly,
demonstrating the advantages and usefulness of the pipeline’s construction.

38

Chapter 2. Data pipeline 2.5. Results

2.5 Results

In order to determine whether the pipeline components can be set up in a stable manner without
influencing an existing software development ecosystem, we tested the performance of the
components by enabling them for 22 different development projects. The development ecosystem
is described in detail for the agent-based data acquisition system from Section 2.3.1: each project
has its own virtualized network with a BigBoat [VII] deployment platform, including all services
for development such as version control and code review, usually GitLab [11I]. Code quality is
monitored through SonarQube [Vv] and Quality-time [VI].

We deploy the agent and configurator on this platform using Docker Compose [XI1]. The
controller runs on a separate VM in an isolated network, along with the status dashboard. A Jenkins
continuous integration system [IV] collects data for the projects from the Jira issue tracker [I]
based upon a trigger from the controller.

We tracked the CPU processing load, RAM memory usage and disk storage space of the
BigBoat platforms. Overall, the agent did not cause a noticeable impact to the normal usage
trend of the platform. The performance did not differ between runs that took place hourly and
every 15 minutes. More frequent schedules could be possible, but we do not consider this to
be necessary, since most other components within the pipeline were not aimed at live data
presentation. Additionally, if the complete collection run—both the data collection by the agent
and the database import performed at the controlle—would take longer than the frequency, a
concurrent run is not allowed to be started for the same agent in order to prevent conflicts. This
avoids an avalanche of jobs working on the same task of acquiring a large bulk of new data, for
example when a project with a long lifespan is newly included in our research.

One problem that surfaced was the use of large source code repositories by some teams.
The data collection would retrieve new versions of code commits, but for some version control
systems this still caused some overhead, in particular Subversion. Figure 2.5 shows performance
downgrades that we detected in this situation. We included some mitigations to reduce the time
spent with file differences and to limit memory usage. This helped ensure that the platform remains
available for its primary purpose.

Memory System Load

OK —GE OK e
= | 100
20 |

9 k)

’ Lo

15 | 70

13 | &0

" [

- | 40

! | 30

| »

10

[

u;c\—l' T

a T
12PM Sato2 12PM Mar03 12PM Mon04 12PM Tue05 12PM 12PM Sal02 12PM Mar03 12PM Mon04 12PM TueOS 12PM

enea

Figure 2.5: Graphs displaying the available memory (in gigabytes) and CPU processing load
over time for a development project’s platform when problems arise with collecting Subversion
repositories. The blue line indicates when the platform signals a decrease in performance, while
the yellow line shows the actual value of the metric. After this event, problems with load were
mitigated.

39

Chapter 2. Data pipeline 2.6. Discussion

2.6 Discussion

This chapter introduces the components of the pipeline for the Grip on Software research, aimed
at understanding situations arising from the application of the SCRUM software development
method. In particular, we detail the design and construction of the data acquisition components
that constitute the first phase of our pipeline, aimed at consolidating various data sources for
pattern recognition and information visualization. We demonstrate how we apply concepts from
distributed computing and agent-based networking in order to overcome organizational differences
in ecosystem structure. We document our objectives and mention the components of the entire
pipeline. The other phases of the pipeline are discussed based on their technical aspects, such
as source code and documentation. From these components, we highlight some non-functional
requirements and new work that they provide.

We conclude that our data acquisition pipeline works well at the two organizations where it
has been applied. The early encryption and audit logging provisions within the components help
with ensuring secure communication and storage. We are able to uniquely identify entities across
systems and keep track of where data came from, as a means of data provenance, making it easier
to reproduce results of later stages of the pipeline.

Another non-functional requirement is the performance of the pipeline. We reuse the logging,
scheduling and usage statistics to measure and improve the efficiency of the processes. Based on
our results from experiments with the setup in the distributed networks, we determine that it is
possible to follow updates close to real time, insofar that this is helpful for the machine learning
models and reports, which are similarly updated frequently. We are able to resolve issues with
high load through code simplification and usage limits without impacting our goals.

The components of the pipeline were developed for the purpose of collecting and analyzing
data from software development processes. We demonstrate the application of the pipeline
in multiple ecosystems that software development organizations have in practice. The code
repositories of the components are open source, allowing reusability.

In the end, the pipeline is the instrument in order to substantiate our main research objective of
finding relevant patterns within SCRUM software development processes. It is important to make
this instrument work properly from the ground up. It would also be a waste if it would simply be
shelved after it has been used just once.

40

Chapter 3

Database construction

GROS DB: Designing and deploying a database model using
extensible and flexible query templates as part of a
research-oriented data pipeline architecture

Portions of this chapter are also published in the following article:

* Leon Helwerda et al. “Query compilation for feature extraction in MonetDB”, 2024.
Pending submission.

Abstract of Chapter 3

Introduction: Software development teams use several systems that form a development
ecosystem to keep track of data related to their projects. We use a data acquisition pipeline to
collect records from these systems for research into patterns and outcomes of the process. We
store this information in a consolidated MonetDB database with column-based storage. This
setup allows us to perform extensible queries.

Research questions: How can we reliably collect data regarding SCRUM software develop-
ment practices and consolidate the resulting artifacts inside a central database that constantly
grows and allows adaptable queries?

Modeling: We define a data model which contains discrete portions corresponding to
systems that provide the data, such as issue trackers, version control systems and quality
control dashboards. The model consists of entities and relationships that describe states, events
and dependencies. We enhance the model with links between different portions, which are not
available in the separate systems.

Architecture: We enhance the data selection through the introduction of a query template
compiler. Data from different systems and organizations is properly selected and combined
into a single data set by adjusting the query parameters for the appropriate context on a high
level. We implement more functionality in the database component to handle backups and
exports to a central instance of the pipeline.

Experiments: Our initial selection of MonetDB is put to the test. We establish a repre-
sentative workload of six query templates, each with a refined version and an older version
without the changes. We measure the performance of the MonetDB database by comparing two
scenarios, one where the queries have been seen by the database several times and one where
the database has not created auxiliary internal structures based on the queries. Each version
of each query is run in both scenarios ten times. The results show that both our refinement of
the query templates and the optimized scenario for MonetDB improve the run times of the
queries, justifying the selection for MonetDB and making frequent analysis of the data set
during SCRUM sprints feasible.

Chapter 3. Database construction 3.1. Introduction

3.1 Introduction

In order to consistently, reproducibly and frequently perform analytical studies regarding patterns
and outcomes of SCRUM software development processes, we design a consolidated location for
the data acquired from several systems used by multiple software development projects. As part
of the pipeline that we introduced in Chapter 2, we identify a need for a highly-available storage
location that allows for a steady stream of additions in order to reflect the situation as experienced
by the development teams. Furthermore, the structures and events described by the data should be
available for data analysis using various attributes in order to output different reports for involved
people.

There is a necessity for a model which describes the interactions between the different artifacts
during SCRUM sprints, including product backlogs, code repositories, quality reports and release
builds. Often, developers are able to navigate between these items in their current state, but they
are hindered by design flaws of the systems when tracking down what they looked like at a specific
date, during a sprint from months ago. It is complicated to understand what a metric refers to
when it is stored at a separate system without a proper reference point. Thus, our data storage for
Grip on Software should have a temporal aspect, where time is a first-class data type with many
available functions. It should further allow filters or aggregate operations to determine which
factors define a sprint most pertinently.

We consider existing data stores which already implement features that we desire. A relational
database management system (RDBMS) offers a table-based storage with rows and columns,
where some entries refer to other columns in another table. In addition, the RDBMS provides
operations in order to add, remove, adjust and search within the relations, allowing manipulation as
well as selection. These operations support combining tables in a query, with additional arithmetic
or programming operators to alter which data points are added, adjusted or retrieved.

This sort of system enables much flexibility towards modeling complex relationships of data
structures that reflect dynamics of software development ecosystems. Both the mapping from
artifacts to table-based storage as well as the operations involved in manipulating the data are part
of the modeling problem, which differs for each subject area.

Another side of using a database system is the management and architecture of technical
components in the pipeline. This technical aspect largely consists of ensuring that the database has
enough hardware resources in order to perform its operations, including establishing connectivity
with other components. This further enables exports, backups, migrations and upgrades to take
place. These maintenance tasks should not affect the typical performance of the pipeline. The
database needs to remain consistent and resilient, with no loss of data due to downtime, for
example.

When building a database that should function at more than one organization, there are
additional concepts surrounding the architecture problem. We consider the integration of the
database component in the pipeline and the overall development ecosystem that exists at an
organization, the centralization of data of multiple organizations using a separate research pipeline,
the administration of privacy-sensitive data and the optimization of queries performed on the
database. Meanwhile, the solution needs to support a complex data model based on multiple
specialized development platforms. It is important that the solutions for these considerations do
not affect the model’s restrictions on the outcome of the query operations, among other things.

We summarize the pertinent points of a database system that we find useful for our purposes
by proposing a number of objectives for the usefulness of the technical database component:

43

Chapter 3. Database construction 3.1. Introduction

* We should be able to design a single data model that addresses several complex SCRUM
ecosystems, allowing us to easily recognize the original entities and relationships, but also
introduce new links between data from previously separate systems.

* The query language allows us to utilize the data model to retrieve relevant data, spread
across tables for entities and relationships, with many existing functions for grouping
and aggregation as well as opportunities for extending the queries, for example through
user-defined functions (UDFs).

* The RDBMS should be efficient enough to perform under high load of parallel updates
from independent data acquisition agents, while allowing frequent analysis with complex
queries.

» The database component should function as a part of a larger pipeline which operates in
different environments, without hindering the existing use of the software development
ecosystem.

» Typical guarantees by database systems, such as atomicity of transactions and resilience to
crashes, are considered a prerequisite to an operational database, along with management
interfaces.

These desirable qualities of a database bring us back to the questions regarding the need and
usability of such a system in the overall Grip on Software pipeline, aimed at collecting and
understanding metrics regarding SCRUM software development processes. We therefore consider
the addition of the following two sub-questions to the research question, mentioned before in
Section 2.1, regarding the data acquisition and consolidation pipeline:

RQ1 How can we reliably collect data regarding SCRUM software development practices
and consolidate the resulting artifacts inside a central database that constantly grows
and allows adaptable queries?

RQ1c How can we model the relationships between different data artifacts acquired
from dynamic systems regarding SCRUM software development in order to
properly deduce information about their state during different sprints?

RQ1d Which technical challenges are relevant when deploying a database component
as part of a pipeline for multiple organizational ecosystems?

AV

The remainder of this chapter focuses on this two-sided problem of database design and architec-
ture. First, we consider existing modeling structures and management systems in Section 3.2. In
Section 3.3, we introduce the Grip on Software database (GROS DB), including the data model
in Section 3.3.1. The entities and relationships are shown step-by-step, based on subdivisions of
the model. The relations between different originating systems are considered in Section 3.3.2.
For the architecture problem, we describe how we administer, optimize, engineer and adjust the
behavior of the database system in Section 3.4, including a novel query language overloading
extension. Section 3.5 presents some experiments regarding optimization and performance of
resource usage. Finally, we discuss the entirety of the Grip on Software database as a component
of the data acquisition pipeline in Section 3.6.

44

Chapter 3. Database construction 3.2. Relevant work

3.2 Relevant work

Databases are used in a variety of applications and come in many forms. In the scientific field, an
RDBMS is often used to persistently store data using a known model. This way, further analysis
profits from efficient lookups of the data.

An area of interest within database architectures is the use of column-based storage. This
technique helps with efficiently retrieving attributes of a large number of entities stored in tables.
Such queries occur regularly when performing analytical research with large amounts of data.

One column-based database store of interest is MonetDB [38], which is used in various
research contexts. We find that there are applications of MonetDB for machine learning [40]
and statistical analysis [41]. Novel functionalities to database stores allow streaming updates for
processing live data, such as in software quality analytics [42].

The architecture underlying MonetDB integrates with programming languages in order to
create UDFs [43]. Support for languages such as Python and R has led to seamless integration
with more software packages used in data science [44], such as reuse of existing columnar vector
formats in libraries like TensorFlow [45].

Some methods for improving the efficiency of in-database operations avoid copying data
between memory locations. Such zero-copy integration has shown to work well for statistical prob-
lems [46]. Extensions with other systems to provide better query filters using multi-dimensional
indexes also exhibit performance improvement [47].

With all these improvements on integration, extensibility and memory usage, it is often another
challenge to provide experimental results on database performance. It is relevant to test similar,
reproducible configurations. Further, there should be additional tests with baseline situations
where the database system has not had the chance use caches and to process the type of query
workload [48]. For specific applications, providing a reasonable representation of the query
workload serves as a relevant, localized benchmark [49].

We also look into the use of database systems in the context of analysis of SCRUM software
development data. We find that there exist models that look into integration of data from multiple
sources, such as quality metrics [50]. Similar approaches with transformations of originating data
lead to a model which allows generating dashboards for monitoring performance for SCRUM
teams [S1]. Sometimes, the goal of data-driven software development is reached through the use
of an extensive ontology describing the aspects of SCRUM [52].

3.3 Method

We introduce the technical component which handles database storage, imports, exports and
management. This component is a continuation of the data acquisition pipeline introduced in
Section 2.3. This pipeline is deployed in an existing software development ecosystem at an
organization that is involved in the Grip on Software research. An outline of the pipeline is shown
in Figure 3.1, with the components of interest for this chapter highlighted with red and blue colors.
Multiple instances of this pipeline reside independently at different organizations. Another version
of the database plus the remaining machine learning and information visualization components
are placed in a central location. Other pipelines send encrypted backups of the database contents—
without any readable personal information—to this central database, so that multiple organizations
are combined into one data set for further generalized analysis.

45

Chapter 3. Database construction 3.3. Method

Issue tracker Prediction

Gather Collection | | Import Database Extract TensorFlow
ersion contro
Python JSON Java MonetDB R/SQL Visualisation

Quality metrics D3.js

Figure 3.1: High-level overview of the Grip on Software pipeline, with the database system shown
as a blue box and relevant technical components as red arrows.

The database uses MonetDB for storage and low-level administration [38]. MonetDB focuses
on storage of large-scale analytical information. In contrast to many database management systems
that existed at the time of selection, MonetDB is a column-based RDBMS. This means that in
this database, all data of a column is stored consecutively, instead of storing row data together.
Efficient retrieval of attributes is a main factor in initially selecting MonetDB. Since MonetDB’s
introduction, other databases such as MariaDB introduced options for column-based storage.

MonetDB is similar to other relational database management systems in that it supports the
Structured Query Language (SQL). This query language implements the operations needed for
retrieving and manipulating data provided by the database. We consider three main types of
invocable queries: (a) data definition statements using CREATE as the initial keyword, (b) data
manipulation using INSERT or UPDATE, and (c) data access with a SELECT statement. Thus, we first
define the tables representing entities and relationships, with columns for attributes of different
numerical, textual and temporal data types. Then, during the operation of the data pipeline, we
manipulate the database by filling it with fresh data and altering old data to reflect the most recent
situation. We finally access the data, selecting subsets for further analysis using combinations of
tables through JOIN operations and other expressions that filter, order, aggregate, partition and
combine data. Such a selection is performed in one go, without having to execute several queries.
These features are provided by MonetDB, extending the common SQL language.

The database connection protocols that we use for importing data also support prepared
statements in SQL. This allows another system to indicate a query that is to be performed multiple
times with different parameters. This reduces the overhead of sending the statement to the database,
compiling and optimizing it every single time it is used. For example, we use multiple prepared
statements that verify if data did not already exist or needs an update. Then, we respectively insert
new rows and perform batched updates for fresh instances of entities.

In addition to query language support, an important feature of MonetDB is integration with
other programming languages. The data analysis component of the pipeline connects to the
database in order to perform queries. Through UDF integration, a language like R [X] augments
the queries with operations specific for our purposes, reducing the need for post-processing. At
the moment of implementation, we chose to use R. Since then, MonetDB extended support to
Python UDFs as well [53]. Nevertheless, they also continued integration with R [54].

As mentioned in Section 3.2, MonetDB offers more options for extensions as well as in-
depth performance optimizations. However, by default, the column-based storage already has
compression and dictionary encoding for frequently stored textual values with specified or arbitrary
lengths. In this way, the lookup speed and reduction of memory usage are balanced, enabling the
modeling of large data sets. The SQL queries themselves are the input of an internal optimizer
pipeline, which transforms it to a MonetDB-specific assembly language supported by a relational
algebra that works on the internal table structure [55].

46

Chapter 3. Database construction 3.3. Method

3.3.1 Data model

We design a model for GROS DB, a database containing events, artifacts and other relevant
elements from SCRUM software development processes. This model is based on the representation
of the same entities and relationships as in the systems that we have extracted them from.

An overview of the most relevant entities has been shown during the introduction of the
pipeline, in Table 2.1. There, we described from which type of system they originate. This includes
issue trackers, version control systems, associated code review, quality control dashboards and
build platforms. The aforementioned overview did not mention entities that only exist in relation
to another or provide context to a development project, e.g., a software component that an issue
applies to. In our survey, we found that some systems contain similar data, such as developers
having accounts on multiple services. These systems often refer to each other with an indirect,
temporal association: a code commit takes place during a certain sprint.

Software development organizations that use Agile approaches do not always have the same
development ecosystem; the same applies to their development teams. As an example, we take
the two organizations of our study. At ICTU, there is a frequent use of Jira [T] as an issue tracker,
GitLab [111] for version control and code review, SonarQube [V] plus self-made quality dashboards
alongside the BigBoat [VII] and Jenkins [1V] build platforms. For Wigo4it, the workflow of refining
and implementing stories takes place on TFS/VSTS/Azure DevOps [V111], with SonarQube for
quality control. We summarize the distribution of systems in the two organizations in Table 3.1.
Other potential systems in use by such organizations are, e.g., GitHub [XIII] for open source
projects or TOPdesk [xV] for internal project asset management.

SYSTEM ICTU Wico41t

Issue tracker MW Jira l Azure DevOps

Version control O Git (some Subversion and TFS) O TFS (Git/TFVC)

Code review I GitLab (most projects) B TFS/VSTS/Azure DevOps
Quality control E Quality time, SonarQube E SonarQube

Build platform M BigBoat, Jenkins W Azure Server

Personnel records [0 LDAP, @ Seat counts O Azure DevOps

Table 3.1: Overview of systems in software development ecosystems at two organizations.

In order to model the entities and their interactions in these diverse ecosystems, we first
design a rudimentary entity—relationship (ER) diagram. In Figure 3.2, the entities are shown in
a fundamental model, excluding attributes, but with most relationships. In order to obtain some
“shortcut” relationships, we follow a chain of them, such as an issue belonging to a certain project
via the sprint entity. Specific entities, including those based on the issue tracking systems of
Jira and Azure DevOps/VSTS/TFES, as well as entities from various types of code repositories,
are considered implementations of a class diagram relationship; here, they are condensed into a
generic form.

The focus of this section is to model the entities in such a way that we are able to extract
a database schema, which defines how the tables are created. One relevant matter is the nature
of the relationships between entities. In the diagram, we indicate the type of mapping between
entities using cardinalities as labels of the relationship’s lines. A one-to-one relationship, indicated
by two 1’s on either side, is similar to a bijective function, whereas a one-to-many relationship,

47

Chapter 3. Database construction 3.3. Method

where one side is not limited and includes an asterisk * in its cardinality indicator, is like a
function with no specific properties, its domain originating from the entity on the side with the 1.
A many-to-many relationship is best regarded as a multivalued function to either side. Some
cardinalities are optional, when a side is shown with a 0/1 or simply an asterisk as indicator. Then,
some instances of the entity on an optional side may not participate in a relationship. Table 3.2
provides an overview of the cardinalities by means of examples that are visible in Figure 3.2.

[]

1 on
Seat count

| Project

Code commit Code repository

Code developer

Figure 3.2: An entity-relationship diagram of the main entities and primary relations that are stored
in the database. Colors used in this diagram and others indicate the sources of groups of entities:
M dark blue are retrieved from Jira, B grayish blue from either Jira or TES/VSTS/Azure DevOps
(O light gray in other diagrams), (0 white from version control systems, M gray from code review
systems, @ pink from quality dashboards, B green from build platforms, I light green from LDAP,
O yellow from TOPdesk and [light blue from spreadsheets. Not shown here are entities for source
tracking and database consistency, colored @ purple and @ orange in other diagrams, respectively.

CARDINALITY EXAMPLE TARGET REFERENCE
One-to-one (1 <> 1) Encryption of a project project Eproject_salt
Optional one-to-one (1 <> 0/1) Seat count of a project project M seats
One-to-many (1 <> 1..%) Sprints during a project project M sprint
Optional one-to-many (1 <> *) Comments on an issue sprint M comment
One-to-many optional (0/1 <+ 1..*) ~ Commits during a sprint sprint Ocommits
One-to-many all-optional (0/1 <+ *) Reservations of projects project Oreservation
Many-to-many (1..* <> 1..%) Issues in sprints sprint W issue
Many-to-many optional (1..* <> *) Issues updated by users ~ developer Missue
Many-to-many all-optional (* <»*) Issues linked to issues issue (2x) M issuelink

Table 3.2: Cardinalities of relationships that are noticeable in the ER diagrams of the data model.
For each cardinality, an example is shown with the entity table that is the target of the reference
and the table where we store the reference attribute.

48

Chapter 3. Database construction 3.3. Method

As a typical example, we introduce two additional data sources—meant to validate data from
our primary sources—for meeting reservations and numbers of full-time equivalents (FTEs),
including seat counts. These entities show two different cardinalities in their relationship: a project
has any number of reservations—and a meeting reservation is related to at most one project—while
a singular seat count is related to a unique project, if known. These are respectively a one-to-many
all-optional and an optional one-to-one relationship. A many-to-many all-optional relationship is
found in issues possibly linking to each other; here, domain and codomain are equal, self-links
excluded.

The complex issue entity has other many-to-many relationships: the issue could be worked
on during different sprints, by various developers and for certain software components. Entities
having multiple versions exhibit such complicated interactions. This is also dependent on the
level of detail that the originating system provides in the earlier versions of the entity. Similarly,
attributes for an issue from Jira differ from work items in TFS/VSTS/Azure DevOps.

All these entities with attributes and relationships have a specific role. Despite the complexity,
it is important to model the GROS DB in such a way that it reflects reality, describing the situation
as it is in other systems as genuinely as possible. If, early on, we would discard attributes and
elaborate relationships, then the analysis that we perform in later stages is more cumbersome. We
find it easier to leave out sensitive data—such as personal information and project names—during
an export, so shrinking to the necessary fields afterward is a better trade-off.

In Figure 3.3, the entities with all attributes and relationships are shown!. The colors of
tables correspond to the grouping in the smaller ER diagram. Some tables now have specialized
implementations for their source systems. Attributes in this diagram have key indicators for
primary keys that uniquely indicate the entity. Yellow icons are local while red icons indicate a
reference to another table. Non-key attributes have diamond icons, with only an outline if the
value is optional. A line indicates a relationship; the line is dashed if no primary key is involved
in the references between the two tables. The origin of the relationship—where the reference
attribute is stored—is indicated with a triangle at the endpoint. The endpoint is a circle if the
reference is a temporal data type.

We introduce relationships which involve multiple attributes in order to properly reference the
tables. When primary keys are concerned, the relationship is usually one-to-one or one-to-many.
In this visualization, we intentionally left out some lines, with only the endpoints remaining in the
diagram. This either means that this relationship is a shortcut or that multiple attributes refer to the
same table. This reduces the complexity of the representation, which would otherwise have many
more crossing lines. The full diagram is obtainable from the database administration pipeline
component [d] using MySQL Workbench [X V1], allowing more inspection and reuse in other
database systems.

These additional references make it easier for us to design queries that combine data from
multiple entities, while preserving database normalization at the necessary level to fulfill the
details of the entities. For example, we could assume that a story is always worked on in the
project that a sprint belongs to. However, there may be situational differences in which the story
was moved between projects. This discrepancy could not be modeled without tracking the project
in each version of the issue. Thus, we track this data through more direct references.

We address specific parts of the larger, encompassing diagram in more detail in the following
subsections. In particular, we examine the entities and relationships from Jira, version control
systems with their associated code review, TES/VSTS/Azure DevOps and quality control systems.

IThe diagram is also available at https://gros.liacs.nl/database-model.pdf

49

https://gros.liacs.nl/database-model.pdf

Chapter 3. Database construction

3.3. Method

o psaerAncHARE) b
oo gt THESTANE |

ant

> ama vARCHAN100)

e vARCHANZD)
 mpscmont TIYNT

.

e VARCHARGE)
wnARCRES)

t11tt

P

——

pited s TWESTAP
5 —_—— »

Figure 3.3: Complete ER diagram of the entities and relationships, based on the table schema,
depicted as UML classes.

50

Chapter 3. Database construction 3.3. Method

Many software projects arrange their development process using these systems. Some of the
smaller portions of the model are not mentioned in full detail, while additional tables for source
tracking and internal up-to-dateness checks are out of scope here. Connections between data
retrieved from separate data sources are described in Section 3.3.2. Some entities include sensitive
data fields that are considered for pseudonymization or excluded from exports. We discuss how
we encrypt these specific attributes in Section 3.4.

Jira

The core of our database model consists of entities and relationships extracted from the Jira
issue tracker. This system is used by most of the SCRUM software development projects that
participate in our research, with the primary goal of tracking backlogs of stories and other types of
tasks—commonly known as issues—during sprints. All projects at ICTU use Jira, while Wigo4it
instead uses the work item tracking provided by TFS/VSTS/Azure DevOps. Our design approach
initially focused on the Jira system, but expansions to the model allowed us to store data acquired
from other systems as well. Figure 3.4 displays the central portion of the model that describes the
data from Jira, including most of the references between the involved entities.

message TEXT
 author VARCHAR(B4)
dato THESTAMP

ARCHAREH)

ot

e VARCIAR 00

corpion ARCHANS00)|
>

AT

@ project 14 INT
namo VARCHAR(100)

startdoto DATE
reloase_dato DATE

>
— ssue_jd T
g T
o AROARCD)
e 0 | o mex
i
e vARGHAR00) [+ ===~ 19 s s ARCHANEOD | i e
»> » L 0 0 - ———evtwbTmynr | e M nd_date TMESTAMP
dINT pt complete_date TIMESTAMP
e ARGHAR00 e sanion
sorpton APCHANEOD) oo
) taun componant - -
k B
romumen [
o S e
oaddete TRGGTAMP = assignee VARCHAR(84)
—— o atachonsmr
b
oot 4T
e o : L e o VARCHANI0D)
2 ot am CHOERIO0
jmmmmmm oo e . AR
Y — , ‘
ey [$== === == === =
2
— 1 from_key VARCHAR(20)
(T Ve sy A
O o L,
stan_doto TMESTAMP. ocal coman TIYINT !
— popriiond W s TEXT oo)
> . [
b
s -
iy R VARCHAN)

»

Figure 3.4: Entities and relationships that model data retrieved from Jira.

51

Chapter 3. Database construction 3.3. Method

Jira is the prime data provider for a common entity that other portions of the model heavily
rely on: the project. The main attributes describe how each project is named in the issue tracker,
such as the prefix used by the issue numbering system and the human-readable name. The table
also tracks dependent relationships to a parent project, although this is formally a weak reference,
since the parent might even be missing from the data set. Through external means, we have more
advanced methods of combining projects worked on by the same development team. The project
entity is augmented to include attributes deduced from other sources, for more ways to refer to the
project or its main assets.

The second pivotal entity is the sprint, which tracks important events. The start and end
dates are predefined by the Product Owner (PO) when determining which stories to work on.
Meanwhile, the completion date of a sprint is deduced from the moment that the team finishes the
last of its stories, possibly before or after the planned end date. Other attributes are the description
of the sprint goal (SG) and an identifier to the board that we use to construct a URL to the sprint
at the issue tracker.

Jira is also a source for determining which developer works on which project. Personal data
from the user profile, such as name and email address, is stored and encrypted in this table.
A second table acts as a relationship between developer and project, using a project-specific
encryption key for the duplicated attributes with personal information. This allows later imports
and reports to cross-reference the existing data, as long as the encryption keys are available.
Section 3.3.2 describes the encryption and linking of personal data in more detail.

The largest entity of the model is the issue. Each version of an issue is stored, containing many
attributes where a few have been altered compared to the previous version, such as the description
or the estimated story points. Some of these are complex, meaning that additional attributes about
each of them are stored in a separate table. This includes what type of issue it is, what software
component it is for, priority-related attributes, which release version it is or will be fixed in, the
status it is in and—if it is done—what resolution it was given. An organizational instance of Jira
is often extended with custom fields. The attributes currently modeled are sometimes specific to
ICTU, but configuration allows treating the fields differently for another organization. The data
acquisition component [a] of the Grip on Software pipeline provides a mapping from custom
fields to the recognized attributes. Beyond that, we acquire the comments made on issues, with
metadata on developer and time. Finally, developers link issues to others through different types
of relationships, with one specialized relation for subtasks. Some of the complex attributes and
relationships track their own metadata and chronological information.

Version control

Software development uses generic systems like Git [11] and Subversion [X1V] for version control.
Despite differences in how these two systems track changes to code, they are conceptually similar
enough to facilitate an abstraction in our data model. In Figure 3.5, we show the entities and
relationships that make up this portion of the model.

A version control system provides development teams with the possibility to store and alter
code collaboratively. Code related to the same software component is placed in a repository,
sometimes abbreviated as repo. This entity is central in our modeling of this portion of the
database schema. A URL attribute helps with tracking where the code is hosted.

In the context of a repository, a change to the code is considered a commit, with increments
of commits leading to the most recent version of the code upon a branch. Usually, there is one

52

Chapter 3. Database construction 3.3. Method

T tag v
7 repo_id INT

tag_name VARCHAR(100)
@ version_id VARCHAR(100)

T ves_developer v
alias_id INT
 jra_dev_id INT

display_name VARCHAR(500)

email VARCHAR(100)

encryption INT H———————————
5 } 7] commits v
m | version_id VARCHAR(100)
i } & project_id INT
! | commit_date TIMESTAMP
} } & sprint_id INT
I 1 » developer_id INT
} | message TEXT
I ! size_of_commit INT
} | insertions INT
v TTTTTTT T <5 doletions INT
I number_of_files INT
| number_of_lines INT
I type VARCHAR(100) |
I I

______________ 1 repo_id INT

I r i< free I
I I author_date TIMESTAMP |
} } branch VARCHAR(255) I
! ! et ;
I I > I
I I = |
| | 7] change_path v |
} l 1 repo_id INT }
i = 1 version_id VARCHAR(100) |
! & tfo_toam e file VARCHAR(1000) I
| € & insertions INT i
} T repo v deletions INT I
| idINT type VARCHAR(1) }
! repo_name VARCHAR(1000) size INT |
! T L O
I type VARCHAR(32) I
| ufl VARCHAR(255) i
I > I
I I
I i I
I I
I I
I I
I I
I I
I I
| L
I A
I
I
I
I

message TEXT
tagged_date TIMESTAMP
tagger_id INT
sprint_id INT

Figure 3.5: Entities and relationships that model data retrieved from version control systems.

main branch which is meant to remain stable, while code for different stories is often developed
and tested on separate branches. The branch that the code is initially worked on is stored as an
attribute in our model, along with other metadata about the date, message and size of commit.
Separately, we track the path to a file that was changed by the commit as an entity related to the
commit, with specific statistics similar to the size of the commit.

A commit can be given a tag with a version number, which is an indicator that the version
of the code is used as a release version or for other purposes. We store the tag as an entity with
attributes for the tag’s name, message, the developer made the tag and when it was made. Both a
commit and a tag are linked to the sprint in which the specific entity was made.

An author of a commit or tag is considered a local developer to the version control system. We
decide to encrypt personal data like name and email address using a project-specific encryption
key, cf. Section 3.3.2.

Code review

Recent version control systems are often accompanied by web applications that allow development
teams to propose and review code changes. They are often tightly integrated with the repository

53

Chapter 3. Database construction 3.3. Method

and provide additional data about the development process. We consider three systems that provide
the review functionality for their code repositories: GitHub, GitLab and TFS/VSTS/Azure DevOps.
In Figure 3.6, the entities and relationships are shown for these specializations, with some entities
performing a generalized role for multiple systems.

e

T
|
|
|
|
|
|
I
I
|
|
|
I
|
|
|
|

[
1L
AN

>epo.d INT
acton VARCHAR(20)

>

-
|

|

|

|

date TIMESTAMP
dINT

e vaRCHAR(I00) | |
>-
o TMESTAMP

> Updated_dato TMESTAMP

Figure 3.6: Entities and relationships that model data retrieved from code review systems.

We acquire additional metadata regarding the code repositories at GitLab and GitHub. These
attributes are stored in specialized tables accompanying the existing entity. We obtain the descrip-
tion, creation date, access restrictions and social interactions such as the number of people giving
a star to the repository, as a measure of importance.

The code review systems also contain additional information on interactions such as pushes of
commits, tags and branches to the central repository. These events are usually not tracked in the
Git repository itself, but the time difference between a developer finishing a local code change
and publishing it has some relevance for our analysis.

The remaining entities from the code review systems are focused on comments on code,
branch merges and standalone issues. A commit comment can be made for a code commit in
order to discuss one or more lines of code, which were possibly changed by that commit. It is
usually related to a merge request, which is a discussion regarding the merge of a branch to
another—usually main—branch. Depending on the system, a reviewer is assigned to a merge
request, who then votes on whether the code that was changed on the branch is ready. Involved
developers and bots connected to the build platform and quality control systems sometimes also
leave notes on the merge request itself. Additional metadata attributes are acquired for these
requests and comments.

54

Chapter 3. Database construction 3.3. Method

These review systems are also able to track issues. This functionality is, however, not used by
most teams at ICTU, where they instead track issues in Jira. Issue tracking is done for projects
that use GitHub, in particular a few open source projects from support teams at ICTU that are of
interest to us. Wigo4it does use TFS/VSTS/Azure DevOps as a work item tracker, as explained in
the next portion of the model.

Although limited in use at the organizations in our research project, we consider tracking all
types of issues from such sources—including GitHub—to be helpful for the generalizability of our
data acquisition pipeline to other development ecosystems, where the workflow of preparing and
reviewing tasks may be conducted differently. Thus, we model those issues and notes as entities
with similar metadata as the merge requests and notes.

TFS/VSTS/Azure DevOps

The integrated system provided by Azure DevOps Server, previously known as Team Foundation
Server (TFS) and Visual Studio Team System (VSTS), encompasses version control via Git—
although some older versions only provide its own TFVC protocol—with code review, build
platforms and project management through work item tracking. This provides development teams
with various options for tracking development process and delivering product increments.

Some organizations use certain functionality of this system or use it differently. At ICTU, TFS
was only used by a few projects for version control and code review, with most preferring GitLab.
Meanwhile, Wigod4it utilizes more from TFS/VSTS/Azure DevOps by performing sprint planning
through work items, next to the version control.

We consider the portion that focuses on the work items to be separate from the version control
and code review, which is modeled as part of the other specialized review systems that our schema
supports. In Figure 3.7, we display the main entities and relationships that are extracted from the
process of work item tracking.

The Azure DevOps system groups developers into teams with their own work item boards.
These teams have team members, which have personal data that are encrypted with a common
encryption key. Because some people are not part of a team but still interact with the work
items—and conversely, we will not find every developer through work item updates—we also
acquire developers through information from the work items. This information is stored in a
secondary table, with personal data encrypted using a project-specific key. These two entities
fulfill analogous roles to the developer tables from Jira, with data acquisition taking place in a
similar way for that system.

Moreover, we acquire information regarding sprints from Azure DevOps. Due to differences
in the attributes of entities compared to sprints from Jira, we store them separately. The same
applies to the work items that stem from this system. Because the focus of our analysis was more
clear once we adjusted our data acquisition pipeline to collect the work items, we extract fewer
attributes from them. Some of the attributes also have different semantics compared to Jira issues,
so the records for work items are stored in a separate table from that system.

Due to this, some of the entities have a dedicated role. When we later want to collect attributes
or statistics from these entities, we have to select which data source is relevant to us and adjust the
queries based on the definition of the attributes, such as what the status or resolution means to the
work left on a story. We discuss some of the intricacies of this process for the way the queries are
built in Section 3.3.2.

55

Chapter 3. Database construction 3.3. Method

T tis_sprint v
sprint_id INT

& project_id INT
repo_id INT
team_id INT
name VARCHAR(100)
start_date TIMESTAMP
end_date TIMESTAMP

>
+ ¥V OV
[

o] tfs_developer v
1 project_id INT

=} = —4< 1 dispay_name VARCHAR(100)
> - —+! email VARCHAR(100)
*‘ alias_id INT
i
i
i
i
i

] ves_developer

-H
encryption INT

] tfs_work_item
issue_id INT
changelog_id INT
tite TEXT
type VARCHAR(64)
priority INT
created TIMESTAMP
updated TIMESTAMP
description TEXT

display_name VARCHAR(100) |

status VARCHAR(84)
reporter VARCHAR(100)

assignee VARCHAR(100)
g S

sprintid INT
toam_id INT by
updated_by VARCHAR(100) 1
tabels INT

encryption INT

|
|
|
|
I
I
I
I
I
I
I
|
1| & encryption INT
|
|
|
I
|
|
|
|
|
|
|

i
i
+ I
| ST 7] tis_team v !
team_id INT 1
4

 project d INT

description VARCHAR(500)
>

Figure 3.7: Entities and relationships that model data related to work item planning retrieved from
TFS/VSTS/Azure DevOps.

Quality control

Code should be regularly inspected for code style issues, vulnerabilities and other indicators that
technical debt are present due to maintainability issues. A system like SonarQube [V] automatically
performs such checks. ICTU created an additional system to combine the history of those checks
as well as reports made by security scanners, build systems and Jira in a central place that is easily
accessible to team members. This system, Quality-time [VI], provides measurements in a form
that we also model in GROS DB—while remaining compatible with SonarQube directly—as
shown by the entities and relationships in Figure 3.8.

The quality control system formats the checks and measurements as a report that displays
statistics grouped by software component. Each metric has a name, based on what is being
measured and which domain object is involved. This domain object refers to other systems and
artifacts, such as a code repository, document, build server or Jira board.

The metrics are checked at high frequency for updated information from external systems.
A metric value comes with metadata about when the check happened, when the value has most

56

Chapter 3. Database construction 3.3. Method

| metric_target v
& project_id INT

 version_id VARCHAR(100) I metric_version v | metric_default v
& metric.id INT project_id INT base_name VARCHAR(100)
| metric v jm—— e |< type VARCHAR(100) Sin version_id VARCHAR(100) version_id VARCHAR(100)
metric_id INT | target INT | developer VARCHAR(64) commit_date TIMESTAMP
name VARCHAR(100) W low_target INT L] o message TeXT iection TINYINT
base_name VARCHAR(100) | metric_value v comment TEXT commit_date TIMESTAMP perfect FLOAT
domain_name VARCHAR(100) |,, & metric_id INT > sprint_id INT target FLOAT
domain_type VARCHAR(32) } value FLOAT Lo encryption INT low_target FLOAT
> category VARCHAR(100) > >
I

1
|
_i< © date TIMESTAMP |
sprint_id INT |
-1

since_date TIMESTAMP

% project_id INT
>

Figure 3.8: Entities and relationships that model data retrieved from quality systems.

recently changed before then and how problematic the value is. This severity category is defined
by the target of the metric, which determines whether a lower or higher value is better. The target
of a metric also has attributes for threshold values, which determine when the metric should be
reported as acceptable, problematic or critical.

The target of a metric can be changed by a development team member or quality manager,
usually if it is considered less or more important. Metadata on the version of the metric target
is modeled as an entity. Finally, we track what the default value of each target is, based on the
version of the Quality-time system, since the default could too have been altered. Combined, these
entities allow us to deduce the context of a metric’s value at an earlier date. Namely, we check
why it was in a certain severity category back then and whether it would still be problematic now.

3.3.2 Linking data sources

The GROS DB contains data regarding events and instances of entities from different points in
time, but also from different facets regarding several SCRUM software development processes.
Work is undertaken on stories from a product backlog by refining the task description and enriching
other attributes and links. Meanwhile, the developers write code that implements the expected
change to functionality. The updated code is reviewed by their peers, in additional to quality
control systems checking if the software remains maintainable.

While the process itself appears streamlined, one hindrance is that the steps are often separated,
with limited linking between the entities and the systems they originate from. This reduces the
perceptibility of potential bottlenecks and other issues that emerge during the process, because the
ecosystem lacks a single view in which every team member is able to spot those problems. The
lack of linking limits the capability for further analysis of patterns in development projects, as
these relations are needed to gain a complete picture of the state of a project at any given moment.

Nevertheless, we automatically deduce relationships between different entities, which are then
used to combine previously unlinked data in our queries. During our data acquisition, we define
beforehand which systems, code repositories and other primary entities are in use by a certain
project. We collect the data on a project-by-project basis, keeping this identifier in mind when
importing the entities into the database. This gives the project entity a central role in our model.
While this is sufficient for some analysis, we prefer to give teams a more relevant role than projects,
when multiple projects are worked on by the same team, thus giving a better understanding of
their total workload. For such purposes, we combine them through data analysis afterward or use
the team entities from TFS/VSTS/Azure DevOps.

57

Chapter 3. Database construction 3.3. Method

Next, in order to understand what is happening during a single sprint, we compare timestamps
from the originating systems. For any event not yet linked to a sprint, such as a commit, metric
measurement or adjustment to a metric target, we determine in which sprint it took place by
finding the sprint with the closest start date before the event’s timestamp, provided that the sprint
did not end before then. It is beneficial to store this explicit link rather than attempt to find the
relevant sprint during a query, because the latter approach would possibly find multiple or even
false-positive connections, due to overlapping sprint dates. A “smarter” solution utilizing bisection
properly handles these situations by identifying the most relevant sprint.

There are still limitations to automated relationship inference. When used on user-generated
data, such practice becomes error-prone. For example, we wish to find relationships between code
commits and the stories that they are being made for. One convention is that the developer writes
the issue key or work item number in the commit message, but extracting the relevant identifier
from free-form text could lead to matching unrelated substrings or mentions of irrelevant stories.
There is also not a fixed custom for this, so it does not guarantee proper results for other projects
and organizations. This obscures the semantics and proper use of a complex many-to-many
relationship. Results from further analysis using this link would be incomplete, hard to understand
or incorrect. Therefore, we have decided not to extract relationships from unstructured, textual
attributes.

Another way to find what work is being done by the team in different systems is to determine
simultaneous actions by the same developer. Initially, our model shows that personal data regarding
each developer is scattered across portions of different systems. By linking developer entities
across systems when they refer to the same person, we find the developer’s affiliated activities in
certain time frames. This method is potentially inexact and ambiguous when combining the data,
but it allows us to filter out work that is not relevant to the developer through other means.

Problems with a person-based link arise when a developer chooses to use another name or
email address in a version control system (VCS), thus having separate profiles. One example
is a legal name in the employee records, stored in, e.g., LDAP, which differs from the name
used on a day-to-day basis. Therefore, we utilize a mapping that links developers with different
combinations of name and email address. The mapping is further employed to detect non-human
accounts, such as automated code changes, by explicitly omitting a linked primary account. We
then ignore those ‘bot’ accounts in further analysis.

Another important matter using personal data is the consideration of privacy. We prefer not to
include information that can be traced back to a specific individual. We encrypt these attributes
with a one-way encoding, in such a way that the developers are given a hash-based pseudonym.
The mapping still detects identical developers as long as the encryption keys are available; both
the mapping and encryption keys are only stored at the organization that the data originates from.
Some data is encrypted with project-specific encryption keys, so developer names are encoded
differently across systems if another key is used. For this reason, we have different tables with
data using global encryption keys and project-specific keys, as indicated in Table 3.3.

We use JOIN operations to involve multiple entities through their relationships, allowing these
queries to select attributes from several tables for further analysis. Another method of obtaining
data from multiple originating systems is to combine them afterward based on primary identifiers.
This way, distinct features have their own queries, and multiple features are combined into one
data set based on project and sprint identifiers, for example. This adds processing time after
performing the individual queries. Only after this step, the data set is made available to machine
learning, where each sample in the data set elaborately describes a sprint.

58

Chapter 3. Database construction 3.4. Architecture

SYSTEM GLOBAL ENCRYPTION TABLE PROJECT ENCRYPTION TABLE

W Jira developer project_developer
OTFS tfs_developer tfs_team_member
O VCS None vcs_developer
OLDAP None ldap_developer

Table 3.3: Portions of the database with personal data of developers as well as the tables in which
we store said data using global encryption keys and project-specific keys.

We have designed another method to select and combine data from our cross-referenced
database which takes advantage of the integration of the R programming language with MonetDB.
We augment the syntax of SQL with a templating system which allows defining which tables,
columns and relationships are involved in a query. This makes it possible to use the same query
template for data selection from Jira entities as for those from TFS/VSTS/Azure DevOps, for
instance. The columns involved in a relationship are provided separately so that the JOIN operation
remains flexible. Similarly, we reuse definitions, such as what kinds of issues are considered
stories, in more queries for other features or reports, by placing them in a central bank. Technical
details are provided in Section 3.4.

After selecting the data from the relevant entities, we also want to report which sources
were involved in the query. Tracking these sources is relevant for verifying if the information
from this query properly reflects what the originating systems display. This way, there are no
unforeseen conflicts between those systems and the database report. This also helps with making
the query more insightful for stakeholders, who otherwise only see a number or other attribute
without context. The data acquisition component of the pipeline tracks URLS of the systems that
it requests data from. Additionally, the quality control system provides metadata to describe the
code repositories and other monitored artifacts. Human-readable names make the references more
familiar to the developers. For most queries, we directly link to the specific source, which is
usually a report in the originating system showing the same information.

3.4 Architecture

The database must work properly and in accordance with our goals. Therefore, in this section,
we focus on the technical components that we design and implement, supporting the desirable
operation of the database. This includes integration of the database with the Grip on Software
pipeline, which ranges from data acquisition to machine learning and information visualization.

The main purpose of the pipeline is to frequently provide new insights into patterns found in
the wealth of data regarding SCRUM software development processes. The pipeline, including
the database, should not cause a huge strain on the existing platforms and processes. We keep in
mind that we deploy the database to multiple software development ecosystems. As such, we use
data from various issue-tracking project management systems in a similar fashion, for example. In
addition, the database component necessitates efficient data backup and recovery functionality,
allowing encrypted exports to be uploaded to a central instance for cross-organizational research.

The database administration and import component [d] plays a central role in meeting these
objectives. A Java-based program uses Java Database Connectivity (JDBC) as a straightforward

59

Chapter 3. Database construction 3.4. Architecture

method to interact with the database [XVII]. We import fields from JSON artifacts provided by the
data acquisition component. First, the program selects which tasks are relevant to be performed
for the provided collections of entities. Then, for each collection, the importer reads the objects
for the entities one by one, using a custom buffered line reader for memory efficiency. An entity in
the collection is used in a check to determine whether there is an existing row describing the same
entity. Depending on the outcome, the database is given an update with the new data using either
an INSERT or UPDATE statement. To sharply reduce the number of statements being sent to the
database during the import, the aforementioned checks and updates are performed using batched
statements [56]. Here, a subset of—or all of—the actions are performed in quick succession on
the database’s side through the use of a precompiled query template. During the import, MonetDB
fills in the sets of values to check for and/or to store in the database, saving time transferring and
compiling the query [57].

The importer program has more tasks next to revising the knowledge base on relevant entities.
We determine the relationships between data from different systems here, for example when
it comes to the sprint in which an event took place. The same applies for developer profiles,
as described in Section 3.3.2. Other tasks include normalization of metric names, tracking the
involved data sources, aligning changelog numbers and encryption of personal data.

The final encryption step takes place after the linking of developer data has been completed,
because it is impractical to find relationships when all the attributes of the involved tables are
encrypted. The data acquisition agent already encrypts personal data from version control systems
at this point, while the names and email addresses from the issue tracker are still obtainable.
Encryption keys use two attributes, a salt and pepper, which are produced by a cryptographically
strong pseudorandom number generator. The sensitive data field is then encrypted using the salt,
original value and pepper to form a SHA-256 hash [58]. The type of encryption keys used to
hash the values is stored in a bit field attribute. The bit values indicate whether the encryption
was done with a global encryption key, a project encryption key or both, in a particular order.
Double-encryption is not usually done in our database, as seen in Table 3.3.

We also consider the database component’s external security. Usually, the database is hosted
in an ecosystem with limited access from the internet. To prevent potential dependency problems
with separate firewalls, we restrict access to the port on which database connections are made.
This does not impact any legitimate uses if all the processing takes place on the same server. This
works well for a pipeline that is deployed on VMs, Docker platforms or other virtual network
ecosystems, where forwarding firewalls or port mapping further restricts access to the database
system.

Using the database administration component, we enable several maintenance tasks to be
performed on the database. The database model and its synchronicity with the live system is
important. We automatically validate the schema that is used to create the database tables against
documentation, which compares properties of columns and primary keys, such as their type. If we
want to adjust some of the properties or track a new entity, attribute or relationship, then upgrades
to both the schema and the documented model must take place. We use a data-driven approach to
determine whether the live database requires a schema change. We indicate for each portion of an
upgrade what kind of action will be taken. If the action is feasible, i.e., the table or column can be
created or adjusted compared to the current situation, then we perform the action. This avoids
performing upgrades that we already applied to the live database. Further, it allows staggered
updates which change a column of a table that is created by an earlier upgrade, without interfering
with each other. Thus, the schema changes take place in an appropriate order.

60

Chapter 3. Database construction 3.4. Architecture

Other maintenance tasks focus on database dumps, bulk imports and restoration. These
auxiliary systems are configurable for different use cases. This has allowed the dump and import
functionality to be reused in a cross-pipeline exchange setup. We do this along with a Java
program for database export specifically for our use with MonetDB [e]. This program takes care
of tables with encryption fields and large tables, so that the dump size remains manageable. The
exported dump uses a hybrid format of CSV data and SQL instructions. Another module further
encrypts the exported data using an asymmetric key-sharing setup [f]. A separate, private key
of the organization and the public key published by the central pipeline instance are involved in
the GPG encryption [1X]. The dump—without any unencrypted personal data or the encryption
keys—is then uploaded via HTTPS to the central instance. At this web server [g], the payload
is decrypted using the public key of the organization, which is known in advance, as well as
the private key of the central pipeline. This ensures that the message cannot be compromised.
Automated incremental dumps are thus regularly exported from the organizations and imported in
a central database for analysis.

Aside from the bulk importer and export handler, the main pipeline component that accesses
the database is the data analysis component [h]. We consider the feature extraction that this
component performs in more detail in Chapter 4. From a technical standpoint, we use the query
templates and definition banks introduced in Section 3.3.2 in order to determine which entity
tables, attribute columns and relationship references are involved in each query, allowing us
to build a generic and reusable data set. This integration of the R programming language with
the MonetDB database uses an interpolation-based compiler, with recursive steps to expand
contextually-defined variables and function calls into correct SQL. In Figure 3.9, the input data
and supported functions are summarized.

