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OBJECTIVE

Type 2 diabetes (T2D) has heterogeneous patient clinical characteristics and out-
comes. In previous work, we investigated the genetic basis of this heterogeneity
by clustering 94 T2D genetic loci using their associations with 47 diabetes-related
traits and identified five clusters, termed b-cell, proinsulin, obesity, lipodystro-
phy, and liver/lipid. The relationship between these clusters and individual-level
metabolic disease outcomes has not been assessed.

RESEARCH DESIGN AND METHODS

Here we constructed individual-level partitioned polygenic scores (pPS) for these five
clusters in 12 studies from the Cohorts for Heart and Aging Research in Genomic Epi-
demiology (CHARGE) consortium and the UK Biobank (n = 454,193) and tested for
cross-sectional association with T2D-related outcomes, including blood pressure,
renal function, insulin use, age at T2D diagnosis, and coronary artery disease (CAD).

RESULTS

Despite all clusters containing T2D risk-increasing alleles, they had differential
associations with metabolic outcomes. Increased obesity and lipodystrophy clus-
ter pPS, which had opposite directions of association with measures of adiposity,
were both significantly associated with increased blood pressure and hyperten-
sion. The lipodystrophy and liver/lipid cluster pPS were each associated with CAD,
with increasing and decreasing effects, respectively. An increased liver/lipid cluster
pPS was also significantly associated with reduced renal function. The liver/lipid clus-
ter includes known loci linked to liver lipid metabolism (e.g., GCKR, PNPLA3, and
TM6SF2), and these findings suggest that cardiovascular disease risk and renal func-
tion may be impacted by these loci through their shared disease pathway.

CONCLUSIONS

Our findings support that genetically driven pathways leading to T2D also predis-
pose differentially to clinical outcomes.

Type 2 diabetes (T2D) affects >400 million individuals worldwide (1) and is a major
health and economic burden, largely due to the complications of the disease (2). It
is well appreciated that there are multiple environmental and genetic risk
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factors for T2D and also that there is
marked heterogeneity observed in
patients with T2D (3,4). Greater
understanding of the biological path-
ways precipitating T2D onset and its
complications could help improve
patient management.
Polygenic scores, which aggregate

common genetic variation across the
genome, predict risk of T2D with an
area under the receiver operator char-
acteristic curve of �0.70 and suggest
that the 5% of individuals with the high-
est scores have an approximately three-
fold increased risk of T2D compared
with the remainder of the population
(3,5,6). Recently, we and others have
investigated methods to partition the
T2D polygenic score into “process-spe-
cific” subset scores. Two recent publica-
tions used cluster analysis of variant
trait-associations to identify a shared
set of five clusters of T2D genetic loci
representing mechanisms of insulin
deficiency and insulin resistance (7,8).
Briefly, of these five clusters, two were
defined by associated traits related to
insulin production and secretion
(termed “b-cell” and “proinsulin,” res-
pectively), while three were associated
with insulin resistance (“obesity,”
“lipodystrophy,” “liver/lipid”) (3).

Additionally, Udler et al. (7) showed
that the cluster-specific partitioned poly-