‘ Query template ‘ ’Expansion S{ Compiled query

e Fields £(

e Grouping g(...
3
s (

A
‘ Definition bank ‘
+
‘ Extra patterns ‘ .
v ® Recursive

‘ Primary tables ‘—» e Tables

e Joins

o+

(...)

Figure 3.9: Input data (green blocks) and expansion functions of the query template compiler
(red arrow), leading to a concrete query (blue block).

We show an example of a query template and a representation of the concrete queries for Jira
and TFS/VSTS/Azure DevOps in Figure 3.10. The definition bank is extensible with additional
patterns. Recursive expansion of these fields means that any template variables that they contain are
further translated. A mapping of tables that are relevant to certain templates allows for translating
the specific table where an entity is stored. For example, the issue entity expands to the issue
table for Jira or t fs_work_item for TES/VSTS/Azure DevOps.

61

Chapter 3. Database construction 3.4. Architecture

[SSI \S]

AN L b

SELECT DISTINCT ${f(join_cols, "issue")}, S${s(issue_key)} AS

key

FROM gros.S{t("issue")}
JOIN gros.S${t("sprint")} ON ${j(join_cols, "issue",

"sprint")}

WHERE S${s(issue_story)}
AND S${t("issue")}.updated > S${s(sprint_open)}
AND ${s(sprint_id, "issue")} <> 0

(a) Template

SELECT DISTINCT issue.project_id, issue.sprint_id,
issue.key AS key

FROM gros.issue

JOIN gros.sprint ON issue.project_id =
sprint.project_id AND issue.sprint_id =
sprint.sprint_id

WHERE issue."type" = 7

AND issue.updated > COALESCE (CAST (sprint.start_date AS
TIMESTAMP), CURRENT_TIMESTAMP ())

AND COALESCE (issue.sprint_id, 0) <> 0

(b) Compiled for Jira

SELECT DISTINCT tfs_work_item.team_id,
tfs_work_item.sprint_id, CONCAT ('#"',
tfs_work_item.issue_id) AS key

FROM gros.tfs_work_item

JOIN gros.tfs_sprint ON tfs_work_item.team_id =
tfs_sprint.team_id AND tfs_work_item.sprint_id =
tfs_sprint.sprint_id

WHERE tfs_work_item."type" = 'Product Backlog Item'

AND tfs_work_item.updated >
COALESCE (CAST (tfs_sprint.start_date AS TIMESTAMP),
CURRENT_TIMESTAMP ())

AND COALESCE (tfs_work_item.sprint_id, 0) <> 0

(c) Compiled for TFS/VSTS/Azure DevOps

Figure 3.10: A query that retrieves issue identifiers in each project’s sprints, for a feature that
counts the number of user stories, with different concrete versions that are expanded from the
template when selecting data from the database.

62

Chapter 3. Database construction 3.5. Experiments

3.5 Experiments

We test the GROS DB setup with regards to the performance of the database system during the
usual workload of the data collection and analysis pipeline. To do this, we propose a number of
experiments that look into the performance of MonetDB itself, as well as optimized refinements
made to the queries in our template compiler.

Our scope is not to compare MonetDB to other database management systems. We consider
the choice for MonetDB to be most reasonable at the moment when we initially created the
pipeline. We considered the strong qualities of a column-based storage, relational SQL support
and integration with a programming language for its functional deployment in a larger diverse
development and research environment. In particular, a performance comparison with another
RDBMS would require rethinking the data model for that particular database system. We would
have to decide which indexes to include in the model, whereas MonetDB does not require
manually-created indexes. Other data type constraints have been made specifically for our feature
set and would require a different representation.

Comparisons between database systems are often done with industry-level benchmarks, such
as TPC-H [xv111]. We instead focus on a test set with a small number of queries that we have used
during the Grip on Software research. The selected queries should be representative of the usual
data collection for further analysis, machine learning and information visualization. Various parts
of the data model are involved in the queries. Varying levels of complexity are used in order to
provide the feature set and associated details in the query response.

We measure the performance of query templates that we have optimized with our compiler. In
order to find out how much these changes improve the efficiency of database system, we go back
to older versions of the query stored in our repository and include those in our test set, along with
the newer version. We retroactively apply changes that we made to the query in the meantime, but
only in case that these changes are not relevant to the performance.

3.5.1 Setup

In our performance experiments, we consider only the data access statements (SELECT), not other
kinds of queries for data definition or data manipulation. The queries that build the database and
fill it are not part of a typical workload in our consideration. In fact, the data import is already
covered by other pipeline performance measurements in Section 2.5.

We do involve new database creation and storage in our experiments by testing queries in two
situations. First, we run queries one by one on an existing database which has seen the queries
before and could create optimized structures for them. This is considered a hot-start experiment.
We test the same queries again, this time individually where we rebuild the database and import
the database, in between each query run. This cold-start experiment provides more indication of
the inherent complexity of each query for our data model.

We disregard caches in between cold-start runs. In all experiments, we disable the use of tables
that hold outcomes of long-running queries. The performance test should not be interrupted by
other processes when possible, thus other parts of the pipeline are disabled during the experiments.

Our performance test program reuses portions of the data analysis program that runs the
queries [h]. Additionally, it ensures a reproducible and consistent setting for all the queries. We
perform multiple runs of each query in order to obtain statistics on deviations. This allows us to
determine if the test setup behaves similarly between runs.

63

Chapter 3. Database construction 3.5. Experiments

The data set of ICTU is used as a representative instance upon which we apply our queries.
Some relevant dimensions of the database are listed in Table 4.1, with 192 million measurements
of quality control metrics on top of that.

The tests are performed on a Dell PowerEdge 2950 2u rack-mounted server with a Intel Xeon 8-
core X5450 CPU at 3GHz, with 2x128KiB L1 cache, 2x12MiB L2 cache, four 4GiB mem-
ory cards of DDR2 FB-DIMM RAM of Hynix HYMP351F72AMP4N3Y5 (667MHz) and a
544GiB DELL PERC 6/i SCSI storage disk with LUKS-based 512-bit AES full disk encryption
enabled. The database system under test is MonetDB v11.41.5 (Jul2021).

3.5.2 Results

We run six queries related to two large entities in our data model, namely metrics and issues. Most
queries make use of related entities, such as sprints. The query templates and compiled versions
are provided in Appendix B.

We collect the wall clock time that each query took, from the start of the query request until the
data response, as well as the system time that the database used during the full query processing.
In addition, we measure the average CPU load during the execution of the query. Finally, we
track how many database rows were included in the query. This statistic occasionally differs
between refined and original versions, due to a different method of linking with related sprints
or by filtering operations. This is because some sample rows are not used in the data set during
normal data analysis operations. Only sprints that exist are included in the data set. Thus, the
query filters such sprints beforehand.

The performance measurements of the test results on a hot-start database are provided in
Table 3.4 for the original queries and Table 3.5 for the refined versions, with 10 runs for each
query. We report the mean and standard deviation of the values obtained from those runs. It is
clear that the queries that we refined are faster, even if the database also optimizes the queries
itself. Our optimization also appears to help with reducing the variance between runs, allowing
for queries to run frequently and in a stable rate during research.

QUERY WALL TIME RUN TIME CPU LOAD Rows
All metrics (Figure B.1) 11.29+0.32 11.02+£0.33 81.3+3.0 1898
Red metrics (Figure B.3) 2.014+0.14 1.744+0.13 72.1£5.7 1775
Team spirit metric (Figure B.5) 10.774+£0.34 10.50+0.35 76.4+3.3 1063

Backlog added points (Figure B.7) 1.20£0.03 0.93+0.02 383+£1.1 16823
Backlog epic points (Figure B.9) 7.98+£0.09 7.70+£0.09 44.4+0.7 32246
Backlog story points (Figure B.11) ~ 5.61£0.15 5.354+0.13 33.54+0.7 153685

Table 3.4: Results of performance tests of original versions of queries, using a hot-start database
system. Times are provided in seconds, CPU load in percentages.

The queries related to metrics use more processing power in order to generate the result.
Consequently, they take longer to produce the resulting data set. The queries that calculate
product backlog sizes at different moments in time have a large data set, but perform relatively
efficiently compared to the metrics queries. With larger data sets from each query, CPU load and
in particular query response times decrease. This indicates that query optimization through the
template compiler serves a practical use, when queries are rerun many times.

64

Chapter 3. Database construction 3.5. Experiments

QUERY WALL TIME RUNTIME CPULOAD ROWS
All metrics (Figure B.2) 5764+0.08 5.484+0.09 81.2+1.5 1899
Red metrics (Figure B.4) 1.76 +0.04 1.494+0.03 79.3+1.6 1776
Team spirit metric (Figure B.6) 2.54+0.56 2.284+0.04 795+£1.3 1063

Backlog added points (Figure B.8) 0.88+0.04 0.62+0.02 31.4+1.3 16823
Backlog epic points (Figure B.10) 3.83+0.07 3.57+0.07 26.8+0.9 25833
Backlog story points (Figure B.12) 4.05+0.06 3.79+0.06 274+1.2 88032

Table 3.5: Results of performance tests of refined versions of queries, using a hot-start database
system. Times are provided in seconds, CPU load in percentages.

We measure the performance of the same queries in a cold-start setup, where the database
is restarted and all system caches are removed. The original and refined versions of the six
queries in our test set are each run ten times again. The results of these experiment are shown in
Tables 3.6 and 3.7.

QUERY WALL TIME RUN TIME CPU LOAD Rows
All metrics (Figure B.1) 50.92+0.53 50.86+0.53 20.1+0.6 1898
Red metrics (Figure B.3) 32.03+0.20 31.97+0.21 10.8+0.4 1775
Team spirit metric (Figure B.5) 69.79+0.39 69.80£0.39 15.1£0.3 1063

Backlog added points (Figure B.7) 2.02+0.10 1.97+0.10 22.1+£1.1 16823
Backlog epic points (Figure B.9) 8.53+0.09 8.46+0.10 41.2+0.6 32246
Backlog story points (Figure B.11) 6.40+£0.11 6.34+0.11 29.6+£0.5 153685

Table 3.6: Results of performance tests of original versions of queries, using a cold-start database
system. Times are provided in seconds, CPU load in percentages.

QUERY WALL TIME RUN TIME CPULOAD ROWS
All metrics (Figure B.2) 49474049 4941+0.48 13.2+04 1899
Red metrics (Figure B.4) 33.05£0.25 32.99+0.25 10.0£0.0 1776

Team spirit metric (Figure B.6) 59.89+0.70 59.82+£0.69 10.0£0.0 1063
Backlog added points (Figure B.8) 1.61+£0.15 1.55+£0.16 17.5£2.2 16823
Backlog epic points (Figure B.10) 4454+0.08 4.38+0.08 23.24+0.6 25833
Backlog story points (Figure B.12) 4.93+£0.17 4.86+0.18 22.7+0.8 88032

Table 3.7: Results of performance tests of refined versions of queries, using a cold-start database
system. Times are provided in seconds, CPU load in percentages.

Again, we observe that the refined variants have a decreased query processing duration and
load, although the effect is not as significant compared to the hot-start setup. One query, used to
calculate the number of problematic red quality control metrics, is slightly slower.

All queries are faster to process in the hot-start situation than with the cold-start setup. This
should be expected, given the presence of additional index-like structures that MonetDB generates

65

Chapter 3. Database construction 3.6. Discussion

and reuses between the runs of the queries on a hot-start system. The queries that involve the
metrics are several times slower in the cold-start setup, while the effect is less extreme for the
backlog queries compared to the hot-start test. The average CPU load is however much lower
during the cold-start experiment, for all queries. This may be due to longer run times spreading
out the actual execution until enough data is obtained from disk. Another potential bottleneck is
memory synchronization times between queries, allowing the overall load to decrease. In addition,
there is less usage of intricate data structures that help with speeding up the query resolution but
use more complex instructions.

Overall, the combination of a hot-start MonetDB database system and the refined queries
seems to provide the most benefit to shorter query processing times and advantageous usage of the
available resources. The higher load does not impact the system much, given that other processing
cores are still available for other portions of the pipeline to be run. This allows us to use the
GROS DB at various software ecosystems, which come with different hardware constraints and
virtualization options.

3.6 Discussion

In this chapter, we build upon the introduction of the pipeline components in Chapter 2 and further
detail the database system as a central component of the pipeline. During the Grip on Software
research, there is a need to store information from several systems that are commonly used for
SCRUM software development. We focus on modeling and integrating these data sources such that
we link previously disconnected entities and perform frequent analysis on the data set.

MonetDB satisfies our purposes and requirements as an extensible RDBMS suitable in
academic and corporate environments. The data model of GROS DB makes use of various data
types provided by MonetDB, including timestamps and references between entities. MonetDB
supports SQL as a core query language, but also enables extensions through the integration
with programming languages such as R and Python. As a database system oriented to analytical
processing, we find MonetDB to be the most applicable option for our research.

Our data model for the SCRUM software development process has many connections between
different portions that roughly correspond to the systems that the data originates from. Initially,
systems such as a project’s issue tracker, version control system and quality dashboard lack
substantial interaction. Through chronological information about events that make changes to
entities, we build new relationships, where the sprint acts as a central entity. This model allows us
to more easily extract metrics and features regarding this time frame.

Other links exist through the use of personal information, such as when a developer commits
some code and resolves a story. We take privacy in mind by encrypting names and other identifiable
attributes, with one-way encoding using project-specific encryption keys. We preserve links by
using local translation mappings and comparing the hashes.

We enhance the selection of data from the model by introducing a query template compiler.
This allows us to write queries that select the same kind of data, such as the number of stories
worked in a sprint, while staying agnostic to the underlying portion of the data model used in the
actual query. Depending on the organization and project, the templates are compiled to use, e.g.,
Jira or TFS/VSTS/Azure DevOps as a source. The relevant entities—stories versus work items as
well as different types of sprints—plus the references used in JOIN operations on their tables are
then automatically used in the proper locations.

66

Chapter 3. Database construction 3.6. Discussion

There are technical challenges to make the database system stable, maintainable, interoperable
with other parts of the pipeline and applicable in a wide range of software development ecosystems
without many changes or influences on the existing infrastructure. Additional functionalities of
the GROS DB allow us to fulfill these requirements, along with tasks for upgrading and exporting
data to a central instance of the pipeline.

We test the performance of the database system through the use of a number of queries that are
representative of our usual workload, along with older, non-refined versions that perform the query
in a different way. We observe that the refined versions use less time to execute. Additionally,
we show that MonetDB itself performs optimizations through the use of structures created when
queries are run more often, which benefits our resource usage during our research. We easily
perform our queries repeatedly whenever new data comes in. This is performed by a scheduled
job system that runs hourly or even more frequently, depending on the other pipeline components.

More performance experiments could be done by comparing MonetDB to other potential
database systems, such as MySQL, Postgres and SQLite [49]. In particular, MariaDB, as a fork of
MySQL that includes options for column-based storage, is a consideration for further research
options. Overall, the storage and performance options of MonetDB have proven to be helpful in
our data modeling needs, as recognized throughout analytical processing problems.

We also consider an alternate solution where we integrate MonetDB with more Python
programming, rather than with R. There exist many modules that make Python work well with
column-based feature data, which allows deeper integration with machine learning purposes with
fewer intermediate steps. Still, our query template compiler overcomes some issues that would
need to be reimplemented in Python. We did purposefully design our query templates to not
contain specifics of the language that the compiler is implemented in, in particular regarding the
syntax of the expansion functions.

Our data model should be suitable for a large range of software development projects. Some
portions are focused on a specification of data originating from specific systems, such as Jira
and TES/VSTS/Azure DevOps. Still, we easily support more integrated issue trackers and review
systems, with GitLab and GitHub already part of the database model. Existing entities and
relationships are proper templates as a starting ground for such extensions.

In summary, our research objectives are more easily attainable with the GROS DB database
system based on MonetDB and extended with our query template compiler. We efficiently
extract data sets based on the entities and relationships in our data model, with interconnections
between portions based on discrete systems used in SCRUM software development. This data set
accommodates different organizations while using the same query template, by taking advantage
of the generic and flexible design of our data model and the technical component architecture.
Thus, our pipeline remains adaptable to various development ecosystems. The performance of
the pipeline component allows involved team members to benefit from recurring, large-scale
machine learning and information visualization applications. By making the model inherently
more understandable, the goals for improving predictability of the software development process
become more feasible as well.

67

Chapter 4

Pattern recognition methods

GROS ML: Analysis of predictive patterns in SCRUM software
development processes through machine learning and estimation
models

Portions of this chapter are also published in the following journal and/or conference articles:

* Leon Helwerda, Frank Niessink and Fons J. Verbeek. “Conceptual process models and
quantitative analysis of classification problems in Scrum software development practices”.
In: Proceedings of the 9th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management (IC3K 2017 - KDIR). SCITEPRESS,
2017, pp. 357-366. DOI1: 10.5220/0006602803570366.

¢ Leon Helwerda, Walter A. Kosters, Frank Niessink and Fons J. Verbeek. “Estimation
models for prediction of sprints and backlogs”. Empirical Software Engineering, 2024.
Submitted.

https://doi.org/10.5220/0006602803570366

Abstract of Chapter 4

Background: Software development processes such as SCRUM produce various metrics during
the lifespan of a project. We have constructed and analyzed a data set of metrics and features
related to progress tracking retrieved from two SCRUM software development organizations,
namely ICTU and Wigo4it.

Research questions: How can we improve the predictability of SCRUM software develop-
ment practices, specifically the progress of sprints and backlogs—based on analysis of data
selected from the development process—and how do we validate our approach?

Aims: We consider the use of story points in short-term and long-term planning to under-
stand and improve existing best practices in the SCRUM framework. Our goal is to aid the
planning aspect of the process through predictions of sprint velocities and backlog sizes, which
is beneficial to the framework and workload balancing.

Methods: We apply analogy-based effort estimation, deep neural networks and other
predictive regression models to our data set of extracted features. We determine the probable
effort during future SCRUM sprint cycles and the rate at which a backlog of estimated and
non-estimated work items, specifically in user story form, could be implemented. We validate
the results of these predictions against earlier sprints and analyze distributions of Monte Carlo
simulations.

Results: Our results of experiments with sprints and backlogs from 60 teams and projects
show that the proposed methods for classifying sprints into finished and unfinished stories
reaches an F1 score of 90%, while the analogy-based effort estimation is within 25% of the
actual value about 89% of the time in validation. These are improvements over naive estimation
methods and additional validation shows improvements for larger training sets. The backlog
size prediction models have varying errors and deviations in multiple scenarios but overall
appear consistent with the outcomes for earlier sprints, where the Monte Carlo simulation
using all types of changes to the backlog shows the lowest deviations. Further analysis shows
that the Monte Carlo scenarios also fit with the expected distribution.

Conclusions: We find that the approach is feasible, with our models allowing project leads
and teams to self-manage sprint planning and product backlogs in terms of acceptable size.
Additionally, we predict time points at which milestones could be reached.

Chapter 4. Pattern recognition methods 4.1. Proposition

4.1 Proposition

In a SCRUM software development environment, it is vital for all involved people to know how
much work can be done within a certain amount of time. Many different factors play a role,
depending on the period of time. Not only do the tasks differ in size and complexity, but also the
team might change in composition and expert level.

The SCRUM framework intends to solve common issues related to planning in software
development. On the outset, it is often not clear when certain tasks will be done, when they are
completed and at what moment new tasks should be introduced. SCRUM at its core does not
provide a general way to answer all these questions, especially when they are asked regarding a
longer period of time. The framework does provide some elements that allow for adjustments in
the process. We wish to understand the framework in more detail, assess its contribution to the
successful release of a product, employ scientific methods that are novel to this area and construct
machine learning (ML) algorithms that aid members of a development team in various phases of
the process.

The research questions and sub-questions of the Grip on Software research project that we
consider to be most relevant in the context of the analysis of regularities and peculiarities, i.e.,
pattern recognition (PR), of a software development process, are the following:

(T N
- RQ2 How can we improve the predictability of SCRUM software development practices, ‘
specifically the progress of sprints and backlogs—based on analysis of data selected

from the development process—and how do we validate our approach?

RQ2a Which features can we select based on ongoing data from the software develop-
ment process that are most indicative of the progress?

RQ2b What kinds of learning algorithms can we introduce to this problem, which
learn from these features and provide feedback on what kinds of decisions can
be taken?

RQ2c¢ How do we predict the likelihood of timely and properly finishing a currently-
running sprint or a longer-running period aimed at resolving a product backlog
within a development project, even before it has started?

RQ2d How do we validate that the predictions and recommendations are within our
expectations and based on relevant, explainable factors?

\\\)) /J

With these questions in mind, we study the accuracy of four machine learning and statistical
models which we apply to a large data set of both ongoing and finished software development
projects, that took place at two Dutch governmental organisations: Stichting ICTU and Wigod4it.
We aim to find meaningful patterns in this data set and identify relations between these patterns
and the projects’ outcomes. One outcome is at the end of a project, when the backlog is completed
and development halts. We also consider the end of intermediate SCRUM sprints as outcomes,
given that the development team delivers work that they committed to finishing by then.

Thus, two specific cycles in SCRUM are of interest to us: first, the mutations on the product
backlog (introduction of new wishes, refinement, prioritization, effort sizing and moving work
to a sprint backlog) and, secondly, the SCRUM sprint cycle (planning, developing code, testing,
reviewing and retrospective).

71

Chapter 4. Pattern recognition methods 4.2. Background

We approach the matter of making reasonable predictions in the planning component of each
of these repeating cycles. We propose methods based on machine learning and analogy-based
effort estimation to automatically produce predictions. They should predict the amount of work
remaining on a backlog, as well as the number of story points that could be pulled into a sprint
so that it is still feasible to finish the work within the limited time. We validate whether these
methods and results prove to be adequate and accurate. This approach then augments the process
compared to the current situation.

In Section 4.2, we discuss the concepts and context of the problem statement in more detail.
A study of relevant prior literature is found in Section 4.3. We describe the methods of our
workflow in Section 4.4. Specifically, we consider research question RQ2a on feature selection in
Section 4.4.1 and the learning algorithms of question RQ2b in Section 4.4.3. Our experimental
analysis—in particular for answering RQ2c—is introduced in Section 4.5 and we discuss our
observations and results in Section 4.6, which addresses RQ2d. We conclude our findings in
Section 4.7.

4.2 Background

The SCRUM framework leads to a conceptual representation that helps us to determine the most
relevant factors of the objectives within the software engineering domain. In Chapter 1, we provide
a contextual overview of SCRUM, but we highlight the relevant points in the context of our analysis
in this section.

As a framework focused on interactions and collaboration the SCRUM workflow includes a
number of roles, events and common artifacts [6, 8 app. 2]. The main artifacts are the product
backlog (PB), sprint backlog (SB) and the product increment, on which people with different (and
possibly overlapping) roles can perform mutations. Desired features of a product are introduced
and prioritized by a Product Owner (PO). In collaboration with a versatile team of developers, the
PO refines some of the desired features into user stories. These can then be added to the backlogs
as work that is ready to be picked up.

The members of the development team commit themselves to work on a selection of the stories
during a short, fixed time interval known as a sprint. The developers implement the features into
the product increment. In this way, the team can demonstrate the changes within the increment to
representatives of the user, who provide feedback during a sprint review. Such a demonstration
session is held frequently, thus allowing changes to be made based on the feedback soon after the
increment. Apart from the user review, SCRUM defines a retrospective session in which the team
can adjust how they approach parts of the process based on consensus.

As an Agile software development method, SCRUM focuses on putting team interaction over
the tools used in the process [3]. Therefore, the introduction of new automated systems should
focus on providing the team members with recommendations in such a way that they can do their
work more efficiently and pleasantly. An automated system should remove load from the team
rather than adding just another place to check for information. By focusing on the aspects of the
Agile manifesto that are placed before the lesser-valued goals, we can ensure that our model and
tooling fits in the landscape optimally [5]. We find that our proposed method adheres to the Agile
guidelines. The system has been regularly used by teams to discover more about product and
sprint backlog sizes. This allows them to determine the progression thus far as well as perform
forecasting, both for short and long periods of time.

72

Chapter 4. Pattern recognition methods 4.2. Background

4.2.1 Framework

SCRUM is a software development framework that is intended to be lightweight and flexible, while
describing a software development process according to a set of rules. In this process, a software
development team works in sprint iterations of around two to three weeks in order to deliver
working software product increments to the client at the end of each sprint. The team members
commit themselves toward the amount of work they consider viable for each sprint.

Next to the team, the Product Owner (PO) introduces wishes—as indicated by the user—on
a product backlog (PB), prioritizes them and presents them to the team. Together, they refine
them into actionable tasks. These tasks, which come in the form of work items or most commonly
user stories, are meant to be small improvements upon the current product. The team and PO
collaboratively choose a selection of tasks to place upon a sprint backlog (SB). The team works
on the current sprint backlog for a fixed amount of time and demonstrates the new features and
improvements to representatives of the user. In collaboration with the PO, these representatives
provide feedback on newly introduced functionality during the same review session at the end of
the sprint.

The team’s own retrospective meeting is meant to reflect and learn from situations that arose
during the previous sprint. Team members ensure that problems and impediments emerging during
the process are identified and dealt with by the Scrum Master (SM), a potentially alternating role
within the team who may also oversee the implementation of the SCRUM framework—sometimes
this is then referred to as a Scrum coach.

The SCRUM framework indicates several more roles and also defines artifacts such as the
backlogs, stories and products. Stories, or work items in general, go through stages of refinement
and progress during a sprint toward implementation within the product. When a story is finally
considered to be ‘done’, it is removed from the sprint backlog. A team can adjust the definition of
‘done’ (DoD) in relation to their stories, which can include reviewing of code by peer developers,
manual tests, coverage within an automated test based on code changes, inclusion in documentation
manuals, user testing and acceptance by the client.

The software development cycle within SCRUM is known as a sprint. The workflow defines
events surrounding and during the sprint, as outlined in Figure 4.1. This includes the refinement,
demo and retrospective.

Product Development Daily Scrum
Owner Team
Product Potentially
Backlog | | Refinement, Sprint Shippable
with Sprint Planning Backlog Product
Stories . Increment
Sprint
(2-3 weeks) Demo/Review,
Retrospective

Figure 4.1: Workflow of a sprint in the SCRUM framework.

73

Chapter 4. Pattern recognition methods 4.2. Background

4.2.2 Story points and adaptations

When it comes to the start of a sprint, the PO and team determine the selection of stories to work
on at the sprint planning. This is meant to ensure that all team members are aware of the scope of
each story. Then, during every working day, the team gathers for a Daily Scrum—also known as a
stand-up meeting—in which they describe and inquire into the status of each story. They discuss
what the other team members have done up to that point, the work that they plan to do for the
remainder for the sprint as well as any problems that they have signalled.

A major addition to the iterative planning process of SCRUM is that stories can be awarded
effort sizing values known as story points (SP) during refinement. The determination of SP is up
to the team, based on the complexity and projected workload compared to earlier reference stories,
using a Fibonacci-like scale [9], such as the sequence

0,1/,1,2,3,5,8,13,20,40, 100. A.1)

Often, teams use a game-like format known as Planning Poker [60] to collaboratively choose
the SP of a story. Each team member decides at the same time, for example by simultaneously
showing a card with the number of story points they would assign to that story. Then, outliers are
asked to explain their choice, until a consensus is reached.

The story points sizing is a metric that makes stories comparable to each other, to a certain
extent. This way, the team members can determine how many story points they should commit
themselves to in a sprint. Often, a metric of velocity is used as a guideline for commitment, where
the sum of the story points of all stories that were resolved during the past three sprints is divided
by three. This average indicates the team’s recent inclination toward both the awarded story points
as well as the amount of effort that they spent in completed work.

Comparing story points between teams is more difficult. Even if one team awards their stories
with higher story points than another, this does not necessarily imply that they simply have a
different viewpoint to the scale, since the stories themselves have a varying complexity as well.
An “exchange rate” could still help understanding team differences, but it cannot explain them.
Similarly, over time a team changes in composition, the software increases in complexity or the
context requires a different approach to the planning aspect, and these influence the sizing as well.
We consider the possible consequences of these changes in Section 4.7.1.

Sometimes, other effort sizing methods are employed within SCRUM and similar Agile
frameworks. These methods have varying scales and sources of information, such as T-shirt
sizing [61] or function point analysis [62]. Sometimes, these effort metrics can be translated or
re-used as if they were story points, but caution should be taken to consider them as distinct
metrics, as these methods focus on different levels of detail and context for a portion of work to
be done.

Other software development methods have adopted similar practices like those in SCRUM in
order to include effort estimation practices. There also exist extensions of SCRUM itself to work
collaboratively in small groups, large organizations or co-located teams on shared, partitioned
backlogs [63]. Such practices exist in Scrumban, scaled SCRUM and Scrum of Scrums, among
others. Although we consider curation of data for teams working on multiple projects at once and
vice versa, our focus here is on the most general form of SCRUM. It is relevant to note that each
organization and team applies its own practices on top of the framework, leading to slight changes
in how data should be interpreted for a proper understanding of what it means in reality.

Whereas the SCRUM framework and the Agile manifesto focus on team interaction, working
software, collaboration and response to change, they also allocate some secondary value to

74

Chapter 4. Pattern recognition methods 4.3. Related work

processes, tools, documentation and plans. Especially when such systems allow for detecting
defects or other issues quickly by putting the most relevant information first, these systems aid
with signalling impediments and reducing effort spent on technical debt, i.e., maintenance of
code that ages with time. Such factors improve the throughput of stories from initial concept to
working code. Systems that provide this kind of assistance could be considered as if they were an
additional team member, since they should reduce work from the actual members.

Common types of systems in use in software development processes include software quality
analysis tools, digital backlog and sprint planning systems, collaborative/distributed version
control systems and forecasting systems for feasibility of planning. Often, the user interface of
these systems is designed in the form of an information dashboard, where critical information
relevant to everyone is placed first. Details are usually available through menus or APIs, which
allow data acquisition, analysis and reporting by separate systems.

4.3 Related work

We explore existing applications of predictive models in Agile software development and SCRUM
in particular. We consider the outcomes of those studies and attempt to find possible avenues for
improvements.

Effort estimation of software development projects has been a field of sustained interest and has
seen renewed interest through the introduction of novel techniques to the field. One such method,
known as analogy-based effort estimation, uses relations between the most significant attributes of
a sample set to produce both an estimation for a product backlog or a subset thereof. Additionally,
it produces indicators of similar data points involved in constructing this estimation [22].

Various methods for finding similarities, ranging from distance measures to statistical infer-
ence [64] and fuzzy numbers [65], provide improvements to the analogy-based effort estimation
algorithm. Several effects of identified patterns in data sets, e.g., outliers [66], have also been
studied. Overall, analogy-based effort estimation has shown to have a feasible use within software
development [67] and improvements in the reported accuracy can be seen for multiple algorithms
and Agile frameworks [68].

Other algorithms, such as neural networks [69], have also been applied to effort estimation
using specialized data sets. Recent work shows optimizations of basic neural networks are a
feasible method for effort estimation [70].

Effort estimation within SCRUM and Agile in general mostly focuses on the story points that
are awarded by the development team during Planning Poker. Extensions to this process have also
been proposed [71]. Automated estimation is another researched topic [72]. Additional metrics
have been introduced to the SCRUM framework, but even established ones, for example functional
size metrics, may not always benefit the estimations [73].

A relatively new introduction to predictive methods within software development is the use of
Monte Carlo simulations. Initial research shows that the use of such an algorithm may provide a
reasonable estimation of the effort required to resolve a backlog of user stories, as well as a due
date when such a collection of stories is finished [74].

In the context of Agile software development, most research focus lies on empirical and
qualitative studies, such as survey evaluations [75]. There has been research into the relation
between the Agile development methods—specifically SCRUM—and the product’s eventual
outcome in terms of software defects [76].

75

Chapter 4. Pattern recognition methods 4.4. Approach

A large number of studies deal with distributed software development projects which use
Agile software development methods. Although these studies provide relevant results for their
topic [77], their use in collaborations for teams that are co-located at one site is limited. Studies
show applications of SCRUM when there is a requirement of communicating with other teams and
stakeholders on a frequent and methodical, documented basis [78].

Recent quantitative research covers topics including Agile software development processes
and more specifically SCRUM practices surrounding work planning. Often, multiple metrics
surrounding the process and the project are used to determine performance and success [79].
Selecting measures so that the team can effectively monitor the progress of their development is
a key principle [80]. Important factors for the selected metrics include long-term usability and
availability within the process [81]. Various sources are used to collect metrics, even going so far
as tracking and using data for individual members of development teams [82]. The analysis of
data from different sources is often combined with frameworks and practices that have proven
themselves in other fields, such as multi-criteria optimization models [83].

4.4 Approach

We describe several models used in various applications related to machine learning and decision
support. We focus on models that are appropriate for learning from features that describe events
that take place during a software development process.

One group of models that are of interest are supervised learning algorithms, which take
numeric inputs and attempt to extract mathematical equations to approximate a target feature,
which is also numeric. Frequently, these models come in the form of neural networks, where
the equations are concrete but variables within the equations are set to numeric values that are
adjusted during training.

We also look into regression analysis and Monte Carlo methods in order to discuss a method
for inferring an expected value of effort for groups of tasks based on their similarities, known as
analogy-based effort estimation (ABE).

Our contributions to the field of machine learning and pattern recognition span the use of
score-based feature selection, as well as the evaluation of novel accuracy metrics for the models
that we describe.

Our workflow is focused on data consolidation, reproducibility, feature extraction and feedback
of annotated results based on our conceptual modeling research [59]. By acquiring data from
multiple sources and selecting features from this combined database for inclusion into one data set,
we are able to perform analysis of different aspects of the software development process, while
remaining focused on providing useful predictive outcomes.

For privacy and confidentiality reasons, we applied one-way encryption on the data, which
replaces certain information with pseudonyms, before feature extraction. This specifically concerns
portions of data that can be used to uniquely identify persons and projects. This addresses security
aspects of sensitive data in our collection mechanism. Still, we are able to cross-link personal
or project-sensitive data from multiple source systems while data acquisition is underway, for
example to count the number of developers in a team. Multiple encryption steps ensure that, at the
location of analysis—in case this is outside of the organization’s sphere of influence, for example
a central research instance—there is no possibility of identifying specific projects or persons,
while still allowing the results to be fed back properly.

76

Chapter 4. Pattern recognition methods 4.4. Approach

An overview of our toolchain is depicted in Figure 4.2. A versatile approach simplifies the
selection of different data sources for each project. It also makes it possible to deploy individual
components in various environments, including Docker containers, virtual networks and enterprise
clouds. We achieve secure communication between the project domain and the location of analysis
using these distributed architectures while requiring few adjustments to the situation at hand. This
generalized approach reduces a lot of the technical effort, when one introduces the method to
multiple, diverse organizations with existing system architectures.

Issue tracker Prediction

Gather Collection | | Import Database Extract TensorFlow
ersion contro
ki 150N Jag MonetDB RSO Visualisation

Quality metrics D3js

Figure 4.2: Overview of the Grip on Software pipeline, with the data analysis components
highlighted.

A major part of the toolchain, which is described in more detail in Chapter 2, is the feature
extraction, analysis and reporting. We additionally make the results of the analysis efforts insightful
through the use of visualizations which are able to provide comparison overviews across multiple
dimensions—such as time and project—as well as detailed information for current and future
sprint situations through annotated predictions, as shown in Chapter 5.

4.4.1 Feature extraction

We collect records of the source information that describe entities, changes to them, or metrics
related to those entities. These records have various types of information. We build a data set
based on sprints and stories with descriptive numerical features. We collect these features from
our MonetDB database [38], as explained in Chapter 3. To obtain the relevant sample records,
we either perform feature extraction or make use of specially crafted definitions based on a
combination of properties, possibly from multiple original sources.

The technical implementation of the feature extraction [h] uses SQL statements and integrated
R toolkit programs [X]. This component allows us to select, filter and aggregate the data without
losing track of the samples they refer to. This means we can provide detailed information of the
data involved in computation of a metric.

Definitions are reused in multiple queries, assuring consistent results while allowing for
adjustments for different data sources. This also helps solving some issues with noisy data that
could otherwise lead to potential threats of validity in Section 4.7.1. This includes the actual end
date of a sprint, which could be defined in multiple ways when stories remain open after the
planned end of the sprint. We prefer the earliest date to avoid overlap that only exists digitally, e.g.,
when a team accidentally forgets to mark a story as done. In addition, we calculate the velocity of
a sprint as described in Section 4.2.1, but instead of dividing the total number of story points by 3
we divide by the number of working days in these three sprints. This “daily velocity” formula
cancels out differences in sprint length.

This approach allows us to describe and collect novel features of sprints. Meanwhile, we
resolve inconsistencies in the source data without losing out on valuable details. We prepare

77

Chapter 4. Pattern recognition methods 4.4. Approach

our data for use in our estimation and prediction models. The feature extraction component also
performs feature selection and scoring. Results from some of our models can be used to repetitively
try out different selections of features, extending sets of features with new ones to determine if
the test set accuracies improve or not, thereby coming up with a minimal set of relevant features.
We also use the RReliefF family of feature scores [84] to determine the estimators for a target
label. We deliberately attempt to find a small set of most relevant features for our purposes to be
able to explain more clearly how the models operate.

We select the following features for the sprint and backlog size estimations because we
experimentally determine that they provide relevant, inherent information for further analysis in
our prediction models:

1. Sprint:

(a) Sequential index of the sprint within the project’s or team’s lifespan.

(b) Number of weekdays during the sprint.

(c) Other metadata of the sprint within the collection system, such as whether it is ongoing
or if all data has been collected.

2. Team:

(a) Size: number of people that made a change in the code, or on the issue tracker,
during the sprint. In some cases, this is be calculated from other sources, such as an
employment time registration system, instead.

(b) Total number of sprints that the developers have made a change in before the sprint,
as an aggregate measure of experience.

(c) Number of new developers in the team that have not made a change before.

(d) The overall sentiment of the team about the sprint as indicated during the retrospective.
3. Sprint planning:

(a) The velocity, as calculated with the number of story points that were ‘done’ over the

previous three sprints.

(b) Sum of the story points planned for a sprint.

(c) Sum of the story points that are ‘done’ during the sprint.

(d) Mean number of people making a change on a story during the sprint.

(e) Number of stories that are not closed as ‘done’.

(f) Number of changes to stories that are made later than the start of the sprint, specifically
changes to priority or story points.

(g) Number of stories that are added to the sprint after it started.

(h) Number of stories that are dropped from a sprint, either placed back on the backlog,
moved to a future sprint or removed.

(i) Number of concurrent stories that are in progress at the same time.

(j) Average number of days that the stories are in progress.

78

Chapter 4. Pattern recognition methods 4.4. Approach

4. Backlog planning:

(a) Number of items on the product backlog before the sprint starts.
(b) Number of story points on the backlog.
(c) Number of other issues on the backlog, such as epics which contain multiple stories.

(d) An automated estimation of the number of story points on the entire backlog, based
on the points that have been awarded scaled to the non-estimated points.

(e) Mutations of the backlog, i.e., new stories added to it and redundant stories removed
from it, including story point estimations.

5. Code version control:

(a) Number of commits.

(b) Average number of added lines, removed lines, total difference size and number of
files affected.

(c) Metrics on number of lines of source code, coverage of tests on source code and
technical debt, which is a calculation on time to be spent on detected vulnerabilities
or maintainability bugs.

The total number of resolved story points is considered to be the outcome of a sprint. In a sprint
backlog prediction, we use this as a label, where models are trained based on the other features in
order to predict this label for a future sprint. During classification, we instead target a binary label,
which describes whether the sprint finished with no unresolved story points.

Some of our features are generated with predictive values based on calculations or estimations
from separate analysis, e.g., product backlog sizes when not all stories have been given story
points by the team.

Because the eventual value of a feature is unknown while a sprint is in progress, we either
use value that it has at the start of the sprint or estimate the feature using the values as they are
known at the end of earlier sprints. Similarly, we are also able to resolve missing data by applying
a rolling operation that moves features that have unknowns in the latest sprint to each next sprint
of the same project. Finally, a sensible solution is to never include sprints where not all features
are knows as part of a data set during supervised learning.

The last method mentioned, which leaves out a few sprints from the data set, is most applicable
to our situation. This is because we split our data set in training, test and validation sets while
keeping the temporal aspect in place. Usually, machine learning algorithms are fed with random
splits of the data set. For us, we need to avoid the circumstance that our models would train on
data from sprints that took place later than the ones in the other two sets. A completely random
split would violate the temporal constraints and test accuracies would not provide a good indicator
of the predictive power of the model. Thus, we use the most recent sprints and future sprints as a
final set where the labels are to be predicted for practical feedback to teams.

4.4.2 Data set

In our data set, we include information regarding projects and teams from two different Dutch
non-profit organizations. Both organizations develop specific software applications for govern-
mental agencies. The organizations employ their own variations of the SCRUM software devel-
opment method, sometimes adding different roles such as a software delivery manager (SDM)

79

Chapter 4. Pattern recognition methods 4.4. Approach

to streamline the process of introducing, refining, developing, presenting and delivering stories
within the SCRUM teams. Aside from that, various project management frameworks—such as
PRINCE?2 [85]—and quality control approaches, are in use at the two organizations.

The two organizations, ICTU and Wigo4it, do not specifically share clients. They both
develop software for different levels of government. The software realisation department at ICTU
focuses on introducing and improving digital processes within ministries, executive agencies and
authorities. ICTU is established by the government as a non-profit foundation. Wigo4it on the
other hand is formed by four municipalities as a cooperative association and focuses on products
that aid with social welfare projects.

The involved teams have worked on 39 projects at ICTU with different lifespans, with a total
of 2643 sprints. Wigo4it has 21 teams working on various components related to each other,
but each team has their own sprints, leading to a total of 534 sprints at this organization. After
combining overlapping sprints of 60 distinct teams from both organizations and selecting recent
sprints for a validation set, we have up to 2249 sprints for our training and test set. The raw
data set™ is made available through an API in ARFF format [xX]. Table 4.1 shows the actual
dimensions of various entities in our database that form the basis of our samples and their features,
after we performed our last data acquisition in December, 2021.

PROPERTY ICTU Wigo4iT TOTAL
Projects/teams 39 21 60
Sprints 2643 534 3177
Issues 127257 63389 190646
Stories 20155 11333 31488

Code changes 534004 22295 556299

Table 4.1: Dimensions of the database.

In order to understand the features more deeply, we provide some additional details on the
teams and their process. On average, development teams work in teams of about 6 developers,
although outliers of smaller teams of 2 or 3 developers occur. Such smaller teams often work on
smaller projects with a smaller backlog size. Larger backlogs often also appear in projects that
have had a longer lifetime, indicated by a number of sprints of 50 or more. The average estimated
size of the backlogs of all teams in these organizations is around 300 story points.

4.4.3 Models

We build four models for classification and estimation in total [i]: two models for predicting the
probable effort during a future sprint, namely a neural network (NN) and analogy-based effort
estimation (ABE), as well as two models for predicting the time before the backlog is finished, a
linear regression (Lin) and a Monte Carlo (MC) simulation. In the latter case, we use a heuristic
to scale the total size of the backlog based on the actual sizes of earlier stories, or epics that
contain multiple related stories. Finally, we employ three scenarios where the predicted effort on
completing tasks on the backlog is estimated: (1) by the velocity of previous sprints, (2) by the
predicted effort of the future sprint or (3) by a combination of effort and other potential mutations.

**https://gros.liacs.nl/combined/prediction/api/vl/dataset. DOI: 10.5281/zenodo.10878529

80

https://gros.liacs.nl/combined/prediction/api/v1/dataset
https://doi.org/10.5281/zenodo.10878529

Chapter 4. Pattern recognition methods 4.4. Approach

We validate the models for recent sprints after we train and test accuracy on data from earlier
sprints. In the case of the sprint result prediction, we separate our data set in training, test and
validation sets. In the case of the backlog estimation, we compare our prediction by taking
a temporal interval of the project up to a point in time, comparing it to the simulations and
calculating differences. Some features used in the sprint prediction were rescaled to diminish the
influence of differences of extrema of various features when training models.

Sprint result classification: Neural network (NN)

For the purpose of classification of sprints by risk of not finishing some stories, we use a multi-
layered deep neural network based on TensorFlow [X1]. This network is able to receive multiple
numeric inputs produced by features regarding one sprint. Internally, the neural network calculates
weighted sums from these inputs, producing new values that are considered as inputs for the next
layer, until the final layer is reached where a binary output is produced from a majority value. This
binary output is the label, indicating whether the sprint will have unfinished stories in the end. We
train the model in order to reduce the error with the outcomes of sprints in our training set.

In addition to a binary label, the network inherently demonstrates an inclination toward one
label or another for a given sample. This inclination can be calculated from the numeric values in
the final layer after feeding the sample through the network. This provides us with a risk value.
Finally, the network exhibits a confidence score for each sample to indicate how well the network
assumes its own result to be correct. We can use these metrics to report on the reliability and
compare with other sample inputs.

By training the neural network with labeled sprints, we can adjust the weights within the
network through back-propagation of real-valued errors, where each weight is downscaled or
increased in order to reduce the error when the same sample would be provided again. The training
process can report metrics on its accuracy and likelihood of a predicted classification being correct
when we provide an unlabeled sprint’s features.

We have used DNN models of various configurations and also considered other models, such
as a smaller multilayer perceptron or a more heavy-weight Deep Belief Network, as well as other
loss functions that steer the back-propagation process. Eventually, we found that a DNN model
with three layers, having 100, 150 and 100 nodes each, performed well for classifying the binary
label of sprints—whether they have unfinished stories—in our test set.

Sprint result estimation: Analogy-based effort estimation (ABE)

We use analogy-based effort estimation to gain more insight into how many story points could be
feasible to do during a future sprint and which features play a prominent role for this prediction.
The analogy-based effort estimation algorithm performs a search for a subset of features that
produces the most similar top N sprints of each sample within a data set of sprints. The resulting
subset is used for the search, which provides both the most similar sprints and an automated
estimation based on the (weighted) average of the number of story points that were resolved
during those N sprints.

Superficially, the model has similarities with a simple nearest-neighbor search or clustering
approach. The strength is in its ability to select subsets of the provided features in order to
find better similarities. This reduces the complexity needed to find similar sprints, enhancing the
explainability of the model. Through pre-selection, using the ABE model on different combinations

81

Chapter 4. Pattern recognition methods 4.4. Approach

of features, we find a minimal subset of the features that still provides accuracy and descriptiveness.
This makes it easier to understand how the model determines which sprints are most similar to a
sample, which features are involved and how the model calculates the estimation.

Backlog size estimation: Linear regression (Lin)

The sprint-based classification and estimation methods form a stepping stone toward backlog-scale
estimation. After estimating potential velocity for future sprints and producing an estimation of
the backlog including stories that have not been awarded points, we perform a linear regression of
the total backlog size over time. Then we determine during which sprint the entire current backlog
might be resolved. We consider another scenario where stories are added to the backlog, but also
removed when they are found to be redundant.

Figure 4.3 shows an example graph of one project’s backlog over time, including estimations
for future sprints from various scenarios in the linear regression algorithm. The area within the
graph which has a diagonally-hatched gray background displays estimations for future sprints: the
orange curve outlines the scenario where only the team’s velocity of finishing stories is considered,
while the blue curve continues with a regression of all backlog mutations. The lighter lines show
probability curves, where the likelihood of resolving all the stories on the backlog according to
each scenario using the linear regression method is shown.

- /% o

% 160_1/ \./ '\) ngend

) Y Total backlog estimation-e-

o oo /%o, Only velocit
140 N\, o o N \ y Yy

- N e N/ ¢ All adjustments-e-

g NP / o % adjustments

B 1204 * ~o \ Probability curve (Only velocity)

: ° Probability curve (All adjustments)

o i

=] 100 \ The probability that all stories on the backlog will

g .\ be resolved on January 23, 2020 is 100%.

— 80+

‘l; L]

- \)

<]

X 40~

: N

3 \

] 20

b .

[CE A\

T T T T T T ™
July October 2019 April July October 2020 April

Sprint date

Figure 4.3: Graph of a project’s backlog including estimated sizes using the linear regression
model and multiple scenarios, where only changes in completed story points after each sprint
(continued blue line with circles) or also other additions and removals to the backlog (orange line
with triangles) are simulated, including probability curves (light lines).

Backlog size estimation: Monte Carlo (MC)

We likewise simulate the progression of the backlog using Monte Carlo simulations [20 ch. 1.1].
As with the linear regression algorithm, we again consider two scenarios, which are based upon
selecting a random distribution of earlier velocities and mutation sizes, respectively. We use
a Gamma distribution during the simulations so that the values from most recent sprints are

82

Chapter 4. Pattern recognition methods 4.5. Analysis strategy

favored more than older sprints. We choose to apply this distribution because we assume that
recent velocity that a team achieves in completing stories and the awarded story points are most
indicative of the team’s effort.

Each simulation run provides an estimation of backlog size changes for future sprint. By
performing many runs, a complete simulation leads to a cumulative density function curve of the
sprint in the future where the backlog is completed, indicating a likelihood for each sprint to be
finished. In addition to linear or logistic curves to demonstrate the progression of the backlog in
these simulated scenarios, we also extract the possible deviation of the average regression line and
the extrema or conic contour of the Monte Carlo simulation.

4.5 Analysis strategy

We propose a number of experiments to assess the accuracy of our methods, which we further
explain here. For the estimation of the number of points on the product backlog, we validate the
simulated changes to the backlog based on the progression of earlier backlog sizes. Similar to
splitting a data set, we take one third or two thirds of a project’s lifespan from its inception as our
training set. This approach preserves the temporal aspect of the data set and allows us to make
estimations from the most recent sprint in the training set. We then compute deviations of the
estimations compared to the actual values that were not included in the training set.

We wish to establish and understand the probability density curve of the distribution of
possible outcomes for a backlog. Therefore, we estimate the range of possible values of the
backlog progression using Monte Carlo simulations with 10000 runs. Each run takes random
samples of the relevant factors that cause mutations on the backlog. These factors include (i) the
velocity of resolving story points during each sprint, (ii) the number of stories introduced or
dismissed on the backlog and (iii) an automated estimation of the number of points of the stories
on the backlog that have not yet been estimated by the team. For the Monte Carlo method, we
generate a distribution based on selected features from earlier sprints with preference to the most
recent values while still allowing for variation by selecting values from earlier, but still recent,
sprints at lower probability. We compare the distribution of estimated sizes from the simulation
runs against a normal distribution to see if the chosen selection skews the eventual outcome.

Not only are these validations relevant for determining the accuracy, they also augment our
data and provide context on the likelihood of when a backlog could reach a certain value. This
metric can be a benefit to stakeholders when they assess whether a prediction for an individual
project’s backlog size seems reasonable.

Similarly, for the prediction of the number of story points that are likely to be finished during
an upcoming sprint, we measure the accuracy of our models using widely-used error measures. In
particular, the F1 score and related metrics are established in the field of machine learning, also
when involving ensemble models and expert systems [86].

We also compare our results with earlier sprints through repetitive splitting of the data set
during the training phase based on temporal information. This leads to many model runs using
training and test sets that were partitioned at the start of each sprint. This means that we determine
the performance of the model for each point in time, after training it with only the subset of data
available up to that time. We explain our experiments with training set sizes in more detail in
Section 4.6.1.

83

Chapter 4. Pattern recognition methods 4.6. Results

4.6 Results

The models for sprint classification, sprint effort estimation and backlog size estimation were
based upon existing algorithms that have been in use in other fields, but include some novel
adjustments and make use of newly selected features. Therefore, we validate their accuracy in
estimating the labels that we have available from our data set.

We validate the proposed models based on validation sets, which are sampled from sprints
which are characterized by features related to, amongst others, sprint velocity and backlog size.
The validation sets are based on the most recent sprints in the case of sprint effort estimation,
whereas the training and test sets are randomly split based on the remaining samples of sprints.
For the backlog estimation simulations, the validation is based upon a subsequent set of sprint
data from earlier portions of a project’s lifespan, which were not used in the simulation’s tuning.

4.6.1 Sprint classification and estimation

The F1 score of the sprint velocity prediction is 89.98% for the multi-layered neural network. This
is an improvement over a baseline naive prediction by assuming that problems with resolving
stories in the previous sprint cause a propagation to the next sprint, which is at a 73% accuracy.
Similar results are achieved if the data set, consisting of sprints from projects of the two orga-
nizations, is rebalanced using stratification to avoid overfitting the neural network on too many
samples of one label compared to the other.

For the analogy-based effort estimation, we find that the predicted number of story points
resolved during a sprint for 88.6% of our samples from the first organization are within a margin
of 25%, so the Pred measure [87] in this case is Pred(.25) = 88.6%. We note that this metric is
based on a relative error measure. It is possible that our ABE model does not function well for a
data set with more or different data. This can be seen when we also validate the samples from
the second organization, which causes the reported metric to drop dramatically to 68.2%. We
therefore consider this estimation algorithm to be less stable and more influenced by bias and
noise than the neural network is. Still, the ABE model provides helpful intra-organizational details
that allow tracing back how the model estimated the number of story points that can be finished
within a sprint. This increases the explainability of the model. Keeping the ABE model instances
separate for each organization means that the reported analogous sprints remain more familiar to
the development team as well.

As an additional experiment for the neural network, we consider what the effect of having a
different training set size would be. We do this by splitting the training and test set based on time,
such that we add roughly ten sprints into training set per experiment. Each time, we completely
restart training the model, to avoid bias or other influences caused by providing the training set in
a consecutive order. Thus, while the training set is ensured to not contain time gaps in each run,
the training epochs behave independently.

The F1 scores of each training run on the neural network, where the score is based on the
remainder test set, are shown in Figure 4.4. We observe that after an initial decent start, there
are slight dips in the F1 score, after which the trained model seems to perform better and more
consistent when a larger portion of the available data set is provided for training. Any greater
proportion in favor of the training set would make the test set too small for an unbiased accuracy
score. Similarly, we do not consider a training set with 100 sample sprints or fewer as this would
only seem to lead to a nontuned, overfitting model.

84

Chapter 4. Pattern recognition methods 4.6. Results

0.85-

F1 score

o
@
S

500 1000 1500 2000
Training set size

Figure 4.4: F1 score of the neural network when trained with different training set sizes.

4.6.2 Backlog size estimation

We validate the backlog sizes by comparing deviations as well as cross-validating the models. In
separate runs, we provide one third and two thirds of each project’s lifespan and let the algorithm
simulate backlog sizes for another third of the sprints, or when the estimated backlog size reaches
zero—whichever comes first. We then calculate the total change between the backlog size in each
sprint that the algorithm has simulated and the actual sizes of these sprints. We report on the mean
difference of the backlog progression—which encompasses all differences between the simulation
at each sprint and the estimated progression of backlog sizes—and also the deviation from this
mean, which includes projects being under- and overestimated.

Therefore, our error measure for the results of these algorithms includes every difference at
each included sprint from the point of our data set split until the end of the simulation, including
those sprints where the simulation takes longer than the project did or vice versa. This means that
a simulation is penalized for estimating a longer progression, a shorter one and for differing from
the backlog sizes in our remaining data set. This may lead to deviations across projects, especially
those projects with lots of planned work which often have unforeseen scope changes. We provide
these as raw error measures rather than performing normalization, as we consider that the impact
of an estimation error is also greater for long-running projects with many stories on the backlog.

Using one third of the project’s lifespan for a velocity-based linear regression, the mean
difference between the predicted sprints and the actual backlog progression is 261.4 points lower
(£316.5 points). If we use two thirds of backlogs, the error is —279.2 +355.1 points.

For the validation of the scenario where we consider mutations on the backlog as well, the
results are similar (—274.1 £ 326.8 points versus —285.3 £359.1 points). We observe these large
deviations across all projects. At these stages of development, projects vary in their progress as

85

Chapter 4. Pattern recognition methods 4.6. Results

well as the backlog size, which change rapidly over time. Usually, the backlog does not decrease
swiftly, however, since the scope of the project often changes at these stages.

The Monte Carlo simulation shows an improvement over the linear simulation when validating
the scenarios using data sets of initial sprints. The mean error that each run in the simulation takes
across all backlogs, when using the first third of the project as sample data, is —65.0 & 176.0
points for the scenario using only velocity and 2.7 4= 172.3 for the scenario that considers backlog
mutations. When two thirds of a project’s backlog progression are known, then the mean error
slightly worsens to —109.1 £ 258.2 points for the velocity scenario and —23.2 £211.1 for the
simulations where story points on the backlog would be added and removed.

The results indicate that the Monte Carlo model becomes somewhat less precise when a larger
fraction of the data set is made available for the selection process. This is in contrast to the linear
regression algorithm, which is consistently off by about the same margins. The deviation of the
MC model is quite low, despite the use of a simulation where the probability density functions
cover a large range of possible values. Using different factors that influence the backlog size, we
achieve the most realistic scenario.

We notice that sudden, unexpected changes to the backlog, such as a large influx of new
stories, easily cause our simulations to underestimate the backlog size. Such situations are likely
difficult to predict, especially given that we only use earlier data from projects to simulate typical
situations, either through average regression or generalized normal distributions. All validation
results for the backlog predictions are summarized in Table 4.2.

SIMULATION SCENARIO ONE THIRD TwO THIRDS

Linear regression (Lin) Velocity —261.4+316.5 —279.2+£355.1
Linear regression (Lin) Mutation —274.14+326.8 —285.34+359.1
Monte Carlo (MC) Velocity —65.0+£176.0 —109.14+258.2
Monte Carlo (MC) Mutation 27+£172.3 —23.24211.1

Table 4.2: Summarized validation results for backlog size prediction across 35 projects and teams
using our incremental error measure. Closer to zero is better, a lower deviation is as well. Values
are based on the distribution spread of projects of different backlog sizes, with no normalization
for this property.

The validation error results for the backlog size predictions of individual teams and projects in
each simulation can be found in Figures 4.5 and 4.6. In the plots of these figures, the projects and
teams which had enough sprints with backlog data (35 total) are points which are ordered on the
x axis by their total backlog size. This backlog size includes automated estimations for user stories
that have not been awarded story points by the team. Meanwhile, the validation errors are shown
on the y axis. Most of the differences of each project show showing that the models estimate a
lower backlog size across all the simulated sprint compared to the actual sprints. This is usually
caused by underestimating the backlog at each sprint, which also leads to the simulation reaching
an end earlier with an empty projected backlog, while the project itself actually continued on with
the backlog often remaining at a reasonable size.

Furthermore, we observe that larger backlogs receive an increasingly lower predicted size.
In absolute terms, the validation errors increase with larger backlogs to be predicted. There is
a strong tendency by the models to assume that the backlog is done sooner than in reality. For

86

Chapter 4. Pattern recognition methods 4.6. Results

Monte Carlo, the errors show less deviation than the linear regression scenarios, but it is still
biased, especially for projects with many stories on the backlog. The mutation scenario has the
fewest outliers when using one third of the backlogs for seeding the distribution, but only in the
case of Monte Carlo simulations.

500- 500~

1000- 1000-

Error
Error

-1500~ -1500-

-2000~ -2000-

500 1000 500 1000
Project (ordered by total backlog estimation) Project (ordered by total backlog estimation)

(a) Linear velocity scenario, one third (r* =0.49) (b) Linear velocity scenario, two thirds (r =0.76)

500- 500~

1000~

Error
Error

1000-

-1500~ -1500-

-2000~ -2000-

500 1000 500 1000
Project (ordered by total backlog estimation) Project (ordered by total backlog estimation)

(¢) Linear mutation scenario, one third (> = 0.47) (d) Linear mutation scenario, two thirds (r2 = 0.79)

Figure 4.5: Differences in individual project/team backlog size estimations using linear regression,
along with a linear trend of the validation error along the estimated most recent sizes of each
backlog of the projects and teams (35 total). The reported coefficient of determination (lower is
better) helps with comparing the plots.

87

Chapter 4. Pattern recognition methods 4.6. Results

Error
Error

-1000- -1000-

1500

0 500 1000 1500 0 500 1000
Project (ordered by total backlog estimation) Project (ordered by total backlog estimation)

(a) MC velocity scenario, one third (r? = 0.36) (b) MC velocity scenario, two thirds (r* =0.47)

Error
Error

-1000- -1000-

1500

0 500 1000 1500 0 500 1000
Project (ordered by total backlog estimation) Project (ordered by total backlog estimation)

(c) MC mutation scenario, one third (+2 = 0.11) (d) MC mutation scenario, two thirds (r2 = 0.29)

Figure 4.6: Differences in individual project/team backlog size estimations using Monte Carlo
simulation, along with a linear trend of the validation error along the estimated most recent sizes
of each backlog of the projects and teams (35 total). The reported coefficient of determination
(lower is better) helps with comparing the plots.

There appears to be no benefit in taking more of a backlog for estimating the outcome, as most
of the projects remain at a stable backlog size during this time, aside from scope changes. Teams
seem to work away enough of the backlog to reach such a stability. In fact, there is potential that
an even earlier, smaller backlog is already enough input for our algorithms. However, both the

88

Chapter 4. Pattern recognition methods 4.7. Conclusions

linear regression and the Monte Carlo simulation favor projecting an earlier end time for finishing
the backlog, so caution should be taken. Still, in Section 4.7.2, we show that a small subset of a
backlog for a newly started project leads to simulations with insights for the team.

We also investigate what kind of distribution the Monte Carlo simulation produces, in an
effort to verify whether we implemented the simulation and parameters correctly. We find that
the resulting distribution has a large number of ties (in this case, the same outcome of predicted
end date) because the steps of the simulation are based upon future sprints, which is limited in
the distribution that we achieve. Still, a quantile-quantile plot, depicted in Figure 4.7, indicates
that overall the distribution of expected number of remaining sprints is similar to that of a normal
distribution [88]. It is slightly offset from the origin due to the nature that the expected moment
of finishing a backlog is shifted toward later sprints. We also observe that the scenario where
all changes to the backlog are taken in consideration more closely matches the normal trend,
compared to the scenario where only sprint velocity is simulated. This helps validating that the
additional factors do not degrade the expected distribution.

Sample Quantiles

Sample Quantiles

Theoretical Quantiles Theoretical Quantiles

(a) Monte Carlo velocity scenario (b) Monte Carlo mutation scenario

Figure 4.7: Aggregate quantile-quantile plots of the resulting distribution of sprints in which a
backlog is completed, along with the normal trend.

4.7 Conclusions

This thesis presents improvements for the planning aspect of SCRUM software development
processes. We introduce established and state-of-the-art algorithms from the fields of statistical
analysis and machine learning into this domain. We provide predicted outcomes to development
teams and other involved people, displaying promising applications of artificial intelligence in
Agile planning. The results show that our methods are feasible for predicting sprint backlog and
product backlog sizes, measured in story points. Thus, our predictions are usable for short and

&9

Chapter 4. Pattern recognition methods 4.7. Conclusions

long time spans of a software development project and form part of the answers to our research
questions, which are further addressed in Chapter 6.

We create data set of features derived from metrics that measure various aspects of the
development process, with scoring using external and internal models to improve the relevance of
the selected subset. The models that we propose are classification and estimation algorithms for
sprint planning and product backlog sizing. The two algorithms for the former objective achieve
a higher accuracy than naive methods and provide additional insights such as risk analysis and
most prominent features. A second set of algorithms predict end dates and provide experimentally
determined likelihoods for intermediate backlog sizes. Such properties make it possible to validate
these algorithms, but also help establish integrated visualization tools that empower SCRUM teams,
in particular roles such as Product Owner and Scrum Master, to make informed decisions. The
backlog size estimation algorithms are able to simulate multiple scenarios that can be adjusted
to more realistic situations based on individual project standards. Meanwhile, we focus on
generalization and explainability by including multiple organizations and teams in our data set and
focusing on descriptive features and models. This approach highlights differences and similarities
between situations in applications of Agile software development processes.

4.7.1 Threats to validity

During our analysis of the collected data, we make some assumptions regarding relevance of
data that could influence the outcome. Additionally, the limitations of scope of the data could
mean that our models and results are not directly usable as a generalized method within the field
of Agile software development. Our data set has a focus on SCRUM software development at
governmental organizations. However, we argue that the approach is reusable in other contexts
due to the large number and diversity of the involved projects.

We observe that the number of story points awarded to a story by the development team
fluctuates during the lifespan of a software development project. This change in value may be
caused by a shift in the focus of the project, such as the complexity of the work being done.
Sometimes, teams adjust how the points scale is used or which reference story they base it on.
Other influences are composition changes within the team or focus changes based on wishes and
requirements from the client or users. We notice however that teams become more experienced
with awarding points to the stories they work on during the lifespan of the project and therefore
their expert estimations gradually become more associated to the actual effort. By preferring the
data from recent sprints as input to our classification and estimation models, we reduce the impact
of events from long ago. This might impact our testing and validation scores, given that we only
provide data from early sprints during training. Our models should be versatile enough to work
with both a small data set with only initial development work as well as large, noisy data sets.

Individual teams working on separate projects, even within the same organization, have
different methods and practices when using digital tools to aid them in tracking their progress.
Some projects require the use of additional types of sprints in order to separate work in sub-teams.
These situations are noticed during analysis of results and discussions with key roles of the teams.
We make changes to the experimental approach to either include these disparate situations or to
filter out certain subprojects. The solution depends on how well those projects fit along with the
SCRUM framework and in consultation with said people. In general, if these disparate sprints
use story points, commitment to work being done and proper flow of input on the backlog, we
consider them relevant for inclusion.

90

Chapter 4. Pattern recognition methods 4.7. Conclusions

We experiment with several methods for estimating effort, in the context of a product backlog
that is partially estimated through expert judgment using story points. Our samples of metrics and
features that the algorithms use to provide estimations should be representative of the process that
they encode [89], but the estimation process in particular is still dependent on the quality of the
input data. Curation and feature scoring help with improving these aspects of validity, but this
remains a constant improvement effort.

4.7.2 Proposed additions

In terms of further research, the annotated predictions of sprint velocity may be useful to apply
in other situations. In order to determine how much total work can be done in a sprint, we could
extend our predictive model to other types of issues, such as bugs or technical debt. Additionally,
risk analysis of sprint progress through classification could cover fine-grained early-warning of
changes in other metrics such as clarity of stories, team sentiment, code complexity and coverage
of tests. Other tools for text analysis and static code analysis could play a role in this, as well as
deeper analysis of links between changes in code and stories in a sprint for fault detection.

We also consider extensions to the estimation models for backlog sizes. Other types of
simulations, for example through the use of Long Short-Term Memory (LSTM) as well as other
scenarios may further augment the results. By filtering on portions of the backlog with on-line
reruns of simulations, better could be made more swiftly and accurately. As an example of further
work, Figure 4.8 shows a prediction for one specific milestone with a subset of stories on the
backlog, which were selected to be finished before a certain milestone would be reached. This
aids the team in determining if this medium-length plan would be a viable approach.

As such, our proposed methods augment and support the SCRUM framework and potentially
other Agile software development methods so that more stability and predictability is introduced
to the process where it is helpful, while retaining the strengths of the process in the areas of work
selection and commitment.

e %
e

140

Total backlog estimation (story points)
T

May June duly August Sepember Ociober November December

Sprint date

Figure 4.8: Estimation for a subset of a backlog related to a specific milestone version, showing
the known and predicted backlog size (with hatch-filled background) at each sprint point in blue
and the probability density curve in gray.

91

Chapter 5

Information visualization

GROS Vis: Evaluating the dissemination of software development
patterns through information visualization

Portions of this chapter are also published in the following article:

¢ Leon Helwerda, Cas H.J. Dekkers, Walter A. Kosters and Fons J. Verbeek. “Information
visualization in analytical decision support and ecosystem management in agile processes”,
2024. Pending submission.

Abstract of Chapter 5

Introduction: Software development relies on a set of systems which often produce many
metrics which go unnoticed, but are helpful to learn what takes place during the development
process. We have analyzed patterns and produced predictions and estimations for SCRUM
projects from two organizations (ICTU and Wigo4it), which we relay back to the involved
stakeholders in a visual format.

Research questions: How can we effectively introduce visual representations of results and
recommendations from our analysis of data collected from the SCRUM development process to
the involved parties?

Aims: Important design principles are familiarity of the data format, similarity between
teams, simplification of existing processes, new insights and novelty. The design requirements
for the visualizations are integration within the ecosystem, new or improved workflows, focus
on relevance with details upon request and self-descriptiveness.

Visualizations: The result of our development is an integrated dashboard with access to
eight information visualizations, namely a sprint report, results from predictions, a timeline,
a leaderboard ranking system, a collaboration network graph, a story process flow chart, a
heat map calendar and a platform status monitor. The first four are primarily in mind of
analytical decision support, while the others have an organizational ecosystem management
theme. Additionally, three visualizations are provided as plugins for the issue tracker, which
render the product backlog with focus on burndowns, status progressions and relationships
between tasks.

Evaluation: We utilize automated tests, objective measurements and user surveys to deter-
mine that the visualizations adhere to the principles and goals after iterative adjustments based
on feedback. We demonstrate that it is worthwhile to provide intermediate analyses and results
from predictive models regarding SCRUM software development processes beyond our case
study.

Chapter 5. Information visualization 5.1. Preamble

5.1 Preamble

A major objective of our research into understanding the characteristics and outcomes of the
SCRUM software development framework is to provide our results to those that benefit the most
from it. Specifically, it is relevant to keep in mind the different roles and technical expertise of the
people in the development team, those that assist the team, as well as anyone with a legitimate
interest in the outcome of the process, often referred to as the stakeholders.

In an Agile software development framework like SCRUM, the core process revolves around
team interaction and collaboration in order to incrementally improve working software and
respond to changes [3]. With these goals in mind, it is important to arrange delivery of research
results in such a way that the core points are boosted rather than hindered.

Simply providing results in a raw format would be cumbersome to use. Such an approach
would not be likely to lead to widespread adoption. A framework or system that makes it more
clear how to interpret the results is more helpful. We consider this framework in the context of
human-computer interaction (HCI) as it particularly provides a means to bridge the gap between
computer data and a person’s knowledge. The person is then able to make informed decisions
that cause changes in real life, which then reflects in the results as well. As such, a feedback
loop occurs where an improved software development process has a positive effect on the results,
through means of a simplified visual representation of the process. The framework therefore
becomes a part of the process, embedding the selected data as it can now be discovered by the
involved parties.

In order to interact with such a representation, it first needs to be rendered within a framework.
To visually reproduce different types of data, a visualization is often an intuitive method. In
continuation of our data acquisition and analysis of predictive patterns, particularly in Chapter 4,
we study the choices to make when designing information visualizations for the purpose of
supporting people in a SCRUM software development organization. The main goal is to help
them gain understanding of the process and to indicate improvements and impediments. For the
information visualization part of the Grip on Software project, we consider the following research
question, split up into sub-questions:

RQ3 How can we effectively introduce visual representations of results and recommenda-
tions from our analysis of data collected from the SCRUM development process to
the involved parties?

RQ3a Which concepts and goals are relevant when designing information visualiza-
tions for patterns analyzed from a software development process?

RQ3b How do we integrate results from predictive models within existing development
practices?

RQ3c Which effects do the introduction of results from predictive models and other in-
termediate analyses have on the development process, validated across multiple
ongoing projects?

RQ3d What is the overall assessment of the proposed information visualizations,
considering automated measurements for usability and the adoption according
to interviews and surveys?

95

Chapter 5. Information visualization 5.2. Purpose

In Section 5.2, we discuss our motivation for the use of information visualizations in software
development more thoroughly. Section 5.3 discusses related work and main concepts for informa-
tion visualization based on a literature study. The general structure for building our visualizations
is described in Section 5.4, followed by descriptions of each visualization based on this flow.
We evaluate the produced visualizations in Section 5.8, based on user interviews and automated
measurements, including a summary of our findings in the conclusion in Section 5.8.3.

5.2 Purpose

There is a growing need for information visualization within software development organizations
as a framework for comprehensive summary of the process. When the organization maintains
an ecosystem based around the SCRUM framework, there is a constant generation of data when
user stories are created and refined, when tasks are prioritized and given metadata, when code is
changed and tested, when metrics are collected on software quality and when a product increment
is provided for user acceptance. In addition, considering we have a cyclic software development
framework, each step is performed often, resulting in even more data. Development teams are
sometimes small, but an entire organization that works on different components or projects in
a similar way leads to a large bulk of information. This data needs further inspection to learn
from impediments and other problems, to change configurations of systems or to improve how the
teams use them in conjunction with the development framework.

However, involved parties within the organization are usually not tasked to scrutinize the entire
stream of data as their main focus. Some relevant data is forgotten or even lost if it is not spotted
and tracked in some way. An automated system could help with summarizing the important points
while providing methods to delve deeper. A rapid process requires an uncomplicated approach
to access an analysis result using large numbers of metrics. Data should be shown in a visually
appealing representation that would be hard to understand if it was only in raw form. Different
people and roles across the organization have conflicting interests when it comes to detail and
overview, but these should be combined rather than canceling each other out.

It is important to keep certain goals in mind when designing visualizations for use within
software development. Specifically, there may be ideas that are provided by team members,
indicating that existing systems and practices fall short in their usual workflow. These ideas are the
basis for a new visualization, which can be seen as a goal in itself. However, a newly developed
visualization should not just fill in this gap, but provide a bridge from the existing ecosystem,
making it intuitive to use. A familiar environment should be created that allows seeing both the
source of the data as well as novel viewpoints and levels of detail.

The main purposes of information visualization in SCRUM software development are:

» To provide temporal data of process dynamics in a familiar format to the stakeholders,
for example by aggregating or splitting the achieved effort over sprints through visual
indicators.

* To bring together indicators that describe similar processes and their slight differences
between teams within an organization, which operate independently but have inherent
associations due to a common work ethic.

* To simplify existing, mundane processes that rely on manual labor that distract from—rather
than contribute to—collaboration within teams, such as writing reports with recent metrics.

96

Chapter 5. Information visualization 5.3. Relevant concepts

 To gain insight into factors that indicate successful situations such as a user story being
“done” on time, as well as negative outcomes, for example by highlighting patterns or
providing predictions for estimations including their basis.

* To incite new ways of thinking about the framework through creative use of combinations
between data from different sources that display the process in an original way, for example
with visual relations across different abstractions of work (epic, user story, task, code).

5.3 Relevant concepts

There exist different types of visualizations for various contexts, dimensions of data and intended
applications. Data-oriented visualizations often come in the form of diagrams, charts, graphs,
3D renderings and so on [90]. Many of these types of visualizations have established their use
within many research fields and applications.

Another way to group visualizations is by determining what kind of data is being shown. For
statistical data, the visualization should show data in an undistorted manner with the specific
purpose of supporting a conjecture. For scientific data, the visualization’s coordinate system or
dimensionality is usually predetermined by the input. For other information, transformations
are necessary in order to understand the meaning, to find underlying patterns or to differentiate
between typical situations and anomalous noise coming from outliers. Each type of data or
information needs some action to allow the user to understand and include in their knowledge [91].

A third way to categorize visualizations is by their intended goal, namely (a) exploratory
visualizations that allow the user to search through data efficiently, (b) confirmatory visualizations
that provide controls to test a hypothesis and (c) explanatory visualizations that present data
in a preselected, validated manner [92, 93]. A proper categorization of a visualization design
includes an assessment of what the intended user can do, what they want to do and how they can
do this most effectively [94 ch. 2.3]. By determining beforehand what kind of visualization best
matches a task through this goal-based approach, sometimes called cognitive fit [95], the resulting
visualization may increase a user’s performance in solving their problems [96].

The freedom we have when rendering in information visualization (InfoVis) is also affected by
the type of data. Often, several choices can be made to transform the data or to find new relations
between data points. If the data is left as is, the visualization is less appealing, but when too many
transformations are applied, then the data no longer reflects the situation that it originates from.
A visualization has to avoid misleading the user. When there is no option to show details and
outliers, then a user can easily feel deceived. On the other hand, dumping all the raw data does
not spark attention. A visualization should tell a compelling story which supports the existing
narrative in the right way [97], by aligning as close as possible to reality.

The aim of information visualization should be clearly defined. In a transparent design process,
choices for which data to use should be based on the usefulness of the visualization within the
context it is deployed in. For software development, determining which development project
performs better than others might be achieved with, e.g., comparison diagrams, but such a method
should explicitly state on what grounds a metric is selected. Aside from caution with regards to
project-sensitive data, a visualization should also adhere to privacy aspects, where the availability
of personal information is limited in such a way that they can only be traced back to an individual
if the user of the visualization already knew that individual. The focus is on the greater picture
rather than the singular contributors.

97

Chapter 5. Information visualization 5.3. Relevant concepts

With regards to the application of information visualization within software development, there
has been substantial research into knowledge sharing within Agile teams [98, 99]. Visualization
can also be used as a means for monitoring a SCRUM process, for example, by selecting metrics
based on preferences of the developers [100]. Others focus more on visualization in a broader
sense of collaboration and management, where it is improves the quality of communication in
groups of people with a responsibility for a project when there may otherwise be an information
overload [101].

There are more concepts that should be applied universally in information visualization. Icons
can help with consistency and familiarity, by indicating the same meaning of a type of data, a
selection control, a data source, etc., across visualizations and parts of them. We use similar
elements in an interface control to indicate that an action can be taken to expand or collapse.
When an icon allows the user to perform an action, a tooltip can describe what it does succinctly.

The use of glyphs, abstract geometric figures or symbols, as well as colors also helps in visual
appeal and swift assessment of the data. A glyph may indicate a scale of the data by changing its
size or shape. A symbol could also indicate how the user can interact with the user interface (UI)
in order to alter the rendering. Such an interaction need not necessarily meet a user’s goal, but
should satisfy a certain inquiry [102]. Data can also be presented next to a common glyph or even
within a shape such as a box or a rounded graph node connected with arrows or lines to other
nodes, which makes it tie in with the rest of the structure [103 ch. 5]. Visualizations can employ
different techniques to make patterns easier to perceive by the human mind [104 ch. 2]. Colors
can differentiate or highlight certain types of data. However, care should be taken to choose a
color scheme that has enough contrast and avoids the use of hues that appear the same to people
with color blindness [105]. Otherwise, any meaning given to this color is to be provided in another
manner as well, such as using different shapes for colored points in a chart.

All these principles should be taken into consideration when designing and tweaking an
information visualization. Sometimes, additional features are not easily usable for everyone. If
this is not a concern because only a limited number of people would use it, then one can question
if it should be added in the first place. Some visualizations cover a broad audience, which means
some elements are used less frequently and can be presented less prominently, aiming at those
that do feel familiar with advanced controls. In short, a combination of usability and utility of a
visualization is often necessary to achieve the aforementioned goals [106].

There exists a general flow for designing information visualizations [107, 108 ch. 1]. First,
the selection of data that is relevant to show within a visualization is determined. It may be
necessary to reduce complexity more than narrowing the scope or limiting earlier data. We
perform transformations on the data to aggregate multiple points, to select which attributes are
relevant for the information visualization and to determine a coordinate system. Based on this
selection of data, we are able to define relationships between different entities or data points.
The relationships provide a scheme for a visual form, such as a graph structure, tabular data or
other information where it is not yet set in stone how it is rendered precisely. The rendering is
only considered in the next step, where a mapping determines how the abstract representation is
placed at precisely specified coordinates. Combined with color schemes and related symbols, this
specification produces a complete view of the data. Finally, the visualization is given interaction
by assigning actions to controls and motions, also known as gestures, that make additional controls
show up or allow the user to pick a subselection of the data. A new selection adjusts how the other
steps take place and thus allows a new rendering to appear. This general flow for an information
visualization is depicted in Figure 5.1.

98

Chapter 5. Information visualization 5.4. Dashboard framework

. |
Visual form || Render View,
Selection Mapping i
Interaction

Figure 5.1: General flow of constructing an information visualization structure. Blue blocks are
data formats, red arrows are translation steps.

5.4 Dashboard framework

We develop multiple information visualizations and make them available in an integrated dash-
board. This way, we provide access to (intermediate) results of experiments and promote new
viewpoints for stakeholders related to the projects that are included within the data set. One
principle that helps with adopting results and recommendations within the usual development
workflow is to make them feel familiar to the users, by highlighting factors that are commonly
agreed upon as being relevant. We wish to provide regular updates of the results provided in the
visualizations and to encourage reuse of the state-of-the-art analysis for estimating effort within
sprints and backlogs.

The dashboard offers an integrated approach to information visualizations for the Grip on
Software research. Different types of data can be rendered and interacted with. The visualizations
have controls to filter and select data as well as zoom in on details of a visual representation,
particularly following the visual information-seeking mantra [109]. From a usability perspective,
the influence that an interaction has should be unsurprising and obvious. The controls that allow
these actions and gestures should be easy to use and work similarly across different visualizations
in the dashboard. That way, the user can learn to select data without losing this acquired skill,
which could otherwise happen when another visualization presents such an interaction control in
an alternative, confusing way [110 ch. 2.2].

Based on the concepts and approaches described in Section 5.3, we build novel information
visualizations that focus on different parts of the Grip on Software data and provide interactions
that are useful for various roles within the software development organization. The visualizations
include reporting formats such as tables and charts, metrics from predictions, timelines, ranking
systems with statistical plots, network graphs of the organizational process, flow diagrams,
calendars and status indicator dashboards.

We integrate these visualizations in the dashboard. Each of them provides access to the others
through a common menu, which is shown at the top of the screen. On a desktop or larger screen,
these menus can be expanded by hovering over a category of visualizations, while on a smaller,
mobile screen the menu is expanded through a “hamburger” control, a typical UI element to
optimize the use of screen space. The menu provides an option to show the visualization in full
screen for presentation purposes during meetings. The language can be switched between English
and Dutch from within the menu as well.

The dashboard includes introductions for each of the visualizations as well as links to open
them, which is deployed to a web server [j]. All the visualizations work within modern web
browsers. Figure 5.2 displays the overall dashboard.

99

Chapter 5. Information visualization

5.4. Dashboard framework

@ GROS <« Visualizations v

More v

Welcome to Visualizations from GROS

Read an introduction to the research at the homepage.

Visualizations

= Timeline

A timeline of sprints for each project,
with events that happened during
that sprint. Several sprints can be
selected to compare them.

Open

More resources

% Prediction

A classification and risk analysis of
the latest sprint.

Open

22 Heat Map

Project activity over time ina
calendar view. Additionally files
which are changed after a long time
are displayed.

Open

@& BigBoat Status

Historical overview of availability of
the BigBoat dashboard. Aggregated
reliability and a breakdown of scores
is shown.

Open

O Collaboration Graph

Collaboration between team
members on projects, displayed in a
network. With a time-lapse mode the
growth over time can be displayed.

Open

& Process Flow

Overview of the software
development process stages. Stories
are aggregated in different states,
indicating bottlenecks and main
streams.

Open

oolanguage v

¥ Leaderboard

Project statistics are assigned a
score and displayed as a
leaderboard, similar to GitLab's
Conversational Development Index.

Open

A8 Sprint Report

Customizable report generator
which provides a summary of
relevant metrics from the recent
sprints of multiple projects

Open

Figure 5.2: Dashboard of Grip on Software, providing access to eight information visualizations.

The visualizations share a set of design principles, detailing requirements that should be met:

* We aim to fulfill one or more of the concrete purposes and goals mentioned in Section 5.2.
Each visualization focuses more on certain objectives depending on its categorization.

e The visualization should integrate well with the other visualizations, existing SCRUM
practices and the ecosystem. Access is provided through the dashboard and the visualization
is also accessible from other systems.

* The main goal is to boost the delivery of the product by making relevant data accessible to
those who are involved in the process—our stakeholders—by simplifying and speeding up
existing workflows.

* The main feature of the visualization should be the elegance of simplicity, by highlighting
the most relevant data/patterns, instead of what’s under the hood, i.e., the raw data stream.
A visualization can provide a means to zoom into the data in order to view more details.

* The visualizations should use clear, human-readable descriptions of the data being displayed,
available in languages common to the work environment.

From a technical viewpoint, we implement each information visualization in a similar manner.
The rendering and interaction use HTML templates for structural page layout, CSS presentational
stylesheets based on the Bulma framework [XX1] and JavaScript which retrieves the data from
JSON endpoints, transforms the structures, provides effects and handles events for triggering
actions. Specifically, we use D3.js [111] to bind data to HTML elements in a data-driven document,

100

Chapter 5. Information visualization 5.4. Dashboard framework

render the elements based on context and add transitions for animations. We create reusable
fragments [k] for a shared UI, enabling localization of the entire page, a navigation bar, a selection
control for switching between teams, projects or organizations and finally a spinning wheel that
can be shown while the page is rendering with newly requested data.

In the following sections, we elaborate on the construction of more than ten information
visualizations according to the flow in Figure 5.1, roughly corresponding to the final component
of the Grip on Software pipeline in Figure 5.3. We group the visualizations in three categories
based on their data use and intentions: analytical decision support in Section 5.5, ecosystem
management in Section 5.6 and novel product backlog visualization in Section 5.7. This third
category includes visualizations that are meant to be integrated with an issue tracker like Jira [1],
and are thus separate from the dashboard itself.

Issue tracker Prediction
Gather Collection | | Import Database Extract TensorFlow

Sislongconiro Python JSON Java MonetDB R/SQL Visualisation
Quality metrics D3.js

Figure 5.3: Overview of the Grip on Software pipeline, with the components related to information
visualization highlighted.

In each subsection, we introduce the visualization by means of a motivation. Following that,
we describe the input data, rendering steps and interaction functionality in detail, including figures
with screenshots. As the interactions are not easily showcased using static figures, we use, in
addition, QR codes to videos of interactions. As components of the GROS pipeline, the code of
each visualization is publicly available as well. Table 5.1 provides an overview of the subsections,
figures of the QR codes and references to code repositories provided in Appendix A for each
information visualization.

VISUALIZATION PART QR CODES REPOSITORY

Figure 5.11 1]
Figure 5.13 [m]

Section 5.5.1
Section 5.5.2

Sprint report
Prediction results

Timeline Section 5.5.3 Figure 5.15 [n]
Leaderboard Section 5.5.4 Figure 5.17 [o]
Collaboration graph Section 5.6.1 Figure 5.19 [p]
Process flow Section 5.6.2 Figure 5.21 [a]
Heat map Section 5.6.3 Figure 5.23 [r]
Platform status Section 5.6.4 Figure 5.25 [s]
Product backlog burndown chart Section 5.7.1 [t]

Product backlog progression chart ~ Section 5.7.2 (Jira plugins) [u]
Product backlog relationship chart ~ Section 5.7.3 [v]

Table 5.1: Information visualizations described in their sections as part of this chapter, the figures
with QR codes for the demonstration videos as well as the code repositories of each visualization.

101

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

5.5 Visualizations for analytical decision support

In this section, we discuss visualizations which aim to help team members and other stakeholders
with making decisions regarding SCRUM sprint progress, among others. The focus here is to
provide results from the analysis done within the Grip on Software research. The information
visualizations are often provided in a format that is more in line with existing reports that are used
by Scrum Masters, developers and quality managers to pinpoint potential issues in the process.
Each visualization is described in terms of data considerations, rendering steps and interaction
controls.

5.5.1 Sprint report

Based on feedback from several stakeholders, we observe that there is a need for an overview of
past, current and future sprints. This overview should have different indicators that describe what
has happened at various levels of detail, e.g., by component, per sprint and for each story. This
ranges from information about planned and completed story points to metrics from quality control
dashboards. The overview is presented as a sprint report.

Often, existing systems make it difficult to obtain and compare earlier data with the current
situation. In addition, the metrics are scattered across multiple systems. This means that, without
an integrated visualization, some stakeholders, such as Product Owners, quality managers and
software delivery managers, would manually compile data from various sources in order to report
on these factors. This is additional labor that hinders them in spending more time helping the
team in addressing impediments or providing feedback, which conflicts with principles from
SCRUM and Agile frameworks. A manual approach to reporting also means that this process is
more error-prone or at least harder to keep the collected metrics consistent in this case. This is
because non-automated data collection might take place at a different moment in time or some
information cannot be found by the user.

In order to encourage the option to make comparisons over time and across similar projects
or components developed by a team, we develop a sprint report visualization. We provide an
integrated location for building, displaying and exporting a report, which contains metrics from
various sources. The most important attributes are suggested more prominently by a configuration
panel that controls the report. Various levels of detail are made available about the selected data,
which is laid out per SCRUM sprint and indicates how it was collected, possibly with the individual
stories or other measured units that were involved.

The principle behind the sprint report is to make the collected data from our research available
in different formats without having to use a specialized method for each type of data, in order to
stimulate usage of intermediate analysis and results by software development teams. The available
data is not limited to the features that we use for prediction. The visualization provides access
to a large set of attributes, many of which are geared toward reporting and separate analysis.
Results from the predictions are available in the sprint report and other experiments that provide
supplemental data are also compatible.

The visualization uses SCRUM sprints as a basic unit of time. For some specialized purposes,
the sprint report can be generated for other time spans instead. For one support team, the data is
provided based on release versions, which they work on during a specific length of time. Another
support team instead uses milestones to indicate their progress, which is used as the unit of time
in their customized version of the sprint report.

102

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Flexibility is an important factor of the sprint report. This is not limited to the output format,
the attributes from our data that people can select or the lengths of time to display. One can also
select the fields of metadata available from the Grip on Software to be shown with each time
interval, such as sequential number, name of the sprint or milestone and start/end dates. Finally,
the configuration panel can be hidden, so that others can focus on the data rather than the tuning.

Data

The sprint report includes features that were extracted from multiple systems used within the
development ecosystem introduced in Section 2.1.1. These features are primarily from (a) the
project’s issue trackers, such as Jira or TFS/VSTS/Azure DevOps, (b) version control systems
and their code review front-ends, e.g., GitHub or GitLab, and (c) quality control systems, for
example SonarQube. The report also provides attributes that were not selected for the prediction
algorithms as mentioned in Section 4.4.1. For example, we provide alternative calculations of the
velocity of a team, which use the number of story points that were “done” per day or averaged
out across more sprints. Other attributes, such as the number of attachments added to issues, are
also available. Details on specific metrics and code commits are also provided. The entire list of
attributes can be found in the data-analysis code repository [h].

The bulk data is not just provided in a raw format. For optimization, data from the five most
recent sprints are split from the older data. A selection of most important features and metadata—
such as planned and completed story points, plus the sprint’s start and end dates—are split again
from the most recent data. This means that a default selection of sprints and attributes can be
loaded efficiently.

Similarly, many attributes come along with details on how the aggregate value was calculated.
Depending on the attribute, this includes information like issue key, story points, release version,
code repository and component metric count. Details regarding attributes that are selected less
often are placed in separate JSON files, improving load times.

Aside from technical considerations, we remark that some teams work on multiple projects
and components, which have their own boards and repositories in the issue tracker and version
control system, respectively. Some projects even have their own development platforms. Different
interests of the stakeholders exist for these combined projects when it comes to tracking them,
as some of them still want to receive the report per project or even display certain features for
only some types of components worked on by the team. The collected data is combined for teams,
which gets tallied up differently for each feature, e.g., sum, average, maximum or latest value.

While the features are usually collected from the database where the different sources from
the teams are stored, external data can also be included. This is used to display results from
experiments with the prediction algorithms, where the data set is increased in size by including
more sprints in each run. In every instance of this run, the validation set consists of the most
recent sprints. The effort estimations are reported for these sprints. This totals up to predictions
for almost the complete data set, which can then be displayed using the sprint report by loading
these results. Other intermediate results, such as sentiment analysis on comments made on stories
during each sprint, could also be shown in the sprint report.

The results from the prediction algorithms extend beyond existing sprints. Simulations with
linear regressions and Monte Carlo algorithms also provide trend progression of backlog sizes
for future sprints. These results are made available, including probability density curves and
likelihoods of finishing the entire backlog by a certain date.

103

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

The sprint report not only provides details on how features were estimated or collected, many
of them also contain links to the original sources where they are based on. Often, we can link to a
human-readable report in an issue tracker, version control system or quality control dashboard.
This helps with verification of correctness of the reported values. For these sources, we determine
what the latest collection date has been. This clarifies if the report is not completely up-to-date,
in case the collection and report generation happens at a hourly, daily or weekly frequency, for
example. In case there are any outdated sources, this can also indicate if there are any problems
with earlier components of the pipeline.

Some metrics that are acquired at a low frequency can be carried over to the next sprint so that
the sprint displays the previous value if no measurement has taken place yet. Other features have
default values when no data is known, such as having zero attachments when none were uploaded.
These transformations can avoid the absence of data where it is expected in the report.

The attributes are grouped together in categories, e.g., when they relate to team composition,
velocity, alternative indicators for sprint progress, backlog sizes, code changes and quality met-
rics. Another portion of information regards metadata of attributes. This includes the following
localization data:

* Human-readable and translated descriptions of the attributes that can be displayed as labels.
» Longer descriptions that are appropriate for tooltips.

* Units that are optionally displayed with the attribute in a context where it is helpful to
further describe a standalone value.

* Shorter units that are necessary to indicate the scale.
* The standalone unit that can be used for axis labels.

* An indicator describing when a feature is used by a prediction algorithm to simulate future
sprints. The indicator mentions how this feature affects the prediction compared to when it
is not used, i.e., which adjustments on the backlog were factored in.

Some of the locale text is used in other visualizations as well, but the sprint report uses all of them
in several formats. For attributes that are composed of other features by calculating a mathematical
expression, we denote the expression and which features were involved, so that these are displayed
in a human-readable manner.

We further note which features are prominent enough to select by default and which are less
likely to be selected at all, which ones have predictions for future sprints and how many future
sprints we would have at most, which ones have details and which ones have targets. The metric
targets define thresholds below or above which the value is considered acceptable or good. Each
target has its own direction, perfect value, good and acceptable values. These targets can change
over time, thus they have a date from which they apply.

Other attributes have specific ways of displaying their data, such as emoji that indicate the
team spirit, fractions for story points or time durations (days, hours and minutes) for technical
debt. This group of metadata is relevant for displaying the data in a format that is practically
useful, human-readable and easy to understand.

104

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Configuration

The sprint report visualization initially renders a configuration panel where a large number of
selection options are displayed. In order to keep this panel structured, the different options are
labeled and clarified using tooltips. Less important options are made smaller. Figure 5.4 displays
the configuration panel in full.

& Teams ‘ (Al) | (Nome) | Proj12 Prof5 Proj4 | Proj-3 Proj1 Proji2 | Proj25 | Proj26 Proj3s i &
Projects
Components | Projs8 Proj60
Current 1 3 3 i 5 sorimsane O Closed only
" General Weekdays More [=) Attributes
& Team Number of developers | Average experience | Mew developers More. 1. Planned story points @ @ 4 &
o 2.Donestorypoints @& @ 4 &
7= Progress storywatchers | Itemupdaters ~ Attachments | Labels Impediments | Late rank changes Replanned stories
3. Three-sprintvelocity ® @ + +
Removed stories | Userstories | Donestories | Itemlinks =~ Comments Changes peritem | Midpoint of item changes
(Reset) (Clear)
Doneitems | Concurrentstories in progress = Duration of stories in progress ~ Timely rank changes J

Timely story point changes | Early item changes | More.

® Velocity TPy SIS W ©anned bug points | Done bug points Sprint velociy

Unfinished story points | Late story points | Replanned story points Incomplete story points | Daily velocity

QUSRS] seven-sprintvelocity | More.

B Backlog tems on sprint backlog Items with ready status on sprint backlog Story paints on backlog
Non-pokered story points on backiog | Eplc points on backiog | Total backiog estimation | Dismissed story polnts per sprint

More..

= Code Commits ~ Addedlines Removedlines = Commitsize | Filesincommit Lines in commit

Format B Table 12 Line chart L Bar chart I Area chart i1 Scatter plot 3 Sankey flowchart

Figure 5.4: Configuration panel of the sprint report.

The first selection control allows choosing teams, projects and components that they work
on. The first two options allow selecting all of the visible options, and to deselect everything.
Otherwise, individual teams and their projects or components can be selected and deselected. A
number of checkboxes to the right allows filtering on which teams are visible in the selection
control. These filters make it possible to show or hide projects that have not been worked on
recently, support teams, subprojects and projects that the user is not involved in. The latter option
is based on the user’s IP address range that is part of an isolated virtual network and is only
available in organizations that compartmentalize their projects in this way. As such, hiding projects
that are irrelevant to the user is mostly meant as an ease of use.

Another line in the configuration panel is dedicated to selecting sprints and their metadata. A
bar shows how many sprints have their data included within the report. The bar by default only
has five sprints. Once projects are selected, more sprints can be selected. The bar can be dragged
to move the selection or to increase the number of sprints. Adjacent buttons allow resetting,
fine-tuned removal or addition of sprints, including all previous sprints and showing future sprints.
The future sprints—displayed with a diagonally-striped hatching pattern in the selection bar—are
only available when a feature is selected that has predicted values and the output format supports
them. A checkbox allows removing ongoing sprints, i.e., each project’s most recent sprint that
has not ended, thus reporting on finished sprints only. Finally, there are options to show or hide
metadata for the sprints, such as their name, sequential number and relevant dates.

105

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

The attribute selection is collapsed by default. In its expanded state, features are grouped by
categories and less relevant attributes are still hidden. The user can find those using an option to
show more attributes in that group. Each category is collapsible to save screen space. Selected
attributes are shown with numbers indicating the order in which they appear in the report, based
on when they are selected. By default, a few attributes are selected already.

The selected attributes are also shown in an adjacent list. This list also allows resetting or
removing all of them, removing individual ones, changing whether they show up for only teams,
projects or components—or all of them—and reordering the attributes. The list order can be
changed by clicking on arrows or by dragging the items over each other. In fact, if the user drags
the selected attributes among the categories, they are also reordered. Dragging sprint metadata
fields over each other similarly changes their order. Likewise, teams, projects and projects are
draggable, which leads to reordering that selection. This is then reflected in the report itself,
depending on the format.

The configuration panel is collapsible. The collapsed state is set in the URL so that the user
can share the link to the report without the configuration panel showing up. Two more panels
closely related to the configuration menu can be expanded. The first panel provides export options.
CSV, JSON and HTML formats—with complete resources within a compressed archive file—are
available. If a PDF rendering service is available, this is also linked. The user can always copy the
link here or open a print dialog, which provides printing to PDF as well. The final panel displays
the date on which the sources of each selected project has been most recently collected.

The configuration panel itself allows choosing a report format as its final selection line. The
sprint report is rendered as a table by default. The visualization also supports displaying the
data from development projects as line charts, bar charts, area charts, a scatter plot and Sankey
diagrams, as further described below for each format.

Table

A table shows each selected team, project and component, with their attributes shown after a
heading row. In the header, the name in the first column is linked to the project’s issue tracker—if
it is reachable from the location where the visualization is displayed—and the other columns
describe sprints ordered from most recent, including the sprint metadata. The rows alternate in
background color and each attribute has its own values shown. Figure 5.5 shows a sample of the
table output format.

Proj-12 Jan 3, 2022 Dec, 2021 Nov 15, 2021 Oct 25, 2021 Oct 4, 2021
Planned story points (3 10 69 70 70 49
Done story points {3 0 20 74 80 34

Three-sprint velocity 31 ¥5 points/sprint 58 points/sprint = 62 % points/sprint =~ 45 5/6 points/sprint 38 1/6 points/sprint

Figure 5.5: Example of the table output format of the sprint report.

Some features have details that can be expanded using a clickable icon to show subtables
within that row. These nested tables can be sorted by another column, such as story points, which
applies to all the subtables with details for that feature. Where possible, sources of the information
are provided with icons or links.

106

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Line chart

A chart area is generated, one for each selected team, project and component, with a legend
indicating the name as well as the selected attributes. Within the chart, lines are drawn with
different colors for the attributes. The lines pass through points which indicate the sprints. For
further differentiation, each attribute is denoted with its own point-like symbol. The line and
symbol are shown in the legend as a colored sample.

The axes are dates in the horizontal direction—unlike the table, the most recent sprint is at
the end of the chart—and values of the attributes in the vertical direction. If two features have a
widely different scale of values in order of magnitude, then the chart displays a secondary vertical
axis with the larger scale.

In case that simulated values of features for future sprints are available and selected in the
configuration panel, additional lines for each simulation are included in a diagonally-striped
hatching pattern area at the end of the chart. Probability curves and likelihoods of the predicted
progression are then also displayed. The lines of all the attributes use monotone cubic interpolation
to connect the points, which makes these continuous lines flow smoothly between the discrete
points, without making new local extrema show up in between sprints. Figure 5.6 shows an
example chart.

Proj-12
Planned story points-s-
704 . Done story points
Three-sprint velocity =

Attributes

Sep 19 Sep 26 0ct03 ot 10 o 17 oct24) o031 Nov 07 Nov 14 Nov 21 Nov 28 Decos
Start date

Figure 5.6: Example of the line chart format of the sprint report.

By hovering over the charts, the visualization displays a vertical line with an open circle at the
closest point for a pair of sprint and attribute, with the line extending to the bottom of the chart.
Additionally, a tooltip with attributes and metadata shows up. When the user clicks on the chart,
the line and tooltip stick there until the user clicks again or when they hover away from and back
into the chart. The charts are redrawn when the window changes size.

Bar chart

The bar charts use the same setup as the line charts with regards to axes and future sprints. Instead
of points with symbols and lines, each attribute is drawn as a solid rectangle. The height of a bar is
determined by the attribute value, growing vertically from the origin of the chart. The bars of the
attributes for each sprint are placed next to each other with some empty space between each sprint.
The bars shrink in horizontal size if necessary. An example of a bar chart in the sprint report is
shown in Figure 5.7.

107

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Proj-12
Planned story points ll
Done story points

Three-sprint velocity

Attributes

127
Sprint number

Figure 5.7: Example of the bar chart format of the sprint report.