genic risk scores (pPS) generated using

the clusters allowed a genetics-driven

approach to help reduce the heterogene-

ity seen in individuals with T2D. For

example, the “lipodystrophy” cluster was

defined by GWAS trait associations with

reduced leptin levels, reduced BMI,

increased fasting insulin adjusted for

BMI, increased serum triglycerides, and

reduced HDL cholesterol mirroring clinical

features seen in monogenic forms of lip-

odystrophy. Individuals with T2D and an

increased pPS for the lipodystrophy clus-

ter likewise had significantly higher fast-

ing C-peptide and serum triglyceride

levels but lower BMI and HDL cholesterol

levels compared with other individuals

with T2D (7). There was also a prelimi-

nary analysis performed suggesting that

the clusters had differing associations

with population-level risk of outcomes

(which were not included in the cluster

derivation), such as coronary artery dis-

ease (CAD), systolic blood pressure (SBP),

diastolic blood pressure (DBP), and renal

function; however, these outcome analy-

ses were performed only using summary

statistics from genome-wide association

studies (GWAS) and did not involve indi-

vidual level data (7), therefore limiting

ability to adjust association models for

custom covariates, such as T2D status,

and to analyze extremes of the pPS for

risk of metabolic outcomes.
A critical question in assessing clinical

relevance of these pPS in personalized
T2D patient care is whether they are
associated with clinical metabolic disease
outcomes using individual-level data. We
undertook a large-scale multicohort study
using individual-level data to test whe-
ther the partitioned T2D genetic scores
derived by Udler et al. (7) were associ-
ated with clinical outcomes in up to
454,193 participants, including 25,015
individuals with T2D, across the Cohorts
for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Consortium coh-
orts and the UK Biobank (UKBB).

RESEARCH DESIGN AND METHODS

Study Populations
Our analyses included the UKBB and 12
studies from the CHARGE Consortium:
Age, Gene/Environment Susceptibility
(AGES) Study (9), Atherosclerosis Risk in
Communities (ARIC) Study (10), Institute
for Personalized Medicine (IPM) BioMe
Biobank (11), Doetinchem Cohort Study
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(12), Framingham Heart Study (FHS)
(13–15), Genetic Epidemiology Network
of Arteriopathy (GENOA) Study (16,17),
Health, Aging and Body Composition
(Health ABC) Study (18), Mass General
Brigham Biobank (MGB) (19), Multi-Eth-
nic Study of Atherosclerosis (MESA)
(20), Netherlands Epidemiology in Obe-
sity (NEO) Study (21), PROspective
Study of Pravastatin in the Elderly at
Risk (PROSPER) (22–24), and Rotterdam
Study (25). All analyses were restricted
to individuals of European ancestry.
Descriptive statistics for each study are
included in Supplementary Table 1.

All studies obtained relevant participant
consent and Institutional Review Board
approval. Analysis of UKBB was performed
under application 27892. Analysis of the
data was approved by the Mass General
Brigham (formerly Partners) Institutional
Review Board (Boston, MA).

Genotyping and Imputation Methods
Information about genotyping and impu-
tation approaches taken by each cohort
is available in Supplementary Table 1.

Generation of pPS
The pPS were derived using results from
a published analysis of 94 genetic var-
iants associated with increased T2D risk,
which clustered variants based on vari-
ant-trait associations and allowed var-
iants to contribute to all clusters (7). The
traits included in that analysis were gly-
cemic, anthropometric, and laboratory
continuous-trait measures, but notably,
no measures of blood pressure, renal
function, or disease outcomes. In this
present study, we generated polygenic
scores for each cluster using the T2D risk
alleles and cluster weights, incorporating
the top-weighted loci in each cluster
(weight $0.75) (Supplementary Table 2).

Quality Control
The following analyses were performed
for consistency across cohorts and quality
control. Frequencies of the alleles used in
generating the pPS were compared with
those from the MGB Biobank to prevent
accidental allele swapping. The median of
the pPS (Supplementary Table 3) was
compared with the median in MGB Bio-
bank; all values were in high concor-
dance. Cluster pPS associations were
performed with continuous traits that
were previously found to be significantly

associated with the clusters (7); each
cohort calculated associations between
the pPS for the five clusters and BMI, HDL
cholesterol, and triglycerides in all individu-
als adjusted for T2D status as well as the
subset of individuals designated as T2D
case subjects. These models were adjusted
for age, sex, and the first five principal
components of ancestry. Directionality of
the regression estimates was compared
with the published results to validate
the results provided by each cohort
(Supplementary Table 4). Cohort level
results’ SE were also plotted against square
root of sample size to identify any poten-
tial outliers.

Regression Models
Each participating cohort calculated indi-
vidual-level pPS for the five clusters, as
described above. The pPS were tested
for association with the following cross-
sectional outcomes: CAD, estimated glo-
merular filtration rate using creatinine
(eGFR-creatinine), chronic kidney disease
(CKD), SBP, DBP, and hypertension (HTN).
Insulin use and age at T2D diagnosis
were also tested in the subset of T2D
case subjects. Continuous traits with out-
lier values were winsorized at five SDs
from the mean. Outcome definitions had
some cohort-specific variability (Supple-
mentary Table 1) but generally aligned
with the following criteria: CAD was
defined as recognized myocardial infarc-
tion or other related mortality; eGFR-crea-
tinine was computed via the Chronic
Kidney Disease Epidemiology Collaboration
creatinine equation in mL/min; CKD was
defined as eGFR values <60 mL/min; HTN
was defined as having SBP >140 mmHg
or DBP >90 mmHg, with cohort-specific
adjustment for blood pressure medica-
tions; and T2D was defined as use of dia-
betes medication, fasting glucose $7
mmol/L, 2-h glucose $11.1 mmol/L, or
glycated hemoglobin (HbA1c) $6.5%. See
Supplementary Table 1 for complete defi-
nitions of all measures.

Within each cohort, we calculated
associations between these T2D-related
traits and the pPS for each of the five
clusters. Regression models, logistic or
linear depending on the outcome, were
adjusted for age, sex, T2D case subject/
control subject status, and the first five
principal components of ancestry.

Continuous pPS Model Equation

E Outcome½ � ¼ b01pPSb111 Femalef gb2

11 Type 2 Diabetes casef gb31ageb4

1PC1b51 � � �1PC5b9

For a second analysis, individuals were
defined as extreme for a given cluster if
their pPS values were larger than the
90th percentile value in a reference
population, chosen to be the MBG Bio-
bank cohort. We ran models evaluating
the effect of an individual being extreme
in a given cluster. Such models included
all five indicator variables for being
extreme, one for each cluster, in addition
to age, sex, T2D case subject/control sub-
ject status, and the first five principal
components of ancestry in addition to a
global test of the effect of falling in the
extreme of any cluster. For these extreme
analyses on binary outcomes, cohorts
were only included if they had at least
500 individuals experiencing the outcome.

Extreme pPS Model Equation

E½Outcome� ¼ b0 1 1 Extreme betacell pPSf gb1

11 Extreme proinsulin pPSf gb2

11 Extreme obesity pPSf gb3

11 Extreme liver�lipid pPSf gb4

11 Extreme lipodystrophy pPSf gb5

11 Femalef gb611 Type 2 Diabetes casef gb7

1ageb81PC1b91 � � �1PC5b13

where 1{Condition} is an indicator function
equal to 1 if the participant has the con-
dition and 0 otherwise.

Meta-analysis
For each T2D-related trait and outcome,
cohorts provided estimates from their
study-level regression coefficients. Effect
estimates and SEs were used to perform
a meta-analysis using an inverse-variance
weighted approach (fixed-effect). The R
package “meta” version 4.18-2 was used
to combine estimates of effect and pro-
duce an overall association test. Hetero-
geneity of effects across cohorts was
assessed using the I2 statistic (26). Statisti-
cal significance of the association with
pPS was evaluated using a 0.0005 level,
based on a Bonferroni adjustment for
performing 100 tests, including eight
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outcomes (two of which were specific to
T2D case subjects only), five clusters, and
three subsamples (all individuals with
adjustment for T2D case subject/control
subject status, all individuals without
adjustment for T2D case subject/control
subject status, and then in T2D case sub-
jects only).
We report as main results the cluster-

outcome associations that reached the
Bonferroni level of significance (P #
0.0005) in at least one analysis (T2D-
adjusted, T2D-unadjusted, or T2D case
subject only). Given the possibility of
collider bias, as described below, we
highlighted findings significant in the
T2D-adjusted model that also had nomi-
nal significance (P < 0.05) in the T2D-
unadjusted analysis.
Cohorts also reported estimates and

covariances of b-coefficients from reg-
ressions including the five indicators for
individuals being extremes in a given
cluster. To combine these results, a mul-
tiple parameter meta-analysis (27) was
performed using the “mvmeta” package
in R. Moreover, to jointly assess the sig-
nificance of the extreme variables, a
Wald test was performed using the
combined estimates and their estimated
covariance matrices. Statistical signifi-
cance of extreme pPS indicators was
evaluated using a Bonferroni adjusted
level of 0.0025, which controls type I
error at 0.05 after performing 20 tests.
There were 20 sets of estimates bec-
ause there were eight outcomes, two of
which were specific to T2D case sub-
jects only, and three samples: 1) all indi-
viduals with adjustment for T2D case
subject/control subject status, 2) all
individuals without adjustment for T2D
case subject/control subject status, and
3) T2D case subjects only.