Some features that are composed of an addition of two other features are shown as a bar with
two colors, the first part extending from the origin to the first value and the second one up to
the actual value of the composed feature. The bars show up like this as samples in the legend as
well. The tooltip does not come with a line and open circle, but otherwise shows the metadata and
attributes of the closest sprint.

Area chart

Similar to the line chart format, the attributes of the teams, projects and components are shown in
area charts. Instead of displaying each attribute individually as a line with symbols, this format
instead stacks them on top of each other, so later attributes end up higher in the graph. The chart
is filled from the previous attribute’s line until the monotone cubic interpolated line with the color
assigned to the attribute, where composed features using addition are split up into the individual
features. The symbols shown at the sprints are open circles. The tooltip is accompanied by a
vertical line while hovering or selecting a nearby sprint and feature.

This format is meant for features that have the same unit; no secondary axis is generated if
they have different scales. Figure 5.8 shows an area chart with some relevant features.

Proj-12
Non-pokered story points on backlog ll
Story points on backlog

Planned story points |

Story points

oct24
Start date

Figure 5.8: Example of the area chart format of the sprint report.

108

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Scatter plot

A single scatter plot is generated, containing sprints from all the selected teams, projects and
components. The chart has two dimensions, based on the first two selected attributes. Each sprint
is plotted based on these dimensions using an open circle at the relevant coordinates, with different
colors for each team, project or component. In addition, the diagonal of the chart is drawn using a
gray line. This diagonal line makes it more clear where one attribute is higher than the other for a
sprint, since the aspect ratio of the rendered plot is not always equal.

We plot a few more lines which perform a curve fit of the sprint’s data for the two attributes.
Depending on the appropriateness, the outcome of a linear, exponential and polynomial regression
are shown with differently-colored trend lines as well as labels that indicate the formula and the
coefficient of determination 2.

When the circles of sprints are nearby each other, then they have similar values for the two
attributes. Based on only these two dimensions, such close sprints are clustered together, forming
a larger, blurred circle with a number indicating the size of the cluster. Figure 5.9 shows a scatter
plot with multiple clusters.

10 o o
- Proj-12e
Diagonal
120
° Linear
110 ° R ° o Exponential
Ineary=0.6624x+37149,2=07311 |\ pionciic)
1004 o polynomial: y = -0.0011xA2 + 0.8249x + 0.9365, r'2 = 0.7352
o o o
E - o 3
§_ 804 5 o °<§? (o] i S o
= 0 o E ©0 0 °
2 @ o 9 o &
H o 2 [S ° o
& .l o >
L °© 2°% °°%% % e o ©
. o o0 B o
404 o,
o, @ ° o o
@9 2
o
o o
1 o
{58
% % 0 @ E) 160 %o 10

Planned story points

Figure 5.9: Example of the scatter plot output format of the sprint report.

If the user hovers over the chart, a nearby individual sprint is selected by “filling” their open
circle with another circle, with the tooltip indicating metadata fields and all attributes of the sprint.
By clicking, the user can make the tooltip stick. For this format, additional options allow cycling
through the sprints within the same cluster, zoom in on the sprint—e.g., to examine the cluster it is
in—or to remove the sprint from the plot. This final option is useful for temporary noise reduction,
but it does not change the outcome of the regression fits.

Aside from the zoom option in the tooltip, the user can also click and drag to select an area to
zoom into. Double-clicking the chart resets the zoom. Zooming in on a cluster can decompose
it into individual sprints or sub-clusters, allowing further analysis into similar sprints that were
readily detected by this unsupervised clustering algorithm.

Sankey flowchart

The final output format of the sprint report is a Sankey diagram, which we generate for each team,
project or component if certain attributes are selected. The diagram uses the width of transitions
between situations of a system to indicate the volumes that flow between states. Visualizations

109

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

based on Sankey diagrams are often used for energy flows in complex systems [112]. In our case,
we display the attributes of each sprint as boxes with colors. The boxes are sized vertically based
on the value of the feature. Each sprint is laid out across the horizontal axis.

Transitions indicate how much of a feature is preserved between two sprints and how much
moves to other features. Based on the details of each feature, we can determine how many items—
or the total weight of the applicable items—composing that feature end up being used in another
feature in the next sprint. As a concrete example, we can track how many of the story points that
are planned for a sprint end up being completed, placed back on the product backlog or moved
over to the next sprint.

Only features with enough details on individual stories are supported. When not all relevant
features are selected, we miss out on some data. The features then do not cover all possible
transitions and some volumes become incomplete. Any volumes that are not accounted for when
they flow from an earlier sprint or flow into a later sprint, are shown with a transition from or to a
gray, dashed box, respectively. Figure 5.10 shows an example flowchart. Hovering over the boxes
and transitions shows tooltips indicating which volume or flow it describes and what the size is.
The user can drag the boxes vertically to reorder them. This allows untangling some transitions,
leading to a clearer diagram.

Proj-12
Story points on backlog
Non-pokered story points on backlog
Added story points on backlog
Modified story points on backlog

2
B

I /
[B =

oct 42021 oct 25, 2021 Nov 13, 2021 Dec 6. 2021 Jan 3,2022

Close date

Figure 5.10: Example of the Sankey flowchart format of the sprint report.

Retrospective on interaction

The sprint report focuses on usability and clarity of the data. Many output formats allow the user
to look into the details of features. The features themselves are shown with units or in a format
appropriate to them, where possible. Some formats support temporarily adjustments by the user,
which helps with understanding what the data means.

The diagrams are responsive to screen sizes. Tables with many columns can be scrolled. Tran-
sitions make the data render in or reposition smoothly. This helps with making the user recognize
the newly shown data more easily. Figure 5.11 provides a QR code to a video demonstrating
interactions with the sprint report.

Despite the interactive elements of the visualization, the export formats should still allow the
data to be understood when on a static, printed piece of paper. An external PDF renderer is told to
wait until the data is loaded before generating the document, which avoids missing results.

110

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Figure 5.11: QR code of video demonstration of the sprint report.

5.5.2 Prediction results

We wish to make the predictions from the various models introduced in Chapter 4 available to
various members from the SCRUM teams. This enables them to look into whether their current
approach makes it feasible to resolve the stories that they have committed to within the expected
time frame. We specifically focus on the prediction algorithms that determine if the planned
number of story points can be resolved within the current sprint, based on a training set of earlier
sprints of the projects. The models used in forecasting an entire backlog of stories are used to
augment data in the sprint report visualization, detailed in Section 5.5.1.

The two prediction algorithms, namely the deep neural network (DNN) and analogy-based
effort estimation (ABE), provide different kinds of details about the sprint and its context. The
main part of the result, a classification or estimation of story points, is supported by accuracy
metrics, analogies and configuration parameters. While some stakeholders are interested in the
substantiation of the predicted result, most will focus on the label. Still, care should be taken to
explain how it has come to be and what the result means.

Data

The results from the prediction algorithms contain the following data, based on experiments with
the models that runs on the data set of features that were extracted from the Grip on Software
database:

* The classification of the sprint in terms of finishing all planned story points. Some models
provide an estimation of how many points could be finished.

* A numeric weight based on the output of the DNN and a reliability metric of the individual
prediction.

* Metrics such as AUC, precision, recall and loss from the training steps.

» Configuration of the model, such as the target label and input features and actions taken on
the data set before training, including rebalancing or stratification.

* The values of the features for the current sprint.

» The date when the relevant sources of the features, such as the project’s issue tracker (Jira),
has been most recently accessed to collect the data.

111

https://video.leidenuniv.nl/media/t/1_lq8clgb3

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Additionally, metadata about the project and sprint are available, such as the name, sprint number,
start and end date. The same is true for the sprints that were picked as analogies—similar sprints
where the features were close to those of the current sprint—by the ABE model, as well as the
label and the features that were relevant. Details on the two models are explained in Section 4.4.3.

Rendering

The results and relevant factors of the prediction algorithms are displayed in a plain manner. It is
essential to put the focus on the most important items, using specific elements and colors within
our design of the results view.

The predicted label or value is shown in a message box, which changes color depending on
whether the result indicates problems with the current sprint. A positive label or a value higher
than the target, which means that all story points should be possible to be finished within the
sprint, makes the message box turn green, while a negative label or a lower value uses a yellow
box. If the model also provides a risk indicator, then a progress bar is used to indicate this risk.
A value below 20% is shown with a green bar. When the risk value is between 20% and 80%, a
yellow bar is used. Finally, a risk higher than 80% leads to a red bar. The value itself is shown
and described using a tooltip. The reliability value is also displayed with a percentage value and a
tooltip, but no progress bar is used.

Other data, such as the dates when data was most recently collected from the ecosystem, the
values of the features and the configuration of the model, is shown using tables. An example
of the results is shown in Figure 5.12. Depending on the type of data and accessibility of the
source, there are icons with links to the source of the data, e.g., a human-readable report from
Jira providing the same values. Some compound features also have tooltips explaining how they
were derived from other features, using human-readable terms instead of internal names and code
expressions. Finally, analogies from the ABE model are shown in a list with links to the sprints as
well as the values of the features.

Interaction

The results overview of the predictions does not provide much interactivity for the user. We
consider that having many animations or other effects distracts from the main focus, which should
be on the data. The tables containing the features used to train the model, the metrics from the
training steps and the configuration of the model are all collapsible and expandable. This leads to
a cleaner overview of the main prediction result.

The user chooses projects using a selector. When the model has trained on a combined data
set of multiple organizations, then the user needs to switch between organizations to see the other
projects. If the team has created multiple future sprints for the backlog—a practice that did not
occur often at the two organizations—the algorithms provide predictions for all of them based on
their planned story points. As such, these sprints are selectable as well. Any selection changes the
URL of the visualization page to reflect this. This way, the link is shareable with others.

In order to switch between prediction algorithms and configurations, there is a pull-down menu
where different experiments are described. These are based on the currently available branches of
the prediction pipeline component [i]. Each branch has different parameters for the algorithms
which are added to the description as a distinguishing factor. The video behind the QR code in
Figure 5.13 demonstrates these selection options.

112

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

Proj7 | Proj9 Projl0 Projil Projl2 Projl3 Proj22 Proj23 Proj24 Pro25 Proj26 Proj27 = Proj30 B Recent projects
Proj34 Proj3s Projs8 Proj60
Projs Experiments v Export v
Sprint #101
Sprint 101 (Mar 22, 2021 - Apr 8, 2021) Closed Attributes v
Prediction o Name Value
7 done story points Start date Mar 22,2021
Sprint length 18 days
Planned story points 5
Source age v
Weighted story points 1
Source Last update
Item links 4
Version control # Jul 31,2020
Comments 1
Project sources e Jul 31,2020
Concurrent stories in progress 0
JiraQ Nov 29, 2021
Open sprint @ 4
Quality metrics (e May 19, 2021
Number of developers @ 5 devs
Metric options £ Jul 31,2020

Points above expectation @ 0

Overplanned points @ 3% extra points

Similar sprints Configuration v

This sprint was given the prediction shown because the selected features are most
similar to the features of the following sprints: Name Value

« Sprint #121: Sprint 121 (Feb 4, 2021 - Feb 18, 2021) from project Proj25 which
has the actual value 8 and the features Feb 4, 2021, 14 days, 8 planned points, 1

Expectation round(Done story points)

weighted story points, 0 item links, 2 item comments, average of 0 stories that Attributes Start date
are concurrently in progress, 0 open sprint, 5 developers, 0 added story points, 1 Sprint length
% story points above velocity Closed Planned story points
Weighted story points
« Sprint #205: Sprint 205 (Aug 26, 2020 - Sep 16, 2020) from project Proj7 which Item links
has the actual value 5 and the features Aug 26, 2020, 21 days, 3 planned points, Comments
1 weighted story points, 0 item links, 29 item comments, average of 0 stories that Concurrent stories in progress
are concurrently in progress, 0 open sprint, 5 developers, 3 added story points, 1 Open sprint @
story points above velocity Complete Closed Number of developers @
« Sprint #116: Sprint 116 (May 11, 2021 - Jun 1, 2021) from project Proj23 which Points above expectation @
has the actual value 8 and the features May 11, 2021, 21 days, 5 planned points, Overplanned points @
% nts, ave ;
weighted story points, 0 item links, 27 item comments, average of 0 stories Vetadata Project identifier
that are concurrently in progress, 0 open sprint, 5 developers, 0 added story sprint dentifer
points, % story points above velocity Closed Organization
Model Analogy-based effort estimation
Rebalancing No
Stratification No

Organizations ICTU

Figure 5.12: Estimated label for a sprint based on its features as shown in the prediction results.

The user finds more information about the sprint’s prediction by hovering over the tooltips of
the predicted label and the feature names. Links to sources are only accessible at the organization.
Export options are provided in a pull-down menu, such as data sets and API endpoints. Optionally,
the hub page provides documents explaining the prediction algorithms for interested users to read.

Figure 5.13: QR code of video demonstration of the prediction results.

113

https://video.leidenuniv.nl/media/t/1_ggg2uguq

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

5.5.3 Timeline

A software development process is based on several sequences of events that are well-suited for a
visual representation of the volume of activities that take place. Specifically in a cyclic SCRUM
process, we could see repetitions and slight alterations between each sprint or each story that is
being worked on. By looking at these patterns, development teams could gain more knowledge in
how they work according to this process and how small differences could change the outcome of
a sprint, compared to earlier sprints or other projects. This is an essential goal for our research.

An essential aspect of the progress of a sprint and the entire project in general, is the passage
of time. A visualization that displays information over time should provide enough control over
this dimension, e.g., by allowing to zoom in or to exclude periods of time that are considered to be
unimportant within the context of software development. When a team never works on weekends,
then it should be possible to only look at week days, for example.

A well-established visualization that assists SCRUM teams during their Scrum sprint is the
burndown chart. This time-based diagram shows a limited number of events taking place, based
on changes to the number of story points left to work on during a sprint. When zooming in to a
specific period in a larger timeline, it makes sense to connect the more familiar burndown chart
to the patterns seen during that period of time. This helps to clarify both the timeline and the
burndown chart, by associating other types of events, such as commits or impediments, with the
changes to the remaining story points.

The timeline is a showcase of combining multiple events and features that we collect for
SCRUM sprints, into a visualization based on multiple time series. While the focus is not to
compare projects as a whole to another, it makes sense to show each project alongside each
other to allow the patterns that arise from each time series to be seen more clearly across an
organization.

Data

The main type of data that we collect for the timeline are events. These are indicators of a type of
change that takes place at a specific timestamp. The following events are collected from the issue
tracker, version control system and quality control dashboard:

¢ Sprint start: The date and time when a sprint of a project starts.

 Sprint end: The date and time when a sprint of a project ends. This is based on when
the sprint is either completed (all stories are done) or when the sprint was planned to end,
whichever comes first. Together with the start of the sprint, this defines the date range in
which a sprint took place.

 User story: The date and time when a user story is done. The event also includes when
the story started to be in progress, although the event is not considered a range to avoid
spreading it out over a large period of time.

* Rank change: When the rank of a user story on the backlog changes. Here, a rank is the
position of the story on the product backlog, which roughly corresponds with a priority
towards resolving it. The rank could still change while the story is planned for a sprint,
although this is considered late. Most rank changes take place when the Product Owner is
assigning which stories come first in future sprints.

114

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

* Story point change: The moment when a story is given a different number of points during
a sprint. This might indicate a change of scope or when a story cannot be completely done
during a sprint, at which point unfinished tasks are split off into a follow-up story.

* Red metric: An indication of when a metric in the quality control dashboard of the project
has been given a red status for more than a week. These metrics, related to problems in
quality of the product’s code or impediments in the process, are considered to be below a
certain norm, but could not be resolved quickly.

* Impediment: When an issue is marked as having an impediment, for example when the
team expects more details from an external party.

e Commit: The date and time of a commit that makes a change to the code of the project.
Due to the high volume of commits, these are separated from the other events in the data
but are available for a more detailed level.

Aside from the events that take place in a sprint, we also collect features that describe the sprint,
including those mentioned in Section 4.4.1. Furthermore, we collect information relevant for a
burndown chart, namely the following:

* The total number of story points from stories that a sprint starts out with as planned in the
sprint backlog.

* The story points of stories that are “done”, i.e., given a resolution status during the sprint.
» The story points of stories that are added during a sprint.
* The story points of stories that are removed during a sprint.

» The difference in story points of stories that have a change in points during a sprint, after
and before the change.

Rendering

The timeline is displayed as strips of events, indicated using dots with colors. The vertical axis
displays different projects, while the horizontal coordinate uses a time-based axis. At the top of
the timeline, the labels of the time axis are shown, which are more or less granular depending
on the zoom level and the screen size. For example, when month names are shown at a zoom
level, the beginning of a new year uses the year instead of January. An additional pair of labels on
either side of the axis shows the precise date range that is displayed. Here, additional options for
interacting with the coloring, the scale and the zoom level are also provided.

The events within the timeline are rendered mainly using circular markers. The start and end
points of the sprint are delineated by black borders and a gray background that spans between the
two timestamps. All the other events use different colors for their type of event. A legend at the
bottom of the timeline indicates the colors used for each event type. When multiple events of the
same project take place in a close proximity of each other, then the size of the marker increases
and the area that is filled by this marker becomes more blurry. This has the effect that other events
that took place around the same time, whether they are of the same type or not, become more
associated with the larger area around these grouped events. From a larger perspective, this makes

115

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

it clear that more activity took place at this moment in time, compared to other periods. The
timeline is limited in the type of events shown, which are meant to act as a proxy for other, related
events not shown in the chart.

When mapping the event types to marker colors, special care is taken to select a color scheme
that is distinguishable for people with color blindness [105]. This is important because the events
are only rendered using a colored marker, with no other factors that make each type of event stand
out from the others. While it is possible to include more details of each type through interaction,
such as with a tooltip, this would not aid in making the entire timeline easy to understand for people
with color blindness. Another option would be the use of glyphs to differentiate the event types,
but the blending effects would make some glyphs hard to distinguish after all. Such problems
are hindrances to the aim of allowing the user to see patterns within the timeline. Therefore, we
use a color scheme that avoids certain combinations of colors, such as red and green, or darker
shades of blue and green. The chosen color scheme uses black, yellow, green, orange-red, blue
and pink as indicators of different types of events, respectively for sprint starts, rank changes,
story point changes, red metrics, impediments and completed user stories. Figure 5.14 displays
the main timeline for several projects using this color scheme.

26 July 2016 Scale without weekends Resetzoom Zoomin Zoom oul t 16 June 2017
August September October November Decgmber ZQT 7 Febr‘uary March April ng Jupe
Proj1(12) ¢ o e LN] "

Proj2 (14) e

Proj3 (18) o |4 []

gk
[]

Proj5 (82) ee + H| (1) + e o0 +. +o H.o Ho-#. H |
TN R T
Proj7 (71) eoe ‘+ .P + OH |.| % o‘ [1] + c|uo ‘. l+-‘+. ‘o. +
Pop@) ho | awe| o

Proj9 (123) +.+b| ‘+.o|h =) +oo++o ‘n .+ *-HooH-o‘c L] +
oo 5 et <] W RE [oo e dmbe < e FI R e 3
a0 e+ o < {- i ——— + da—, -+ - @) - - 4 9
scen (A | o vr Homp [o] @ cPe e o e|me of of = 4fe b f

Legend: @ Sprintstart © Rank change @ Story point change ® Red metric @ Impediment © Userstory Sprint end

87
°
L]
4
.
L]
[]

Tip: Press shift to select multiple sprints.

Figure 5.14: The default timeline view with colored event glyphs for projects displayed over time.

Interaction

The rendering of the timeline is not complete without an interactive element, as already suggested.
The level of detail that we provide is simply too high to display in the default rendering. Thus,
more control is provided to view these details. The buttons to zoom in or out at the top adjust the
time coordinate to display a smaller or larger subset, respectively. Moreover, if the user drags the
timeline to the left or to the right, the coordinate system changes to display another time period.
Another button resets the zoom when pressed, which also brings the most recent date back into
the visible range at the right of the timeline.

116

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

To the left of the zoom controls, a checkbox provides the option to change the scale to exclude
weekends when selected. This compresses the timeline by removing Saturdays and Sundays.
We found that there is rarely much activity on these dates at the two software development
organizations. When the weekday-only scale is used, any activity on weekends is counted as
taking place at the end of the Friday before the weekend days.

A selection box and numeric condition left of the checkbox allows labeling sprints with colors.
The features from our analysis are selectable. A configurable threshold value determines which
label to assign. The label then becomes visual through the background color of the sprints within
the timeline: a green background color indicates a matching sprint, while dark gray sprints are
non-matching. This provides a customizable method of finding sprint patterns.

When the user hovers over the sprints and events, a tooltip shows up with more details. For
sprints, the name and exact time period of the start and end is shown, along with all the features
of the sprint. Hovering over an event shows the sprint name and the exact time when the event
occurred. Some events carry more details, such as when a user story started for done user stories.

The legend is also interactive. By clicking on an event type, all events of this type are shown
or hidden. The sample circle within the legend indicates if events of this type are displayed in the
timeline or not, by being a filled circle or only outlined, respectively.

When the user clicks on a sprint, a sub-chart is rendered below the timeline. Here, a smaller
timeline shows all the events, regardless of whether they are shown in the main chart or not.
Additionally, a line with commit events with gray markers is drawn. Below the sprint’s timeline, a
sprint burndown chart is displayed. The vertical axis of this chart indicates story points and the
horizontal axis shows time, aligned with the timeline above it. A green line indicates the ideal
progress of the sprint backlog, while a blue line with different event markers graphs the actual
progress. An orange, vertical line is drawn at the end of the sprint.

By holding the Shift key while clicking a sprint, the user is able to select multiple sprints after
another. This way, the sub-chart below the timeline displays the sub-charts of all the selected
sprints stitched together. The burndown chart continues along after the ends of each sprint. As
such, any late changes and continuations into the next sprint are visualized. This allows the user
to compare the progress of multiple sprints and see if one sprint influences the other, for example.
By selecting a sprint without holding Shift or choosing another project, the multi-selection ends.
Figure 5.15 shows a QR code for a demonstration video of these interactions with the timeline.

It is normally not possible to perform the multi-selection on devices without a keyboard.
The timeline is not optimized for display on smaller screen sizes, so mobile devices are already
affected in this way. We have found that the timeline renders and interacts nicely on larger screens,
as the visualization adjusts to such screen sizes. We configured certain input devices, such as the
Wiimote, to emulate pressing the Shift key when a certain button on the remote is held.

Figure 5.15: QR code of video demonstration of the timeline chart.

117

https://video.leidenuniv.nl/media/t/1_6z9ub6xl

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

5.5.4 Leaderboard

Software development teams within the same organization have different approaches toward
working with the systems and frameworks that are available. Even when SCRUM teams use the
same framework and have a similar mindset, each project has its own requirements that lead to
distinct situations. It is not clear whether one approach is better than the other, but we quantify
them using the data that we collect from the support systems. This way, we demonstrate on a high
level what kinds of projects there are, for example based on how many stories or other types of
issues are resolved in a sprint.

While the main research questions do not necessarily involve comparing projects or teams
to each other, it is still beneficial to have a visualization that makes it more clear how they
operate. For the SCRUM teams, it helps with seeing whether they are splitting up their stories into
small, workable chunks or if other teams do this even more, for example. A low score on certain
project-wide metrics could help with indicating that more resources are required in areas such as
build systems, versioning control or structured issue linking.

The concept of a leaderboard supports the process with making such deficiencies within an
organization more clear. It is not meant to directly compare projects with another. Therefore, care
should be taken to avoid making an actual, definitive ranking, such as when an actual competition
takes place [113]. Scoring should be possible in multiple ways, on top of displaying the metrics in
a separated fashion. Inspiration for the notion of a leaderboard to show scores for specific areas
relevant to software development teams within larger organizations comes from GitLab’s DevOps
Score [XX11], previously known as Conversational Development Index.

Data

We collect the following project-wide features that indicate values across the life span of each
project, from the issue tracker, version control system and build system:

* The number of all the issues within the project.

* The number of stories in the project.

¢ The number of comments added to the issues of the project.
* The number of links between issues.

* The number of test cases created within the project.

* The number of repositories used for storing code.

e The number of version tags added to commits of the code.
e The number of commits made to make changes to the code.

* The number of times that the developers upload or push the commits that they made to
the collaborative version control system. This is only available if the system tracks this
information, which is the case for GitLab.

* The number of merge requests that are made for changes made on branches of the code in
the repositories.

118

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

* The number of release versions made for the product.
e The number of build jobs within the continuous integration build system.
* The number of sprints that the project has had.

* The life span of the project, in days.

The last two features are included mainly as normalization factors, which are useful for dividing
other features by. This enables us to have more reasonable scores for both long-term and new,
shorter projects. Other features are also applicable as normalization factors in the eventual
visualization. As such, the scores are not generated during collection, but within the visualization.

We also include other metadata, such as which factors to use to normalize each feature by
default—or to initially display them as is—as well as grouping of features and links to the sources
of the values, if accessible in the organization.

Rendering

The leaderboard visualization is composed of some selection controls and the features, displayed
as cards with several metrics. The user selects a project to view. We display the name of the
project along with an average score across all features. Adjacent to this heading, there are options
to change the order of the cards and the means of scoring. The order is based on the name of the
feature, the group in which it belongs—with features collected from the same system grouped
together—or the score, with the lowest value showing up first.

The feature’s value determines a ranking of projects, where the project with the best value is
awarded #1 for that feature and so on. The average total rank of a project is based on all ranks
added up, meaning that the project with the total lowest ranks is again awarded #1. Another
option is to compare against the leading value across all projects, where the project with that value
receives 100% and all others have a lower percentage based on the ratio between their own value
and the leading value. The average total score is then comprised of the scores in the same fashion.
Another option is to compare against the mean value, which for projects that perform above the
mean leads to a score above 100%. This follows the same calculation as for the lead score.

Each card is headed by its feature name, optionally the normalization factor behind a division
slash, the score, possibly a link to the source of the feature and a link to “swap” the cards. When
the cards are swapped, instead of showing all features of a single project, the chosen feature is
shown for each project. This allows the user to inspect the distribution of this feature across all
projects, including the scoring metrics.

Within the card, information about the feature’s value for that project, the leading value and
the mean value is shown. Below, a box plot of the feature’s value of each project is displayed.
The box within the plot indicates the percentiles 25%, 50% and 75%, i.e., the three quartiles. The
whiskers extending from the plot are dashed lines displaying the interquartile range of the first
and third quartile. Additionally, the box plot indicates outliers with small circles outside of the
area in which the lines of the whiskers appear.

The box plot provides more statistical background behind the visualization. For example, this
helps in determining whether a well-performing project for a certain feature is exemplary within
the organization or in fact an outlier. The project is shown within the box plot using a blue line at
the value of the feature.

119

Chapter 5. Information visualization 5.5. Visualizations for analytical decision support

The scores are made more prominent using colors that relate to the score’s value. For ranks,
the top 3 projects receive a green-colored rank, the remaining top 10 a yellow color and the other
ranks are red. For scores, any score above 75% is colored green, while it is yellow between 40%
and 75% and red for worse scores. Figure 5.16 displays an example of the ranks within the cards
detailing a project.

PI’OJS Order by: O Feature O Group O Score Show score for: O Lead O Mean ®Rank
Average: #11
Issues / Sprints #15 = Stories / Sprints #23 2 Comments / Sprints #12 = Test Cases =
Project Lead Mean Project Lead Mean Project Lead Mean Project Lead Mean
48.81 4159.6 164.26 578 39.44 8.76 35.26 11807.2 384.26 1033 3321 528.91
B 1 1 52 22 536

L Rus i . -

1033

Repositories #22 = Commit Tags / Repositories #15 = Issue Links / Issues # = Commits / Sprints =
Project Lead Mean Project Lead Mean Project Lead Mean Project Lead Mean
3 72 11.88 19.33 303.91 50.12 593 5.93 11 228.95 1355.06 151.62
2 16 3 1 0 1 25 195
-, =, =1,

Commit Pushes / Sprints #16 = Merges / Commits #1 2 Merge Requests =2 Sprints #15 2
Project Lead Mean Project Lead Mean Project Lead Mean Project Lead Mean
70.08 736.33 118.05 0.32 0.32 0.12 665 1660 219.38 116 410 110.06
8 132 0.04 0.18 2193 20 200
N . - S

Figure 5.16: The leaderboard visualization for a project showing its ranks and cards.

The scoring assumes that higher is better, which is sometimes the case but irrelevant for some
features. The number of repositories a project uses is more of an indicator of the complexity of
the code base than a necessity for all projects. Still, there is some rationale in using a simplistic
scoring where the focus should be on sparking conversation between developers within teams.

Interaction

As already mentioned for the rendering part of the visualization, there are several selection,
ordering and scoring utilities as well as a means to swap cards between single-project and single-
feature state. Additionally, by clicking on the lead value in a card, the user jumps to the project
that has this value.

The user can also drag and drop cards in the visualization. This either changes their ordering
or adjusts a normalization factor. When a card is dragged to another card and the other card
already has a different normalization factor—or, in case of the swapped cards layout displaying
a feature for each project—then their positions are switched. They lose this adjusted placement
when another order is chosen. However, when a card is dragged to a non-normalized card, it
provides the former card’s feature as a normalization factor. The card’s score is also recalculated.
If the dragged card has the same feature as the normalization factor that it is dropped on, then the
normalization is cancelled. The video behind the QR code in Figure 5.17 shows this in action.

120

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

Figure 5.17: QR code of video demonstration of the leaderboard.

5.6 Visualizations for ecosystem management

This section presents visualizations that help with discovering situations within the larger software
development ecosystem within an organization. These information visualizations are intended for
different audiences and often have a more specialistic aspect to them, which means that quality
managers, DevOps engineers and Scrum Masters are among our most prominent stakeholders.
We describe each visualization according to the flow in Figure 5.1: data selection, rendering of a
visual form and the interaction around the view.

5.6.1 Collaboration graph

One practical aspect of a large software development organization is that there are multiple
teams working on different projects. These software development projects share similar traits
between them. This is not only on technical basis—programming languages, software libraries
or development applications—but also in the sense of the development framework, i.e. SCRUM.
Team members have knowledge about former, completed projects that they continue to use in
other projects. Their experience benefits the velocity and the quality of the delivered product.

The large scale of an organization makes it difficult to keep track of this common knowledge
factor: who knows what, who has worked on which project, who could benefit which team?
Some of the organizations also have support teams. These teams help with maintaining the
development platform, for example. Additionally, guilds are formed for discussing technical
topics or coaching Scrum Masters. This helps with centralizing the knowledge about the various
teams. For management planners, Scrum Masters and other stakeholders, it is beneficial to know
how to distribute former members across new teams to help kick-start a project.

Often, it is mentioned that everyone in a SCRUM team should be aware of the work that the
others are doing, hence the need for meetings such as the Daily Scrum. In fact, developers should
be at a similar level on each of their peer’s area of expertise—with such versatility sometimes
referred to as a T-shaped skill set—so that they are able to take over their work in case of illness
or other circumstances. This is jokingly referred to as allowing a team member to be driven over
by a bus while remaining resilient enough to continue as a team.

Keeping track of each developer’s skill set is outside the scope of the Grip on Software
research. However, we provide a means to find out who has been involved in current and finished
projects as well as what their roles were, insofar that this is deducible from the collected data. This
visualization is provided as an interactive network graph, where the nodes are either projects or
people, while their connections indicate a person’s involvement in the project. This visualization
is called the collaboration graph.

121

https://video.leidenuniv.nl/media/t/1_9s965ua4

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

Data

The Grip on Software database contains a number of models describing projects and people, which
are collected from different sources, such as project trackers like Jira [I], version control systems,
e.g., Git [11] and potentially the project registration system, which keeps track of estimations for
full-time equivalents (FTEs) and seat counts that a development project has appointed.

From these sources, the following data fields are selected in order to report on the people
involved in the projects as well as their probable role:

* The person’s display name from the project tracker.

* The project name that the person worked on according to any of the tracking sources or an
anonymized identifier of the project.

* Whether the person has an email address that is linked to the organization or that it is an
external email address.

* The number of commits in the version control system by the person.

* The number of changes to stories and other issues by the person.

Some of this data is encrypted for privacy reasons before the data is selected in order to update the
visualization. To resolve problems with this, we ensure that selecting the encrypted data works
the same way. For example, we do not use the email address directly, but keep track within the
database with a Boolean field whether it is an internal address or not. Additionally, we compare
encryption hashes between different tracker data on persons in order to avoid multiple nodes for
the same person.

In order to show a timelapse of changes to the network, the data is also collected at intervals
of one month. This means that only commits and changes made during an interval will be counted
for that person’s actions at that time. As such, the person is not considered to be active on a project
before the first moment that they work on that project and similarly after they finish working.
However, the “complete” visualization continues showing these, for reasons described later on.

Rendering

In order to use the selected data for a visualization, we consider the means of displaying this data.
First of all, the relations between persons and projects is best defined as a graph G = (V,E). The
set of nodes V = M U P in this graph consists of disjoint sets of team members M and projects
P. The edges E C V x V indicate whether a person has worked on a project. There are no edges
between two persons or two projects. The graph could therefore be seen as a directed bipartite
graph where persons only have outgoing edges and the project nodes only have incoming ones:

VYivyww)€EE:vEPAWEM (5.1)

However, for information visualization purposes, it is better to distinguish the types of nodes
in a clearer manner than using a directed graph. The display of arrows on the links would not
be suitable for making these different properties clear. So while the graph remains directed, the
rendering uses another mapping to demonstrate the types of the nodes.

122

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

The mathematical representation of a graph is best visualized using a network, where nodes
are circles and edges are lines, the latter replacing the arrows in a usual directed graph established
by Equation 5.1. In this rendering, while the precise coordinate locations of each entity is not
intrinsically relevant, there are some common preferences toward drawing the graph, such as
overlap of nodes and lines and closeness of nodes. These and more preferences are guided by a
force simulation which determines a proper layout for the graph.

The network visualization itself does not need to be static. Several techniques exist to render a
graph which take several correcting steps that improve the qualities of the displayed network. A
force simulation can have different weights to nodes and links, which then cause them to attract
or push away other entities. By configuring parameters for the forces of nodes and links, these
forces take steps into a direction that makes the network visualization easier to be understood by
the viewer. We define the following forces for this purpose:

¢ A link force: The nodes that are directly connected to each other should be closer to each
other than ones that are not.

* A many-body charge force for each node: It is preferred to have as little overlap of circles
as possible. Also, project nodes push other nodes away more than developer nodes. The
Barnes—Hut simulation [114] plays a role in approximating the many-body forces.

» Three center forces: We do not want to force the nodes to be too far apart, because the
whole network still needs to be visible on a limited screen size. Separate forces make the
network remain focused upon the center of the screen and avoid growing larger than the
view box, taking into account the aspect ratio.

* A radial force: Preferably, the graph is drawn in a circular or oval shape rather than having
nodes forced into corners of the screen.

All these forces are included in a graph drawing algorithm [XX1I1] that uses velocity Verlet
integration [115] to calculate new positions, velocities and accelerations for particles, using a
decay to slowly halt the drawing. Figure 5.18 shows a fairly stable state of a network.

As mentioned before, the type of each node—displayed as circles in the network—is not
determined by the direction of its links. Instead, the size of the node is larger in case of a project
and remains small for persons. This makes projects stand out more as hubs within the network.
Additionally, support teams will have their project show up in a different, dark blue color. Support
team members themselves have a bright blue color and people with external email addresses are
colored orange. Finally, if a person has not made commits in the version control system, they are
considered to not be a developer, thus we fill the node using a different, light blue color.

Interactions

The network visualization is presented as a web application where several additional options
allow the user to adjust the visualization and gain more insight into the collaborations. Next to the
network, a legend is displayed, indicating all the roles and sizes/colors. The legend also includes
a count of each role shown in the network, as well as the number of links. The network itself
is interactive: the user can drag nodes to move them toward another location. Meanwhile, the
force simulation drags connected nodes along with it and other nodes away from their positions.
Afterwards, the simulation finds a new layout to stabilize toward based on the forces.

123

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

Time lapse | External

@ Projects: 26

@ Support teams: 5

@ Developers: 85

© External people: 126

e Support members: 25
Other people: 52
Links: 524

Figure 5.18: Visualization of a collaboration graph of a software development organization.

The view box of the network visualization also responds to changes in screen size. The
visualization will attempt to encompass a larger space when it is made available, for example
when the browser window is resized, maximized or when a larger screen is connected. Similarly,
the nodes within the network will move closer to each other and show up slightly smaller when
the screen is less wide, for example on a mobile or tablet device.

The visualization provides an option to exclude all external people from the graph. Links
involving the nodes of these people are removed and this is reflected in the legend. This might
make the graph disconnected, but there is no precondition that the graph was connected in the
first place. Given that all people from the lifetime of all the projects are shown, this is however
rare. Any disconnected project or small graph component will move itself away from the main
component due to the forces of the abundant links and nodes in this part of the network. The option
to exclude external people helps with determining if knowledge regarding projects is outside
of the periphery of the organization, which potentially leads to missing out on retaining skills
relevant for those projects.

It is possible to search for people and projects in the network, assuming that it has not been
encrypted and anonymized. If the keys used to perform encryption are available at the organization,
live encryption of the search keyword is used to compare the hashed versions. When a search leads
to a match, the view box zooms in to the position of the node and the node becomes highlighted.
Canceling the search brings the full network back into view. By hovering over a node in any view
mode, the user is able to find the name of the person or project.

The final interactive mode of the collaboration graph is the timelapse. Here, the data of each
interval is used for the network visualization, which is shown after another at time steps. The cur-
rent month is displayed with a label above the view box. There are controls for pausing/resuming
the timelapse, for slowing down and for speeding up each time step. This way, the evolution of
the organization is shown in a manner that feels familiar for people involved at any moment in the
timelapse. Figure 5.19 holds a QR code for a video with the timelapse.

124

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

Figure 5.19: QR code of video demonstration of the collaboration graph.

5.6.2 Process flow

There are various ways to look at how a software development team resolves stories on the product
backlog. Regardless of whether the team uses SCRUM, another Agile framework or even other
non-Agile software development principles, the tasks that the team needs to do are generally
managed by assigning different statuses in an issue tracker. Such a status provides an indication of
the maturity of the issue. To be more specific, the status describes progression toward resolution
of the topics mentioned in the task.

A status has different meanings within the software development frameworks. Even between
teams, the actual use of each status has slight nuances. Generally, a new story starts out as an open
or new issue, then it goes through an approval process, e.g., a refinement. After it is selected to be
worked on, a developer assigns it to work on it and marks it as being in progress. Most likely, the
developer then resolves the issue by making changes in the code. The change usually leads to a
testing phase. After all necessary actions have been taken on a story, it is closed. This corresponds
to a definition of “done” (DoD) often in use in SCRUM.

While this approximately follows the route of a story that leads to a successful code change,
not every backlog item takes the same path. When a story at some point cannot be resolved in this
way—possibly even after closing it—the story may be sent back to an earlier state, often referred
to as reopening it. A story that does not lead to a code change is often given a different resolution,
which marks it as invalid, redundant or fixed in another manner.

We wish to track all these possible states and to find potential bottlenecks in the procession of
stories from the backlog to completion. The process flow is a visualization that makes clear what
the main flows of these stories are. It also includes details about the volumes and amount of time
involved in the state transitions.

Data

For each project within our data set of the organizations, we collect the following data from the
project’s issue tracker:

* The old and new status of a story or subtask.

* The old and new resolution of a story or subtask. Most issue trackers keep this as an
additional field with its own possible values, but that only has a change if the status is in a
done or closed state.

* The timestamps of the change when the new status/resolution is made and the change when
the old state was selected. Potentially, the latter is the creation time of the story or subtask.

125

https://video.leidenuniv.nl/media/t/1_bouiosrf

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

The status and resolution is encoded in different manners in the issue tracker’s API. For example,
Jira uses numerical identifiers for these fields, but also provides a mapping to human-readable
names as well as status categories. The rendering of the field within the issue tracker depends on
the status category to define its color.

We also convert the timestamps of the two changes into a date interval. We here subtract the
weekend days within the interval in order to more accurately obtain the number of working days
that the story or subtask has been left in the old status or resolution. Note that the heuristic of
subtracting weekend days does not consider holidays.

The combinations of old status/resolution and new status/resolution are grouped together,
so that we perform aggregate operations over the state changes. We calculate (a) the number of
stories and subtasks that had such a change on the project’s backlog and (b) the average of the
number of working days that issues have spent in the same state before going to the other.

Rendering

The processed issue tracker data describes the aggregated progression of stories and subtasks
toward their resolution, but it could include “backward” transitions. The grouped data is therefore
formulated as a weighted, directed graph G’ = (V,E,M,N) where the nodes V are status/resolution
values and the edges E C V x V are transitions between these states. Two sets of weights provide
the volume and duration properties of each transition. The mapping M: E — N defines the
number of stories and subtasks that followed the state change and N: E — N the average number
of working days that those issues stayed in the old state.

Each of the nodes from V consists of a pair of status and resolution (s,r) € V, where the
resolution » € R may be empty, which we denote as €. The status s € S is involved in a mapping
that determines the status category T: S — C. The following statuses, resolutions and status
categories are known, based on Jira and TFS/VSTS/Azure DevOps:

S1 = {Open, To Do, New, Requested, Design, Accepted}
S» = {In Progress, Approved, Reviewed, In Review, Ready}
S3 = {Reopened}
S4 = {Resolved, Committed, Done, Removed, Completed }
Ss = {Closed, Validated}
S=81USUS3US4USs5 5.2)
R = {¢e,Fixed, Won’t Fix, Duplicate, Incomplete, Cannot Reproduce, Not Fixable,

Building, Manual Testing, Automated Testing, In Review, Processed

Known Issue, Redundant, Works as designed, Invalid } 5.3)
Vs1 € S1: T(s1) = Open
Vsy € Sp: T(sy) = In Progress
Vs3 € S3: T(s3) = Reopened
Vs € Sa: T(s4) = Resolved
Vss € Ss: T(ss) = Closed (5.4)
V(s,r)€V:seSIUSHLUSs=r=¢ (5.5)

126

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

Here, Equation 5.5 implies that only statuses in S4 or in Ss, i.e., the Resolved or Closed categories,
can have a non-empty resolution; for all the other categories it must be empty.

The status categories are rendered in the visualization with a colored outline of the nodes
within the flow diagram. A status in S is given a blue color, S; is yellow, S3 gray, S4 is colored
light green and S5 is dark green, akin to colors given to these categories in Jira. The nodes
themselves are rounded rectangles with the status and resolution within it. The directed edges are
rendered as arrows. The volumes and time spans are placed nearby the midpoints of the arrows.
The rendering attempts to avoid too much overlap between the rectangles, arrows and numerical
labels. The volumes also determine the thickness of the arrows. The color of the numerical labels
is defined by the working day deltas, using a color palette from blue to orange that assigns a
“hotter” color to longer waiting times.

The status categories also define the vertical position of the rectangles within the flow graph.
The nodes that are assigned to the Open category S receive a placement at the top, while the
Closed category nodes (a status from Ss) have their corresponding rectangles at the bottom. A
status not in these categories has its node placed in between these layers, aligned vertically. This
means that the states from the remaining status categories, namely In Progress (S3), Reopened (S4)
and Resolved (Ss), are on mixed levels or even in an unexpected order. However, if there are
enough transitions that follow the usual route, the rendering should give precedence to untangled
arrows.

The rendering uses the Graphviz markup language known as DOT [XXIV] to encode the
layered, directed graph. This DOT exchange format is used by various programs, such as those
included with Graphviz [116]. We use a library [XXV] to render the graph in our visualization
using a Web worker [XXVI]. An example rendering is shown in Figure 5.20.

Proj7 Proj9 Proj10 Proj11 Proj12 Proj13 Proj22 Proj23 Proj24 Proj25 Proj26 Proj27 [Recent projects [Support teams

Proj30 Proj34 Proj35 Proj58 Proj60 Proj61

Reset zoom

The flow graph indicates how stories proceed through different states. The total number of stories that go from one state to Inprogress | Reopened |
another is shown next to each transition, as well as the average number of work days that the stories remained in the b N

earlier state. These metrics also affect the width of the lines (main streams) and the color temperature (bottlenecks). | Resolved ‘

Hover over the text to see which transition it relates to. You can also zoom and drag. Use the slider to limit to transitions short Long
with at least the number of stories. Stories: -

Figure 5.20: The flow graph of a project including legends and other controls in the process flow
visualization.

127

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

Interaction

The Web worker allows the visualization to be non-blocking, i.e., the view is available while the
flow graph is being rendered. Using a selector, the user chooses which project to view. A toggle
allows showing and hiding older projects as well as support teams. Because we render the diagram
as data-bound HTML elements, selecting a different project creates a transition effect. For each
state and transition that the newly selected project has in common with the previous project, their
positions move toward their new locations. The arrows change in thickness, length and arc angles
as well. This makes it easier to visually compare two projects, even if one cannot select multiple
ones at the same time.

An additional slider, included with the descriptive legend of the diagram, allows limiting how
many transitions to show based on volume. When the slider is lowered, the state transition with
the fewest number of stories involved in them are removed first. A numerical indicator shows
the minimum volume for the visible transitions. Nodes that no longer have incoming or outgoing
arrows are also removed. Adding or removing transitions involves a similar effect to selecting a
different project. This option is helpful for focusing on the main stream of the progress.

When the user hovers over a numeric label, a tooltip shows the two status/resolution pairs that
are involved. This helps clarify in case it is unclear which transition the label refers to. The view of
the flow graph can also be zoomed and panned. A button resets the view to its default zoom level
and position when pressed. Figure 5.21 provides a QR code to a video with these interactions.

Figure 5.21: QR code of video demonstration of the process flow graph.

5.6.3 Heat map

In a software development process, the main goal is to create a product that satisfies certain
functional and non-functional requirements, adding value to the product. There exist different
techniques to increase the reliability in the process towards this goal. Our research focuses for
a large portion on estimating the effort and tracking the progress toward an acceptable product.
This mainly includes the data that is stored at the project’s issue tracker. However, the changes to
the code base of the product provide more insight into the more technical part of development.
This allows us to consider other estimations of effort or indications of problematic events during
the development phase.

An alternative indication of effort could be the volume of code changes. For example, we
count of the number of commits, the number of lines or bytes changed in each commit or other
activity metrics related to frequency of commits. Developers sometimes indicate the story they are
working on in their commit message, which helps tracking the progress of fixing the problem or
considering the feature to be “done”. However, this practice is not standardized across many teams

128

https://video.leidenuniv.nl/media/t/1_1gtnt7ym

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

and does not cover enough of the project’s life span, thus meaningful indicators that associate
commit volume with story effort are hard to extract reliably.

Still, commit volume is a property that is familiar to software developers and testers. They often
have a feeling of success when a commit with their code changes proceeds to be tested, merged
into the main development branch and included in eventual releases. There is some individual
sense of achievement. While it is not a competition, being successful in developing features sparks
a drive which improves the team effort as a whole. We wish to focus on the collaborative aspect
and find if teams have different patterns over time with regard to code commits.

Visualizations of commit volume over time exist in popular version control systems such as
GitLab and GitHub [XXVII]. A calendar shows a developer’s commits on each day. This heat
map is sometimes shown on profile pages found on these systems. In our case, the focus is on the
collaborative aspect instead of individual performance. The entire team has a responsibility for a
stable throughput of code changes. A heat map helps visualize this metric over time.

We also want to extract more knowledge from the heat map and its commit-based metric. We
wish to include other data regarding events that took place on the dates of the commits. External
data helps with further testing of the metric, for example by finding whether there is a relationship
between the day’s weather and the number of commits.

Another possible use for a temporal visualization of commits is a detailed look at the files
that are changed. When files have not been touched for a long time, this might indicate a long-
forgotten component that has worked without problems. It would then become difficult to keep
the component functional within a changing environment. A code change after a long time may
suggest that this file contains other hidden problems, such as dead code, that should be reviewed
more comprehensively. In some programming languages, deeply-nested components could lead to
loss of expert knowledge. The heat map visualization indicates such situations when they arise.

Data

We collect the following data from the version control systems of the projects in order to fill the
heat map:

* The number of commits on a date, excluding commits made by automated systems.
* The number of developers that made a commit on a date.

» The code repository, possibly a human-readable URL of a specific file in the repository,
the filename and earlier date that the file was changed. This is only included if a commit
was made to the file on a date and the difference between the this date and the data of the
previous commit to the same file is more than a certain threshold.

Additionally, we collect the average temperature of each day from the closest weather station to the
location of the two organizations included in the Grip on Software database, namely The Hague,
the Netherlands [XX VIII].

Rendering

The heat map is rendered in the form of a calendar. Time is laid out in two dimensions, where the
vertical axis has days of the week and the horizontal axis shows weeks. The labels of the days
of the week are shown at the start of each year in abbreviated form. Each month is split up from

129

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

the rest using a black border between the days of that month and the next. The horizontal axis
displays month labels. The days themselves are squares, where the background color of the square
is given a bluish hue. The darkness of the color is based on the number of commits on that day.
Below the beginning of the year, a scale legend indicates the highest number of commits on a
single day that year.

In addition to the background color, each day may have a temperature bar which makes the
bottom part of the square darker, extending further upwards based on the temperature on that day,
as shown in the example in Figure 5.22.

Projl | Proj3 | Proj4 | Proj5 Proj6 | Proj7 | Projs | Proj9 Projio [ZGSARNM Proj12 Proji3 Proj20 Recent projects (CUIEREIN Commits per developer File changes

Pro2i | Pro2 Proj23 Proj2d | Proj25 Proj26 | Pro27 | Pro30 | Proj32 Proj3d Proj35 | Proj36 Support teams

Projsé Projs9 Temperature

Proj11

2020

ctober November December January February March April May June July August September October November December

su
B] ol

- 47

Figure 5.22: The heat map of a project, showing the most recent commit volumes including
temperature bars.

Interaction

Similar to other visualizations, the heat map has a project selector which lets the user switch to
another project. A pair of checkboxes provide filters for the project selector to only show projects
that had recent activity and to hide teams that provide support systems to other teams.

An additional set of toggles select the scale. By default, the total number of commits is used.
If the user choose another toggle, we instead color-code the days based on number of commits
per developer or the total number of files that were changed. A final toggle allows turning the
temperature bars within the day squares on or off.

The calendar is scrollable to the left or right, using a scroll bar, by mousewheel-clicking or
dragging, i.e., by pressing and moving, in order to move the calender to earlier and later years.
This scrolling behavior was adapted to work on desktop setups with a mouse, on mobile devices
and even for use with a remote, such as a Wiimote.

When the user hovers over a day, the metrics known for that day—number of commits,
commits per developer and average temperature—are shown. If the user clicks on a square, a list
shows up below the calendar, including files from the project’s code repositories that were changed
on that day, limited to those that were not changed for a long period of time. The changed files are
grouped by repository and each group is collapsible. A link to the code repository is provided
next to the name of the repository. This functionality is only provided when the visualization is
deployed within the organization.

130

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

Figure 5.23: QR code of video demonstration of selecting projects and scales in the heat map.

5.6.4 Platform status

An important technical requirement for software development teams in order to produce new
features is a development and testing platform that provides reliable stability as well as flexible
scalability. Multiple team members should be able to concurrently set up new instances of their
software in order to test them separately from each other, without reaching resource limits. If the
team does approach limits on disk usage, processing power or network load, to name a few, there
should be a way to warn those that are able to restore the platform to a nominal state without
much effort. A platform status dashboard would indicate the usual workload of the system as
well as alert the user of potential problems when a threshold is reached. We could even perform
anomaly detection on the data points.

It is beyond the scope of the Grip on Software research project to compare different uses
of development and deployment platforms, although our pipeline works well using Docker
containers [37] as explained in more detail in Chapter 2. At one of the organizations, ICTU, a
Docker-based development environment known as BigBoat [VII] was in use during the time that
data was collected from the SCRUM teams—they later moved to another platform. One issue that
some teams faced was that this environment often hit resource limits. The platform provided an
overview of the current state, including warning indicators when the monitored metrics reached a
level that would decrease performance. However, there was no information on past measurements
or frequency of failures. The lack of temporal data made it difficult for the teams to pin-point the
problems, to relate them with timestamps from build systems and to adjust deployment processes,
preventing further downtime.

Data

We collect data from the BigBoat development environment to help find out what events and
problems took place. The following metrics are collected for each project for each timestamp:

* Whether the Docker agent is healthy.

» The usage and capacity of various data stores for Docker, including persistent data.

* The number of IP addresses in use within the virtual network.

* The memory that the Docker instance is using, as well as the maximum available memory.
* The system load, which relates to how much of the available CPUs are in use.

e The amount of time that the system has been online.

131

https://video.leidenuniv.nl/media/t/1_yihku75q

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

For the numerical metrics, there is also a threshold value defined by the platform at which the
status of the metric is defined as “not OK”. For the metrics with a limit, this is usually a percentage
of the maximum value; the threshold for the system load could be set to a fraction of the number
of available processors. This “OK” status augments the healthy state metric of the Docker agent.

Rendering

The collected platform metrics are rendered as an aggregated line chart as well as individual line
charts. The horizontal dimension of each chart indicates the timestamp and the vertical dimension
has various possible axis labels, depending on the metric. The appearance of the visualization is
similar to other system monitoring suites familiar to development and operations teams.

The first vertical axis on all the charts is the “OK” status. A line is drawn with a range
between O to 1. Here, 1 means that the metric is “OK”, while 0 is “not OK”. For the aggregate
chart, the axis indicates the reliability of the entire system based on all the statuses, so the value
indicated by the line at a certain time is that of the ratio of statuses that are “not OK” at that time
over all the known metrics.

The individual metrics also have another vertical axis, except for the Docker agent health
metric. Some metrics have an associated unit for this axis, but others do not, such as the number
of IP addresses and the system load. If a maximum value for the metric is predefined, it is used as
the limit of the vertical axis. Otherwise, the axis ranges from 0 to the maximum value within the
displayed time interval. In the two instances of storage and memory, the values are shown in units
of gigabytes, with the maximum disk space and memory capacity used for the axis limits.

To make the difference between the two displayed lines more clear, the status indication is
drawn using a blue line and the metric value with an orange line. The first axis uses a blue color
for the two axis labels to indicate this association. The individual metrics are displayed with a
heading and description to explain their meaning. The visualization is headed by the name of the
project, a link to the dashboard if it is reachable in the organization and the date and time when
the metrics were most recently collected. The entire status dashboard is shown in Figure 5.24.

Interaction

The platform status is available for different projects, like most of our visualizations. A selection
control allows switching to another project. In addition, it is possible to limit the charts to showing
the most recent week, month or the full project’s life span, using a similar range selector.

It is also possible to zoom into the metrics using the charts themselves. By hovering over a
chart, a vertical line with an open circle at the top appears. This line spans from the bottom of
the chart to the value at the current timestamp. Moving to the left or right will put the focus on
an earlier or later value, respectively. A tooltip next to the line indicates the time, the status and
optionally the metric’s value. At the same time, all other graphs show the line but without a tooltip.
By clicking on the graph, the line and tooltip remain static at the chosen position until the user
clicks again or leaves and re-enters the chart with the mouse.

When the user presses and drags the mouse to the left or right, an area of the chart is selected.
After the dragging is finished, the charts will adjust to show the chosen time range. Another
set of selection buttons provides a few standard time ranges: the full lifetime of the project, the
past month and the past week. The QR code in Figure 5.25 leads to a video with interaction
demonstrations of the platform status charts.

132

Chapter 5. Information visualization 5.6. Visualizations for ecosystem management

BigBoat status

Bl Pros Proj7 Proj9 Projl0 Proji1 | Proji2 Profl3 Proj20 Proj22 Proj23 Proj2d | Pro25 Proj26 | Pro27 Proj29

Proj30 Pro32 Proj4 Pro3s Proj36 Proj6l

Proj5 ot ek

Last checked: 2021-11-29 18:29:26

Average Reliability

w20 Aol oy Octsber 20 ol ay october

Reliability per component

Available IP Addresses BigBoat Agent
An Indicator of whether the dashboard can assign enough IP addresses for all the instances Whether the dashboard can reach the backend agent, which handles all actions regarding
contalners and storage buckets

160
160
10
20
100
w0
@
o
T T T .
2 Apl Jiy Ociober 2021 Apil Juy October 200 Apil iy October 2021 Aprl Juy October
Data Storage Docker Graph
Space that s In use by the storage buckets Space that s In use by (Intermediate) Docker images
8 8
o -
o -
s s
o o
s =
o “
B Bl
’,__/————'\—f—”_i = »
s 9
2 Apl jiy October 2021 Apil Juy October 200 Apil juy October 2021 Aprl Juy October
Memory System Load
Space that s In use by processes In the containers Load average caused by processes that want to use CPU time In the containers
X
s
a2 N
7 :
»
s °
» :
» 4
1 hs
. 2
s 1
8 o ead o
2 Al My oalber 200 Apil iy October 20 mi My Oceber 201 Al My Ocaber

System Uptime
Time since the dashboard was last restarted

oK Lo ey
201
3009
s
2546
s
2083
1852
1620
1389
1157
25
94
63
231

Bag tos

00 Wy Oceber 2021 Apdl Juy Ocober

Figure 5.24: Platform status for a project.

133

Chapter 5. Information visualization 5.7. Novel backlog visualizations

Figure 5.25: QR code of demonstration video of the platform status charts.

5.7 Novel backlog visualizations

Based on conversations and interviews, three additional visualization objectives emerged [117]:
(1) to estimate the end date of a project, (2) to reveal patterns in the progress of the software
development process and (3) to visualize relationships different types of tasks. We design three
new visualizations to integrate further with an issue tracker, in this case as Jira plugins. These
visualizations depend on React [XX1X], Redux Toolkit [XXX], Bootstrap [XxX1] and D3.js [111].

5.7.1 Product backlog burndown chart

One goal that team members needed help with was to determine end date estimates for the entire
product backlog. During interviews, existing burndown charts for a single sprint, for epics and for
releases were discussed. The latter two indicate the likely number of sprints left to work on the
user stories that the epic or release links to, based on earlier velocity. A similar chart for an entire
backlog is not provided by the issue tracker.

Because the product backlog is an intricate artifact, we define segments of the backlog size
during a sprint based on the story point mutations involved with actions on the product backlog.
The project’s issue tracker provides most of the input data for the burndown chart:

* Completed work: The total number of story points completed during a sprint.

* Discarded work: The total number of story points on the product backlog from stories that
have been closed abnormally and thus have no more work that needs to be carried out.

* New estimations: The change in story points from stories on the product backlog whose
estimate has been adjusted.

* Remaining work: The total number of story points from open stories on the product
backlog with no estimate change.

* Unestimated work: An automated estimation of the total number of story points from
stories on the product backlog that were not estimated by the team by the end of a sprint.
Our estimation is based on the average number of story points on the backlog at that time.

* Added work: The total number of story points from stories added to the product backlog.

The data collected for each sprint is rendered as a bar chart, where the bars are segmented based on
these categories. Later estimations are further split up into higher and lower adjustments compared

134

https://video.leidenuniv.nl/media/t/1_15751wss

Chapter 5. Information visualization 5.7. Novel backlog visualizations

to the earlier story points. This gives users a more detailed overview of the reasons for story
point mutations. The color scheme is a derivative of the color scheme offered by Jira, taking into
account users with color blindness. The sizes of the bar segments are displayed when hovering.
Selecting a time span on the horizontal axis results in a view which zooms in on that period in
time. The visualization also features a project selection input field and guidelines on the axes.
In order to actually show a forecast for the end date of a project, we provide two ways to
estimate and visualize the number of sprints that the development team will likely have to complete
after the current date. The first option allows users to extrapolate the total number of future sprints
by letting them tinker with the expected average segment sizes. The representation calculates the
mean values for the six story point mutation categories. The user can edit these values to determine
the effects on the number of future sprints. The second option displays results of simulation of the
Monte Carlo estimation algorithm mentioned in Section 4.4.3, as in the example in Figure 5.26.

W Added work B Work reestimated higher B Unestimated work M Remaining work I Work reestimated lower Discarded work 1 Completed work

Fabeusy Maren Aprl May June July August September Ostobar NovemparDssember 2018 Fabasy Maten Apal Msy June July August SaplemberOctodar Nevem

Align sprints with the base of the chart

Filter Forecast Breakdown

=y Off &6 Estimate i@ Simulation

No forecast is shown. Shows forecasted sprints based on an editable Shows a realistic sprint forecast based on data
estimation. analysis of previous sprints.

Figure 5.26: Product backlog burndown chart showing a Monte Carlo simulation of future sprints.

5.7.2 Product backlog progression chart

We find that projecting information regarding past work onto the current situation helps users
identify development patterns. In the progression chart plugin, we wish to display the evolution of
the product backlog from its inception up to the current sprint. The data for the progression chart
is based on the stages that user stories typically go through within the SCRUM framework:

135

Chapter 5. Information visualization 5.7. Novel backlog visualizations

—

. The story is added to the product backlog with an initial description.

[\

. The story is refined. The team estimates the effort and the Product Owner prioritizes it.

W

. The story is selected for development.
4. The team works on the story, progressing through the stages of the sprint backlog.

5. The story is completed according to a definition of “done”.

The progression chart displays both real time and earlier project information about these stages.
Specific data mutations are conveyed by means of animation through a playback feature. For
example, an addition to the backlog is shown as spawning a circle within a sprint, which itself is
a larger circle directly contained in the project’s circle. The circle is then inflated up to the size
corresponding to its story points compared to other stories. Circles are automatically positioned
relative to each other in such a way that they generate the smallest overarching circle possible.
The position of a circle within the diagram changes when the story moves to another stage of
development. Sprints are given a color based on their recent activity; blue sprints are active. The
sprints contain nested light blue, yellow, green and dark gray circles depicting status categories for
stories: “to do”, “in progress”, “done” and no status, respectively. The stories within the categories
are shaded based on whether they have a story point estimation (light gray) or not (dark gray).
Figure 5.27 displays the state of the chart at a specific moment in time for a support team project.

“«nmEn L

Figure 5.27: Example of the product backlog progression chart.

136

Chapter 5. Information visualization 5.7. Novel backlog visualizations

The playback buttons enable the user to view these changes similar to viewing a timelapse
video, including normal playback, pausing to inspect the current state and adjustments to playback
speed. Moving the cursor over a circle shows a tooltip with the title of the object and, in the case
of a larger circle, the total number of story points it represents.

5.7.3 Product backlog relationship chart

Another purpose of visualizations of product backlogs is to reveal relationships of user stories. The
complexity of these relationships is helpful to learn for the development team, as it provides an
indication whether there are conflicting dependency relationships. It also encourages refinement,
by putting the story in context of other tasks.

The data used for the relationship chart comes from the project’s issue tracker. We collect
several attributes of the recent user stories and other issues: the key, the type of item, a short
description, the story points, the links and the sprints in which they are planned to be worked on.

We visually represent the data using a directed graph. The user stories and tasks are nodes,
sized according to their story points in the rendering. Some nodes are connected by edges based
on relations made by members of the team. The colors of the nodes correspond to the glyphs in
Jira that indicate different types of items: purple items are user stories, light blue items are tasks
or subtasks, red items are bugs, green items are improvements, yellow items are spikes and light
gray items are technical tasks. Undirected, light gray edges indicate parent—child relations with a
subtask, while directed, black edges use other dependencies, such as “blocks” or “duplicates”.
Figure 5.28 shows the chart for a support team along with a configuration panel.

(IES) ICTU EcoSystem

2@
s ' @ Y
o, o0 °
[] *. 0
e e 00y
[3R . °] o e,
. .'. . * L]
¢ ,. e % " . .
o0, . . . e
:.. - «® 3 L ..
vee’ . oot L/
. ooty -..
. ce, fey .0 @,
. .
° .-. . eee® o ._‘.- .
® . ° . .
® . ., . e

Configure

Number of past sprints to show

Unestimated issues

@ show unestimated issues

Number of story points

5

Figure 5.28: Example of the product backlog relationship chart.

137

Chapter 5. Information visualization 5.8. Evaluation

The graph layout is force-directed, meaning attractive and repulsive forces between nodes
cause dynamic object positioning [XXIII]. In the configuration panel, a slider allows filtering
issues to only show those from a number of most recent sprints. If the user enables a toggle to
display issues without estimations, a configurable number of story points is used for their node
size. The annotation details show up in a tooltip when hovering over a node. When the user clicks
on a node, the corresponding item is opened in the issue tracker.

5.8 Evaluation

The information visualizations that are described in this chapter offer an integrated solution to our
research questions, by providing the stakeholders with a means to inspect and learn from analyses
and patterns from the Grip on Software research. We wish to understand further how to assess
the effectiveness that the introduction of these visualizations have on the software development
process, in particular how it is adopted by the different teams and roles. We apply objective and
automated measurements for the visualizations themselves in Section 5.8.1. Then, we discuss
interviews and surveys with relevant parties in Section 5.8.2. Finally, we summarize our review of
the information visualizations in Section 5.8.3.

5.8.1 Assessment

Based on the purposes mentioned in Section 5.2 and the design principles that we established in
Section 5.4, we determine what kinds of objective aspects an information visualization should
adhere to in order to properly be able to use it within a software development organization.
Usually, a more verbose specification of requirements would be a starting point, but in our case the
visualizations are provided as a proof of principle that our approach of making curated data and
results accessible to the stakeholders has merit. The dashboard and visualizations are not market-
ready products where such studies would be a non-functional requirement. Still, we consider the
following objective criteria when evaluating our visualizations:

 Similarity: Functions that a visualization provides to enable access to certain controls
or subselections of data, should behave the same was as the function that does this in
another visualization on the dashboard. Examples of these functions are: selecting a certain
project to display, comparing it to other projects, zooming in on temporal or coordinate
data, displaying additional data via tooltips or exporting the data.

* Traceability: It should be possible to find out how a certain data point was determined, by
providing information on how it was calculated or by adding a link to the source of the data,
sometimes referred to as data provenance.

* Tests: Various portions of the visualization should be able to be found and interacted with
using an integrated test, where a browser is controlled via an automated system which
attempts to visit a web page on an isolated HTTPS website. It is then instructed to click
specific buttons or other controls. The test then validates if certain HTML elements or
other content is found on the page. Being able to emulate user input is also an indicator of
perceptive difficulty, as visualizations that require fewer steps to work with are also easier
to test this way.

138

Chapter 5. Information visualization 5.8. Evaluation

* Mobile and large screens: The visualization should be able to adjust to devices with
different screen sizes and input methods, such that the views and controls are still visible
and operable. We should also account for setups where a mouse and keyboard are replaced
with other input methods, such as touching or with a remote.

* Accessibility: The visualization should be usable for people who require the use of screen
readers or other aids in order to understand the contents of a web page, such as our
visualizations.

¢ Color blindness: By extension of the accessibility aspect, people who see differences
between certain colors less clearly should be able to interpret a visualization to obtain
knowledge from it. Information conveyed by color should have another means of description,
or a color scheme adapted for color blindness should be selected.

The aspect of similarity is partially covered by the integrated dashboard with common UI elements,
such as the navigation. Many other elements within the visualizations also share a common ground,
e.g., a project selection control and tooltips for longer descriptions. Still, some of the controls are
left out or given different functionalities across the visualizations, so for a number of relevant
controls we compare their use, with the results displayed in Table 5.2.

VISUALIZATION SELECTION COMPARE ZOOM TOOLTIPS EXPORT
Sprint report v v v v v
Prediction results v X X v 4
Timeline X 4 v v X
Leaderboard v 4 X X X
Collaboration graph X R v R X
Process flow v ~ ~ v X
Heat map v X 4 v X
Platform status v X 4 v X
Burndown chart v X 4 X X
Progression chart v X X v X
Relationship chart v X X v X

Table 5.2: Comparison of common functionalities of the visualizations (v is good, ~ almost,
X bad/missing).

We note that some visualizations do not share a common control because they do not require
some functionality. For example, the timeline and collaboration graph show all projects from
the data set, thus they do not have a means to select a project. A function to filter projects could
however be a desired feature, so it is relevant to denote its absence. There are slight differences
in how the projects are selected or filtered as supported by metadata. The product backlog
visualizations use a different control to search and select a project. Overall, there is consistency
and we prevent the controls from being overcomplicated. Many visualizations are limited in their
capability to compare projects, often because the focus is on one project at a time.

An important design principle that we started out with is to primarily display data relevant to
the patterns that we wish to present. Many of our visualizations are built around this principle.

139

Chapter 5. Information visualization 5.8. Evaluation

Still, some users want to find more details, either temporally or within another coordinate space
of the visual form. To do so, a number of visualizations offer a control which zooms the view,
leading to a different selection being shown. Some visualizations use buttons or scroll wheels to
zoom in and out. Another method is to select or adjust a rectangular area to zoom into using a
“brush” or within the area itself, with another gesture to zoom out. The collaboration graph only
zooms in when a search takes place. Each control is different, but is often indicated using a button,
a mouse cursor or a search field. This addresses the need for this functionality.

Another method of making both information and controls more insightful and clearly labeled,
while avoiding clutter on the page, is to place these details or guides in tooltips. Many visualizations
use this, albeit in slightly different formats and situations. Most visualizations label the controls
with longer descriptions. Some have larger tooltips that indicate more features for a project or
sprint. However, in the collaboration graph and process flow, only small tooltips are used for some
details, which is less usable and accessible for many users.

Only the sprint report and the prediction results have controls that export that data shown
in the visualization in different formats. The integrated dashboard optionally shows a download
link for each visualization. An exported version is helpful for offline inspection, reporting and
standalone presentation. Specific export controls are buttons which open the selected format in
another browser tab or provides a direct download, depending on browser settings.

Most controls and rendering approaches will feel familiar to users, such as buttons, checkboxes,
sliders, graphs and charts. We consider these effects of similarity when it comes to adoption in
Section 5.8.2. The other objective criteria are laid out in Table 5.3 and we discuss further how
some visualizations fulfill these or not.

VISUALIZATION TRACEABILITY TESTS MOBILE ACCESSIBILITY COLOR

Sprint report v
Prediction results
Timeline
Leaderboard
Collaboration graph
Process flow

Heat map

Platform status
Burndown chart
Progression chart
Relationship chart

AN

N AW xxN SN
XXX NNSNSNNSNANN
AN N N T N NN N N
> X X NSNS SNSSASN
XN AXSNSNSN

Table 5.3: Comparison of assessment criteria regarding the visualizations (v is good, ~ almost,
X bad/missing).

With regard to traceability, we have shown that some of the visualizations provide details
on how features were collected and extracted, as well as providing links to where they come
from when the visualization is deployed within the organization where access to the sources is
possible. Often, there is only a link for specific entities, such as a sprint, a code repository or
a Docker dashboard. Only the collaboration graph and process flow do not have links to their
sources, making it harder to trace back their metrics.

140

Chapter 5. Information visualization 5.8. Evaluation

All visualizations have tests that ensure that controls and expected rendering function properly.
The only exceptions are the Jira plugins, which do not have automated test cases to perform these
actions mechanically. The large majority of actions and gestures have been tested in this way and
shown to be reproducible in this integrated setting.

When it comes to different screens and input devices, most visualizations work well in both
small, mobile formats as well as in a larger lay-out. Additionally, we ensure that gestures that are
important for the functioning of the visualization remain possible with touch or remote, although
a small number of touch methods are not available when they conflict with normal scrolling
behavior. For example, the leaderboard, where the cards properly fit a device size, cannot make
use of dragging to create new normalization factors. The collaboration graph also provides slightly
less interaction. The main issue for the nonconforming visualizations—the timeline, process flow
and platform status—is the size of the charts or graphs that are displayed, which become too small
when scaled down.

As part of our integration tests, we also use an automated accessibility testing engine [XXXII]
which checks for common practices regarding web page structure and is able to find the majority of
issues that could lead to failure compared to the relevant accessibility guidelines [XXXIII, XXXIV].
Any failures are aggregated and reported based on the tests. Meanwhile, browser extensions track
them in development environments.

To check for potential problems for color blindness, the accessibility tests perform contrast
ratio measurements between foreground and background elements, but this is not a sufficient test.
We find that most visualizations use proper color schemes and/or glyphs with textual labels to
differentiate colored data. The ranks used in the leaderboard use green, yellow and red, which is
technically not enough to differentiate the different categories, although the rank numbers provide
an indication. The platform status indicates collection dates with green and red. The Jira plugins
use some colors that do not go well with another in the same rendering, despite an attempt to
improve upon the original color scheme.

Overall, the visualizations provide an integrated, familiar, accessible and clear experience,
putting the focus on the information being displayed. By sharing interface controls and applying
them in similar ways, users are able to learn how to use a new visualization more quickly and to
customize it according to their needs. Through tests, we are able to ensure that the visualizations
remain available according to these criteria. This also clarifies goals of further development of
a data hub for developers. Improvements to the functionality easily fits along with the existing
situation.

5.8.2 Adoption

During the Grip on Software research project, we performed a limited amount of evaluation
of usability and adoption among representative users. For three early-developed visualizations,
namely the timeline, collaboration graph and heat map, we conducted a survey including a
System Usability Scale (SUS) questionnaire. This provided some insight in the potential of these
visualizations and steered the focus afterward.

The questionnaire showed that the respondents found the visualizations to be easy to learn and
easy to use. One point of contention was that it many users would not be frequently accessing any
of the three visualizations during their usual work routine. A likely factor that the questionnaire
accentuated was that, at the time, the three visualizations did not make clear what certain elements
were meant to do [118].

141

Chapter 5. Information visualization 5.8. Evaluation

Based on more meetings, discussions and presentations, we focused on integration of new
visualizations, predictive patterns and situation reports. The resulting visualizations are an iterative
effort, where prototypes were displayed to stakeholders for further feedback and desires. This
included exploring which kinds of attributes were more relevant to them. We often enrich the
result rather than leave out the data that was found less interesting, so that it is still accessible
through a tooltip, for example. In order to ensure that features exhibited data that users felt familiar
with, we collaboratively looked for reasons where data did not adhere to expectations and adjusted
filters and other conditions. This also improved the attributes for the prediction and estimation
algorithms, as the input data more accurately follows the events that they described.

Specific care was taken for the information visualizations with regards to usability. Users
tested whether they could acquire the knowledge provided in them, including users with color
blindness. The novel structuring of data allows some users to extract knowledge that they could
not easily find before. Providing existing data in fresh formats through intuitive interactions helps
users find their way more quickly [119]. In particular, the sprint report and prediction results
were used by various Product Owners, software delivery managers and quality managers for
multiple teams. The collaboration graph’s overview and timelapse mode was seen as helpful at an
organizational level, as well as a nice way to showcase the organization’s own history.

The predictive power of the sprint report’s future sprints as well as the backlog burndown
chart has helped team members in leading roles to find out when a project would finish if no
additional stories are added to the backlog, or when additional features need to be suggested by
the client in order to maintain enough volume. Based on exploratory interviews with users that
have various roles in the organization, an inventory of missing insights was formulated. These
ideas further influenced the design of the novel backlog visualizations.

5.8.3 Conclusion

In this thesis, we study patterns and analyses regarding the aspects and iterative results from
SCRUM software development processes. This chapter focuses on delivering the research output
to the relevant stakeholders, including development team members, Scrum Masters and Product
Owners. We aim to do so in an intuitive way that integrates with the existing development
ecosystem. We create a dashboard of multiple information visualizations to make our results
accessible to the aforementioned stakeholders, highlight different types of data and ease the
discovery of useful patterns. We provide sprint reports, prediction results, timelines, leaderboard
ranking, network graphs, flow graphs, heat map calendars and platform status monitoring. Finally,
we design various backlog visualizations that integrate with Jira, an often-used issue tracker.

These visualizations are designed in a way that they meet certain requirements when it comes
to applicability within the software development framework. The goal is to improve the process,
by supporting the stakeholders in finding out what went well and what can be improved. The
information is provided with clear labels that describe what it means. Focus is placed on the
important factors, but it is still possible to inspect details and trace sources through zooming,
clicking links or expanding elements [109].

The view and interaction of each visualization is based on considerations for colors, icons,
glyphs, gestures, interactions and controls. The rendering of the visualization is based on a visual
form, such as a graph or a collection with relationships between certain fields. The visual form is
defined by the type of data that we select and filter from the data pool, which includes the Grip on
Software database, results from prediction algorithms and external data sets.

142

Chapter 5. Information visualization 5.8. Evaluation

The information visualizations produced by the Grip on Software project are available as code
repositories and a live website is publicly accessible for research purposes’'. The visualizations on
this dashboard use anonymized data; teams, projects and people have no identifying information.
Moreover, there are no links to the systems where the data is collected from. Versions of the
dashboard with descriptive identifiers and source links are available to the organizations that
were involved in the research, namely ICTU and Wigo4it. The Jira plugins with novel backlog
charts are also deployed at ICTU. We consider the application of these visualizations in two
organizations to be part of our case studies into their specific workflows, while the produced
results and evaluations make them relevant for wider application [120].

We introduced automated metrics in our assessments through unit tests and accessibility tests,
in addition to other objective metrics and user feedback [121]. Together, the are a part of our
iterative design and construction process for the visualization phase of the GROS pipeline.

Selecting a proper visualization to support the user in making an informed decision within a
process is sometimes difficult, especially when there are many potentially relevant metrics and
features to provide to them [122]. For our visualizations, we have taken some design principles in
mind, which include familiarity, relatability, simplicity and intuitiveness. These principles mostly
revolve around keeping the default view for the user focused and uncluttered, while providing
details when a clearly labeled control is interacted with. Each visualization has different formats
that were chosen to fit with the type of data.

The application of information visualization within Agile software development methods
is an area of research that has not been extensively explored. Most earlier work focuses on
visualizing specific aspects or abstract flows. The integrated dashboard provides new opportunities
for stakeholders to obtain the knowledge to improve their processes.

In conclusion, we demonstrate that it is worthwhile to provide results from predictive models
regarding SCRUM software development in the form of information visualization to those involved
in the process. Further research could show how the adoption of the visualizations affects long-term
decision making, for example regarding backlog planning. Finally, a full usability specification,
study and survey—with an updated SUS questionnaire involving more of our visualizations—
helps position the use of visual interaction systems within Agile software development frameworks
even better.

https://gros.liacs.nl/visualization/?lang=en

143

https://gros.liacs.nl/visualization/?lang=en

Chapter 6

Discussion

Contributions of the Grip on Software research toward
predictability of the SCRUM software development process

Abstract of Chapter 6

We finalize the Grip on Software research by reflecting on the problem statement, research
questions, implementations and results discussed in earlier chapters. Particular consideration is
given to the technical pipeline that made our studies possible. This includes components for
agent-based data acquisition and database storage with a query template compiler for feature
extraction. We also implemented state-of-the-art prediction models and validation methods
that take temporal aspects of the data set into account. The research output is established by
novel, integrated information visualizations.

We consider the design and architecture of our distributed research system to be part of our
main contributions to the field of predictive software engineering. This is because they form a
feasible approach to help explain how a SCRUM software development process is progressing.
Our problem statement involves understanding how the analysis of events from this Agile
process can be used to significantly improve predictability of sprint completion and backlog
progression. We address these themes and problems through several research questions and
sub-questions.

We conclude the research by answering these questions. The acquisition and storage of
data relevant to the SCRUM process becomes reliable using our pipeline components, including
MonetDB as a column-based relational database, for which we introduce a query compiler.
For pattern recognition, we introduce several models for sprint workload classification and
estimation as well as project backlog size estimation with reasonably accurate results. This
analysis stimulates short-term and long-term planning efforts during the development process.
Through information visualization, we provide understandable and usable visualizations which
we evaluate through hybrid testing and survey assessments, showing promising adoption of
several integrated visualizations that support analytical decision making and development
ecosystem management.

The Grip on Software research project shows potential for future additions and follow-up
studies, both in improving the quality of data and expected results for analyzing particular
situations in SCRUM, but also through generalization toward other software development
methods or reusability of implementations in future data-oriented research.

Chapter 6. Discussion 6.1. Retrospective

6.1 Retrospective

This chapter provides a recap of the Grip on Software research outlined in full detail across this
thesis. The research focuses on understanding how to extract, analyze and explain events that take
place during a software development process, which kinds of predictive algorithms are applicable
to this kind of data and whether this allows teams to learn from factors that indicate the progress
thus far. Specifically, we consider development cycles based on the SCRUM framework [6], with a
total of 60 projects and teams from two Dutch governmental development organizations, ICTU
and Wigod4it. Our focus of this chapter is to provide an overview of the results of this research.

As software development is a complex process, we have found that it is not easy to provide a
single, encompassing conclusion about how development teams should conduct their work. In our
research, we specifically focus on SCRUM, while remaining impartial on its efficacy compared
to other software development methods. Keeping in mind the values posed by the Manifesto
for Agile Software Development [3], we consider that there is no immediate need to outline the
method’s strengths and weaknesses, but rather to focus on potential usability. Rules that seem
inherently contradictory on the surface in fact reinforce each other; for example, without processes
and supporting systems, team interactions would become chaotic. In a similar spirit, additional
predictability of the process—by planning ahead—should allow teams to respond to change.

Our main objective is to improve this predictability. This leads to a scientific approach in a
situation where data is available, but scattered and not immediately ready for in-depth analysis.
Through novel implementations of state-of-the-art models, we design a generalizable pipeline
for secure data acquisition, analysis and explainable output. This is a cornerstone for providing
accurate results through different methods of predicting short-term and long-term effort in SCRUM.

In this chapter, we address the results of the Grip on Software (GROS) research in different
phases. In Section 6.1.1, we first discuss the GROS pipeline from a technical perspective. We then
describe the main contributions per chapter in Section 6.1.2. Next, we reflect on the conclusions
in Section 6.2, with the research problem addressed in Section 6.2.1. Specific points regarding the
research questions are detailed in Section 6.2.2.

We wrap up this chapter and the body of this thesis with suggestions for potential future
work that extends upon our study in Section 6.3. This includes possible research directions
in Section 6.3.1 as well as generalizability of the approach—including applicability to other
development methods and research endeavors—in Section 6.3.2.

6.1.1 Technical overview

Throughout our research, we have created and used a unified pipeline which processes data that
we collect from software development projects. The steps that we perform in this pipeline are
important to our needs and relevant to discuss on their own.

In Figure 6.1, we display a schematic overview of the components of the pipeline. In gray,
we show some typical systems used in software development: an issue tracker to manage project
backlogs with tasks like user stories, a version control system that holds code repositories and a
quality metrics dashboard for checking coding practices. These are part of a software development
ecosystem present at each organization. The red arrows denote our components that acquire
data from these systems, import the data in a structured manner and extract features for further
research purposes. Blue blocks in between the arrows depict intermediate, persistent artifacts of
our pipeline. Finally, the green blocks represent the research output at the end of the pipeline.

147

Chapter 6. Discussion 6.1. Retrospective

Issue tracker Prediction

Gather Collection | | Import Database Extract TensorFlow
ersion contro
Python JSON Java MonetDB R/SQL Visualisation

Quality metrics D3.js

Figure 6.1: The full Grip on Software pipeline. The primary data sources (gray), processing
components (red), intermediate artifacts (blue) and resultant components (green) are shown here.
The components are constructed using various frameworks, modules and programming languages.

Each component is built with its own objectives in mind, with an overarching idea that the
functionality of all the components is directed towards our data needs in the GROS research
project. We describe the components in each chapter from a scientific usage perspective and
clarify how we are able to employ the data in our studies after processing and transformation by
the component. Even though the technical details of the components are not the primary subject of
this thesis, they do pose a relevant topic when we augment the components with new techniques.
Some of the novelty of the components is mentioned in Section 2.4.4 of Chapter 2. In Table 6.1,
we indicate the chapters of this thesis and recap on what each of them describes. The component
and intermediate artifacts are discussed from an applied, scientific point of view. In addition to
these chapters, we briefly reflect on the technological improvements in this section.

PART GATHER IMPORT EXTRACT PREDICTION VISUALIZATION
Collection Database

Chapter 2 v ~ ~ ~ ~

Chapter 3 X v v X X

Chapter 4 X X 4 4 X

Chapter 5 X X v X v

Table 6.1: The chapters that each component or artifact of the pipeline is described in (v') or
not (X). Some components are featured in multiple chapters or are only discussed briefly from a
technical perspective ().

We summarize the technical work as part of our research, focusing again on the aspect of
innovative approaches, e.g., in the field of data acquisition, pattern recognition and information
visualization, in particular when it comes to handling data from Agile software development. We
highlight specific aspects of each component in this section and describe why they are relevant for
our research.

In the data acquisition component, our agent-based design supports the deployment of this
portion of the pipeline in software development ecosystems that we encounter at different organiza-
tions, taking in account virtualization and networking. We configure the agents to access systems
containing data from the development process. Each agent independently handles processing,
including early encryption of personally identifiable information.

We model the collected data to fit in a consistent database model. We store the entities and
relationships in a persistent, column-based tabular format in a MonetDB [38] instance. Through
encrypted exports, we safely bring data together from multiple organizations at a central analysis
location.

148

Chapter 6. Discussion 6.1. Retrospective

Feature extraction takes place using a set of query templates and reusable definitions that
describe how to calculate velocity and other factors. We compile the templates into efficient SQL
that MonetDB is able to further optimize. This also enables us to keep the templates agnostic to
portions of our database model that are similar to each other. Configurations for each use case
determines the relevant entities to select, based on their presence in the respective development
ecosystems. This way, we obtain a consistent data set where sample features allow comparison
and augmentation of models.

The prediction component provides novel methods that track the temporal data which was used
for learning, while implementing state-of-the-art as well as well-founded methods, such as neural
networks (NNs) and the analogy-based effort estimation algorithm (ABE), using TensorFlow [X1]
for efficient, vectorized operations that are accelerated using GPU devices.

We finally produce multiple information visualizations accessible through an integrated
dashboard plus several plugins for an issue tracker. We use a common basis of frameworks,
such as D3.js [111], which allows us to build data-driven visualizations. We implement newly-
designed controls for navigation, selection and full-page localization rendering. This leads us to
the creation of various interactive visualizations. Each of them focuses on particular topics in
software development. Meanwhile, their shared resources mean that it is easy to learn and switch
between the individual views, leading to quicker adoption by stakeholders.

6.1.2 Main contributions

Our contributions to the scientific field extend beyond technical components of a pipeline for data
acquisition in the Agile software development domain. One of our main objectives is to maintain
a generalized approach in the Grip on Software research project. The modular design and data-
driven method should work in other situations as well. We further consider the generalizability of
the research in Section 6.3.2.

Through the individual sub-projects in GROS, we achieve and report on results regarding
feasibility, performance, accuracy and adoption on progressive checkpoints of our research. This
leads to the eventual result of providing traceable, interactive and explainable outcomes from
predictive models. These models focus on classification and effort estimation of SCRUM sprint
commitments as well as long-term product backlogs.

Before we consider the final results, we reflect on the advances of each chapter of this thesis
on its own. We discussed the GROS data acquisition pipeline from a technical perspective in
Section 6.1.1, but its introduction in Chapter 2 also concerns design patterns, modeling and
performance, among others. The distributed, agent-based pipeline is a standalone contribution, but
is inspired by work on distributed data systems, Petri nets and business analytics. We design the
computational part based on these concepts. We also assert that a clear communication protocol is
relevant, and introduce schema-based modeling to aid this. Meanwhile, we retain flexibility of
placement of agents in the development ecosystem. Reusability of this component is also improved
through continuous integration of development and documentation. The observed performance of
the pipeline indicates its suitability for existing development platforms, without hindrance to the
development team’s usual process.

We continue our model-based principles in Chapter 3, where we introduce the GROS DB as
our database system. Parts of the eventual database model that are thematically related due to
their source system are explained. We further describe new relationships between entities from
different systems. This also includes linking separate profiles when those profiles refer to the

149

Chapter 6. Discussion 6.1. Retrospective

same person, while preserving privacy and security of encrypted data. The introduction of a query
template compilation system is followed by a performance analysis of the chosen system. The
experiments show that our decision criteria—which led us to select MonetDB—turned out to
provide a feasible, practical application.

Chapter 4 focuses on the pattern recognition problem, including extracting relevant features,
training machine learning models and estimating short-term and long-term outcomes of SCRUM
life cycles. This is the core of our research contribution. We discuss methods of selecting intuitive
and essential feature sets using scoring, leading to a consolidated data set representing multiple
organizations, teams, projects and sprint samples. Our new data set is split up into training, test
and validation sets in a time-preserving manner. This approach allows models to learn from earlier
samples while tuning and comparing accuracies based on later sprints. We introduce the tasks of
sprint result classification/estimation and backlog size estimation, with models that are tuned for
these purposes. The subsequent experiments with different data set sizes, parameters and scenarios
show the effectiveness of applying these models in Agile software development planning.

- .
30 Legend
- Predicted story points-s-
Done story points

Story points
/
*,
\-
\-
—
/.
\\-\.
o«
/
\\I
Ly

\,/'/'_'\\ /\\/ /-/ _,.\./.\./ g ™

Start date

Figure 6.2: One of our information visualizations, the sprint report for a single project, showing
effort estimation outcomes from predictions (blue line) compared to actual story points that the
team completed (orange line). This is a way to visually represent analysis effort for experiments
with limited training set sizes.

Our contributions culminate in the creation of information visualizations in Chapter 5. We
make these visualizations available to the stakeholders as well as in anonymized form for further
research. We produce visualizations for analytical decision support—the sprint report, prediction
results, event timeline and leaderboard—as well as interactive views with an organizational
ecosystem management theme, namely a collaboration graph, process flow chart, heat map and
platform status dashboard. Three additional plugins are created for displaying product backlogs
in new, interactive ways, namely predictive burndown charts, nested progression charts and
relationship charts. Our work on extracting relevant patterns tightly connects to the visual format
of the visualization hub, making the work more insightful. For example, we compare actual
sprint outcomes with results from the analogy-based effort estimation across earlier sprints—by
performing predictions with different training set sizes—through inclusion of both the feature
and outcome in the sprint report visualization in Figure 6.2. Our methodical approach towards

150

Chapter 6. Discussion 6.2. Overall conclusion

improving the visualizations also leads to the conception of a hybrid assessment methods, in
which we evaluate both automated tests regarding accessibility as well as input from surveys
and interviews with stakeholders. This way, we validate whether our goals are met regarding the
individual information visualizations.

6.2 Overall conclusion

We reflect upon our earlier introductions of the encompassing problem statement and specific
research questions in this section. Based on our contributions—from a technical, scientific and
organizational perspective—we conclude that our research implements state-of-the-art concepts,
produces a novel data set with promising results and benefits multiple stakeholders that are active
throughout the software development process.

We performed feature extraction, selection and scoring to obtain our representative, traceable
and robust data set. We applied several models for the problems of classification and estimation
of short-term and long-term planning in SCRUM processes. Throughout our experiments, we
consider the performance of the models in this domain. We evaluate the models not only based on
accuracy during the test and validation, but also by looking into effects of data set dimensions and
various parameters, such as simulation scenarios.

Aside from the main problem statement in Section 6.2.1, we also discuss our specific research
questions in Section 6.2.2 regarding separate focus areas of the Grip on Software research. This
includes application of our pipeline in data acquisition and storage domains, the particularities of
the pattern recognition analysis and finally the information visualization element.

6.2.1 Problem statement

0 ™

~ The following problem statement is central to our research: “How can extraction and
analysis of measurable events during a SCRUM software development process as well as
other qualities of the product and team be used to significantly improve the predictability of
practices employed at software development organizations?”’

From the beginning of our research, we looked into what data would be useful to explain factors
that contribute to the success of a SCRUM software development cycle. We focus on data that is
made available through the use of project trackers, development platforms, quality checkers and
other systems in software development. There is a constant generation of data in this development
ecosystem. Due to this, team members and other stakeholders are not equipped to inspect all of
the data, manually or otherwise. Thus, it is difficult to maintain an overview of the process or to
spot specific problems. This is why we determine that automated data acquisition and analysis
through machine learning benefits the development process as a whole.

Due to the repetitive nature of SCRUM, our underlying hypothesis is that the data exhibits
relevant patterns with emerging properties of both short-term SCRUM sprints and long-term
product backlogs. This would allow us to derive consistent and compact definitions for machine
learning features, thus abstracting away from potential behavioral differences between teams and
organizations. Meanwhile, we retain the characteristics that describe the progress in an unbiased
manner, including potential alternative properties for effort estimation like number of comments

151

Chapter 6. Discussion 6.2. Overall conclusion

and code commits. This yields a data set that is suitable for solving classification and estimation
problems, contributing to the predictability aspect of our research question.

By focusing on collecting and analyzing the measurable events of SCRUM, we ensure that the
research remains objective and explainable. We note that some input is based on expert judgment,
for example the assignment of story points to the work items planned for a sprint. Still, we are able
to perform comparative analysis of those attributes through various feature extraction methods.
Using novel approaches to existing software engineering metrics regarding sprint velocity, we
obtain to a form of “exchange rate” that streamlines the input data across teams. We take much
care in tracking the origin of features used in our data set to fulfill our explainability objective.
When we provide our research output to stakeholders, they are able to find out what the features
mean. For some estimation models, we also indicate which sprints were similar to the one being
estimated. On the other hand, personal data is encrypted early and only plays a role in properly
modeling relations between user profiles, while the eventual data set itself is anonymized.

An important factor in increasing the impact of the Grip on Software research project is to
move beyond just providing data. Even if metrics are annotated or provided in graphical form,
more steps are necessary to ensure that end users learn from observations and results through
interaction. We provide different visual forms of various parts of the curated data, which allows
stakeholders to view representations of focus areas that are part the development ecosystem. By
interacting with these visualizations, they are able to make decisions based on configurable reports
that focus on relevant factors. Transformations based on this interactivity reveal how situations
compare to each other and accentuate differences between teams and organizations. At the same
time, we decrease the cognitive load when the user switches between visualizations through
common control elements—interacted with through simple gestures—in the interface.

6.2.2 Research questions

From our principal problem statement, we deduced several specific research questions. Each
of these three questions focuses on a different facet of the GROS research, namely (1) data
acquisition as well as storage, (2) pattern recognition and (3) information visualization. These
themes also describe the natural flow from data extraction to usable research output while
preserving explainability. The same process is embedded in our component-based pipeline shown
in Section 6.1.1. Similarly, our thesis is constructed around these three research questions, each
with four sub-questions, with the first research question split across two chapters. In this section,
we consider each question and how we answered them in those questions, by summarizing the
results obtained for each segment.

Data acquisition and storage (Chapters 2 and 3)

RQ1 How can we reliably collect data regarding SCRUM software development practices
and consolidate the resulting artifacts inside a central database that constantly grows
and allows adaptable queries?

,/’

The first question that we considered focuses on the technical aspect of the research. We address
the problem of collecting and safeguarding large-scale, incremental data streams by means of our
contribution of the pipeline. In particular, the data acquisition and database components perform

152

Chapter 6. Discussion 6.2. Overall conclusion

these tasks and feed the necessary input for solving the remaining objectives regarding prediction
and visualization. Both steps mentioned in the question, i.e., data acquisition and consolidation,
are important in this research field for a proper, curated approach. We design and construct our
pipeline according to a structured, modular method for performing common quantitative and
qualitative tasks to make the research work in diverse networks of systems.

We split up this question into several points regarding the two components, in order to further
understand how to approach data acquisition and storage.

RQ1a Based on relevant design principles from distributed data systems and agent-
based networking, how do we design a data acquisition pipeline applied to
multiple organizational ecosystems?

We compose an agent-based network design, in which our distributed systems regularly check
for updates of data in issue trackers, code repositories, quality dashboard and other systems that
they are configured to access. This implementation works well in organizations that have multiple
projects, each with their own virtual or physical networks. An agent-specific configurator allows
setting the proper credentials and access settings for each data source. We implement specific
technologies to access various APIs to obtain updated source-specific data, convert the data to
standardized forms based on JSON exchange specification schemas and upload the new data via
SSH to a centralized controller for further processing. We perform experiments of this agent-based
setup in multiple projects using different development ecosystems to ensure that the activity of
the pipeline components did not impact the performance of their usual process.

RQ1b Which objectives related to inspection, curation and disclosure do we achieve
with a data acquisition pipeline when taking our formulated requirements in
mind?

During the data collection, we monitor the incoming data through inspection of intermediate
artifacts and query-based reporting of the database status. Additionally, we deploy a status
dashboard that displays health information of all the distributed agents and collects logging
information at this centralized location. By sampling situations from the database and looking
for uncommon situations, we perform curation of the data. One example is an adjustment of how
story points (SP) are counted when nonstandard values are filled in by developers to indicate that
the story is not yet ready for development. Personal data is encrypted as soon as possible, while
still allowing curation of duplicate accounts through links as explained for RQ1c hereafter.

Finally, disclosure of the data to stakeholders is provided by the later pipeline components for
pattern recognition and information visualization, which integrate with the database component,
making use of template-based feature extraction and data aggregation, respectively. This allows
the data acquisition component to restrict its scope to just the input side of the pipeline, with
the database acting as an intermediary for further access of the results. This modularity is an
important factor for potential reuse of the pipeline and helps with further dissemination of all
artifacts produced during the data processing.

153

Chapter 6. Discussion 6.2. Overall conclusion

0
RQ1c¢ How can we model the relationships between different data artifacts acquired
from dynamic systems regarding SCRUM software development in order to
properly deduce information about their state during different sprints?

The database component is realized by MonetDB, a column-based relational database management
system (RDBMS), which is well-suited for large-scale analytical information processing. Entities
are stored in the database as rows that are part of tables, with properties in their columns. Relations
between each entity are either additional properties or separate tables, depending on the type and
cardinality of the relation. Using a column-based storage, accessing details of many entities at
once is highly performant.

Based on the entities and relationships acquired from the source system, we model additional
references. These link entities that already existed in the same source system as well as between
different parts of the schema. Our focus here is increasing the descriptiveness of our main entities,
oriented around projects and sprints. Sometimes, this is accomplished by performing inference of
events that took place between a sprint’s start and end dates. This allows us to uncover what has
happened in a sprint through queries based on well-defined time sequences.

We further address privacy concerns during linking of the same person that exists across
systems in the development ecosystem. We use project-specific and global encryption keys for
personal data, allowing us to relate the same entity with different profiles without being able to
read its properties—unless the original data was already available. The encryption keys remain at
the organization where the sensitive data is acquired, with only the pseudonyms available during
our analysis.

RQ1d Which technical challenges are relevant when deploying a database component
as part of a pipeline for multiple organizational ecosystems?

The architecture of the database component is suited for different development ecosystems. We
set it up as part of the pipeline at the development platform of a participating organization, while
we also maintain a central instance for research purposes. The resource usage of the component
is limited through the implementation of batched update statements during imports as well as
optimizations of queries.

Meanwhile, we increase the flexibility of the feature extraction queries through the introduction
of a template compiler. The compiler dynamically adapts the queries to the usage of systems by
the organization. This means that we obtain similar sample data for machine learning features
regardless of the type of project management system that tracks stories, work items and other tasks.
Currently, both Jira and Azure DevOps—formerly known as Team Foundation Server (TFS) and
Visual Studio Team Services (VSTS)—are fully supported in this way, while entities from GitHub
and GitLab have been modeled likewise. Despite limited use of the issue tracking functionality
of these two code review systems at the two organizations, their modeling in our database
demonstrates potential for generalization of the technical approach.

Experimental results show that both our manual improvements to the template queries and
optimizations provided by a hot-started MonetDB instance help with speeding up the queries. This
enables us to perform rapid, frequent updates of data for the pattern recognition and information
visualization purposes later on in the pipeline.

154

Chapter 6. Discussion 6.2. Overall conclusion

Pattern recognition (Chapter 4)
\‘/, 77\\
RQ2 How can we improve the predictability of SCRUM software development practices,
specifically the progress of sprints and backlogs—based on analysis of data selected
from the development process—and how do we validate our approach?

Our second research question concerns the core of our scientific approach, namely the machine
learning models and related pattern recognition methods. From our results, it becomes clear
whether each method is feasible, explainable and usable by stakeholders. We present adjustments
and improvements of existing models to work on the specific problems of predicting outcomes of
sprints and progression of work on backlogs. We extract features for our data set and select groups
of them that hold descriptive qualities of the sprints that they originate from. By applying common
means of validation on our models, we observe the accuracy of the results and understand their
behavior. Stakeholders are then able to make use of these results, supported by explanations on
how the machine learning models arrive at the conclusion of the provided labels. These then help
with answering common questions in SCRUM, such as how many story points should be planned
for the upcoming sprint or when the backlog will be completed—on time, preferably.

RQ2a Which features can we select based on ongoing data from the software develop-
ment process that are most indicative of the progress?

Using our query compiler, we extract features regarding progression of SCRUM sprints of multiple
projects from two separate organizations in a standardized effort. The features are scored individu-
ally and as subsets through external relevance metrics as well as analogies provided by one of the
models. Tuning of hyperparameters is then possible to improve accuracy and confidence of the
results. The selected features are related to team size and experience, sprint and backlog planning,
code version control and quality metrics. Section 4.4.1 of Chapter 4 lists the selected features.

RQ2b What kinds of learning algorithms can we introduce to this problem, which
learn from these features and provide feedback on what kinds of decisions can
be taken?

We apply several machine learning models and statistical approaches to our problems of sprint
outcomes and backlog sizes. These include state-of-the-art and well-known models, such as deep
neural networks (DNN). Some methods have been proven successful in other fields, while others
originate from software development already, e.g., analogy-based effort estimation (ABE). The
neural networks are applied in this problem to provide a classification as to whether a sprint is
at risk of finishing with non-completed stories. ABE goes a step further, synthesizing a number
of story points based on similar sprint samples. We also perform estimation of future backlog
sizes with two simulations, namely a linear regression algorithm and a Monte Carlo method, using
three different scenarios for mutations on the backlog. Together, these models predict the progress
in short-term and long-term durations, respectively in sprint commitments and backlog milestone
planning. This encompasses the guidelines and provisions of the SCRUM framework, extending it
with improved predictability without hindrance to self-managed task commitments.