Evaluating the Extent of Collider Bias
We acknowledge the possibility that our
analyses are susceptible to collider bias (a
spurious association that arises from
adjustment on a collider). More specifi-
cally, we were interested in the associa-
tion between pPS and T2D-related traits,
which, arguably, share a covariate affect-
ing these variables: T2D case subject/con-
trol subject status. Therefore, to evaluate
the extent of collider bias, we compared
each model with and without adjustment
for T2D case subject/control subject sta-
tus and also in case subjects only. If we

observed an association between the pPS
and an outcome in a model with T2D
case subject/control subject status adjust-
ment but did not observe the association
without adjustment (P > 0.05), we con-
sidered that association to be indicative
of collider bias (28).

Follow-up Analyses in UKBB
To further contextualize some of our
results, additional analyses were run in
the UKBB. The following renal outcomes
were assessed in the continuous pPS
model with T2D adjustment: serum cre-
atinine, serum cystatin C, eGFR-cystatin
C, urine albumin-to-creatinine ratio
(UACR), and serum albumin (UKBB fields
provided in Supplementary Table 5). A
measure of eGFR over time (eGFR-slope)
was calculated for both of the above
eGFR measures by calculating the differ-
ence between eGFR at two different
assessment center visits divided by the
time between visits (N = 13,000 individu-
als; median time between visits was 4.4
years). Additionally, for the primary out-
comes available in all individuals (CAD,
eGFR-creatinine, CKD, SBP, DBP, and
HTN), as well as the renal-specific out-
comes just described, interactions of
T2D and cluster pPS were assessed by
adding a multiplicative interaction term
to the continuous pPS models. Finally, to
evaluate the proportion of variability
explained in each outcome, a partial r2

value was calculated for all outcome-
cluster regression models including vali-
dation traits by calculating the difference
in r2 between the full model with the
cluster pPS and the covariate-only model.
Nagelkerke pseudo-r2 was used for logis-
tic regression of binary outcomes.

RESULTS

Among the 454,193 participants from
the 13 cohorts, 46% were men, mean
age was 58.3 years, and 25,015 (5.5%)
had T2D (Table 1).

Using the pPS for each of the five T2D
genetic clusters, as previously defined in
Udler et al. (7), the associations with
expected clinical features were replicated
in our study participants: increased obe-
sity cluster pPS was associated with
increased BMI; increased lipodystrophy
cluster pPS with decreased BMI, de-
creased HDL cholesterol, and increased
triglycerides; and increased liver/lipid
cluster pPS with decreased triglycerides

(P < 10�10 for all associations)
(Supplementary Table 4).

We identified several significant clus-
ter pPS-outcome associations involving
all five clusters and SBP, DBP, HTN, CAD,
eGFR-creatinine, and CKD outcomes
(Fig. 1, Table 2, and Supplementary
Tables 6–8).

Increased obesity cluster pPS and lip-
odystrophy cluster pPS were signifi-
cantly associated with higher measures
of blood pressure: for obesity pPS: SBP
(b = 0.68 mmHg, P = 8.1 × 10�17), DBP
(b = 0.44 mmHg, P = 1.9 × 10�19), and
risk of HTN (odds ratio [OR] = 1.08, P =
1.1 × 10�18); for lipodystrophy pPS: SBP
(b = 2.43 mmHg, P = 8.9 × 10�39), DBP
(b = 0.95 mmHg, P = 1.8 × 10�17), and
HTN (OR = 1.30, P = 1.3 × 10�34),
results reported as change per average
weighted allele pPS in all participants
without T2D adjustment. Results remained
significant with T2D adjustment. Only
the lipodystrophy-HTN analysis showed
evidence of heterogeneity across cohorts
with I2 > 0.5 (Supplementary Table 7).
Thus, the obesity and lipodystrophy clus-
ter pPS were both associated with
increased blood pressure, despite these
cluster pPS having opposite directions of
effect from each other for metrics of
body fat composition such as BMI
(Supplementary Table 4) (7). In con-
trast, the proinsulin cluster was asso-
ciated with reduced DBP in the
T2D-adjusted model (b = �0.25, P =
1.8 × 10�4), with some attenuation, but
still residual signal in the unadjusted
model (b = �0.18, P = 4.4 × 10�3) (Fig. 1
and Supplementary Tables 6–8).

We observed significant associations
with CAD risk for the liver/lipid and lipo-
dystrophy pPS but in opposite directions
(Fig. 1 and Supplementary Tables 6–8),
highlighting the value of partitioning T2D
loci. The liver/lipid pPS was associated
with reduced risk of CAD (OR = 0.92, P
= 1.2 × 10�4 in T2D-adjusted analysis).
The association remained nominally
significant in the T2D-unadjusted and
case subject-only analyses (P < 0.05
for both). In contrast, the lipodystro-
phy pPS was significantly associated
with increased CAD risk in the model
unadjusted for T2D (OR = 1.32, P = 1.5
× 10�8), although with some evidence
of heterogeneity with I2 > 0.5 (Supp-
lementary Table 7), but lost signifi-
cance in the T2D-adjusted and case
subject-only analyses.
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We also found that an increased liver/
lipid cluster pPS was significantly associ-
ated with decreased eGFR-creatinine,
indicative of reduced renal function (b =
�0.87 mL/min, P = 5.0 × 10�78 for change
per weighted allele pPS in T2D-unadjusted
model). This result remained significant
with T2D adjustment (Table 2 and
Supplementary Table 7). This association
was attenuated, but remained significant
in the UKBB even after removal of the
top-weighted locus in the cluster, GCKR
rs780094, which is known to be especially
pleiotropic (29) (UKBB change per
weighted allele = �0.91 mL/min, P =
1.4 × 10�7 after removing GCKR locus vs.
before b = �0.80, P = 8.1 × 10�54). This
cluster pPS was associated with CKD,
defined by most cohorts as eGFR #60
mL/min, with a more significant associa-
tion observed for the T2D-unadjusted
model (OR per weighted allele = 1.09, P =
1.5 × 10�4) than the T2D-adjusted model
(OR = 1.06, P = 0.02), suggesting that T2D
partially mediated the association of this
cluster with CKD.

To further contextualize the associa-
tion of the liver/lipid pPS with eGFR-cre-
atinine, we assessed the association of
this cluster pPS with other biomarkers
related to renal function in all UKBB
participants: serum creatinine, cystatin-
C, eGFR-cystatin, and UACR (Supple-
mentary Table 5). Compared with serum

creatinine, which is used in the equation
to derive eGFR-creatinine, cystatin-C is
less influenced by muscle mass, sex, and
age (30,31). We found that increased pPS
for the liver/lipid cluster was associated
with both increased serum creatinine and
cystatin-C in the UKBB (change per
weighted allele pPS b = 0.92, P = 4.2 ×
10�68 and b = 0.006, P = 1.1 × 10�20,
respectively, in T2D-unadjusted analyses)
as well as reduced eGFR-cystatin (P = 9.1
× 10�25), further supporting the notion
that increased genetic risk for this cluster
was associated with reduced renal func-
tion. Interestingly, the liver/lipid pPS was
associated with reduced UACR (b =
�0.02, P = 3.6 × 10�8 in T2D-unadjusted
analysis) in contrast to the increased
ratios typically seen with T2D-induced
renal injury. This prompted us to look at
the liver/lipid cluster’s association with
serum albumin, which was also signifi-
cantly reduced (b = �0.02, P = 8.9 ×
10�89 in T2D-unadjusted analysis), per-
haps indicating the reduced UACR relates
to reduced liver production of albumin.
All results remained significant in the
T2D-adjusted analyses. Finally, we ass-
essed whether the liver/lipid pPS was
associated with reduced renal function
over time, as measured by slopes of
eGFR-creatinine and eGFR-cystatin bet-
ween study visits (median 4.4 years), and

found no association for either (P >
0.05).