155

Chapter 6. Discussion 6.2. Overall conclusion

0
RQ2c¢ How do we predict the likelihood of timely and properly finishing a currently-
running sprint or a longer-running period aimed at resolving a product backlog
within a development project, even before it has started?

Using the DNN and ABE models mentioned in our answer to RQ2b, we predict the outcomes
of sprints, both before a sprint has started as well as during it. The neural network provides not
only a classification but also an indication of how reliable the prediction is according to the model
itself. Analogies further help with understanding the second model’s effort estimation, as they
form the basis of the number of story points that are likely to be completed. This allows these
models to help development teams through their sprint tasks and meetings—from refinement until
retrospective—by providing relevant insights in their process.

For longer periods of time, the backlog size estimations demonstrate potential end dates of
completing a certain collective workload by simulating changes to the product backlog across
multiple future sprints. Different scenarios provide better detail on the potential changes, with
potential for learning from other projects. This has allowed some of our stakeholders, particularly
software delivery managers, Product Owners and analysts part of development teams, to determine
whether a specific milestone is reachable. Even teams that are just starting with planning stories
at the beginning of a development project or are interested in work planning for subsets of their
backlog benefit from these algorithms.

N
RQ2d How do we validate that the predictions and recommendations are within our
expectations and based on relevant, explainable factors?

Our research shows potential for the practical applications of the models, but we do not omit
well-founded results regarding their accuracy and explainability. We validate the models, using the
F1 score and similar metrics appropriate to each model, while comparing the sprint classification
and estimation to a baseline guess of taking the previous sprint’s outcome as the prediction.

Both the neural network—with an F1 score of 89.98%—and the analogy-based effort estima-
tion, where 88.6% of the estimations of one organization are within a margin of 25%, performed
better than the baseline on our temporal data set. We note that some variance is observed when the
data set size is adjusted. As for explainability, we consider that feature scoring and built-in tuning
of some of the models has helped to select representative subsets of features that are suitable to
solving the problem at hand and helpful for stakeholders to track.

For backlog size estimations, the most likely progression is provided by the Monte Carlo
method that simulates all potential changes on the backlog. A linear regression model too much
variance. A scenario where only the velocity is accounted for could not properly simulate sudden
changes to the backlog’s scope. We validated these results by taking a fraction of previous
progression of the product backlog, measured at the end of each sprint, as our data set and
comparing the model’s estimations to the actual progression. We measured the mean error as well
as the largest deviations. We further analyzed the behavior of our backlog estimation models per
project, taking into account differences in backlog sizes in each of them. Finally, we validated
the distributions generated by the Monte Carlo simulations, to determine if the scenarios remain
normalized despite the introduction of additional factors.

156

Chapter 6. Discussion 6.2. Overall conclusion

Information visualization (Chapter 5)

RQ3 How can we effectively introduce visual representations of results and recommenda-
tions from our analysis of data collected from the SCRUM development process to
the involved parties?

The third and final research question of the Grip on Software project concerns the presentation of
data to relevant stakeholders. This shifts our focus from purely analysis, where solely achieving
an acceptable accuracy is already a plentiful outcome. For this research question, we consider
how the end user benefits from the collection of previously unlinked entities in novel ways. This
includes the results from our pattern recognition methods, but through an integrated visualization
hub, we intuitively zoom in to various aspects of the breadth of information to showcase the
possibilities that the GROS pipeline provides.

RQ3a Which concepts and goals are relevant when designing information visualiza-
tions for patterns analyzed from a software development process?

As part of our introduction of a comprehensive visual summary of the results regarding the
outcomes of SCRUM sprints, among others, we outline the necessary objectives, concepts and
goals regarding visualization for Agile software development, information visualization in general
and the structure of our specific dashboard implementation, respectively. This includes stating the
purposes regarding display of temporal, dynamic data, making data easily comparable, gaining
insights and sparking new ideas.

We consider existing flows of transforming data into visual forms that are rendered in an
interactive view. We map this method upon the components of our pipeline as well as the cognitive
process of gaining knowledge from descriptive data. We find that an integrated approach—both
in our technical component as well as regarding the process of bringing the visualizations to the
involved persons—and a clearly-outlined purpose help make the data become information that is
useful for stakeholders to learn from. This helps boost delivery of the product and promotes new
ways of thinking in the development process.

. BN
RQ3b How do we integrate results from predictive models within existing development
practices?

Our visualization hub consists of a dashboard which provides access to various information
visualizations, with a similar technical and interactive implementation. The visualizations are
grouped by focus area, with two main categories: analytical decision support and software
development ecosystem management. The former group includes visualizations for reporting on
progress of teams across earlier sprints in various formats. One of the visualizations is arranged
as a distinct location for the results of our sprint predictions. A clear layout makes the main
results prominent, while allowing further scrutiny through detailed tables of features, model
configurations and—depending on the model—additional metrics or a list of similar sprints.

157

Chapter 6. Discussion 6.2. Overall conclusion

Further disclosure is achieved through an API which allows external systems to integrate with
the results. One implementation to display the prediction result in a quality report was made for
this purpose, helping developers see whether they should consider planning a different number
of story points for the next sprint. The results from our analysis of sprint predictions across
different training set sizes as well as the backlog size estimations are available in the sprint report
visualization, which lets users freely make projections for planning purposes. Additionally, the
Jira plugins build upon the analysis and results from the backlog size prediction, by allowing users
to view a breakdown of a product backlog across time, including the future sprints simulated by
the Monte Carlo method.

- .
RQ3c¢ Which effects do the introduction of results from predictive models and other in- ‘
termediate analyses have on the development process, validated across multiple
ongoing projects?
- _

We present the information visualizations to potential users during surveys and interviews. These
stakeholders include developers, quality engineers and product owners. During our study, we
assess the usability of the visualization through various metrics, while asking the users how
they would consider using the information contained in the visualization during their daily work.
Whereas initial surveys for a limited number of visualizations showed mediocre potential usage,
we later performed further interviews which indicated a significant adoption, especially regarding
the use of the sprint report. Various teams use this visualization to learn from earlier sprints by
selecting primary indicators that fit their team the most. This feedback was helpful for us, by
confirming whether selected feature sets that we applied during the predictions are indeed relevant.

The output of the prediction models has been further integrated with the visualizations through
as well as existing quality reports. In particular, earlier evaluation showed that there was a need
to easily view attributes of previous, current and future sprints, thus these attributes plus the
backlog size estimations were made available in the sprint report. This visualization is used by
product owners and software delivery managers to gain an overview and to plan full backlogs, with
planning based on milestones supported tentatively. Our predictions are considered a beneficial
addition to the existing workflow. The use of predictions as a meta-metric gains adoption with an
explainable backtrace to the contributing factors. By creating plugins for Jira, we brought such
information back to more teams.

RQ3d What is the overall assessment of the proposed information visualizations,
considering automated measurements for usability and the adoption according
to interviews and surveys?

We combine integration test results with user adoption surveys to produce an assessment of
the information visualizations. In general, the visualization hub is found to be usable. This is
boosted by considerations on, e.g., colors, glyphs and consistent controls, but also wider topics
like traceability of data, mobile-friendly design and accessibility. This allows adoption by different
roles in the software development organizations, regardless of technological background or
impairments such as color blindness.

By focusing our visualizations on topics at an organizational and project-specific level, both
in the analytical and ecosystem management domains, they are well-received and align with

158

Chapter 6. Discussion 6.3. Future work

regulations regarding privacy. Finally, we remark that there is still more to explore for informa-
tion visualization in software development, particularly when it comes to planning and product
development, to further enhance this process.

6.3 Future work

A primary objective of our research is exploring the feasibility and performance of several
pattern recognition methods in predicting potential effort in SCRUM sprints and entire project
backlogs. This research has shown that we are able to acquire a representative data set to obtain
accurate, explainable predictions and deliver relevant information back to the stakeholders by
creating interactive, integrated visualizations. Therefore, we deduce from our answers of the
research questions that we meet many of our objectives in several sub-topics, including technical
implementations, data modeling and extraction, machine learning and eventual presentation.

However, there is always more research to be done, especially in the field of predictive
software development. While we have provided answers to our research questions, there still
remain unknowns in this domain regarding other software development methods or even other
processes part of the SCRUM framework.

In other chapters, we briefly discussed possible improvements and methods to be considered.
We are hopeful that our work functions as a viable means of continuing research. For Grip
on Software in particular, we hypothesize that further integration of data-driven predictions in
software development helps improve the process as a whole, by letting involved people find more
emerging patterns. This process allow learning from past situations, current recommendations
and future projections in the same place. In the end, this research makes repetitive events—which
would otherwise feel ceremonial to developers—more enriched through the addition of easy-to-use
visual results.

Through generalization, some of our contributions become beneficial when applied in other
focus areas. Our approach toward designing and implementing modular pipeline components is
translatable to other exploratory data-driven analysis. This technical foundation is available for
others to build upon, since similar challenges and objectives regarding collecting, structuring,
selecting, analyzing and representing large amounts of data exist elsewhere too.

Our vision of prospective research based on this thesis is therefore twofold. We consider the
particular methods and models that build upon our data set in Section 6.3.1, with some limited
speculation on what we imagine the end result to look like. To address possibilities beyond our
current scope, we consider applicability to other software development methods and research
studies in general in Section 6.3.2.

6.3.1 Further research

In several chapters, we discuss our intermediate conclusions for the topics at hand there, with
suggestions regarding possible avenues of further research as well. We expand upon the earlier
contemplations with several promising applications of our data in improving the predictability
of SCRUM software development in more ways. We considered some of these sub-problems to
become a part of our core research—with some initial work available for them as well—but some
topics simply strayed from the “narrative arc” that we sought to maintain in our work.

159

Chapter 6. Discussion 6.3. Future work

In Chapter 4, we perform classification and estimation of SCRUM sprint outcomes and full
project backlogs. One possibility is to extend this approach toward other time ranges and subsets
of the backlogs. A proof of concept, where we determine when work for a specific milestone
would be completed, is also shown in Section 4.7.2. Ideally, we would be able to consider how
much time an early backlog will roughly take to complete, even when the development team has
not awarded story points to most of the work items.

We also mentioned other models for improved accuracy and explainability. One option would
be the application of Long Short-Term Memory (LSTM), a model which includes contextual
information about nearby samples during training. This has shown applications in linguistic
processing and other consecutive data. Because our data is temporal in nature, models that
understand the relations with earlier events—e.g., when stories are moved from one sprint to the
current or future sprint—are well-suited in providing more thorough labels, clusters or estimations
for the samples in the GROS data set.

Based on the model of our database, we are able to extract features for other entities than
just sprints or projects. Through our curation with the query template compiler, we extend our
understanding to the level of teams, which benefits organizations where teams work on multiple
projects or share responsibility on a larger project with multiple teams by developing individual
components. Some of such multi-project teams still need some additional curation to reliably
combine data from simultaneous sprints, including how story points scale the entire backlog.
Project-level and team-level predictions then become more comparable.

More in-depth predictive analysis is obtainable by defining features for each story, code change
or quality check, leading to an even larger data set that provides novel classification opportunities.
One possible application is to provide an early warning to developers when something seems
wrong with a specific metric, such as a missing field in a work item or an unexpected decrease in
quality.

Due to the continuous nature of code quality measurements and development platform stability,
we also consider anomaly detection to be a beneficial technique, where rare situations are found
and presented for further analysis on why they take place. This leads to potential new features for
use in other machine learning problems, allow early warning on its own or be used as a hint for
tracing back why a feature is different than normal in the first place.

Other ways to augment our data set is to include external data, such as weather or traffic
information, in order to find possible reasons for differences in development throughput day by
day. Although we focused on objective data available in the software development ecosystem,
we should also keep in mind the human aspect, even in our data set. For example, a developer’s
mood likely affects the quality and quantity of code written by that developer. It is conceivable
that sentiment analysis on comments left in issue trackers and version control systems provides an
indication of how well a sprint is going. However, more intrusive approaches—such as recording
and transcribing all of the team’s meetings—might encroach too much of the sensitive nature
of such group events, even if the output is anonymized before combining with our current,
privacy-aware pipeline.

Instead, we should focus on implementing more means of explainability in our predictive
models, along with other improvements in terms of feature extraction and types of model outputs,
including inherent accuracy metrics. In our case, this approach advances integration of results in
the SCRUM workflow, with less potential for misunderstanding. Better tracing of where a neural
network’s activation comes from, regardless of the network size, leads to improvements of the
perceived reliability of the algorithm, which is important to our stakeholders.

160

Chapter 6. Discussion 6.3. Future work

Other implementation decisions would be on-line re-runs of backlog estimations, such that
users are able to try different parameters and subsets for planning. This functionality is then
available through a visualization shown in Chapter 5, in particular the sprint report or through
a plugin for Jira. We wish to further explore how information visualization is applicable in the
Agile software development domain, with more integration of the information visualizations. This
leads to a single entry point where it is possible to dive deep into specific details, while retaining a
simple front-end for obtaining overviews regarding progress. Each zoom level then has its own
presentation format applicable to the information visible there, such as tables, charts and network
graph layouts.

6.3.2 Generalizability

The focus of the Grip on Software research project has been on software development processes
that use the SCRUM framework. However, it is possible to expand the scope to include other areas
of interest. It would be interesting to compare other software development methods to ascertain
whether similar patterns are found there. Due to the repetitive nature of SCRUM, we are able to
create a consistent data set of sprints as our feature-rich samples. Mapping such specific events
to other frameworks is a challenge with a potential high reward, as a more broad model leads to
wider applicability of the results of this extended research.

Certainly, the most sensible development methods to consider would be other Agile processes,
such as extreme programming, Kanban or Lean, which share similarities with SCRUM. It is
feasible that our approach also works when corresponding entities are not easily mapped. We
would then focus on other levels of detail in work volume, such as milestones or individual issue
items. At the organizations in our study, we also collected information on support teams. Some
teams do not use SCRUM—or only for a portion of the workload—but we still provided some
reports to them regarding work done in specific time frames.

Given that the two organizations are both Dutch IT implementation agencies for governments,
one major opportunity for advancement is to include more diverse development companies in
our data set. Each organization has its own working environment, including differences in the
application of SCRUM among their development teams. Especially multinational businesses with
colocated teams have widely contrasting concerns and challenges compared to a tightly-connected,
local organization. The effect of developing products for-profit—instead of based on government
budget—may also play a role in team workload. Overall, more breadth of data from various
organizational instances leads to better models, but also more research hypotheses that we are
able to test.

The technical infrastructure should be able to handle more diverse data sources. We have
shown that our database model is able to handle entities that originate from different systems
and provide them in a consistent format through our query template compiler. Development
ecosystems with other platforms, trackers and collaboration software are easily added, as is the
case for GitHub and GitLab, for example.

In general, our combined approach toward data acquisition, storage, modeling, analysis and
visualization are available as building blocks for more studies in this field and even for other
data-oriented research. The modular nature of the components allows adjusting the purpose of
the pipeline by replacing or extending parts of it. While there is a focus on software development
data, in theory the use of schema-based data exchange allows extensive abstraction of the type of
incoming data.

161

Chapter 6. Discussion 6.3. Future work

The openness of data formats also allows better dissemination of the results of our research.
Through a consistent API specification, we provide both the data set used specifically for the model
as well as detailed information on model configuration and validation outcomes. This encourages
not only reuse of the input data, model and labels for further study, but also sets an example on
how transparency regarding analysis parameters helps to create feedback loops. Integration of
such details in an intelligible manner in information visualization helps to foster interaction and
discussion that exceed initial expectations. A human-centered approach in visualization leads to
new possibilities, in the software ecosystem and beyond.

162

Glossary

Acronyms

ABE anology-based effort estimation; see pages 8, 9, 38, 76, 80, 81, 84, 111, 112, 149, 155
and 156

Al artificial intelligence; see pages 7 and 89

API application programming interface; see pages 14, 30, 32, 36, 37, 75, 80, 113, 126, 153, 158
and 162

AUC Area Under Curve; see page 111

CI continuous integration; see page 37
CPU central processing unit; see pages 39, 64—66 and 131
CSS Cascading Style Sheets; see page 100

CSV comma-separated values; see pages 61 and 106

DNN deep neural network; see pages 8, 9, 81, 111, 155 and 156
DoD Definition of Done; see pages 6, 7, 73 and 125

ER entity—relationship diagram; see pages 47-50
FTE full-time equivalent; see pages 49 and 122
GPU graphics processing unit; see pages 37, 38 and 149

HCI human-computer interaction; see page 95
HTML HyperText Markup Language; see pages 100, 106, 128 and 138

HTTPS HyperText Transfer Protocol Secure; see pages 33, 61 and 138

InfoVis information visualization; see page 97

163

Glossary Acronyms

JDBC Java Database Connectivity; see page 59
JSON JavaScript Object Notation; see pages 30, 37, 38, 60, 100, 103, 106 and 153

LDAP Lightweight Directory Access Protocol; see pages 36, 47, 48, 58 and 59
Lin linear regression algorithm; see pages 8, 9, 80, 82 and 86

LSTM Long Short-Term Memory; see pages 91 and 160

MC Monte Carlo simulation; see pages 8, 9, 76, 80, 82, 86, 103 and 135
ML machine learning; see pages 7, 8, 12, 71, 76 and 89

NN neural network; see pages 8, 9, 80, 81 and 149

PB product backlog; see pages 6, 7, 10, 72 and 73

PDF Portable Document Format; see pages 106 and 110
PG product goal; see pages 6 and 7

PO Product Owner; see pages 5-7, 10, 52, 72-74

PR pattern recognition; see pages 8 and 71

RAM random access memory; see pages 39 and 64

RDBMS relational database management system; see pages 43—46, 63, 66 and 154

SB sprint backlog; see pages 6, 7, 10, 72 and 73

SDM software delivery manager; see pages 10 and 79

SG sprint goal; see pages 6, 7 and 52

SM Scrum Master; see pages 5, 10 and 73

SP story point; see pages 6, 10, 11, 52, 74, 83 and 153

SQL Structured Query Language; see pages 46, 59, 61, 63, 66, 77 and 149
SSH Secure Shell; see pages 31 and 153

SUS System Usability Scale; see pages 141 and 143

UDF user-defined function; see pages 44-46

UI user interface; see pages 98, 99, 101 and 139

UML Unified Modeling Language; see page 50

URL Uniform Resource Locator; see pages 32, 38, 52, 59, 106, 112 and 129

VCS version control system; see pages 58 and 59

VM virtual machine; see pages 31, 39 and 60

164

Glossary Software development terminology

Software development terminology

architecture high-level structural overview of a software system, as a design specification;
see page 4

artifact a document or different byproduct that specify specific requirements, parts of the design
or architecture, at greater detail; see page 5

burndown chart time-based diagram that displays lines and points that refer to certain events
taking place in a sprint regarding changes to the number of story points left to work on from
each point onward; see pages 6, 114 and 134

code textual files containing lines with instructions written in a programming language which
perform actions that are part of a software system; see pages 4, 6, 10, 34, 37, 71, 73, 91
and 125

coverage percentage of statements or lines of code that is being executed during tests of a software
product, as a measurement of how likely it is that problems and edge cases are detected;
see pages 4, 6, 20, 35, 37, 73 and 91

Daily Scrum short meeting in SCRUM held every working day where the development team
discusses what that have done during the sprint so far, what they are working on and
possible impediments that hinder their tasks; see pages 6, 10, 73, 74 and 121

deployment installation or publication of a software product so that it is available to users;
see pages 4, 10, 11 and 18

ecosystem environment in which code may be written (software development ecosystem) or a
deployed product may be placed, where the developed software interacts with other systems
and is dependent on a platform providing support for its functionality; see page 4

epic task that explains relationships between smaller tasks, such as user stories; see pages 6, 79
and 80

Sfeature aspect of a software product that allows the system to perform something by providing
certain functionality; see pages 4, 7 and 73, not to be confused with feature (Machine
learning terminology)

guild meeting of a group of people across an entire organization with an interest in a particular
topic, but available for everyone, with discussions ranging from Agile development methods
to testing code and improving quality; see pages 10, 11 and 121

impediment any cause of delay and hindrance in the software development progress, which needs
to be resolved before developers can continue with a certain task; see pages 5, 10 and 73

165

Glossary Software development terminology

increment result of a software development cycle such as a SCRUM sprint that adheres to pre-set
goals, consisting of changes from all the resolved items during that period, and may become
a deployment (Potentially Shippable Product Increment) or released version, even when
early in development (minimum viable product); see pages 6, 7, 11, 14, 72 and 73

maintenance regular adjustment of a software product after deployment in order to keep the
product functioning in the environment in which the software is placed; see page 4

milestone moment in a software development plan that indicates an important step in the progress,
usually when a new version is released or a deployment is scheduled; see pages 4 and 10

product the result of software development, fulfilling a need of users; see pages 4, 10 and 14

readiness quality of a story or other task in that it has been prepared enough during refinement
meetings to be detailed enough to work on, with the team agreeing that is it not too
complicated (ready for selection); see pages 6, 10, 72 and 153

refinement meeting in SCRUM to improve details of planned work for an upcoming sprint
development cycle; see pages 6, 10, 71, 73 and 125

requirement specification of what a system, software and entire product should do (functional re-
quirement) or should adhere to with regards to its environment (non-functional requirement);
see pages 4, 16 and 19

retrospective meeting in SCRUM where the development team discuss internally how the previous
sprint progressed and improve focus on important factors; see pages 6, 10, 14, 71-73

review meeting in SCRUM where the development team presents and discusses the results of
the previous sprint with representatives of the end user, usually including a display of new
functionality (demo); see pages 6, 10, 14, 71-73

sprint time span in a SCRUM development process, with specific meetings and goals, which
repeats itself to work on more tasks; see pages 5, 6, 10, 72 and 73

sprint planning meeting in SCRUM to select tasks to be worked on during the next sprint devel-
opment cycle; see pages 6, 10, 71 and 73

stakeholder people and parties with the most interest in a software development process, including
members of the development teams, managerial roles or others in the organization, but
also the end users and the client, who fulfills the role of eventual owner of a product;
see pages 14, 95, 100, 102, 121 and 142

story request for a task related to developing code for a new software feature in a product and
other relevant work, described in a simple format, usually in a single sentence describing a
desire (user story); see pages 6, 7, 10, 72, 73 and 153

technical debt projected amount of effort, time or expenses in order to resolve a current, subpar
situation so that a better solution is implemented in a software product which would require
less maintenance in the future, whereas if the debt is not resolved, it will become harder to
address later on, often used in the context of code style; see pages 56, 75, 79, 91 and 104

166

Glossary Machine learning terminology

test method of comparing a software product to the specified requirements at various levels of
inspection, such as small components (unit test) or interaction of systems in the software
ecosystem (integration test); see pages 4, 10, 11, 20, 34, 37,71, 73, 91, 125, 138 and 141,
not to be confused with test (Machine learning terminology)

velocity metric used as a guideline for the number of story points to plan for a sprint, where the
sum of the story points of all stories that were done during the past three sprints is divided
by 3 (three-sprint velocity); see pages 74, 77, 78, 80, 82 and 83

Machine learning terminology

classification problem where the goal is to find a label for an unlabeled sample selected from a
limited set of classes using a machine learning model (classification algorithm); see pages 7,
79-81, 84 and 91

clustering problem where the goal is to group similar samples from a data set together using a
machine learning model; see pages 7, 81 and 109

data set collection of (usually different) records that describe objects, situations or events that are
typically from a similar domain, with various properties mmaking up each sample record;
see pages 7, 71, 79 and 90

ensemble model method to compose various machine learning algorithms together and to use
their output, e.g., using a majority vote to choose the result, for solving machine learning
problems; see pages 8 and 83

estimation problem where the goal is to find a label for an unlabeled sample that seems to fit the
features using a machine learning or statistical model; see pages 7, 80—84 and 91

explainability quality of a machine learning algorithm, either inherent to the model used or
achieved through external methods, that allows tracing back how a label or estimation was
generated, for example which inputs were most relevant or which samples are most similar;
see pages 8, 81, 84, 90, 152, 156 and 160

feature measurable observation about a specific sample in a data set; see pages 7, 76, 81 and 83,
not to be confused with feature (Software development terminology)

feature selection process where a subset of the features from a data set are chosen based on
scoring or other criteria, leading to a more refined working set; see pages 7, 72, 76, 78
and 84

label description of an object in a numerical or categorical manner, which is the goal of some
machine learning problems in order to understand the data better (labeling), and when
already available in the data set, is the expected outcome of the model given the sample
input (target label); see page 7

167

Glossary Machine learning terminology

model algorithm used in machine learning in order to solve a problem, such as providing a label
to an object; see pages 7, 71, 76, 78, 80, 81, 83, 84 and 90

regression analysis method used to perform estimation of relationships between labels and the
associated features of samples in a data set, using a function that closely fits most of the
observed data points; see pages 8, 76, 103 and 109

sample entries in a data set that describe a particular object, situation or event, which may be
used separately or in bulk as input for a machine learning model by selecting subsets of
records (sampling); see page 7

supervised learning algorithm that is able to use labeled samples and extract statistical relations
in order to learn patterns and generate numerical labels; see pages 7 and 76

test process where a portion of labeled samples from the data set (test set) is used to obtain
accuracy metrics of the trained model, with a similar distribution; see pages 7, 78-81
and 84, not to be confused with test (Software development terminology)

training process where a portion of labeled samples from the data set (training set) is used to
learn a model what patterns and relations between features exist in order to generate better
labels in the future; see pages 7, 76, 79-81 and 84

trend outcome of a regression analysis, most typically a linear regression where the overall
direction of temporal data is shown as a line, allowing for an estimation of future data
points; see pages 8, 89, 103 and 109

unsupervised learning algorithm that uses unlabeled samples to extract statistical relations in
order to learn patterns and similarities; see pages 7 and 109

validation process where a portion of labeled samples from the data set (validation set) is used to
check if the model is well-tuned and not biased toward the samples from the training set;
see pages 7, 79-81, 84 and 103

168

Bibliography

First referenced in Chapter 1

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

Nayan B. Ruparelia. “Software development lifecycle models”. ACM SIGSOFT Soft-
ware Engineering Notes, vol. 35, no. 3, 2010, pp. 8-13. DOI: 10.1145/1764810.
1764814.

Todd Sedano, Paul Ralph and Cécile Péraire. “Software development waste”. In:
Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE 2017). 2017, pp. 130-140. DOI: 10.1109/ICSE.2017.20.

Agile Alliance. Manifesto for Agile Software Development. 2001. URL: https://
agilemanifesto.org/ (visited on May 7, 2019).

James A. Highsmith. Agile Software Development Ecosystems. Addison-Wesley, 2002.

Alistair Cockburn. Agile Software Development: The Cooperative Game. 2nd ed.
Addison-Wesley, 2007.

Ken Schwaber and Jeff Sutherland. The Scrum Guide: The Definitive Guide to
Scrum: The Rules of the Game. 2020. URL: https://scrumguides.org/docs/
scrumguide/v2020/2020-Scrum-Guide-US.pdf (visited on Mar. 1, 2022).

Scrum.org. The Scrum Framework Poster. 2020. URL: https://www.scrum.org/
resources/scrum-framework-poster (visited on May 29, 2021).

Ken Schwaber and Jeff Sutherland. Software in 30 Days: How Agile Managers Beat
the Odds, Delight Their Customers, And Leave Competitors In the Dust. John Wiley &
Sons, 2012. DOI: 10.1002/9781119203278.

Mike Cohn. Agile Estimating and Planning. Prentice Hall, 2005.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 4th ed.
Pearson, 2021.

169

https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1109/ICSE.2017.20
https://agilemanifesto.org/
https://agilemanifesto.org/
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.scrum.org/resources/scrum-framework-poster
https://www.scrum.org/resources/scrum-framework-poster
https://doi.org/10.1002/9781119203278

Bibliography First referenced in Chapter 1

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Trevor Hastie, Robert Tibshirani and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer Series in Statistics.
Springer, 2009. DOI: 10.1007/978-0-387-84858-1.

Laurens J. P. van der Maaten, Eric O. Postma and H. Jaap van den Herik. Dimension-
ality reduction: A comparative review. Technical Report. TR 2009-005. TiCC, 2009,
pp- 1-35.

Kenji Kira and Larry A. Rendell. “The feature selection problem: Traditional methods
and a new algorithm”. In: Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAT’92). AAAI Press, 1992, pp. 129-134.

Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. Adaptive
Computation and Machine Learning series. MIT Press, 2016.

David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams. “Learning represen-
tations by back-propagating errors”. Nature, vol. 323, no. 6088, 1986, pp. 533-536.
DOI: 10.1038/3235334a0.

Yoshua Bengio. “Learning deep architectures for AI”. Foundations and Trends® in
Machine Learning, vol. 2, no. 1, 2009, pp. 1-127. DOI: 10.1561/2200000006.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Information
Science and Statistics. Springer, 2006.

Ane Blazquez-Garcia, Angel Conde, Usue Mori and Jose A. Lozano. “A review on
outlier/anomaly detection in time series data”. ACM Computing Surveys, vol. 54, no. 3,
article 56, 2021. DOI: 10.1145/3444690.

David A. Freedman. Statistical Models: Theory and Practice. 2nd ed. Cambridge
University Press, 2009. DOT1: 10.1017/CB09780511815867.

Christopher Z. Mooney. Monte Carlo Simulation. Quantitative Applications in the
Social Sciences 116. SAGE Publications, 1997. DOI: 10.4135/9781412985116.

Omer Sagi and Lior Rokach. “Ensemble learning: A survey”. WIREs Data Mining and
Knowledge Discovery, vol. 8, no. 4, article 1249, 2018. DOI: 10.1002/widm.1249.

Martin Shepperd, Chris Schofield and Barbara Kitchenham. “Effort estimation using
analogy”. In: Proceedings of the 18th International Conference on Software Engineer-
ing (ICSE *96). IEEE Computer Society, 1996, pp. 170-178. DOI: 10.1109/ICSE.
1996.493413.

Steven Finlay. Predictive Analytics, Data Mining and Big Data: Myths, Misconceptions

and Methods. Business in the Digital Economy. Palgrave Macmillan, 2014. DOI:
10.1057/9781137379283.

170

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1038/323533a0
https://doi.org/10.1561/2200000006
https://doi.org/10.1145/3444690
https://doi.org/10.1017/CBO9780511815867
https://doi.org/10.4135/9781412985116
https://doi.org/10.1002/widm.1249
https://doi.org/10.1109/ICSE.1996.493413
https://doi.org/10.1109/ICSE.1996.493413
https://doi.org/10.1057/9781137379283

Bibliography First referenced in Chapter 2

[24]

Bertrand Meyer. Agile!: The Good, the Hype and the Ugly. Springer, 2014. DOI:
10.1007/978-3-319-05155-0.

First referenced in Chapter 2

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

Maarten van Steen and Andrew S. Tanenbaum. Distributed Systems. 3rd ed. distributed-
systems.net, 2017.

Gianpaolo Cugola and Alessandro Margara. “Processing flows of information: From
data stream to complex event processing”. ACM Computing Surveys, vol. 44, no. 3,
article 15, 2012. DOI: 10.1145/2187671.2187677.

Philip Harrison Enslow. “What is a “distributed” data processing system?” Computer,
vol. 11, no. 1, 1978, pp. 13-21. DOI: 10.1109/C-M.1978.217901.

Franco Zambonelli, Nicholas R. Jennings and Michael J. Wooldridge. “Organisational
abstractions for the analysis and design of multi-agent systems”. In: Agent-Oriented
Software Engineering (AOSE 2000). Lecture Notes in Computer Science, vol. 1957.
Springer, 2001, pp. 235-251. DOI: 10.1007/3-540-44564-1_16.

Wei Ren and Yongcan Cao. Distributed Coordination of Multi-agent Networks. Com-
munications and Control Engineering. Springer, 2011. DOI: 10.1007/978-0-85729-
169-1.

Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and Analysis with
Petri Nets. Springer, 1998. DOI: 10.1007/978-3-662-03687-17.

Wil M. P. van der Aalst. “The application of Petri nets to workflow management”.
Journal of Circuits, Systems and Computers, vol. 8, no. 1, 1998, pp. 21-66. DOI:
10.1142/50218126698000043.

MengChu Zhou and Naiqi Wu. System Modeling and Control with Resource-Oriented
Petri Nets. CRC Press, 2010. DOI: 10.1201/9781439808856.

Bruno Lopes, Mario Benevides and Edward Hermann Haeusler. “Reasoning about
multi-agent systems using stochastic Petri nets”. In: Trends in Practical Applications
of Agents, Multi-Agent Systems and Sustainability. Springer, 2015, pp. 75-86. DOI:
10.1007/978-3-319-19629-9_09.

Gregor Hohpe, Bobby Woolf, Kyle Brown, Conrad F. D’Cruz, Martin Fowler, Sean
Neville, Michael J. Rettig and Jonathan Simon. Enterprise Integration Patterns: De-
signing, Building, and Deploying Messaging Solutions. A Martin Fowler signature
book. Addison-Wesley, 2004.

171

https://doi.org/10.1007/978-3-319-05155-0
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1109/C-M.1978.217901
https://doi.org/10.1007/3-540-44564-1_16
https://doi.org/10.1007/978-0-85729-169-1
https://doi.org/10.1007/978-0-85729-169-1
https://doi.org/10.1007/978-3-662-03687-7
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1201/9781439808856
https://doi.org/10.1007/978-3-319-19629-9_9

Bibliography First referenced in Chapter 3

[35]

[36]

[37]

[38]

[39]

Paolo Ceravolo et al. “Big data semantics”. Journal on Data Semantics, vol. 7, no. 2,
2018, pp. 65-85. DO1: 10.1007/s13740-018-0086-2.

Aiswarya Raj Munappy, Jan Bosch and Helena Homstrom Olsson. “Data pipeline
management in practice: Challenges and opportunities”. In: Product-Focused Soft-
ware Process Improvement (PROFES 2020). Lecture Notes on Computer Science
(Programming and Software Engineering), vol. 12562. Springer, 2020, pp. 168—184.
DOI: 10.1007/978-3-030-64148-1_11.

Dirk Merkel. “Docker: Lightweight Linux containers for consistent development and
deployment”. Linux Journal, vol. 2014, no. 239, article 2, 2014.

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender and
Martin L. Kersten. “MonetDB: Two decades of research in column-oriented database
architectures”. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, vol. 35, no. 1, 2012, pp. 40-45.

Gerald Carter. LDAP System Administration: Putting Directories to Work. O’Reilly
Media, 2003.

First referenced in Chapter 3

[40]

[41]

[42]

[43]

[44]

Mark Raasveldt, Pedro Holanda, Hannes Miihleisen and Stefan Manegold. “Deep
integration of machine learning into column stores”. In: Proceedings of the 21st
International Conference on Extending Database Technology (EDBT). 2018, pp. 473—
476. DOI: 10.5441/002/edbt .2018.50.

Hannes Miihleisen, Alexander Bertram and Maarten-Jan Kallen. “Database-inspired
optimizations for statistical analysis”. Journal of Statistical Software, vol. 87, no. 4,
2018, pp. 1-20. DOI: 10.18637/3ss.v087.104.

Georgios Gousios, Dominik Safaric and Joost Visser. “Streaming software analytics”.
In: Proceedings of the 2016 IEEE/ACM 2nd International Workshop on Big Data
Software Engineering (BIGDSE ’16). 2016, pp. 8—11. DOT: 10.1145/2896825.
2896832.

Mark Raasveldt. “Integrating analytics with relational databases”. In: Proceedings of
the VLDB 2018 PhD Workshop co-located with the 44th International Conference on
Very Large Databases (VLDB 2018). 2018.

Joseph Vinish D’Silva, Florestan De Moor and Bettina Kemme. “AIDA: Abstraction

for advanced in-database analytics”. Proceedings of the VLDB Endowment, vol. 11,
no. 11, 2018, pp. 1400-1413. DOI: 10.14778/3236187.3236194.

172

https://doi.org/10.1007/s13740-018-0086-2
https://doi.org/10.1007/978-3-030-64148-1_11
https://doi.org/10.5441/002/edbt.2018.50
https://doi.org/10.18637/jss.v087.i04
https://doi.org/10.1145/2896825.2896832
https://doi.org/10.1145/2896825.2896832
https://doi.org/10.14778/3236187.3236194

Bibliography First referenced in Chapter 3

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Ying Zhang, Richard Koopmanschap and Martin L. Kersten. “Love at first sight:
MonetDB/TensorFlow”. In: IEEE 34th International Conference on Data Engineering
(ICDE). 2018, pp. 1672-1672. DO1: 10.1109/ICDE.2018.00208.

Jonathan Lajus and Hannes Miihleisen. “Efficient data management and statistics
with zero-copy integration”. In: Proceedings of the 26th International Conference on
Scientific and Statistical Database Management (SSDBM ’14). ACM, 2014, article 12.
DOI: 10.1145/2618243.2618265.

Paul Blockhaus, David Broneske, Martin Schiler, Veit Koppen and Gunter Saake.
“Combining two worlds: MonetDB with multi-dimensional index structure support
to efficiently query scientific data”. In: 32nd International Conference on Scientific
and Statistical Database Management (SSDBM 2020). ACM, 2020, article 29. DOTI:
10.1145/3400903.3401691.

Mark Raasveldt, Pedro Holanda, Tim Gubner and Hannes Miihleisen. “Fair bench-
marking considered difficult: Common pitfalls in database performance testing”. In:
Proceedings of the Workshop on Testing Database Systems (DBTest’18). ACM, 2018,
article 2. DOT: 10.1145/3209950.3209955.

Irene Martorelli et al. “Fungal metabarcoding data integration framework for the
MycoDiversity DataBase (MDDB)”. Journal of Integrative Bioinformatics, vol. 17,
no. 1, article 20190046, 2020. DOI: 10.1515/31b-2019-0046.

Sirine Zaouali and Sonia Ayachi Ghannouchi. “Integrating quality assessment through
metrics into Scrum software development”. In: Proceedings of the 20th International
Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques
(SoMeT_21). Vol. 337. Frontiers in Atrtificial Intelligence and Applications. IOS Press.
2021, pp. 211-223. DOI: 10.3233/FAIA210021.

Florencia Vega, Guillermo Rodriguez, Fabio Rocha and Rodrigo Pereira dos Santos.
“Scrum Watch: A tool for monitoring the performance of Scrum-based work teams”.
Journal of Universal Computer Science, vol. 28, no. 1, 2022, pp. 98-117. DOI: 10.
3897/jucs.67593.

Paulo Sérgio Santos Junior, Monalessa Perini Barcellos, Ricardo de Almeida Falbo
and Jodo Paulo A. Almeida. “From a Scrum reference ontology to the integration
of applications for data-driven software development”. Information and Software
Technology, vol. 136, article 106570, 2021. DOI: 10.1016/3.infsof.2021.106570.

Mark Raasveldt and Hannes Miihleisen. “Vectorized UDFs in column-stores”. In: Pro-
ceedings of the 28th International Conference on Scientific and Statistical Database
Management (SSDBM ’16). ACM, 2016, article 16. DOI: 10 . 1145 /2949689 .
2949703.

173

https://doi.org/10.1109/ICDE.2018.00208
https://doi.org/10.1145/2618243.2618265
https://doi.org/10.1145/3400903.3401691
https://doi.org/10.1145/3209950.3209955
https://doi.org/10.1515/jib-2019-0046
https://doi.org/10.3233/FAIA210021
https://doi.org/10.3897/jucs.67593
https://doi.org/10.3897/jucs.67593
https://doi.org/10.1016/j.infsof.2021.106570
https://doi.org/10.1145/2949689.2949703
https://doi.org/10.1145/2949689.2949703

Bibliography First referenced in Chapter 4

[54]

[55]

[56]

[57]

[58]

Mark Raasveldt. “MonetDBLite: An embedded analytical database”. In: Proceedings
of the 2018 International Conference on Management of Data (SIGMOD ’18). ACM,
2018, pp. 1837-1838. DO1: 10.1145/3183713.3183722.

Peter A. Boncz, Martin L. Kersten and Stefan Manegold. “Breaking the memory wall
in MonetDB”. Communications of the ACM, vol. 51, no. 12, 2008, pp. 77-85. DOI:
10.1145/1409360.1409380.

David Gembalczyk, Felix Martin Schuhknecht and Jens Dittrich. “An experimental
analysis of different key-value stores and relational databases”. In: Datenbanksysteme
fiir Business, Technologie und Web (BTW2017). Gesellschaft fiir Informatik, 2017,
pp- 351-360.

Mark Raasveldt and Hannes Miihleisen. “Don’t hold my data hostage: A case for
client protocol redesign”. Proceedings of the VLDB Endowment, vol. 10, no. 10, 2017,
pp- 1022-1033. DOI: 10.14778/3115404.3115408.

Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland and David
Svoboda. Java Coding Guidelines: 75 Recommendations for Reliable and Secure
Programs. SEI Series in Software Engineering. Pearson Education, 2013.

First referenced in Chapter 4

[59]

[60]

[61]

[62]

[63]

Leon Helwerda, Frank Niessink and Fons J. Verbeek. “Conceptual process models
and quantitative analysis of classification problems in Scrum software development
practices”. In: Proceedings of the 9th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management (IC3K 2017 - KDIR).
SCITEPRESS, 2017, pp. 357-366. DOI: 10.5220/0006602803570366.

Viljan Mahni¢ and TomaZ Hovelja. “On using planning poker for estimating user
stories”. Journal of Systems and Software, vol. 85, no. 9, 2012, pp. 2086-2095. DOLI:
10.1016/3.3ss.2012.04.005.

Sondra Ashmore and Kristin Runyan. Introduction to Agile Methods. Addison-Wesley
Professional, 2014.

Sergio Di Martino, Filomena Ferrucci, Carmine Gravino and Federica Sarro. “As-
sessing the effectiveness of approximate functional sizing approaches for effort esti-
mation”. Information and Software Technology, vol. 123, article 106308, 2020. DOT:
10.1016/3.1infsof.2020.106308.

Zainab Masood, Rashina Hoda and Kelly Blincoe. “Real world scrum: a grounded

theory of variations in practice”. IEEE Transactions on Software Engineering, vol. 48,
no. 5, 2022, pp. 1579-1591. pO1: 10.1109/TSE.2020.3025317.

174

https://doi.org/10.1145/3183713.3183722
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.14778/3115404.3115408
https://doi.org/10.5220/0006602803570366
https://doi.org/10.1016/j.jss.2012.04.005
https://doi.org/10.1016/j.infsof.2020.106308
https://doi.org/10.1109/TSE.2020.3025317

Bibliography First referenced in Chapter 4

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Jacky Wai Keung, Barbara A. Kitchenham and David Ross Jeffery. “Analogy-X:
Providing statistical inference to analogy-based software cost estimation”. IEEE Trans-
actions on Software Engineering, vol. 34, no. 4, 2008, pp. 471-484. DO1: 10.1109/
TSE.2008.34.

Mohammad Azzeh, Daniel Neagu and Peter I. Cowling. “Analogy-based software
effort estimation using fuzzy numbers”. Journal of Systems and Software, vol. 84,
no. 2, 2011, pp. 270-284. po1: 10.1016/73.73ss.2010.09.028.

Kenichi Ono, Masateru Tsunoda, Akito Monden and Kenichi Matsumoto. “Influence
of outliers on analogy based software development effort estimation”. In: Proceedings
of the IEEE/ACIS 15th International Conference on Computer and Information Science
(ICIS). 2016, pp. 1-6. DO1: 10.1109/ICIS.2016.7550865.

Eliane Maria De Bortoli Favero, Roberto Pereira, Andrey Ricardo Pimentel and
Dalcimar Casanova. “Analogy-based effort estimation: A systematic mapping of
literature”. INFOCOMP Journal of Computer Science, vol. 17, no. 2, 2018, pp. 07-22.

Marta Fernandez-Diego, Erwin R. Méndez, Fernando Gonzélez-Ladrén-de Guevara,
Silvia Mara Abrahao and Emilio Insfran. “An update on effort estimation in Agile
software development: A systematic literature review”. IEEE Access, vol. 8, 2020,
pp- 166768-166800. DOI: 10.1109/ACCESS.2020.3021664.

Heejun Park and Seung Baek. “An empirical validation of a neural network model for
software effort estimation”. Expert Systems with Applications, vol. 35, no. 3, 2008,
pp- 929-937. DOI: 10.1016/j.eswa.2007.08.001.

Fatima Boujida, Fatima Amazal and Ali Idri. “Neural networks based software devel-
opment effort estimation: A systematic mapping study”. In: Proceedings of the 16th
International Conference on Software Technologies (ICSOFT). SCITEPRESS, 2021,
pp- 102-110. DOI: 10.5220/0010603701020110.

Pantjawati Sudarmaningtyas and Rozlina Binti Mohamed. “Extended planning poker:
A proposed model”. In: Proceedings of the 7th International Conference on Infor-
mation Technology, Computer, and Electrical Engineering (ICITACEE 2020). 2020,
pp- 179-184. DOI: 10.1109/ICITACEE50144.2020.9239165.

Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi and Roberto
Tonelli. “Estimating story points from issue reports”. In: Proceedings of the The
12th International Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE 2016). ACM, 2016. DOI: 10.1145/2972958.2972959.

Valentina Lenarduzzi, Ilaria Lunesu, Martina Matta and Davide Taibi. ‘“Functional

size measures and effort estimation in Agile development: A replicated study”. In:
Proceedings of the 16th International Conference on Agile Processes in Software

175

https://doi.org/10.1109/TSE.2008.34
https://doi.org/10.1109/TSE.2008.34
https://doi.org/10.1016/j.jss.2010.09.028
https://doi.org/10.1109/ICIS.2016.7550865
https://doi.org/10.1109/ACCESS.2020.3021664
https://doi.org/10.1016/j.eswa.2007.08.001
https://doi.org/10.5220/0010603701020110
https://doi.org/10.1109/ICITACEE50144.2020.9239165
https://doi.org/10.1145/2972958.2972959

Bibliography First referenced in Chapter 4

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

Engineering and Extreme Programming (XP 2015). Springer, 2015, pp. 105-116. Dor:
10.1007/978-3-319-18612-2_9.

Pedro Miranda, J. Pascoal Faria, Filipe F. Correia, Ahmed Fares, Ricardo Graca and
Jodao Mendes Moreira. “An analysis of Monte Carlo simulations for forecasting soft-
ware projects”. In: Proceedings of the 36th Annual ACM Symposium on Applied Com-
puting (SAC 21). ACM, 2021, pp. 1550-1558. DOI: 10.1145/3412841.3442030.

Howard Lei, Farnaz Ganjeizadeh, Pradeep Kumar Jayachandran and Pinar Ozcan.
“A statistical analysis of the effects of Scrum and Kanban on software development
projects”. Robotics and Computer-Integrated Manufacturing, vol. 43, 2017. Special
Issue: Extended Papers Selected from FAIM 2014, pp. 59-67. DO1: 10.1016/j.rcim.
2015.12.001.

Martin Shepperd, David Bowes and Tracy Hall. “Researcher bias: The use of machine
learning in software defect prediction”. IEEE Transactions on Software Engineering,
vol. 40, no. 6, 2014, pp. 603-616. DOI: 10.1109/TSE.2014.2322358.

Maria Paasivaara, Sandra Durasiewicz and Casper Lassenius. “Using Scrum in dis-
tributed Agile development: A multiple case study”. In: Proceedings of the 4th IEEE
International Conference on Global Software Engineering. 2009, pp. 195-204. DOI:
10.1109/ICGSE.2009.27.

Minna Pikkarainen, Jukka Haikara, Outi Salo, Pekka Abrahamsson and Jari Still. “The
impact of Agile practices on communication in software development”. Empirical
Software Engineering, vol. 13, no. 3, 2008, pp. 303-337. DOI1: 10.1007/s10664-008~
9065-9.

Reni Kurnia, Ridi Ferdiana and Sunu Wibirama. “Software metrics classification for
Agile Scrum process: A literature review”. In: Proceedings of the 2018 International
Seminar on Research of Information Technology and Intelligent Systems (ISRITI 2018).
IEEE, 2018. DOI: 10.1109/isriti.2018.8864244.

Wilhelm Meding. “Effective monitoring of progress of Agile software development
teams in modern software companies: An industrial case study”. In: Proceedings of
the 27th International Workshop on Software Measurement and 12th International
Conference on Software Process and Product Measurement. 2017, pp. 23-32. DOTI:
10.1145/3143434.3143449.

Prabhat Ram, Pilar Rodriguez, Markku Oivo and Silverio Martinez-Fernandez. “Suc-
cess factors for effective process metrics operationalization in Agile software develop-
ment: A multiple case study”. In: Proceedings of the 2019 IEEE/ACM International
Conference on Software and System Processes (ICSSP 2019). IEEE, 2019, pp. 14-23.
DOI: 10.1109/icssp.2019.00013.

176

https://doi.org/10.1007/978-3-319-18612-2_9
https://doi.org/10.1145/3412841.3442030
https://doi.org/10.1016/j.rcim.2015.12.001
https://doi.org/10.1016/j.rcim.2015.12.001
https://doi.org/10.1109/TSE.2014.2322358
https://doi.org/10.1109/ICGSE.2009.27
https://doi.org/10.1007/s10664-008-9065-9
https://doi.org/10.1007/s10664-008-9065-9
https://doi.org/10.1109/isriti.2018.8864244
https://doi.org/10.1145/3143434.3143449
https://doi.org/10.1109/icssp.2019.00013

Bibliography First referenced in Chapter 5

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Ezequiel Scott and Dietmar Pfahl. “Using developers’ features to estimate story points”.
In: Proceedings of the 2018 International Conference on Software and System Process
(ICSSP ’18). ACM, 2018, pp. 106-110. DOT: 10.1145/3202710.3203160.

Luis Almeida, Adriano Albuquerque and Placido Pinheiro. “A multi-criteria model
for planning and fine-tuning distributed Scrum projects”. In: Proceedings of the 6th
IEEE International Conference on Global Software Engineering. 2011, pp. 75-83.
DOI: 10.1109/ICGSE.2011.36.

Marko Robnik-Sikonja and Igor Kononenko. “Theoretical and empirical analysis of
ReliefF and RReliefF”. Machine Learning, vol. 53, 2003, pp. 23-69. DOI: 10.1023/A:
1025667309714.

Martin Tomanek and Jan Juricek. “Project risk management model based on PRINCE2
and Scrum frameworks”. International Journal of Software Engineering & Applica-
tions, vol. 6, no. 1, 2015, pp. 81-88. DOI: 10.5121/1jsea.2015.6107.

Cyril Goutte and Eric Gaussier. “A probabilistic interpretation of precision, recall
and F'-score, with implication for evaluation”. In: Advances in Information Retrieval.
Springer, 2005, pp. 345-359. DOI: 10.1007/978-3-540-31865-1_25.