We also observed significant associa-
tions for the b-cell pPS with a number of
outcomes that were only significant for a
single model and lost significance with
either adjustment for T2D (SBP, HTN,
CAD) or removing T2D adjustment (DBP)
(Table 2 and Supplementary Tables 6 and
7). These results therefore likely indicate
either complete mediation by T2D (for
SBP, HTN, CAD) or collider bias (DBP).

In the T2D-case subject only analyses,
most of the above findings were direc-
tionally consistent, but no results reached
study-wide significance in this subset
(Supplementary Table 8).

Extreme Polygenic Risk
In addition to considering each pPS as a
continuous trait, we also analyzed the
extremes of each pPS as a way of study-
ing individuals with the highest scores
in one or more clusters, which has the
potential to categorize individuals and
advance individual-level clinical transla-
tion for clinical decision making. We
defined participants as being extreme
for a given cluster if their pPS was at or
about the 90th percentile in the MGB
Biobank, a chosen reference population.

In the global test including the indi-
viduals with extreme pPS for any cluster,
we observed significant associations with

Table 1—Overview of cohort information

Study N* Male, n (%) Age, years CAD eGFR, mL/min CKD SBP, mmHg DBP, mmHg HTN T2D

AGES 3,215 1,352 (42) 76.4 (5.5) 782 63.8 (15.4) 1,274 152.1 (22.2) 80.4 (10.5) 2,553 369

ARIC 9,344 4,406 (47.1) 54.3 (5.7) 467 99.5 (12.5) 89 122.2 (19.4) 74.1 (11.5) 2,498 812

BioMe 8,668 4,042 (46.6) 62.5 (11.8) 1,690 77.8 (23.1) 541 154 (20.8) 91(11.8) 2,808 922

Doetinchem 4,080 1,909 (46.7) 60.2 (9.3) 100 95.2 (10.4) NA† 136.3 (20.5) 83.6 (18.5) 1,526 147

FHS 7,145 3,251 (45.5) 56.5 (13.6) 273 88.8 (15.5) 275 127.7 (21.8) 76.7 (10.9) 2,596 852

GENOA 1,391 612 (43.9) 55.5 (10.9) 108 79.6 (16.5) 165 142.5 (19.8) 84.6 (10.7) 1,303 151

Health ABC 1,639 868 (52.9) 73.8 (2.8) 227 66.6 (13.3) 492 141.1 (22.4) 74.9 (12.1) 1,026 231

MGB 18,127 8,659 (47.7) 62.8 (13.2) 2,059 77.9 (22.7) 3,370 135.4 (19.5) 80.5 (11.8) 9,926 3,546

MESA 2,685 1,285 (47.8) 62.7 (10.2) 254 75.8 (17.0) 344 128.2 (23.1) 75 (12.5) 1,165 173

NEO 5,705 2,735 (47.9) 56.9 (5.9) 127 86.1 (12.5) 141 137.5 (19.3) 88.2 (11.6) 3,193 576

PROSPER 5,244 2,524 (48.1) 75.3 (3.4) 708 72 (21.4) 1,549 165.6 (23.2) 91 (12.4) 3,257 544

Rotterdam 8,809 3,821 (43.3) 65.5 (9.9) 1,003 78.8 (16.1) 1,060 144.0 (22.0) 80.7 (11.9) 6,482 1,050

UKBB 378,141 174,131 (46) 57.4 (8.0) 13,286 90.5 (13.1) 7,722 141.1 (20.7) 84.3 (11.3) 198,189 15,642

Combined 454,193 209,595 (46.1) 58.3 21,084 89.1 17,022 140.8 83.9 236,522 25,015

Distribution of variables by cohort including sample size (N), age, sex (n male), number of individuals with T2D, and cross-sectional outcomes:
CAD, eGFR, CKD, SBP, DBP, and HTN. Continuous variables represented as mean (SD); categorical variables represented as count (%). NA, not
available. *Maximum sample size for all outcomes/covariates. †Outcome not available in this cohort.
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four outcomes (Supplementary Table 9).
The results of the extreme pPS analysis
were overall consistent with the continu-
ous pPS results, showing that individuals
with extreme pPS values for any the five
clusters had significantly different esti-
mates of eGFR-creatinine, DBP, SBP, and
risk of HTN compared with the rest of the
population. These results appear to be
driven by the same significant cluster
outcome relationships observed in the
continuous pPS results (Supplementary
Tables 9–11).