Shashank Mouli Satapathy and Santanu Kumar Rath. “Empirical assessment of ma-
chine learning models for Agile software development effort estimation using story
points”. Innovations in Systems and Software Engineering, vol. 13, no. 2, 2017,
pp- 191-200. DO1: 10.1007/5s11334-017-0288~z.

Subhra Sankar Dhar, Biman Chakraborty and Probal Chaudhuri. “Comparison of
multivariate distributions using quantile-quantile plots and related tests”. Bernoulli,
vol. 20, no. 3, 2014, pp. 1484-1506. DOI1: 10.3150/13-BEJ530.

Sebastian Baltes and Paul Ralph. “Sampling in software engineering research: a critical
review and guidelines”. Empirical Software Engineering, vol. 27, article 94, 2022.
DOI: 10.1007/s10664-021-10072-8.

First referenced in Chapter 5

[90]

[91]

[92]

Edward R. Tufte. Envisioning Information. 2nd ed. Graphics Press, 1998.

Min Chen, David Ebert, Hans Hagen, Robert S. Laramee, Robert van Liere, Kwan-Liu
Ma, William Ribarsky, Gerik Scheuermann and Deborah Silver. “Data, information,
and knowledge in visualization”. IEEE Computer Graphics and Applications, vol. 29,
no. 1, 2008, pp. 12-19. DOI: 10.1109/MCG.2009.6.

Usama Fayyad, Georges G. Grinstein and Andreas Wierse. Information Visualization
in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers Inc., 2001.

177

https://doi.org/10.1145/3202710.3203160
https://doi.org/10.1109/ICGSE.2011.36
https://doi.org/10.1023/A:1025667309714
https://doi.org/10.1023/A:1025667309714
https://doi.org/10.5121/ijsea.2015.6107
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/s11334-017-0288-z
https://doi.org/10.3150/13-BEJ530
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1109/MCG.2009.6

Bibliography First referenced in Chapter 5

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

David P. Tegarden. “Business information visualization”. Communications of the
Association for Information Systems, vol. 1, article 4, 1999. DOI: 10.17705/1cais.
00104.

Ben Shneiderman, Catherine Plaisant, Maxine S. Cohen, Steven Jacobs, Niklas
Elmqvist and Nicholas Diakopoulos. Designing the User Interface: Strategies for
Effective Human-Computer Interaction. 6th ed. Pearson, 2016, pp. 66-82.

Iris Vessey and Dennis Galletta. “Cognitive fit: An empirical study of information
acquisition”. Information Systems Research, vol. 2, no. 1, 1991, pp. 63-84. DOI:
10.1287/isre.2.1.63.

Joseph K. Nuamah, Younho Seong, Steven Jiang, Eui Park and Daniel Mountjoy.
“Evaluating effectiveness of information visualizations using cognitive fit theory: A
neuroergonomics approach”. Applied Ergonomics, vol. 88, article 103173, 2020. DOT:
10.1016/7j.apergo.2020.103173.

Anshul Vikram Pandey, Anjali Manivannan, Oded Nov, Margaret Satterthwaite and
Enrico Bertini. “The persuasive power of data visualization”. I[EEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, 2014, pp. 2211-2220. DOTI:
10.1109/TVCG.2014.2346419.

Julia Paredes, Craig Anslow and Frank Maurer. “Information visualization for Agile
software development teams”. In: Proceedings of the Second IEEE Working Conference
on Software Visualization (VISSOFT 2014). IEEE, 2014, pp. 157-166. DO1: 10.1109/
vissoft.2014.32.

Antonio Gonzalez-Torres, Francisco J. Garcia-Penalvo, Roberto Theron-Sanchez and
Ricardo Colomo-Palacios. “Knowledge discovery in software teams by means of
evolutionary visual software analytics”. Science of Computer Programming, vol. 121,
2016. Special Issue on Knowledge-based Software Engineering, pp. 55-74. DOTI:
10.1016/3.scico0.2015.09.005.

Nesib Tekin, Mehmet Kosa, Murat Yilmaz, Paul Clarke and Vahid Garousi. “Visual-
ization, monitoring and control techniques for use in Scrum software development:
An Analytic Hierarchy Process approach”. In: Systems, Software and Services Process
Improvement. Springer, 2020, pp. 45-57. DOI: 10.1007/978-3-030-56441-4_4.

Martin J. Eppler and Sabrina Bresciani. “Visualization in management: From com-
munication to collaboration. A response to Zhang”. Journal of Visual Languages &
Computing, vol. 24, no. 2, 2013, pp. 146-149. DO1: 10.1016/7.3v1c.2012.11.003.

Evanthia Dimara and Charles Perin. “What is interaction for data visualization?”’ IEEE

Transactions on Visualization and Computer Graphics, vol. 26, no. 1, 2020, pp. 119—
129. DOI: 10.1109/TVCG.2019.2934283.

178

https://doi.org/10.17705/1cais.00104
https://doi.org/10.17705/1cais.00104
https://doi.org/10.1287/isre.2.1.63
https://doi.org/10.1016/j.apergo.2020.103173
https://doi.org/10.1109/TVCG.2014.2346419
https://doi.org/10.1109/vissoft.2014.32
https://doi.org/10.1109/vissoft.2014.32
https://doi.org/10.1016/j.scico.2015.09.005
https://doi.org/10.1007/978-3-030-56441-4_4
https://doi.org/10.1016/j.jvlc.2012.11.003
https://doi.org/10.1109/TVCG.2019.2934283

Bibliography First referenced in Chapter 5

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Riccardo Mazza. Introduction to Information Visualization. Springer, 2009. DOTI:
10.1007/978-1-84800-219-17.

Juuso Koponen and Jonatan Hildén. Data Visualization Handbook. Art + Design +
Architecture. Aalto University, 2019.

Bang Wong. “Points of view: Color blindness”. Nature Methods, vol. 8, no. 6, 2011,
pp. 441-441. DOI: 10.1038/nmeth.1618.

Georges Grinstein, Alfred Kobsa, Catherine Plaisant and John T. Stasko. “Which comes
first, usability or utility?” In: Proceedings of the IEEE Conference on Visualization
(VIS 2003). IEEE, 2003, pp. 605-606. DOI: 10.1109/visual.2003.1250426.

Jeffrey Heer, Stuart K. Card and James A. Landay. “prefuse: A toolkit for interactive
information visualization”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI °05). ACM, 2005, pp. 421-430. DOoI: 10.1145/
1054972.1055031.

Stuart K. Card, Jock D. Mackinlay and Ben Shneiderman. Readings in Information
Visualization: Using Vision to Think. Interactive Technologies. Morgan Kaufmann,
1999.

Ben Shneiderman. “The eyes have it: A task by data type taxonomy for information
visualizations”. In: The Craft of Information Visualization. Morgan Kaufmann, 2003,
pp- 364-371. DOI: https://doi.org/10.1016/B978-155860915-0/50046-9.

Jakob Nielsen. Usability Engineering. Morgan Kaufman, 1993. po1: 10.1016/C2009~
0-21512-1.

Michael Bostock, Vadim Ogievetsky and Jeffrey Heer. “ID*: Data-Driven Documents”.
IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 12, 2011,
pp- 2301-2309. po1: 10.1109/TVCG.2011.185.

Patrick Riehmann, Manfred Hanfler and Bernd Froehlich. “Interactive Sankey dia-
grams”. In: IEEE Symposium on Information Visualization INFOVIS 2005). 2005,
pp- 233-240. DOI: 10.1109/INFVIS.2005.1532152.

Amy N. Langyville and Carl D. Meyer. Who's #1?: The Science of Rating and Ranking.
Princeton University Press, 2012. DOI1: 10.1515/9781400841677.

Josh Barnes and Piet Hut. “A hierarchical O(NlogN) force-calculation algorithm”.
Nature, vol. 324, no. 6096, 1986, pp. 446—449. DOT: 10.1038/324446a0.

Loup Verlet. “Computer “experiments” on classical fluids. I. Thermodynamical prop-

erties of Lennard-Jones molecules”. Physical Review, vol. 159, no. 1, article 98, 1967,
pp. 98-103. DOI: 10.1103/PhysRev.159. 98.

179

https://doi.org/10.1007/978-1-84800-219-7
https://doi.org/10.1038/nmeth.1618
https://doi.org/10.1109/visual.2003.1250426
https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1145/1054972.1055031
https://doi.org/https://doi.org/10.1016/B978-155860915-0/50046-9
https://doi.org/10.1016/C2009-0-21512-1
https://doi.org/10.1016/C2009-0-21512-1
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/INFVIS.2005.1532152
https://doi.org/10.1515/9781400841677
https://doi.org/10.1038/324446a0
https://doi.org/10.1103/PhysRev.159.98

Bibliography Technical resources

[116]

[117]

[118]

[119]

[120]

[121]

[122]

Emden R. Gansner and Stephen C. North. “An open graph visualization system and
its applications to software engineering”. Software: Practice and Experience, vol. 30,
no. 11, 2000. Special Issue: Discrete algorithm engineering, pp. 1203—1233. DOT:
10.1002/1097-024X(200009)30:11<1203: :AID-SPE338>3.0.C0O; 2-N.

Cas H. J. Dekkers. “Designing information visualizations for generating business value
in Agile software development”. Master’s thesis. LIACS, Leiden University, 2021.

Laurens C. Groeneveld. “Visalization of patterns in Scrum software development”.
Bachelor’s thesis. LIACS, Leiden University, 2017.

Donald A. Norman. The Design of Everyday Things. Revised and Expanded Edition.
Originally published as The Psychology of Everyday Things. Perseus Books, 2013.

Catherine Plaisant. “The challenge of information visualization evaluation”. In: Pro-
ceedings of the Working Conference on Advanced Visual Interfaces (AVI ’04). ACM,
2004, pp. 109-116. DO1: 10.1145/989863.989880.

Michael Behrisch et al. “Quality metrics for information visualization”. Computer
Graphics Forum, vol. 37, no. 3, 2018, pp. 625-662. DOI: 10.1111/cgf.13446.

Evanthia Dimara, Anastasia Bezerianos and Pierre Dragicevic. “Conceptual and
methodological issues in evaluating multidimensional visualizations for decision sup-
port”. IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 1,
2018, pp. 749-759. DO1: 10.1109/TVCG.2017.2745138.

Technical resources

(1]

(1]

[111]

[1v]

(vl

[vil

Atlassian. Jira: Issue & project tracking software. URL: https://www.atlassian.
com/software/jira.

Scott Chacon et al. Git. URL: https://git-scm.com/.

GitLab. The most-comprehensive Al-powered DevSecOps platform. URL: https :
//about.gitlab.com/.

Continuous Delivery Foundation. Jenkins. URL: https://www. jenkins.io/.

SonarSource. Code quality, security & static analysis tool with SonarQube. URL:
https://www.sonarsource.com/products/sonarqube/.

ICTU. Quality-time: Software quality monitoring for teams and projects. URL: https:
//github.com/ICTU/quality-time.

180

https://doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
https://doi.org/10.1145/989863.989880
https://doi.org/10.1111/cgf.13446
https://doi.org/10.1109/TVCG.2017.2745138
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://git-scm.com/
https://about.gitlab.com/
https://about.gitlab.com/
https://www.jenkins.io/
https://www.sonarsource.com/products/sonarqube/
https://github.com/ICTU/quality-time
https://github.com/ICTU/quality-time

Bibliography Technical resources

[viI]

[viir]

[1X]

[x]

[x1]

[x11]

[X111]

[X1V]

[xVv]
[xV1]

[xviI]

[XVIII]

[X1X]

[xX]

[xxX1]

[xx11]

ICTU. BigBoat: An open-source container and CI/CD ecosystem. URL: https://
github.com/bigboat-io.

Microsoft. Azure DevOps Server. URL: https://azure.microsoft .com/en—
us/products/devops/server/.

The GnuPG Project. The GNU Privacy Guard. URL: https://www.gnupg.org/.

The R Foundation. The R project for statistical computing. URL: https://www.r—
project.org/.

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. Software available from tensorflow.org. 2015. URL: https :
//www.tensorflow.org/.

Docker. Docker Compose overview. URL: https://docs.docker.com/compose/.

GitHub. GitHub: Let’s build from here. URL: https://github.comn/.

Apache Software Foundation. Apache Subversion. URL: https : //subversion.
apache.org/.

TOPdesk. IT Service Management Platform. URL: https://www.topdesk.com/en/.
Oracle. MySQL Workbench. URL: https://dev.mysgl.com/doc/workbench/en/.

Lance Andersen. JDBC 4.2 Specification. Oracle, 2014. URL: https://download.
oracle.com/otn-pub/jcp/jdbc-4_2-mrel2-spec/jdbcd.2-fr-spec.pdf.

Transaction Processing Performance Council. TPC Benchmark H (Decision Sup-
port) Standard Specification. Apr. 28, 2022. URL: https: //www.tpc.org/tpc_
documents_current_versions/pdf/tpc-h_v3.0.1.pdf.

Leon Helwerda. Grip on Software sprint features. 2024. DOI: 10 . 5281/ zenodo .
10878529. URL: https://gros.liacs.nl/combined/prediction/api/vl/
dataset.

Eibe Frank et al. ARFF Format. URL: https ://waikato . github . io/weka-
wiki/formats_and_processing/arff/.

Jeremy Thomas. Bulma: Free, open source, and modern CSS framework based on
Flexbox. URL: https://bulma.io/.

Orit Golowinski. Understand how your teams adopt DevOps with DevOps reports.

Dec. 15, 2021. URL: https://about.gitlab.com/blog/2021/12/15/devops-
adoption/.

181

https://github.com/bigboat-io
https://github.com/bigboat-io
https://azure.microsoft.com/en-us/products/devops/server/
https://azure.microsoft.com/en-us/products/devops/server/
https://www.gnupg.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://docs.docker.com/compose/
https://github.com/
https://subversion.apache.org/
https://subversion.apache.org/
https://www.topdesk.com/en/
https://dev.mysql.com/doc/workbench/en/
https://download.oracle.com/otn-pub/jcp/jdbc-4_2-mrel2-spec/jdbc4.2-fr-spec.pdf
https://download.oracle.com/otn-pub/jcp/jdbc-4_2-mrel2-spec/jdbc4.2-fr-spec.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf
https://doi.org/10.5281/zenodo.10878529
https://doi.org/10.5281/zenodo.10878529
https://gros.liacs.nl/combined/prediction/api/v1/dataset
https://gros.liacs.nl/combined/prediction/api/v1/dataset
https://waikato.github.io/weka-wiki/formats_and_processing/arff/
https://waikato.github.io/weka-wiki/formats_and_processing/arff/
https://bulma.io/
https://about.gitlab.com/blog/2021/12/15/devops-adoption/
https://about.gitlab.com/blog/2021/12/15/devops-adoption/

Bibliography Technical resources

[xx111]

[XXTV]

[XxV]

[XXVI]

[XXVII]

[XXVIII]

[XXTX]

[XXxX]

[XXXI]

[xxxI11]

[XXXIIT]

[XXXIV]

Mike Bostock. d3-force: Force-directed graph layout using velocity Verlet integration.
URL: https://github.com/d3/d3-force.

The Graphviz Authors. DOT Language. URL: https://www.graphviz.org/doc/
info/lang.html.

Magnus Jacobsson. d3-graphviz: Graphviz DOT rendering and animated transitions
using D3. URL: https://github.com/magjac/d3-graphviz.

WHATWG. HTML Standard: Web workers. Mar. 17, 2022. URL: https://html.
spec.whatwg.org/multipage/workers.html.

Justin Palmer. Introducing Contributions. Jan. 7,2013. URL: https://github.blog/
2013-01-07-introducing-contributions/.

Koninklijk Nederlands Meteorologisch Instituut (KNMI). Meteo data - daily qual-
ity controlled climate data. URL: https://dataplatform. knmi.nl/dataset/
etmaalgegevensknmistations-1.

Meta. React. URL: https://react.dev/.

Dan Abramov. Redux - A predictable state container for JavaScript apps. URL: https:
//redux.js.org/.

Mark Otto, Jacob Thorton and Bootstrap contributors. Bootstrap. URL: https: //
getbootstrap.con/.

Deque Systems. axe: Accessiblity Testing Tools and Software. URL: https://www.
deque.com/axe/.

Andrew Kirkpatrick, Joshue O’Connor, Alastair Campbell and Michael Cooper. Web
Content Accessibility Guidelines (WCAG) 2.1. W3C Recommendation. June 5, 2018.
URL: https://www.w3.0rg/TR/WCAG21/.

Joanmarie Diggs, James Nurthen and Michael Cooper. Accessible Rich Internet Appli-

cations (WAI-ARIA) 1.2. W3C Candidate Recommendation Draft. Dec. 8, 2021. URL:
https://www.w3.0org/TR/wai-aria-1.2/.

182

https://github.com/d3/d3-force
https://www.graphviz.org/doc/info/lang.html
https://www.graphviz.org/doc/info/lang.html
https://github.com/magjac/d3-graphviz
https://html.spec.whatwg.org/multipage/workers.html
https://html.spec.whatwg.org/multipage/workers.html
https://github.blog/2013-01-07-introducing-contributions/
https://github.blog/2013-01-07-introducing-contributions/
https://dataplatform.knmi.nl/dataset/etmaalgegevensknmistations-1
https://dataplatform.knmi.nl/dataset/etmaalgegevensknmistations-1
https://react.dev/
https://redux.js.org/
https://redux.js.org/
https://getbootstrap.com/
https://getbootstrap.com/
https://www.deque.com/axe/
https://www.deque.com/axe/
https://www.w3.org/TR/WCAG21/
https://www.w3.org/TR/wai-aria-1.2/

Appendices

Appendix A

Code repositories of the Grip on
Software pipeline

Accompanying Chapter 2

Appendix A. Code repositories of the Grip on Software pipeline

The references listed here are supplemental to the technical resources found in the bibliography. We
provide these separate from the bibliography, given their nature of being contributions in addition
to—and in support of—our research. The references indicate locations of code repositories that
contain implementations, documentation and tests for the components of the GROS pipeline used
throughout our research. In Section 2.3.2, we provide descriptions and further details for each of
the code repositories.

[a]

[b]

[c]

[d]

[e]

[f]

[g]

(h]

Leon Helwerda. Modules used to gather data from different data sources in software de-
velopment processes. ICTU and Leiden University. DOI: 10.5281/zenodo.10911862.
URL: https://github.com/grip-on-software/data-gathering.

Leon Helwerda. Web-based data gathering agent configuration. ICTU and Leiden
University. DOI: 10.5281/zenodo.11115708. URL: https://github.com/grip-
on-software/agent-config.

Leon Helwerda. Data gathering agent status web application. ICTU and Leiden
University. DOI: 10.5281/zenodo.12533335. URL: https://github.com/grip-
on-software/status-dashboard.

Leon Helwerda, Enrique Larios Vargas, Thomas Helling and Thomas Prikkel. Importer
of gathered data into a MonetDB database. ICTU and Leiden University. DOI: 10.
5281/ zenodo . 12583196. URL: https://github.com/grip-on-software/
monetdb-import.

Leon Helwerda. Export tables from a MonetDB database for backups or exchanges.
ICTU and Leiden University. DOI: 10 . 5281/ zenodo . 12723675. URL: https :
//github.com/grip-on-software/monetdb-dumper.

Leon Helwerda. Tools for securely uploading files to a remote server via HTTPS
and GPG. ICTU and Leiden University. DOI: 10.5281/zenodo.12773659. URL:
https://github.com/grip-on-software/export-exchange.

Leon Helwerda. Encrypted file upload server. ICTU and Leiden University. DOI:
10.5281/zenodo.12784820. URL: https://github.com/grip-on-software/
upload.

Leon Helwerda. Requesting (anonymized/aggregate) data from a filled MonetDB
database and processing for data mining or visualization. ICTU and Leiden Univer-
sity. DOI: 10.5281/zenodo.12935240. URL: https://github.com/grip-on-
software/data-analysis.

Leon Helwerda. Algorithms to predict, classify and analyze features and labels of

Scrum data. ICTU and Leiden University. DOI: 10.5281/zenodo.12942716. URL:
https://github.com/grip-on-software/prediction.

186

https://doi.org/10.5281/zenodo.10911862
https://github.com/grip-on-software/data-gathering
https://doi.org/10.5281/zenodo.11115708
https://github.com/grip-on-software/agent-config
https://github.com/grip-on-software/agent-config
https://doi.org/10.5281/zenodo.12533335
https://github.com/grip-on-software/status-dashboard
https://github.com/grip-on-software/status-dashboard
https://doi.org/10.5281/zenodo.12583196
https://doi.org/10.5281/zenodo.12583196
https://github.com/grip-on-software/monetdb-import
https://github.com/grip-on-software/monetdb-import
https://doi.org/10.5281/zenodo.12723675
https://github.com/grip-on-software/monetdb-dumper
https://github.com/grip-on-software/monetdb-dumper
https://doi.org/10.5281/zenodo.12773659
https://github.com/grip-on-software/export-exchange
https://doi.org/10.5281/zenodo.12784820
https://github.com/grip-on-software/upload
https://github.com/grip-on-software/upload
https://doi.org/10.5281/zenodo.12935240
https://github.com/grip-on-software/data-analysis
https://github.com/grip-on-software/data-analysis
https://doi.org/10.5281/zenodo.12942716
https://github.com/grip-on-software/prediction

Appendix A. Code repositories of the Grip on Software pipeline

(3]

(k]

(1]

[m]

[n]

[o]

[p]

[a]

[r]

[s]

[t]

[u]

Leon Helwerda. Integrated visualization hub. ICTU and Leiden University. DOI:
10.5281/zenodo.13208936. URL: https://github.com/grip-on-software/
visualization-site.

Leon Helwerda. Common visualization Ul fragments. ICTU and Leiden University.
URL: https://github.com/grip-on-software/visualization-ui.

Leon Helwerda. Dynamic sprint report generator in comparison visualization formats.
ICTU and Leiden University. DOI: 10 . 5281 / zenodo . 13208969. URL: https :
//github.com/grip-on-software/sprint-report.

Leon Helwerda. Human-readable output of sprint predictions. ICTU and Leiden
University. DOI: 10.5281/zenodo.13209623. URL: https://github.com/grip-
on-software/prediction-site.

Leon Helwerda. Interactive visualization of temporal data from a software development
process. ICTU and Leiden University. DOI: 10 . 5281 / zenodo . 13220620. URL:
https://github.com/grip-on-software/timeline.

Leon Helwerda and Laurens C. Groeneveld. Project statistics as a leaderboard. ICTU
and Leiden University. DOI: 10.5281/zenodo.13220623. URL: https://github.
com/grip-on-software/leaderboard.

Leon Helwerda and Laurens C. Groeneveld. Graph of relations between project
members and the projects they work on. ICTU and Leiden University. DOI: 10 .
5281/ zenodo.13220626. URL: https://github.com/grip-on-software/
collaboration-graph.

Leon Helwerda. Flowchart display of story status. ICTU and Leiden University. DOI:
10.5281/zenodo.13220648. URL: https://github.com/grip-on-software/
process—-flow.

Leon Helwerda and Laurens C. Groeneveld. Visualization of project commit activity
over time. ICTU and Leiden University. DOI: 10.5281/zenodo.13220681. URL:
https://github.com/grip-on-software/heatmap.

Leon Helwerda and Laurens C. Groeneveld. BigBoat platform reliability graphs.
ICTU and Leiden University. DOI: 10 . 5281 / zenodo . 13220696. URL: https :
//github.com/grip-on-software/bigboat-status.

Cas H. J. Dekkers. Effort burndown chart for product backlogs. ICTU and Leiden
University. URL: https://github.com/grip-on-software/backlog-burndown.

Cas H. J. Dekkers. Progression inspection chart for product backlogs. ICTU and

Leiden University. URL: https://github.com/grip-on-software/backlog-
progression.

187

https://doi.org/10.5281/zenodo.13208936
https://github.com/grip-on-software/visualization-site
https://github.com/grip-on-software/visualization-site
https://github.com/grip-on-software/visualization-ui
https://doi.org/10.5281/zenodo.13208969
https://github.com/grip-on-software/sprint-report
https://github.com/grip-on-software/sprint-report
https://doi.org/10.5281/zenodo.13209623
https://github.com/grip-on-software/prediction-site
https://github.com/grip-on-software/prediction-site
https://doi.org/10.5281/zenodo.13220620
https://github.com/grip-on-software/timeline
https://doi.org/10.5281/zenodo.13220623
https://github.com/grip-on-software/leaderboard
https://github.com/grip-on-software/leaderboard
https://doi.org/10.5281/zenodo.13220626
https://doi.org/10.5281/zenodo.13220626
https://github.com/grip-on-software/collaboration-graph
https://github.com/grip-on-software/collaboration-graph
https://doi.org/10.5281/zenodo.13220648
https://github.com/grip-on-software/process-flow
https://github.com/grip-on-software/process-flow
https://doi.org/10.5281/zenodo.13220681
https://github.com/grip-on-software/heatmap
https://doi.org/10.5281/zenodo.13220696
https://github.com/grip-on-software/bigboat-status
https://github.com/grip-on-software/bigboat-status
https://github.com/grip-on-software/backlog-burndown
https://github.com/grip-on-software/backlog-progression
https://github.com/grip-on-software/backlog-progression

Appendix A. Code repositories of the Grip on Software pipeline

[v]

(x]

[y]

[z]

Cas H. J. Dekkers. Issue relationship chart for product backlogs. ICTU and Lei-
den University. URL: https://github.com/grip-on- software/backlog-
relationship.

Leon Helwerda. Deployment web application. ICTU and Leiden University. DOI:
10.5281/zenodo.12571035. URL: https://github.com/grip-on-software/
deployer.

Leon Helwerda. Web application framework for building authenticated services with
templating support. ICTU and Leiden University. DOI: 10.5281/zenodo.11580150.
URL: https://github.com/grip-on-software/server-framework.

Leon Helwerda. Cleanup of Docker, Jenkins and SonarQube services based on
build state. ICTU and Leiden University. URL: https://github.com/grip-on-
software/Jjenkins-cleanup.

Leon Helwerda. Collect JavaScript coverage information during a test run. ICTU and

Leiden University. URL: https://github.com/grip-on-software/coverage-
collector.

188

https://github.com/grip-on-software/backlog-relationship
https://github.com/grip-on-software/backlog-relationship
https://doi.org/10.5281/zenodo.12571035
https://github.com/grip-on-software/deployer
https://github.com/grip-on-software/deployer
https://doi.org/10.5281/zenodo.11580150
https://github.com/grip-on-software/server-framework
https://github.com/grip-on-software/jenkins-cleanup
https://github.com/grip-on-software/jenkins-cleanup
https://github.com/grip-on-software/coverage-collector
https://github.com/grip-on-software/coverage-collector

Appendix B

Queries used in database
performance experiments

Accompanying Chapter 3

Appendix B. Queries used in database performance experiments

1 SELECT S${f(join_cols, "sprint_metrics")}, COUNT(*) AS
num_metrics

2 FROM (

3 SELECT DISTINCT ${f(join_cols, "metric_value")},
metric_value.metric_id

4 FROM gros.metric_value

5 JOIN gros.S${t("sprint")} ON ${j(join_cols,
"metric_value", "sprint")}

6 WHERE metric_value.value <> -1

7) AS sprint_metrics

8 S{g(join_cols, "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id,
sprint_metrics.sprint_id, COUNT (*) AS num_metrics

2 FROM (

3 SELECT DISTINCT metric_value.project_id,
metric_value.sprint_id, metric_value.metric_id

4 FROM gros.metric_value

— 5 JOIN gros.sprint ON metric_value.project_id =
sprint.project_id AND metric_value.sprint_id =
sprint.sprint_id

6 WHERE metric_value.value <> -1

) AS sprint_metrics

8 GROUP BY sprint_metrics.project_id,

sprint_metrics.sprint_id

3

(b) Compiled

Figure B.1: All metrics (original query)

190

Appendix B. Queries used in database performance experiments

1 SELECT S${f(join_cols, "sprint_metrics")}, COUNT(*) AS
num_metrics

2 FROM (

3 SELECT DISTINCT ${f(join_cols, "metric_value")},
metric_value.metric_id

4 FROM gros.metric_value

5 WHERE metric_value.value <> -1 AND

metric_value.sprint_id <> 0
6) AS sprint_metrics
7 S${g(join_cols, "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id,
sprint_metrics.sprint_id, COUNT (*) AS num_metrics

2 FROM (
3 SELECT DISTINCT metric_value.project_id,
metric_value.sprint_id, metric_value.metric_id
— 4 FROM gros.metric_value
5 WHERE metric_value.value <> -1 AND
metric_value.sprint_id <> 0
6) AS sprint_metrics

7 GROUP BY sprint_metrics.project_id,
sprint_metrics.sprint_id

(b) Compiled

Figure B.2: All metrics (refined query)

191

Appendix B. Queries used in database performance experiments

1 SELECT S${f(join_cols, "sprint_metrics")}, COUNT(*) AS
num_red_metrics

2 FROM (

3 SELECT DISTINCT ${f(join_cols, "metric_value")},
metric_value.metric_id

4 FROM gros.metric_value

5 JOIN gros.S${t("sprint")} ON ${j(join_cols,
"metric_value", "sprint")}

6 WHERE metric_value.category = 'red'

7) AS sprint_metrics

8 S{g(join_cols, "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id, sprint_metrics.sprint_id,
COUNT (*) AS num_red_metrics

2 FROM (

3 SELECT DISTINCT metric_value.project_id,
metric_value.sprint_id, metric_value.metric_id

4 FROM gros.metric_value

5 JOIN gros.sprint ON metric_value.project_id =
sprint.project_id AND metric_value.sprint_id =
sprint.sprint_id

6 WHERE metric_value.category = 'red'

) AS sprint_metrics

GROUP BY sprint_metrics.project_id, sprint_metrics.sprint_id

N

o)

(b) Compiled

Figure B.3: Red metrics (original query)

192

Appendix B. Queries used in database performance experiments

1 SELECT S${f(join_cols, "sprint_metrics")}, COUNT(*) AS
num_red_metrics

FROM (
3 SELECT DISTINCT ${f(join_cols, "metric_value")},
metric_value.metric_id
4 FROM gros.metric_value
5 WHERE metric_value.category = 'red' AND
metric_value.sprint_id <> 0
6) AS sprint_metrics

7 S${g(join_cols, "sprint_metrics")}

(a) Template

1 SELECT sprint_metrics.project_id, sprint_metrics.sprint_id,
COUNT (*) AS num_red_metrics

FROM (
3 SELECT DISTINCT metric_value.project_id,
metric_value.sprint_id, metric_value.metric_id
4 FROM gros.metric_value
5 WHERE metric_value.category = 'red' AND
metric_value.sprint_id <> 0
6) AS sprint_metrics

7 GROUP BY sprint_metrics.project_id, sprint_metrics.sprint_id;

(b) Compiled

Figure B.4: Red metrics (refined query)

193

Appendix B. Queries used in database performance experiments

1 SELECT S${f(join_cols, "team_spirit")},
AVG (metric_value.value) AS team_spirit
2 FROM gros.metric_value, (
3 SELECT S${f(join_cols, "metric_value")},
metric_value.metric_id, MAX(metric_value.date) AS
max_date

4 FROM gros.metric_value

5 JOIN gros.metric

6 ON metric_value.metric_id = metric.metric_id

7 JOIN gros.${t("sprint")}

8 ON ${j(join_cols, "metric_value", "sprint")}

9 WHERE metric_value.value <> -1

10 AND metric.base_name = 'TeamSpirit'

11 ${g(join_cols, "metric_value")}, metric_value.metric_id

12) AS team_spirit

13 WHERE metric_value.date = team_spirit.max_date AND
metric_value.metric_id = team_spirit.metric_id

14 ${g(join_cols, "team_spirit")}

(a) Template

1 SELECT team_spirit.project_id, team_spirit.sprint_id,
AVG (metric_value.value) AS team_spirit
2 FROM gros.metric_value, (
3 SELECT metric_value.project_id, metric_value.sprint_id,
metric_value.metric_id, MAX(metric_value.date) AS
max_date

4 FROM gros.metric_value

5 JOIN gros.metric

6 ON metric_value.metric_id = metric.metric_id

7 JOIN gros.sprint

8 ON metric_value.project_id = sprint.project_id AND
metric_value.sprint_id = sprint.sprint_id

9 WHERE metric_value.value <> -1

10 AND metric.base_name = 'TeamSpirit'

11 GROUP BY metric_value.project_id,

metric_value.sprint_id, metric_value.metric_id
12) AS team_spirit
13 WHERE metric_value.date = team_spirit.max_date and
metric_value.metric_id = team_spirit.metric_id
14 GROUP BY team_spirit.project_id, team_spirit.sprint_id

(b) Compiled

Figure B.5: Team spirit (original query)

194

Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols, "team_spirit")}, MAX(value) AS team_spirit

2 FROM (

3 SELECT ${f(join_cols, "metric_value")}, metric_value.value,
MAX (metric_value.date) AS end_date, ROW_NUMBER() OVER (

4 PARTITION BY ${f(join_cols, "metric_value")}
5 ORDER BY ${f(join_cols, "metric_value")},
MAX (metric_value.date) DESC
6) AS rev_row FROM gros.metric_value
7 JOIN gros.metric
8 ON metric_value.metric_id = metric.metric_id
9 WHERE metric.base_name = 'TeamSpirit' AND metric.domain_name
<> "' AND metric_value.sprint_id <> 0
10 AND metric_value.value > -1
11 ${g(join_cols, "metric_value")}, metric_value.value

12) AS team_spirit
13 WHERE rev_row = 1
14 ${g(join_cols, "team_spirit")}

(a) Template

1 SELECT team_spirit.project_id, team_spirit.sprint_id, MAX(value)
AS team_spirit

2 FROM (

3 SELECT metric_value.project_id, metric_value.sprint_id,
metric_value.value, MAX(metric_value.date) AS end_date,
ROW_NUMBER () OVER (

4 PARTITION BY metric_value.project_id,

metric_value.sprint_id

5 ORDER BY metric_value.project_id, metric_value.sprint_id,

MAX (metric_value.date) DESC

6) AS rev_row FROM gros.metric_value

7 JOIN gros.metric

8 ON metric_value.metric_id = metric.metric_id

9 WHERE metric.base_name = 'TeamSpirit' AND metric.domain_name
<> "' AND metric_value.sprint_id <> 0

10 AND metric_value.value > -1

11 GROUP BY metric_value.project_id, metric_value.sprint_id,
metric_value.value

12) AS metric_team_spirit

13 WHERE rev_row = 1
14 GROUP BY metric_team_spirit.project_id,
metric_team_spirit.sprint_id

(b) Compiled

Figure B.6: Team spirit (refined query)

195

Appendix B. Queries used in database performance experiments

N=RC RN e MY I SN

e
DR W N = O

—_
[=2)

SELECT ${f(join_cols, "issue", mask=1)}, ${s(issue_key)} AS key,

MAX (${f(join_cols, "sprint", mask=2, alias=T,
sprint="interval_sprint")}) AS ${f(join_cols, "", mask=2, alias=F)},
MAX (${s(story_points)}) AS story_points, MAX(${s(fix_version)}) AS
fixversion

FROM gros.S${t("issue")}

LEFT JOIN gros.${t("issue")} AS older_issue

ON ${j(issue_next_changelog, "issue", "older_issue")}

LEFT JOIN gros.S${t("sprint")}

ON ${j(join_cols, M"issue", "sprint")}

JOIN gros.${t("sprint")} AS interval_sprint

ON ${j(join_cols, "issue", "interval_sprint", 1)}

WHERE (${f(join_cols, "sprint", mask=2, alias="alias")} IS NULL

S{g

OR ${s(sprint_open)} >= ${s(sprint_open, sprint="interval_sprint")}

s(issue_not_done) }

s(issue_backlog)}

{t("issue")}.updated > ${s(sprint_open, sprint="interval_sprint")}
(${t("older_issue")}.changelog_id IS NULL ${s(filter_inverse,
issue="older_issue", cond_op="OR")})

(join_cols, "issue", £("issue_key"), mask=1)}

(a) Template

w

N W

O o 3

11
12

13
14

15
16

SELECT issue.project_id, issue.key AS key, MAX(interval_sprint.sprint_id)

AS sprint_id, MAX(CASE WHEN issue.story_points IN (-5, -1, 99, 100,
122, 999) THEN 0 ELSE issue.story_points END) AS story_points,
MAX (issue.fixversion) AS fixversion

FROM gros.issue
LEFT JOIN gros.issue AS older_issue
ON issue.issue_id = older_issue.issue_id AND issue.changelog_id =

older_issue.changelog_id + 1

LEFT JOIN gros.sprint
ON issue.project_id = sprint.project_id AND issue.sprint_id =

sprint.sprint_id

JOIN gros.sprint AS interval_sprint
ON issue.project_id = interval_sprint.project_id
WHERE (sprint.sprint_id IS NULL

OR COALESCE (CAST (sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP ())
>= COALESCE (CAST (interval_sprint.start_date AS TIMESTAMP),
CURRENT_TIMESTAMP ())

COALESCE (issue.resolution, 0) NOT IN (1, 10000) AND

COALESCE (issue.status, 0) NOT IN (6, 10008)

issue."type" = 17

issue.updated > COALESCE (CAST (interval_sprint.start_date AS TIMESTAMP),
CURRENT_ TIMESTAMP ())

(older_issue.changelog_id IS NULL)

GROUP BY issue.project_id, issue.issue_id, issue.key

(b) Compiled

Figure B.7: Backlog added points (original query)

196

Appendix B. Queries used in database performance experiments

1 SELECT S${f(join_cols, "issue", mask=1)}, S{s(issue_key)} AS
key, MAX(S{f(join_cols, "sprint", mask=2, alias=T,
sprint="interval_sprint")}) AS ${£f(join_cols, "",
mask=2, alias=F)}, MAX(${s(story_points)}) AS
story_points, MAX(S{s(fix_version)}) AS fixversion

FROM gros.S{t("issue")}

LEFT JOIN gros.${t("issue")} AS older_issue

ON S${j(issue_next_changelog, "issue", "older_issue")}

JOIN gros.S${t("sprint")} AS interval_sprint

ON ${j(join_cols, "issue", "interval_sprint", 1)}

AND interval_sprint.sprint_id IN (${filter_sprint_ids})

AND S${t("issue")}.updated > S${s(sprint_open,
sprint="interval_sprint")}

9 WHERE S${s(issue_not_done)}

10 AND S${s(issue_backlog)}

11 AND (S${t("older_issue")}.changelog_id IS NULL

S{s(filter_inverse, issue="older_issue", cond_op="0R")})

12 ${g(join_cols, "issue", £("issue_key"), mask=1)}

0NN R W

(a) Template

1 SELECT issue.project_id, issue.key AS key,

2 MAX (interval_sprint.sprint_id) AS sprint_id,

3 MAX (CASE WHEN issue.story_points IN (-5, -1, 99, 100,
122, 999) THEN 0 ELSE issue.story_points END) AS
story_points,

4 MAX (issue.fixversion) AS fixversion

5 FROM gros.issue

6 LEFT JOIN gros.issue AS older_issue

7 ON issue.issue_id = older_issue.issue_id AND

issue.changelog_1id = older_issue.changelog_id + 1

8 JOIN gros.sprint AS interval_sprint

9 ON issue.project_id = interval_sprint.project_id

10 AND interval_sprint.sprint_id IN (...)

11 AND issue.updated > COALESCE (CAST (interval_sprint.start_date
AS TIMESTAMP), CURRENT TIMESTAMP ())

12 WHERE COALESCE (issue.resolution, 0) NOT IN (1, 10000) AND
COALESCE (issue.status, 0) NOT IN (6, 10008)

13 AND issue."type" = 7

14 AND (older_issue.changelog_id IS NULL)

15 GROUP BY issue.project_id, issue.issue_id, issue.key

(b) Compiled

Figure B.8: Backlog added points (refined query)

197

Appendix B. Queries used in database performance experiments

O 00 NN R W N

10
11
12

13

SELECT S${f(join_cols, "sprint", alias=T, sprint="in_sprint")},
${t("issue")}.epic AS key, COUNT(*) AS epic_children,
SUM(${s(story_points)}) AS story_points

FROM gros.S${t("issue")}

LEFT JOIN gros.${t("issue")} AS newer_issue

ON ${j(issue_next_changelog, "newer_issue", "issue")}

LEFT JOIN gros.${t("sprint")} ON ${j(join_cols, "issue", "sprint")}

JOIN gros.${t("sprint")} AS in_sprint

ON ${j(join_cols, "issue", "in_sprint", 1)}

WHERE S${t("issue")}.epic IS NOT NULL

AND (${f(join_cols, "sprint", mask=2, alias="alias")} IS NULL OR
S{s(sprint_open)} >= ${s(sprint_close, sprint="in_sprint")})

AND ${s(issue_story)} AND ${s(issue_not_done)}

AND ${t("issue")}.updated <= ${s(sprint_close, sprint="in_sprint")}

AND (newer_issue.updated IS NULL OR newer_issue.updated > ${s(sprint_close,
sprint="in_sprint")})

${g(join_cols, "sprint", sprint="in_sprint")}, S${t("issue")}.epic

(a) Template

O 0 9

10

11

12

13

SELECT in_sprint.project_id, in_sprint.sprint_id, issue.epic AS key,

COUNT (*) AS epic_children, SUM(CASE WHEN issue.story_points IN (-5, -1,
99, 100, 122, 999) THEN (0 ELSE issue.story_points END) AS story_points

FROM gros.issue

LEFT JOIN gros.issue AS newer_issue

ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =
issue.changelog_id + 1

LEFT JOIN gros.sprint ON issue.project_id = sprint.project_id AND
issue.sprint_id = sprint.sprint_id

JOIN gros.sprint AS in_sprint

ON issue.project_id = in_sprint.project_id

WHERE issue.epic IS NOT NULL

AND (sprint.sprint_id IS NULL OR COALESCE (CAST (sprint.start_date AS
TIMESTAMP), CURRENT TIMESTAMP ()) >= CASE WHEN in_sprint.complete_date
IS NOT NULL AND CAST (in_sprint.complete_date AS DATE) <
CAST (in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END)

AND issue."type" = 7 AND COALESCE (issue.resolution, 0) NOT IN (1, 10000)
AND COALESCE (issue.status, 0) NOT IN (6, 10008)

AND issue.updated <= CASE WHEN in_sprint.complete_date IS NOT NULL AND
CAST (in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END

AND (newer_issue.updated IS NULL OR newer_issue.updated > CASE WHEN
in_sprint.complete_date IS NOT NULL AND CAST (in_sprint.complete_date AS
DATE) < CAST(in_sprint.end_date AS DATE) THEN in_sprint.complete_date
ELSE in_sprint.end_date END)

GROUP BY in_sprint.project_id, in_sprint.sprint_id, issue.epic

(b) Compiled

Figure B.9: Backlog epic points (original query)

198

Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols, "sprint", alias=T, sprint="in_sprint")},
${t("issue")}.epic AS key, COUNT(*) AS epic_children,
SUM(${s(story_points)}) AS story_points

2 FROM gros.S${t("issue")}

3 LEFT JOIN gros.${t("issue")} AS newer_issue

4 ON ${j(issue_next_changelog, "newer_issue", "issue")}

5 LEFT JOIN gros.${t("sprint")} ON ${j(join_cols, "issue", "sprint")}

6 JOIN gros.S$S{t("sprint")} AS in_sprint

7 ON ${j(join_cols, "issue", "in_sprint", 1)}

8 AND in_sprint.sprint_id IN (${filter_sprint_ids})

9 AND ${t("issue")}.updated <= ${s(sprint_close, sprint="in_sprint")}

10 AND COALESCE (newer_issue.updated, ${s(sprint_close, sprint="in_sprint")})
>= ${s(sprint_close, sprint="in_sprint")}

11 WHERE ${t("issue")}.epic IS NOT NULL AND (${f(join_cols, "sprint", mask=2,
alias="alias")} IS NULL OR ${s(sprint_open)} >= ${s(sprint_close,
sprint="in_sprint")}) AND ${s(issue_story)} AND ${s(issue_not_done)}

12 ${g(join_cols, "sprint", sprint="in_sprint")}, ${t("issue")}.epic

(a) Template

1 SELECT in_sprint.project_id, in_sprint.sprint_id, issue.epic AS key,

COUNT (*) AS epic_children, SUM(CASE WHEN issue.story_points IN (-5, -1,
99, 100, 122, 999) THEN (0 ELSE issue.story_points END) AS story_points

2 FROM gros.issue

3 LEFT JOIN gros.issue AS newer_issue

4 ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =
issue.changelog_id + 1

5 LEFT JOIN gros.sprint ON issue.project_id = sprint.project_id AND
issue.sprint_id = sprint.sprint_id

6 JOIN gros.sprint AS in_sprint

7 ON issue.project_id = in_sprint.project_id

8 AND in_sprint.sprint_id IN (...)

9 AND issue.updated <= CASE WHEN in_sprint.complete_date IS NOT NULL AND
CAST (in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END

10 AND COALESCE (newer_issue.updated, CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST (in_sprint.complete_date AS DATE) <
CAST (in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END) >= CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST(in_sprint.complete_date AS DATE) <
CAST (in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END

11 WHERE issue.epic IS NOT NULL AND (sprint.sprint_id IS NULL OR
COALESCE (CAST (sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP ()) »>=
CASE WHEN in_sprint.complete_date IS NOT NULL AND
CAST (in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END) AND
issue."type" = 7 AND COALESCE (issue.resolution, 0) NOT IN (1, 10000)
AND COALESCE (issue.status, 0) NOT IN (6, 10008)

12 GROUP BY in_sprint.project_id, in_sprint.sprint_id, issue.epic

(b) Compiled

Figure B.10: Backlog epic points (refined query)

199

Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols, "sprint", alias=T, sprint="in_sprint")},
S${s(issue_key)} AS key, MAX(S${s(story_points)}) AS story_points,
MAX (${s(fix_version)}) AS fixversion

2 FROM gros.S${t("issue")}

3 LEFT JOIN gros.${t("issue")} AS newer_issue

4 ON ${j(issue_next_changelog, "newer_issue", "issue")}

5 LEFT JOIN gros.S${t("sprint")}

6 ON ${j(join_cols, "issue", "sprint")}

7 JOIN gros.S${t("sprint")} AS in_sprint

8 ON ${j(join_cols, "issue", "in_sprint", 1)}

9 WHERE (${s(issue_open)} OR ${s(sprint_open)} >= ${s(sprint_open,
sprint="in_sprint")})

10 AND ${s(issue_backlog)}

11 AND ${t("issue")}.updated <= ${s(sprint_open, sprint="in_sprint")}

12 AND (newer_issue.updated IS NULL OR newer_issue.updated > ${s(sprint_open,
sprint="in_sprint")})

13 ${g(join_cols, "sprint", £("issue_key"), sprint="in_sprint")}

(a) Template

1 SELECT in_sprint.project_id, in_sprint.sprint_id, issue.key AS key,
MAX (CASE WHEN issue.story_points IN (-5, -1, 99, 100, 122, 999) THEN 0
ELSE issue.story_points END) AS story_points, MAX(issue.fixversion) AS
fixversion

2 FROM gros.issue

3 LEFT JOIN gros.issue AS newer_issue

4 ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =
issue.changelog_id + 1

5 LEFT JOIN gros.sprint

6 ON issue.project_id = sprint.project_id AND issue.sprint_id =
sprint.sprint_id

7 JOIN gros.sprint AS in_sprint

8 ON issue.project_id = in_sprint.project_id

9 WHERE (issue.status NOT IN (5,6,10008) OR COALESCE (CAST (sprint.start_date
AS TIMESTAMP), CURRENT_TIMESTAMP ()) >=
COALESCE (CAST (in_sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP ()))

10 AND issue."type" = 7 AND issue.story_points IS NOT NULL

11 AND issue.updated <= COALESCE (CAST (in_sprint.start_date AS TIMESTAMP),
CURRENT_ TIMESTAMP ())

12 AND (newer_issue.updated IS NULL OR newer_issue.updated >
COALESCE (CAST (in_sprint.start_date AS TIMESTAMP), CURRENT_TIMESTAMP ()))

13 GROUP BY in_sprint.project_id, in_sprint.sprint_id, issue.issue_id,
issue.key

(b) Compiled

Figure B.11: Backlog story points (original query)

200

Appendix B. Queries used in database performance experiments

1 SELECT ${f(join_cols, "sprint", alias=T, sprint="in_sprint")},
S${s(issue_key)} AS key, MAX(S{s(story_points)}) AS story_points,
MAX ($S{s(fix_version)}) AS fixversion

FROM gros.${t("issue")}

LEFT JOIN gros.${t("issue")} AS newer_issue

ON ${j(issue_next_changelog, "newer_issue", "issue")}

LEFT JOIN gros.${t("sprint")}

ON ${j(join_cols, "issue", "sprint")}

JOIN gros.${t("sprint")} AS in_sprint

ON ${j(join_cols, "issue", "in_sprint", 1)}

AND in_sprint.sprint_id IN (${filter_sprint_ids})

AND S${t("issue")}.updated <= ${s(sprint_close, sprint="in_sprint")}

AND COALESCE (newer_issue.updated, ${s(sprint_close, sprint="in_sprint")})
>= ${s(sprint_close, sprint="in_sprint")}

WHERE (${s(issue_open)} OR ${s(sprint_close)} >= ${s(sprint_close,
sprint="in_sprint")}) AND ${s(issue_backlog)}

${g(join_cols, "sprint", £("issue_key"), sprint="in_sprint")}

O 00 NN B W

[E—
- o

—_
8]

—_
w

(a) Template

1 SELECT in_sprint.project_id, in_sprint.sprint_id, issue.key AS key,
MAX (CASE WHEN issue.story_points IN (-5, -1, 99, 100, 122, 999) THEN 0
ELSE issue.story_points END) AS story_points, MAX(issue.fixversion) AS
fixversion

2 FROM gros.issue

3 LEFT JOIN gros.issue AS newer_issue

4 ON newer_issue.issue_id = issue.issue_id AND newer_issue.changelog_id =
issue.changelog_id + 1

5 LEFT JOIN gros.sprint

6 ON issue.project_id = sprint.project_id AND issue.sprint_id =
sprint.sprint_id

7 JOIN gros.sprint AS in_sprint

8 ON issue.project_id = in_sprint.project_id

9 AND in_sprint.sprint_id IN (...)

10 AND issue.updated <= CASE WHEN in_sprint.complete_date IS NOT NULL AND
CAST (in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END

11 AND COALESCE (newer_issue.updated, CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST (in_sprint.complete_date AS DATE) <
CAST (in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END) >= CASE WHEN in_sprint.complete_date IS NOT
NULL AND CAST (in_sprint.complete_date AS DATE) <
CAST (in_sprint.end_date AS DATE) THEN in_sprint.complete_date ELSE
in_sprint.end_date END

12 WHERE (issue.status NOT IN (5,6,10008) OR CASE WHEN sprint.complete_date IS
NOT NULL AND CAST (sprint.complete_date AS DATE) < CAST (sprint.end_date
AS DATE) THEN sprint.complete_date ELSE sprint.end_date END >= CASE
WHEN in_sprint.complete_date IS NOT NULL AND
CAST (in_sprint.complete_date AS DATE) < CAST(in_sprint.end_date AS
DATE) THEN in_sprint.complete_date ELSE in_sprint.end_date END) AND
issue."type" = 7 AND issue.story_points IS NOT NULL

13 GROUP BY in_sprint.project_id, in_sprint.sprint_id, issue.issue_id,
issue.key

(b) Compiled

Figure B.12: Backlog story points (refined query)

201

Summary

Grip on Software: Understanding development progress
of SCRUM sprints and backlogs

Complexity is a common factor in software development processes. Software developers, quality
engineers and other leading roles often face challenges during development, in particular when
balancing the effort spent in various tasks surrounding the implementation and maintenance of
features in software products. These experts deal with an ever-changing digital ecosystem as well
as priority shifts in wishes of the user representatives, i.e., the client.