CONCLUSIONS

We have analyzed partitioned T2D poly-
genic scores derived from genetic cluster-
ing of T2D loci (7) and assessed asso-
ciations with clinical outcomes in up to
454,193 participants across the CHARGE

Consortium studies and the UKBB. We
find significant cross-sectional associations
for cluster outcome associations, including
all clusters and SBP, DBP, HTN, eGFR-cre-
atinine, CKD, and CAD. These differential
associations observed with partitioning
the full T2D polygenic score into cluster-
specific polygenic scores speak to the
benefit of identifying subsets of loci
through cluster analysis for improved
understanding of disease biology. Our
results also have important potential
implications if pathways are targeted for
drug development. At the same time, the
proportions of variance explained by each
cluster pPS for any given outcome were
small, generally <0.1% (Supplementary
Tables 6–8), indicating that the polygenic
scores in and of themselves have limited
predictive ability, such that clinical utility
is not yet established.

The finding that both increased obe-
sity pPS and lipodystrophy pPS are asso-
ciated with increased measures of blood
pressure is particularly interesting since
the two polygenic scores are associated
with the opposite direction of effect
from each other for metrics of body fat
composition such as BMI (Supplemen-
tary Table 4) (7). We found that adjusting
for BMI completely attenuated all blood
pressure associations for the obesity pPS
as well as for the proinsulin pPS, but not
for the lipodystrophy pPS (Supplemen-
tary Table 12). As both obesity and lipo-
dystrophy clusters are associated with
metrics of insulin resistance (7), the results
support that genetic factors increasing
both T2D risk and blood pressure may
relate to different mechanisms of insulin
resistance, with the mechanism for the
obesity cluster, but not lipodystrophy

Figure 1—Forest plot of cluster pPS associations with SBP, SBP, HTN, CAD, eGFR, and CKD. The error bars represent 95% CIs. **Results met the Bon-
ferroni-corrected significance threshold (0.0005) in both T2D-adjusted and T2D-unadjusted analyses. *Results that met adjusted significance in
only one model, as defined in RESEARCH DESIGN AND METHODS. Detailed results in Table 2 and Supplementary Tables 6 and 7.
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cluster, explained by increased whole-
body adiposity.

The lipodystrophy cluster has been
hypothesized to relate instead to abnor-
mal compartmentalization of fat. Within
the lipodystrophy cluster, one of the
top-weighted loci includes the putative
causal gene PPARG, known to cause
familial partial lipodystrophy, a Mende-
lian disease characterized by abnormal
fat distribution with reduced subcutane-
ous and greater ectopic adiposity as
well as increased insulin resistance and
HTN (32). The lipodystrophy pPS in the
present analysis is similar to another
pPS developed by Yaghootkar et al.
(33,34) that involved genetic loci associ-
ated with body fat distribution. This
“body fat distribution cluster” was also
associated with increased measures of
SBP and DBP.

Within the obesity cluster, MC4R, is
likewise a top-weighted locus and puta-
tive causal gene that is known to cause
monogenic obesity and increased insu-
lin resistance; however, interestingly,
individuals with loss-of-function muta-
tions in MC4R have been found to have
lower blood pressure compared with
age- and BMI-matched control subjects
(35,36). For the common variant tagging
the MC4R locus included in the obesity

cluster pPS (rs12970134), the T2D risk-
increasing allele was not associated
with HTN in the UKBB (P > 0.05 in all
models). The obesity cluster’s associa-
tion with HTN was therefore driven by
other loci in the cluster, particularly FTO
and NRXN3 (HTN in both T2D-adjusted
and -unadjusted UKBB models P <
10�5). Therefore, multiple pathways
increasing risk of obesity and T2D may
exist with differing impact on HTN that
could be further delineated in the
future with additional loci and relevant
physiological trait inputs into the genetic
clustering.