In order to remain focused on implementing requirements that are described in user stories
during a development phase—not rigid plans formulated early on in the life cycle—software
development teams often choose to work according to an Agile software development method
such as SCRUM. We wish to improve the predictability of the short-term SCRUM sprint cycle and
the long-term product backlog planning, while retaining the flexibility of the process.

The essence of SCRUM is that repeated series of meetings and events take place. This allows
us to extract structured data regarding the progress from several systems that each team uses as
a digital support. After data acquisition and database modeling, we describe and select relevant
metrics and features for a data set, aimed at improving and evaluating machine learning algorithms.

We introduce several algorithms, firstly for predicting work that a team could commit to
finishing before the end of a SCRUM sprint, which takes a few weeks. Additionally, we explore
forecasting algorithms that estimate the amount of work on the backlog over a longer period of
time. The results from these models demonstrate that we are able to indicate whether selected user
stories—with expert effort estimations in the form of story points—will be finished during a sprint,
at a reasonable accuracy. We also show that it is more difficult to determine if certain milestones
in the future are reachable, e.g., due to unforeseen scope changes. Still, these algorithms and
data sets allow us to highlight patterns from a software development project’s life cycle. This way,
we provide novel, interactive information visualizations that aid in decision making.

In order to increase the extent of the data set and thus feed our algorithms with fresh
data, we construct a data acquisition pipeline for our Grip on Software (GROS) research. The
GROS pipeline is designed to be generalizable, so that it is able to collect data from different
systems that teams and organizations work with. At two governmental software development
organizations based in the Netherlands—Stichting ICTU and Wigo4it—we apply the components
of the pipeline to acquire and augment the data sets through frequent runs of distributed agents
at the organization. A centralized instance receives updates as well for a combined data set.
We consider privacy and security aspects by (pseudo-)anonymizing project-sensitive data and
personally identifying information.

203

Summary

After fresh data is acquired from systems related to project tracking (Jira and Azure DevOps),
code versioning (such as Git and including review systems like GitHub and Gitlab), quality
control (SonarQube and Quality-time), build platforms and so on, we model the data based on
similarities between systems and establish new connections across those systems, so that we are
able to derive emergent metrics based on intersections of the software development process data.
This model leads to the construction of a MonetDB database, where large numbers of records
for entities and relations from the software development process are easily inserted, updated and
retrieved in batches using column-based storage.

The actual extraction and feature selection of features for the data set takes place using a novel
query template compilation system. The templates are usable for various sources of data that are
similar to each other, regardless of whether the data is modeled slightly differently, thus supporting
diverse development ecosystems at the organizations that are involved. Common variables are
shared between queries, simplifying the task to define, e.g., effort estimation values from story
points while reducing noise from real-life data.

We apply these query templates to our GROS research to construct novel features, based on
input from developers, SCRUM coaches and quality engineers, to describe various metrics, team
properties and events that take place during a sprint in numeric form. We split up the samples
of sprints in our data set into training, test and validation sets, taking into account the temporal
aspect of the data. By only using older sprints of a development project during training, we avoid
problems where a team’s effort in a later sprint was influenced by the result of an earlier sprint
which should thus not show up in test or validation.

As part of finetuning the data set and models, the extracted features are scored to determine
which ones contribute the most in estimating a target label, e.g., an indication of whether stories
are done at the end of a sprint. Additionally, we apply one of our models to select a representative
subset of features based on a distance measure, similar to clustering.

Due to the limitation in dimensions, we consider classification and estimation models which
apply practices from deep learning, in particular architectures that are explainable to stakeholders.
We use a three-layered neural network (DNN) for classification—with an F1 score of 89.98%—
and analysis-based effort estimation (ABE) for the evaluation of the number of story points that
the team could complete during a sprint, with the latter model providing estimations that are
within a 25% margin for 88.6% of one organization’s validation samples. The stability of the ABE
model is however problematic, as it is unable to handle data combined from multiple organizations,
whereas DNN classification exhibits better statistical measurements with larger data sets.

When it comes to forecasting backlog sizes in the longer term, we compare a linear regression
with Monte Carlo simulations using various scenarios, taking more data from earlier backlog
progression and other mutations into account. We find that the Monte Carlo method is able to
generate a proper normal distribution of outcomes, matching the eventual end of a project most
closely, with only a third of a project’s life span provided to feed the simulations. Still, all models
underestimate the backlog size, with a likely cause being scope changes of a development project.

The data set and prediction results form the basis for a hub of information visualizations, which
provide refreshing views on patterns and situations from development processes. The interactive
visualizations include customizable reports, detailed prediction dashboards, timelines, network
graphs, flow charts and calendars with heat maps. These layouts are meant to showcase different
aspects of the modeled processes. Based on discussions with stakeholders, we also realize controls
to provide the details that they need. This service allows intuitive access to the results, with focus
on the most relevant features and options to zoom into fine-grained information.

204

Summary

Furthermore, we integrate status metrics from prediction results into quality reports as well
as create inventive backlog charts for display in project management systems, with links and
references to the visualizations and the source data. Usability and accessibility tests show that the
design is effective, with several stakeholders adopting the visualizations in their workflow.

Overall, these approaches allow us to provide answers to our research questions and accomplish
objectives laid out in this thesis, with the central focus on understanding and improving the SCRUM
software development process, in particular the predictability of delivering incremental changes
during sprints and viable products at long-term milestones. Through extraction of data and analysis
of features describing events, we are able to create a data set and construct models aimed at various
predictive tasks. The data acquisition pipeline and pattern recognition methods are augmented
with a visualization front-end, which initiates a new feedback loop involving stakeholders of the
development project. Using rapid data acquisition, database storage and analysis in our integrated
pipeline, we are able to expand our data set regularly, leading to new classifications, estimations
and information visualizations at a daily—or more frequent—rate. Together, this paves the way to
an enhanced SCRUM software development progress.

205

Samenvatting

Grip op Software: Voortgang van ontwikkeling
van SCRUM sprints en backlogs beter begrijpen

Complexiteit is alledaags in softwareontwikkelprocessen. Softwareontwikkelaars, kwaliteits-
engineers en andere leidinggevenden ondervinden vaak uitdagingen tijdens de ontwikkeling, in
het bijzonder het balanceren van inspanning die gemoeid gaat met allerlei taken behorende bij het
implementeren en onderhouden van features in softwareproducten. Deze experts moeten omgaan
met een digitaal ecosysteem dat altijd in verandering is, evenals met verschuivingen van prioriteit
bij de wensen van de vertegenwoordigers van de gebruiker, zijnde de cliént.

Om tijdens een ontwikkelfase gefocust te blijven op het implementeren van behoeftes,
beschreven in user stories—niet vastgelegde plannen die lang geleden in de duur van het project
zijn geformuleerd—Xkiezen softwareontwikkelteams er vaak voor om te werken volgens een Agile
ontwikkelmethode zoals SCRUM. We willen de voorspelbaarheid van de sprintcyclus binnen
SCRUM op de korte termijn en de planning van de product backlog op de lange termijn verbeteren
en tegelijkertijd de flexibiliteit van het proces behouden.

De essentie van SCRUM zorgt ervoor dat herhaalde opeenvolgingen van bijeenkomsten en
gebeurtenissen plaatsvinden. Dit maakt het mogelijk voor ons om gestructureerde informatie
over de voortgang te extraheren uit verschillende systemen die de teams gebruiken als digitaal
hulpmiddel. Na het vergaren van de data en het modelleren in een database kunnen we relevante
metrieken en features beschrijven en selecteren voor een dataset, met als doel het verbeteren en
evalueren van algoritmes uit machine learning.

We introduceren meerdere algoritmes, ten eerste voor het voorspellen van werk waarvoor een
team een inzet zou kunnen afspreken om af te hebben voor het einde van een sprint in SCRUM,
welke een paar weken duurt. Daarnaast onderzoeken we algoritmes voor het inschatten van de
hoeveelheid werk op de backlog voor een langere tijd. De resultaten van deze modellen laten zien
dat we kunnen aangeven of gekozen user stories—die story points krijgen als inschattingen voor de
inspanning door experts—met redelijke betrouwbaarheid worden voltooid tijdens een sprint. We
tonen ook aan dat het moeilijker is om te bepalen of bepaalde milestones in de toekomst haalbaar
zijn, bijvoorbeeld door onvoorziene veranderingen in projectdoelen. Toch stellen deze algoritmes
en datasets ons in staat om patronen uit de levenscyclus van een softwareontwikkelproject te
benadrukken. Hiermee maken we nieuwe, interactieve informatievisualisaties beschikbaar die
beslissingen ondersteunen.

Om de omvang van de dataset te vergroten en daarmee de algoritmes van verse, nieuwe data te
voorzien, bouwen we een pipeline gericht op gegevensverzameling voor ons onderzoek, Grip op
Software (GROS). De GROS-pipeline is ontworpen met het uitgangspunt van generaliseerbaarheid,

207

Samenvatting

zodat het mogelijk is om data uit verschillende systemen te halen waar verschillende teams en
organisaties mee werken. Bij twee Nederlandse overheidsdiensten voor IT—Stichting ICTU en
Wigodit—gebruiken we de componenten van de pipeline om datasets te verwerven en uit te breiden
door regelmatig gedistribueerde agent-programma’s data te laten verzamelen bij de organisatie.
Een centrale opstelling verkrijgt eveneens bijgewerkte gegevens voor een gecombineerde dataset.
We houden rekening met belangen rondom privacy en beveiliging door gevoelige informatie van
projecten en persoonsgegevens te (pseudo-)anonimiseren.

Nadat nieuwe data is verzameld uit systemen rondom projectbeheer (Jira en Azure DevOps),
versies van code (zoals Git, inclusief samenwerkingsfuncties uit GitHub en GitLab), kwaliteits-
controle (SonarQube en Quality-time), bouwplatforms, enzovoort, modelleren we de data op basis
van overeenkomsten tussen systemen en leggen we nieuwe verbanden tussen deze systemen, zodat
we opkomende metrieken kunnen afleiden uit overlappingen binnen data uit softwareontwikkel-
processen. Dit model leidt tot de inrichting van een MonetDB-database, waar grote aantallen
registraties voor entiteiten en relaties uit het proces kunnen worden ingevoegd, bijgewerkt en
massaal opgehaald met behulp van kolomgebaseerde opslag.

Het daadwerkelijke afleiden en selecteren van features voor de dataset vindt plaats met behulp
van een nieuw opvraagsysteem met gecompileerde sjablonen. Deze sjablonen zijn bruikbaar om
verschillende, op elkaar lijkende databronnen op te vragen, ongeacht of de data iets anders is
gemodelleerd, om op die manier gevarieerde ecosystemen voor ontwikkeling bij de betrokken
organisaties te ondersteunen. Gemeenschappelijke variabelen worden tussen de opvraagsjablonen
gedeeld, wat het eenvoudiger maakt om bijvoorbeeld de inschattingen van inspanning op basis van
story points te defini€ren en tegelijkertijd ruis van de dagelijkse gang van zaken te verminderen.

We passen deze opvraagsjablonen toe op ons onderzoek om nieuwe fetures te maken,
gebaseerd op adviezen van ontwikkelaars, SCRUM-coaches en kwaliteitsengineers, om tot een
numerieke beschrijving voor verschillende metrieken, teameigenschappen en gebeurtenissen uit
een sprint te komen. We splitsen onze dataset met voorbeelden van sprints op in sets voor trainen,
testen en validatie, waarbij we rekening houden met het tijdsaspect van de data. Door alleen
oudere sprints van een ontwikkelproject te gebruiken tijdens het trainen voorkomen we problemen
waar de inspanning van een team in een latere sprint beinvloed was door het resultaat van een
eerdere sprint; deze sprint hoort dus niet voorbij te komen tijdens het testen en valideren.

Om de dataset en modellen te verfijnen, krijgen de afgeleide features ook scores die bepalen
welke features het meest bijdragen aan het inschatten van een verwacht label, bijvoorbeeld een
indicatie of stories klaar zijn aan het einde van een sprint. Daarnaast gebruiken we één van
onze modellen om een representatieve deelverzameling van features te kiezen gebaseerd op een
afstandsmaat, vergelijkbaar met clusteren.

Door de beperkingen in dimensies gebruiken we modellen voor classificatie en inschatting
die gebruik maken van praktijken uit deep learning, met in het bijzonder structuren die uitlegbaar
zijn aan belanghebbenden. We gebruiken een drielaags neural netwerk (DNN) voor classificatie—
met een Fl-score van 89.98%—en analogie-gebaseerde inspanningsschatting (ABE) voor het
bepalen van het aantal story points dat het team zou kunnen afmaken tijdens een sprint, met
inschattingen van het laatstgenoemde model die binnen een 25% marge voor 88.6% van de
sprints in de validatieset van één organisatie zijn. De stabiliteit van het ABE-model is echter
problematisch, omdat het niet overweg kan met gecombineerde data van meerdere organisaties,
terwijl de classificatie van DNN statistisch gezien verbetert met grotere datasets.

Voor het, op langere termijn, voorspellen van backloggroottes, vergelijken we een lineaire
regressie met Monte Carlo-simulaties op basis van verschillende scenario’s, die meer data uit

208

Samenvatting

eerdere voortgang van de backlog en andere veranderingen meenemen. We zien dat de Monte
Carlo-methode in staat is om een juiste normaalverdeling van uitkomsten te genereren die het best
lijkt op een uiteindelijke voltooiing van een project, met slechts een derde van het verloop van een
project om de simulaties op te starten. Echter onderschatten alle modellen de backloggrootte, met
als vermoedelijke reden veranderingen in projectdoelen.

De dataset en resultaten van de voorspellingen zijn de basis voor een centrale locatie van
informatievisualisaties, die elk een vernieuwende blik bieden op patronen en situaties gevonden
in ontwikkelprocessen. De interactieve visualisaties omvatten aanpasbare rapporten, panelen met
gedetailleerde voorspellingen, tijdslijnen, netwerken als grafen, stroomschema’s en kalenders met
activiteitsniveaus. Deze ontwerpen dienen om verschillende aspecten van het gemodelleerde proces
te belichten. Op basis van gesprekken met belanghebbenden maken we extra hulpgereedschappen
beschikbaar voor de details die zij nodig hebben. Zo bieden wij intuitieve toegang tot de resultaten,
met focus op de belangrijkste onderdelen en opties om in te zoomen op fijnmazige informatie.

Daarnaast integreren we statusmetrieken van voorspellingen in kwaliteitsrapporten en bouwen
we nieuwe grafieken voor backlogs die getoond kunnen worden binnen systemen voor project-
beheer, met links en referenties naar de visualisaties en brongegevens. Tests voor bruikbaarheid
en toegankelijkheid tonen aan dat de opzet effectief is, met meerdere belanghebbenden die de
visualisaties in hun werkwijze opnemen.

Over het geheel genomen hebben deze benaderingswijzen ervoor gezorgd dat we antwoorden
en oplossingen kunnen geven voor onze onderzoeksvragen en doelen uit dit proefschrift, met
de centrale focus op het begrijpen en verbeteren van het SCRUM-softwareontwikkelproces, met
name de voorspelbaarheid van het leveren van stapsgewijze veranderingen tijdens sprints en
bruikbare producten bij milestones op de langere termijn. Met behulp van het extraheren en
analyseren van features die gebeurtenissen beschrijven maken wij een dataset en bouwen wij
modellen gericht op verschillende voorspellingstaken. De pipeline voor gegevensverzameling en
patroonherkenningsmethodes worden aangevuld met visualisaties in een gebruikersomgeving,
wat een nieuwe terugkoppeling opstart met de belanghebbenden in het ontwikkelproject. Door
de gegevensverzameling, database-opslag en analyse te versnellen, vergroten we de dataset
regelmatig, wat leidt tot classificaties, inschattingen en informatievisualisaties die dagelijks—of
vaker—worden vernieuwd. Alles bij elkaar genomen maakt dit de weg vrij voor een verbeterde
SCRUM-softwareontwikkelmethode.

209

Curriculum Vitae

Leon Helwerda was born on the 23" of June, 1992 in Voorburg, the Netherlands. He graduated
from the Huygenslyceum in the same locality in 2010. Following that, he enjoyed a year of
Mathematics education at Leiden University before switching to Computer Science, obtaining
his BSc degree in Informatica in 2014 with extracurricular courses included. Following that,
he graduated cum laude with an MSc degree in Computer Science—Core Computer Science
specialization—in 2016. While this education mainly took place at Leiden University, the Master’s
thesis included experiments performed at CWI, Amsterdam. Continuing his research efforts at the
Leiden Institute of Advanced Computer Science (LIACS), Leon embarked on another journey as
a PhD student in the Grip op Software (GROS) research project, a collaboration between LIACS
and Stichting ICTU. As a part of the Imaging and Bio-informatics group, he collaborated with
other staff members to set up and maintain systems and aid with research and education.

211

Curriculum Vitae Publications

Publications

Leon Helwerda et al. “Query compilation for feature extraction in MonetDB”, 2024. Pending
submission.

Leon Helwerda et al. “Estimation models for prediction of sprints and backlogs”. Empirical
Software Engineering, 2024. Submitted.

Leon Helwerda et al. “Information visualization in analytical decision support and ecosys-
tem management in agile processes”, 2024. Pending submission.

Leon Helwerda, Frank Niessink and Fons J. Verbeek. “Conceptual process models and
quantitative analysis of classification problems in Scrum software development practices”.
In: Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowl-
edge Engineering and Knowledge Management (IC3K 2017 - KDIR). SCITEPRESS, 2017,
pp- 357-366. DOI: 10.5220/0006602803570366.

Leon also co-authored the following publications:

Alan Zammit, Leon Helwerda, René C. L. Olsthoorn, Fons J. Verbeek and Alexander P.
Gultyaev. “A database of flavivirus RNA structures with a search algorithm for pseudoknots
and triple base interactions”. Bioinformatics, vol. 37, no. 7, Aug. 2020, pp. 956-962. DOI:
10.1093/bioinformatics/btaa759.

Irene Martorelli, Leon Helwerda, Jesse Kerkvliet, Sofia I. F. Gomes, Jorinde Nuytinck,
Chivany R. A. van der Werff, Guus J. Ramackers, Alexander P. Gultyaev, Vincent S. F. T.
Merckx and Fons J. Verbeek. “Fungal metabarcoding data integration framework for the
MycoDiversity DataBase (MDDB)”. Journal of Integrative Bioinformatics, vol. 17, no. 1,
article 20190046, 2020. DOI: 10.1515/31b-2019-0046.

K. Joost Batenburg, Leon Helwerda, Walter A. Kosters and Tim van der Meij. “Mobile
radio tomography: Agent-based imaging”. In: BNAIC 2016: Artificial Intelligence. Commu-
nications in Computer and Information Science, vol. 765. Springer, 2017, pp. 63-77. DOI:
10.1007/978-3-319-67468-1_5.

212

https://doi.org/10.5220/0006602803570366
https://doi.org/10.1093/bioinformatics/btaa759
https://doi.org/10.1515/jib-2019-0046
https://doi.org/10.1007/978-3-319-67468-1_5

Acknowledgments

During the extended amount of time that it took to finalize the research—in particular writing this
dissertation—many people have offered support in one way or another. Without this generous
encouragement, it would be hard to imagine in what state the project would be today. Throughout
this process, I found that motivation is drawn not only from energy that I am able to exert from
myself, but also by the positivity and confidence that others have clearly conveyed. In this section,
as the author of this thesis, I would like to thank those that have proven to play an essential role in
the realization of this work. I mention some of these people by group, so even if their name is not
included here, they still have my greatest appreciation.

Firstly, I thank the people involved in Grip on Software. As a project, it has gone through
various phases, with pilots and subprojects that inevitably led to people joining and leaving
again. But I rather consider GROS as a team, where ambitions and visions have brought it to
greater heights. Here, I focus on GROS members from LIACS, but I mention participation from
ICTU later on in this section. I thank Fons for proposing the PhD position to me and providing a
place where I could grow my skills, both in machine learning research and computer systems in
general. Walter, who only officially joined the team late on, has been a cornerstone throughout my
education and research, with supervision of both Bachelor and Master thesis as a few indicators.
As such, I am glad that the recognition of the role he played all these years that led to this point is
now in print as well. I will also mention Aske, who helped kick-start and oversee the project in its
early phase. The pilot project—in which Enrique, Thomas and Thomas were involved—helped
start this research by demonstrating the potential of data acquisition. By looking beyond data, we
found that information visualization would best work toward understanding SCRUM, and work
by Laurens helped a lot there. Last but not least, Cas brought along more expertise regarding
visualization for software development as well as more help that I could ever know to ask for in
the final stages. This has been a source of inspiration during struggles.

There are more people at Leiden University that deserve some credit in helping me through
various stages of this process. Due to closeness of my initial office to other people and shared
interests with them, an informal group quickly formed, with fitting, unofficial names, ranging
from Coffee club—as most enjoyed this beverage during breaks—to the Fish tank crew, referring
to the office where most of them relocated to later on. In particular, I mention Lise and Irene here,
who invited me into the group in the first place, which also included Rens, Dirk, Arie-Willem,
Jan, Z¢ and many others who have come and gone. In the later stages of my PhD track, Kees and
Alexandra helped me to find a route through an entanglement of fuzzy paths. Even if some advice
was difficult to put in practice for me, it was still appreciated. I would also like to thank Alice for
lending a listening ear at various times. Long chats with Chivany are always a nice change of pace,
with many topics passing by. I would always feel comfortable during those times with you, Shiv.

213

Acknowledgments

More broadly, I have enjoyed working together with staff and students from the Bio-imaging
group, who have passion for their topics which might feel distanced from my research, but the
overlaps are plentiful and collaborations were always productive. This also includes Lu, who has
been very understanding of tough situations. More staff to mention here are Jeannette and Jetty,
for whom I have happily assisted courses. This is also the case for Kris, where our collaboration
extended into technical work as well. I also want to acknowledge the other staff that have been
involved in the LIACS Research and education lab, namely Vian and Jur. During my final year, I
joined the ISSC ALICE team to help with documentation and GPU monitoring for their cluster,
and my time with the team was a constructive and enjoyable experience.

Aside from staff and students that were there during various phases of my PhD, there are also
the students from earlier years that kept in touch. Of these, it is relevant to at least name Tim,
Jerome and Simon, with whom I had good interactions with during our studies and beyond.

As for the GROS project itself, it could not have been anything concrete without the support
and input from people over at ICTU. Foremost, Frank has been insightful and practical, with
experience and knowledge to back up his advice. Additionally, our meetings and informal talks
with quality managers, software delivery managers, Scrum Masters and coaches—as well as
other people whose roles do not define them—have been thoughtful, fruitful and compassionate.
Particularly, I want to thank the development teams that realize the software on behalf of ICTU
for other government agencies. All involved parties have been considerate and permissive to allow
us to use their data. I also thank the support teams for enabling a novel setup to acquire the data
using decentralized agents in the development ecosystem that they maintained.

Similarly, I thank the people at Wigo4it who helped in our research. Talking with various
people to understand the differences between the two governmental organizations brought extra
qualitative data, but also new viewpoints to consider.

Finally, I praise my family, namely my parents, Remco and Marian, as well as my sisters,
Daphne and Renate. They have shown engagement and—once I found how to ask—patience and
flexibility, which has been important throughout this process.

214

SIKS Dissertation Series

2016 01
02

03

04
05

06
07
08

09

10
11
12

13

14
15

16

17
18
19
20
21

22
23
24

Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through decision
support: prescribing a better pill to swallow

Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge
Worker Support

Laurens Rietveld (VUA), Publishing and Consuming Linked Data

Evgeny Sherkhonov (UvA), Expanded Acyclic Queries: Containment and an Applica-
tion in Explaining Missing Answers

Michel Wilson (TUD), Robust scheduling in an uncertain environment

Jeroen de Man (VUA), Measuring and modeling negative emotions for virtual training
Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social Networks
from Unstructured Data

Archana Nottamkandath (VUA), Trusting Crowdsourced Information on Cultural
Artefacts

George Karafotias (VUA), Parameter Control for Evolutionary Algorithms

Anne Schuth (UvA), Search Engines that Learn from Their Users

Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent
Systems

Nana Baah Gyan (VUA), The Web, Speech Technologies and Rural Development in
West Africa — An ICT4D Approach

Ravi Khadka (UU), Revisiting Legacy Software System Modernization

Steffen Michels (RUN), Hybrid Probabilistic Logics — Theoretical Aspects, Algo-
rithms and Experiments

Guangliang Li (UvA), Socially Intelligent Autonomous Agents that Learn from
Human Reward

Berend Weel (VUA), Towards Embodied Evolution of Robot Organisms

Albert Meroiio Pefiuela (VUA), Refining Statistical Data on the Web

Julia Efremova (TU/e), Mining Social Structures from Genealogical Data

Daan Odijk (UvA), Context & Semantics in News & Web Search

Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces: Auto-
matic Analysis of Player Behavior in the Interactive Tag Playground

Grace Lewis (VUA), Software Architecture Strategies for Cyber-Foraging Systems
Fei Cai (UvA), Query Auto Completion in Information Retrieval

Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An Iterative
and data model independent approach

215

SIKS Dissertation Series 2016

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

42
43
44
45
46
47

48
49

50

Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and
Browsing Behavior

Dilhan Thilakarathne (VUA), In or Out of Control: Exploring Computational Models
to Study the Role of Human Awareness and Control in Behavioural Choices, with
Applications in Aviation and Energy Management Domains

Wen Li (TUD), Understanding Geo-spatial Information on Social Media

Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation — A study on
epidemic prediction and control

Nicolas Honing (TUD), Peak reduction in decentralised electricity systems — Markets
and prices for flexible planning

Ruud Mattheij (TiU), The Eyes Have It

Mohammad Khelghati (UT), Deep web content monitoring

Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for
Crisis Organisations

Peter Bloem (UvA), Single Sample Statistics, exercises in learning from just one
example

Dennis Schunselaar (TU/e), Configurable Process Trees: Elicitation, Analysis, and
Enactment

Zhaochun Ren (UvA), Monitoring Social Media: Summarization, Classification and
Recommendation

Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction behavior
optimized for robot-specific morphologies

Giovanni Sileno (UvA), Aligning Law and Action — a conceptual and computational
inquiry

Andrea Minuto (UT), Materials that Matter — Smart Materials meet Art & Interaction
Design

Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style
Selection for an Artificial Suspect

Christian Detweiler (TUD), Accounting for Values in Design

Thomas King (TUD), Governing Governance: A Formal Framework for Analysing
Institutional Design and Enactment Governance

Spyros Martzoukos (UvA), Combinatorial and Compositional Aspects of Bilingual
Aligned Corpora

Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From
Theory to Practice

Thibault Sellam (UvA), Automatic Assistants for Database Exploration

Bram van de Laar (UT), Experiencing Brain-Computer Interface Control

Jorge Gallego Perez (UT), Robots to Make you Happy

Christina Weber (UL), Real-time foresight — Preparedness for dynamic innovation
networks

Tanja Buttler (TUD), Collecting Lessons Learned

Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic
Analysis

Yan Wang (TiU), The Bridge of Dreams: Towards a Method for Operational Perfor-
mance Alignment in [T-enabled Service Supply Chains

216

SIKS Dissertation Series 2017

2017 01
02

03
04
05
06
07
08
09

10
11

12
13

14

15
16

17
18
19
20
21
22
23
24
25
26
27

28
29

30
31

Jan-Jaap Oerlemans (UL), Investigating Cybercrime

Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks
using Argumentation

Daniél Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with
Autonomous Products and Reconfigurable Manufacturing Machines

Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store

Mahdieh Shadi (UvA), Collaboration Behavior

Damir Vandic (EUR), Intelligent Information Systems for Web Product Search

Roel Bertens (UU), Insight in Information: from Abstract to Anomaly

Rob Konijn (VUA), Detecting Interesting Differences:Data Mining in Health Insur-
ance Data using Outlier Detection and Subgroup Discovery

Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Perspective
on Variation in Text

Robby van Delden (UT), (Steering) Interactive Play Behavior

Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter #antici-
pointment

Sander Leemans (TU/e), Robust Process Mining with Guarantees

Gijs Huisman (UT), Social Touch Technology — Extending the reach of social touch
through haptic technology

Shoshannah Tekofsky (TiU), You Are Who You Play You Are: Modelling Player
Traits from Video Game Behavior

Peter Berck (RUN), Memory-Based Text Correction

Aleksandr Chuklin (UvA), Understanding and Modeling Users of Modern Search
Engines

Daniel Dimov (UL), Crowdsourced Online Dispute Resolution

Ridho Reinanda (UvA), Entity Associations for Search

Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in Information
Retrieval

Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing: The
Role of Perceived Benefits, Costs and Visibility

Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming (A
Play on Worlds)

Sara Magliacane (VUA), Logics for causal inference under uncertainty

David Graus (UvA), Entities of Interest — Discovery in Digital Traces

Chang Wang (TUD), Use of Affordances for Efficient Robot Learning

Veruska Zamborlini (VUA), Knowledge Representation for Clinical Guidelines, with
applications to Multimorbidity Analysis and Literature Search

Merel Jung (UT), Socially intelligent robots that understand and respond to human
touch

Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social Robots:
People’s Preferences, Perceptions and Behaviors

John Klein (VUA), Architecture Practices for Complex Contexts

Adel Alhuraibi (TiU), From IT-Business Strategic Alignment to Performance: A
Moderated Mediation Model of Social Innovation, and Enterprise Governance of IT
Wilma Latuny (TiU), The Power of Facial Expressions

Ben Ruijl (UL), Advances in computational methods for QFT calculations

217

SIKS Dissertation Series 2018

32
33

34
35
36
37

38
39

40

41

42

43
44

45
46
47
48

Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation:
A Model of Computer-Mediated Activity

Maren Scheffel (OU), The Evaluation Framework for Learning Analytics

Martine de Vos (VUA), Interpreting natural science spreadsheets

Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from High-
throughput Imaging

Alejandro Montes Garcia (TU/e), WiBAF: A Within Browser Adaptation Framework
that Enables Control over Privacy

Alex Kayal (TUD), Normative Social Applications

Sara Ahmadi (RUN), Exploiting properties of the human auditory system and com-
pressive sensing methods to increase noise robustness in ASR

Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human
Control in Relation to Emotions, Desires and Social Support For applications in
human-aware support systems

Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental
Processes and a Smart Environment to Provide Support for a Healthy Lifestyle
Elena Sokolova (RUN), Causal discovery from mixed and missing data with applica-
tions on ADHD datasets

Maaike de Boer (RUN), Semantic Mapping in Video Retrieval

Garm Lucassen (UU), Understanding User Stories — Computational Linguistics in
Agile Requirements Engineering

Bas Testerink (UU), Decentralized Runtime Norm Enforcement

Jan Schneider (OU), Sensor-based Learning Support

Jie Yang (TUD), Crowd Knowledge Creation Acceleration

Angel Suarez (OU), Collaborative inquiry-based learning

2018

01
02
03
04
05
06
07
08
09
10
11

12
13

Han van der Aa (VUA), Comparing and Aligning Process Representations

Felix Mannhardt (TU/e), Multi-perspective Process Mining

Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling, Model-
Driven Development of Context-Aware Applications, and Behavior Prediction
Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in Data-
Centric Engineering Tasks

Hugo Huurdeman (UvA), Supporting the Complex Dynamics of the Information
Seeking Process

Dan Ionita (UT), Model-Driven Information Security Risk Assessment of Socio-
Technical Systems

Jieting Luo (UU), A formal account of opportunism in multi-agent systems

Rick Smetsers (RUN), Advances in Model Learning for Software Systems

Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

Julienka Mollee (VUA), Moving forward: supporting physical activity behavior
change through intelligent technology

Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented Collaborative
Networks

Xixi Lu (TU/e), Using behavioral context in process mining

Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future

218

SIKS Dissertation Series 2019

14 Bart Joosten (TiU), Detecting Social Signals with Spatiotemporal Gabor Filters

15 Naser Davarzani (UM), Biomarker discovery in heart failure

16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of
children

17 Jianpeng Zhang (TU/e), On Graph Sample Clustering

18 Henriette Nakad (UL), De Notaris en Private Rechtspraak

19 Minh Duc Pham (VUA), Emergent relational schemas for RDF

20 Manxia Liu (RUN), Time and Bayesian Networks

21 Aad Slootmaker (OU), EMERGO: a generic platform for authoring and playing
scenario-based serious games

22 Eric Fernandes de Mello Aratijo (VUA), Contagious: Modeling the Spread of Be-
haviours, Perceptions and Emotions in Social Networks

23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous
Telepresence Robots

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections

26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational Mes-
sages for Behavior Change Technology

27 Maikel Leemans (TU/e), Hierarchical Process Mining for Scalable Software Analysis

28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they
make you feel

29 Yu Gu (TiU), Emotion Recognition from Mandarin Speech

30 Wouter Beek (VUA), The “K” in “semantic web” stands for “knowledge”: scaling
semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A graph-

based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for Assessing
Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TU/e), Process Mining on Databases: Extract-
ing Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data

05 Sebastiaan van Zelst (TU/e), Process Mining with Streaming Data

06 Chris Dijkshoorn (VUA), Nichesourcing for Improving Access to Linked Cultural
Heritage Datasets

07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms

08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes

09 Fahimeh Alizadeh Moghaddam (UvA), Self-adaptation for energy efficiency in soft-
ware systems

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and
Prediction

11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behavioral
Engagement in MOOCs

12 Jacqueline Heinerman (VUA), Better Together

13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content Generation

14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior &

Improving Learning Outcomes in Massive Open Online Courses

219

SIKS Dissertation Series 2020

15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially
Observable Environments

16 Guangming Li (TU/e), Process Mining based on Object-Centric Behavioral Constraint
(OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication

19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents

20 Chide Groenouwe (UU), Fostering technically augmented human collective intelli-
gence

21 Cong Liu (TU/e), Software Data Analytics: Architectural Model Discovery and Design
Pattern Detection

22 Martin van den Berg (VUA),Improving IT Decisions with Enterprise Architecture

23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification

24 Anca Dumitrache (VUA), Truth in Disagreement — Crowdsourcing Labeled Data for
Natural Language Processing

25 Emiel van Miltenburg (VUA), Pragmatic factors in (automatic) image description

26 Prince Singh (UT), An Integration Platform for Synchromodal Transport

27 Alessandra Antonaci (OU), The Gamification Design Process applied to (Massive)
Open Online Courses

28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare airline
pilots for critical situations

29 Daniel Formolo (VUA), Using virtual agents for simulation and training of social
skills in safety-critical circumstances

30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems

31 Milan Jelisavcic (VUA), Alive and Kicking: Baby Steps in Robotics

32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence in
Games

33 Anil Yaman (TU/e), Evolution of Biologically Inspired Learning in Artificial Neural
Networks

34 Negar Ahmadi (TU/e), EEG Microstate and Functional Brain Network Features for
Classification of Epilepsy and PNES

35 Lisa Facey-Shaw (OU), Gamification with digital badges in learning programming

36 Kevin Ackermans (OU), Designing Video-Enhanced Rubrics to Master Complex
Skills

37 Jian Fang (TUD), Database Acceleration on FPGAs

38 Akos Kadar (OU), Learning visually grounded and multilingual representations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour

02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic
Graphical Models

03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language Under-
standing

04 Maarten van Gompel (RUN), Context as Linguistic Bridges

05 Yulong Pei (TU/e), On local and global structure mining

06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Requirements

Elicitation — An Approach and Tool Support

220

SIKS Dissertation Series 2020

07

08
09

10
11

12

13

14
15

16
17

18
19
20
21
22
23
24

25
26

27
28
29
30
31
32
33

34

Wim van der Vegt (OU), Towards a software architecture for reusable game compo-
nents

Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree Search
Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital
Humanities Research

Alifah Syamsiyah (TU/e), In-database Preprocessing for Process Mining

Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMethods
for Long-Tail Entity Recognition Models

Ward van Breda (VUA), Predictive Modeling in E-Mental Health: Exploring Applica-
bility in Personalised Depression Treatment

Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing Evolu-
tionary Algorithms for Genetic Programming

Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
Konstantinos Georgiadis (OU), Smart CAT: Machine Learning for Configurable
Assessments in Serious Games

Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling

Daniele Di Mitri (OU), The Multimodal Tutor: Adaptive Feedback from Multimodal
Experiences

Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with
Uncertainties: Electricity Markets in Renewable Energy Systems

Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems

Albert Hankel (VUA), Embedding Green ICT Maturity in Organisations

Karine da Silva Miras de Araujo (VUA), Where is the robot?: Life as it could be
Maryam Masoud Khamis (RUN), Understanding complex systems implementation
through a modeling approach: the case of e-government in Zanzibar

Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to studying
writing processes using keystroke logging

Lenin da Nébrega Medeiros (VUA/RUN), How are you feeling, human? Towards
emotionally supportive chatbots

Xin Du (TU/e), The Uncertainty in Exceptional Model Mining

Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based
mixed-Integer opTimization

Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational
context

Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training complex
skills with augmented reality

Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference

Bob Zadok Blok (UL), Creatief, Creatiever, Creatiefst

Gongjin Lan (VUA), Learning better — From Baby to Better

Jason Rhuggenaath (TU/e), Revenue management in online markets: pricing and
online advertising

Rick Gilsing (TU/e), Supporting service-dominant business model evaluation in the
context of business model innovation

Anna Bon (UM), Intervention or Collaboration? Redesigning Information and Com-
munication Technologies for Development

221

SIKS Dissertation Series 2021

35

Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production

2021

01

02

03
04

05
06

07
08

09
10
11
12
13

14
15

16
17

18

19
20
21
22
23
24
25
26

27

Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for Social Inter-
action in Public Space

Rijk Mercuur (TUD), Simulating Human Routines: Integrating Social Practice Theory
in Agent-Based Models

Seyyed Hadi Hashemi (UvA), Modeling Users Interacting with Smart Devices
Toana Jivet (OU), The Dashboard That Loved Me: Designing adaptive learning analyt-
ics for self-regulated learning

Davide Dell’ Anna (UU), Data-Driven Supervision of Autonomous Systems

Daniel Davison (UT), “Hey robot, what do you think?” How children learn with a
social robot

Armel Lefebvre (UU), Research data management for open science

Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on Com-
putational Thinking

Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and Non-
Verbal Robots to Promote Children’s Collaboration Through Play

Quinten Meertens (UvA), Misclassification Bias in Statistical Learning

Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision

Lei Pi (UL), External Knowledge Absorption in Chinese SMEs

Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and Facilitat-
ing Predictability for Engagement in Learning

Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support

Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource Re-
Configurations through the Business Services Paradigm

Esam A. H. Ghaleb (UM), Bimodal emotion recognition from audio-visual cues
Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues
using deep neural networks

Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools and
Formal Systems — Facilitating the Construction of Bayesian Networks and Argumen-
tation Frameworks

Roberto Verdecchia (VUA), Architectural Technical Debt: Identification and Manage-
ment

Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure Bias
in Recommender Systems

Pedro Thiago Timb6 Holanda (CWI), Progressive Indexes

Sihang Qiu (TUD), Conversational Crowdsourcing

Hugo Manuel Proenca (UL), Robust rules for prediction and description

Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query Processing

Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining Al and
Self-Adaptation to Create Adaptive E-Health Mobile Applications

Benno Kruit (CWI/VUA), Reading the Grid: Extending Knowledge Bases from
Human-readable Tables

Jelte van Waterschoot (UT), Personalized and Personal Conversations: Designing
Agents Who Want to Connect With You

222

SIKS Dissertation Series 2022

28

Christoph Selig (UL), Understanding the Heterogeneity of Corporate Entrepreneurship
Programs

2022

01
02

03

04
05

06
07

08
09

10

11

12
13

14
15
16
17
18

19
20

21

22

23

24

25
26

Judith van Stegeren (UT), Flavor text generation for role-playing video games

Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A Deep
Learning Journey

Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away: Reinforcement
Learning For Personalized Healthcare

Unal Aksu (UU), A Cross-Organizational Process Mining Framework

Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time Over-
Parameterization

Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real Time Bidding
Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Automatic Co-located
Collaboration Analytics

Maikel L. van Eck (TU/e), Process Mining for Smart Product Design

Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven Human-
Machine Approach

Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collaborative Search
Engines

Mirjam de Haas (UT), Staying engaged in child-robot interaction, a quantitative
approach to studying preschoolers’ engagement with robots and tasks during second-
language tutoring

Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases

Xander Wilcke (VUA), Machine Learning on Multimodal Knowledge Graphs: Oppor-
tunities, Challenges, and Methods for Learning on Real-World Heterogeneous and
Spatially-Oriented Knowledge

Michiel Overeem (UU), Evolution of Low-Code Platforms

Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning using Process Mining
Pieter Gijsbers (TU/e), Systems for AutoML Research

Laura van der Lubbe (VUA), Empowering vulnerable people with serious games and
gamification

Paris Mavromoustakos Blom (TiU), Player Affect Modelling and Video Game Per-
sonalisation

Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and Standardisation
Fakhra Jabeen (VUA), Dark Side of the Digital Media — Computational Analysis of
Negative Human Behaviors on Social Media

Seethu Mariyam Christopher (UM), Intelligent Toys for Physical and Cognitive
Assessments

Alexandra Sierra Rativa (TiU), Virtual Character Design and its potential to foster
Empathy, Immersion, and Collaboration Skills in Video Games and Virtual Reality
Simulations

Ilir Kola (TUD), Enabling Social Situation Awareness in Support Agents

Samaneh Heidari (UU), Agents with Social Norms and Values — A framework for
agent based social simulations with social norms and personal values

Anna L.D. Latour (UL), Optimal decision-making under constraints and uncertainty
Anne Dirkson (UL), Knowledge Discovery from Patient Forums: Gaining novel
medical insights from patient experiences

223

SIKS Dissertation Series 2023

27

28
29

Christos Athanasiadis (UM), Emotion-aware cross-modal domain adaptation in video
sequences

Onuralp Ulusoy (UU), Privacy in Collaborative Systems

Jan Kolkmeier (UT), From Head Transform to Mind Transplant: Social Interactions
in Mixed Reality

30 Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse Arrays

31 Konstantinos Traganos (TU/e), Tackling Complexity in Smart Manufacturing with
Advanced Manufacturing Process Management

32 Cezara Pastrav (UU), Social simulation for socio-ecological systems

33 Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid Congestion Manage-
ment

34 Nimat Ullah (VUA), Mind Your Behaviour: Computational Modelling of Emotion &
Desire Regulation for Behaviour Change

35 Mike E.U. Ligthart (VUA), Shaping the Child-Robot Relationship: Interaction Design
Patterns for a Sustainable Interaction

2023 01 Bojan Simoski (VUA), Untangling the Puzzle of Digital Health Interventions

02 Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What our bodies can tell
us about the whereabouts of our thoughts

03 Shabnam Najafian (TUD), User Modeling for Privacy-preserving Explanations in
Group Recommendations

04 Gineke Wiggers (UL), The Relevance of Impact: bibliometric-enhanced legal infor-
mation retrieval

05 Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms for Large-Scale
Real-Valued Optimization, Including Real-World Medical Applications

06 Anténio Pereira Barata (UL), Reliable and Fair Machine Learning for Risk Assessment

07 Tianjin Huang (TU/e), The Roles of Adversarial Examples on Trustworthiness of
Deep Learning

08 Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learning

09 Xu Wang (VUA), Scientific Dataset Recommendation with Semantic Techniques

10 Dennis J.N.J. Soemers (UM), Learning State-Action Features for General Game
Playing

11 Fawad Taj (VUA), Towards Motivating Machines: Computational Modeling of the
Mechanism of Actions for Effective Digital Health Behavior Change Applications

12 Tessel Bogaard (VUA), Using Metadata to Understand Search Behavior in Digital
Libraries

13 Injy Sarhan (UU), Open Information Extraction for Knowledge Representation

14 Selma Causevi¢ (TUD), Energy resilience through self-organization

15 Alvaro Henrique Chaim Correia (TU/e), Insights on Learning Tractable Probabilistic
Graphical Models

16 Peter Blomsma (TiU), Building Embodied Conversational Agents: Observations on
human nonverbal behaviour as a resource for the development of artificial characters

17 Meike Nauta (UT), Explainable Al and Interpretable Computer Vision — From Over-
sight to Insight

18 Gustavo Penha (TUD), Designing and Diagnosing Models for Conversational Search

and Recommendation

224

SIKS Dissertation Series 2024

19 George Aalbers (TiU), Digital Traces of the Mind: Using Smartphones to Capture
Signals of Well-Being in Individuals

20 Arkadiy Dushatskiy (TUD), Expensive Optimization with Model-Based Evolutionary
Algorithms applied to Medical Image Segmentation using Deep Learning

21 Gerrit Jan de Bruin (UL), Network Analysis Methods for Smart Inspection in the
Transport Domain

22 Alireza Shojaifar (UU), Volitional Cybersecurity

23 Theo Theunissen (UU), Documentation in Continuous Software Development

24 Agathe Balayn (TUD), Practices Towards Hazardous Failure Diagnosis in Machine
Learning

25 Jurian Baas (UU), Entity Resolution on Historical Knowledge Graphs

26 Loek Tonnaer (TU/e), Linearly Symmetry-Based Disentangled Representations and
their Out-of-Distribution Behaviour

27 Ghada Sokar (TU/e), Learning Continually Under Changing Data Distributions

28 Floris den Hengst (VUA), Learning to Behave: Reinforcement Learning in Human
Contexts

29 Tim Draws (TUD), Understanding Viewpoint Biases in Web Search Results

2024 01 Daphne Miedema (TU/e), On Learning SQL: Disentangling concepts in data systems

education

02 Emile van Krieken (VUA), Optimisation in Neurosymbolic Learning Systems

03 Feri Wijayanto (RUN), Automated Model Selection for Rasch and Mediation Analysis

04 Mike Huisman (UL), Understanding Deep Meta-Learning

05 Yiyong Gou (UM), Aerial Robotic Operations: Multi-environment Cooperative In-
spection & Construction Crack Autonomous Repair

06 Azqga Nadeem (TUD), Understanding Adversary Behavior via XAl: Leveraging
Sequence Clustering to Extract Threat Intelligence

07 Parisa Shayan (TiU), Modeling User Behavior in Learning Management Systems

08 Xin Zhou (UvA), From Empowering to Motivating: Enhancing Policy Enforcement
through Process Design and Incentive Implementation

09 Giso Dal (UT), Probabilistic Inference Using Partitioned Bayesian Networks

10 Cristina-Iulia Bucur (VUA), Linkflows: Towards Genuine Semantic Publishing in
Science

11 withdrawn

12 Peide Zhu (TUD), Towards Robust Automatic Question Generation For Learning

13 Enrico Liscio (TUD), Context-Specific Value Inference via Hybrid Intelligence

14 Larissa Capobianco Shimomura (TU/e), On Graph Generating Dependencies and
their Applications in Data Profiling

15 Ting Liu (VUA), A Gut Feeling: Biomedical Knowledge Graphs for Interrelating the
Gut Microbiome and Mental Health

16 Arthur Barbosa Camara (TUD), Designing Search-as-Learning Systems

17 Razieh Alidoosti (VUA), Ethics-aware Software Architecture Design

18 Laurens Stoop (UU), Data Driven Understanding of Energy-Meteorological Variability
and its Impact on Energy System Operations

19 Azadeh Mozafari Mehr (TU/e), Multi-perspective Conformance Checking: Identifying

and Understanding Patterns of Anomalous Behavior

225

SIKS Dissertation Series 2024

20
21
2
23
24
25
26
27

28

Ritsart Anne Plantenga (UL), Omgang met Regels

Federica Vinella (UU), Crowdsourcing User-Centered Teams

Zeynep Ozturk Yurt (TU/e), Beyond Routine: Extending BPM for Knowledge-
Intensive Processes with Controllable Dynamic Contexts

Jie Luo (VUA), Lamarck’s Revenge: Inheritance of Learned Traits Improves Robot
Evolution

Nirmal Roy (TUD), Exploring the effects of interactive interfaces on user search
behaviour

Alisa Rieger (TUD), Striving for Responsible Opinion Formation in Web Search on
Debated Topics

Tim Gubner (CWI), Adaptively Generating Heterogeneous Execution Strategies using
the VOILA Framework

Lincen Yang (UL), Information-theoretic Partition-based Models for Interpretable
Machine Learning

Leon Helwerda (UL), Grip on Software: Understanding development progress
of SCRUM sprints and backlogs

226

	Introduction
	Preface
	Context
	Software development, Agile and Scrum
	Machine learning, pattern recognition and predictive analytics
	Case studies of workflows

	Design scope
	Problem statement
	Pipeline components
	Instances
	Non-functional requirements

	Structure of this thesis

	Data pipeline
	Introduction
	Ecosystem
	Structure

	Design
	Distributed data systems
	Agent-based communication
	Organizational approaches

	Method
	Data acquisition
	Further pipeline steps

	Technical considerations
	Generalizability
	Continuous integration
	Documentation
	Novelty

	Results
	Discussion

	Database construction
	Introduction
	Relevant work
	Method
	Data model
	Linking data sources

	Architecture
	Experiments
	Setup
	Results

	Discussion

	Pattern recognition methods
	Proposition
	Background
	Framework
	Story points and adaptations

	Related work
	Approach
	Feature extraction
	Data set
	Models

	Analysis strategy
	Results
	Sprint classification and estimation
	Backlog size estimation

	Conclusions
	Threats to validity
	Proposed additions

	Information visualization
	Preamble
	Purpose
	Relevant concepts
	Dashboard framework
	Visualizations for analytical decision support
	Sprint report
	Prediction results
	Timeline
	Leaderboard

	Visualizations for ecosystem management
	Collaboration graph
	Process flow
	Heat map
	Platform status

	Novel backlog visualizations
	Product backlog burndown chart
	Product backlog progression chart
	Product backlog relationship chart

	Evaluation
	Assessment
	Adoption
	Conclusion

	Discussion
	Retrospective
	Technical overview
	Main contributions

	Overall conclusion
	Problem statement
	Research questions

	Future work
	Further research
	Generalizability

	Glossary
	Bibliography
	Appendices
	Code repositories of the Grip on Software pipeline
	Queries used in database performance experiments
	Summary
	Samenvatting
	Curriculum Vitae
	Acknowledgments
	SIKS Dissertation Series