Despite all cluster alleles increasing
T2D risk, we observed two clusters with
opposite directions of effect on CAD
risk: the lipodystrophy pPS increasing
CAD risk and the liver/lipid pPS reducing
risk. The lipodystrophy cluster’s signifi-
cant association with CAD in the T2D-
unadjusted model was attenuated with
T2D adjustment, potentially indicating
that this cluster’s impact on CAD risk
is mediated by T2D. As mentioned
above, the lipodystrophy cluster is
similar to the Yaghootkar et al.
“body fat distribution cluster,” which
was also associated with increased
CAD risk in a T2D-unadjusted model
(33,34). Notably, a defining trait

feature of both the lipodystrophy and
liver/lipid clusters is serum triglyceride
levels, with the lipodystrophy cluster sig-
nificantly associated with increased tri-
glyceride levels and the liver/lipid cluster
with decreased levels (Supplementary
Table 4) (7). Adjusting for serum triglycer-
ides in the regression model only partially
attenuated the associations of both clus-
ters with CAD (Supplementary Table 12),
suggesting that this biomarker alone does
not capture the effect of the clusters on
CAD risk.

The association of increased liver/lipid
pPS with multiple measures of reduced
renal function and reduced UACR was
unexpected and intriguing. The loci in the
liver/lipid cluster include GCKR, PNPLA3,
and TM6SF2, which all share a common
mechanism of involvement in liver lipid
metabolism (37–39), and one of the driv-
ing traits defining this cluster was again
serum triglycerides (Supplementary Table
4) (7). We therefore investigated whether
adjustment for serum triglycerides would
attenuate the cluster’s associations with
eGFR and CKD, but it did not (Supp-
lementary Table 12). Additionally, T2D sta-
tus did not interact with liver/lipid pPS on
measures of renal function, with the
exception of UACR (Supplementary Table
13). Of note, a recent analysis clustering

Table 2—Results of pPS on outcomes that reached study-wide significance

Without T2D adjustment With T2D adjustment

Cluster Outcome Effect estimate per average pPS allele P value Effect estimate per average pPS allele P value

Obesity SBP 0.68 mmHg 8.1 × 10217 0.56 7.9 × 10211

Obesity DBP 0.44 mmHg 1.9 × 10219 0.38 1.5 × 10213

Obesity Hypertension OR 1.08 1.1 × 10218 1.07 1.3 × 10211

Lipodystrophy SBP 2.43 mmHg 8.9 × 10239 1.8 4.7 × 10220

Lipodystrophy DBP 0.95 mmHg 1.8 × 10217 0.73 6.9 × 10210

Lipodystrophy Hypertension OR 1.30 1.3 × 10234 1.20 6.8 × 10215

Lipodystrophy CAD OR 1.32 1.5 × 10208 1.11 5.8 × 10�02

Liver/lipid CAD OR 0.94 2.7 × 10�03 0.92 1.2 × 10204

Liver/lipid eGFR �0.87 mL/min 5.0 × 10278 �0.81 9.4 × 10261

Liver/lipid CKD OR 1.08 1.5 × 10204 1.06 2.1 × 10�02

b-Cell SBP 1.43 mmHg 3.6 × 10211 0.35 1.3 × 10�01

b-Cell DBP �0.13 mmHg 3.1 × 10�01 �0.61 9.3 × 10206

b-Cell HTN OR 1.15 2.6 × 10208 1.00 8.6 × 10�01

b-Cell CAD OR 1.41 1.7 × 10209 1.12 7.7 × 10�02

Proinsulin DBP �0.18 mmHg 4.4 × 10�03 �0.25 1.8 × 10204

Cluster-outcome models with a significantly associated pPS. Effect estimates are in terms of outcome units per average weighted alleles in
the pPS. Bold indicates a significant result at the 0.0005 Bonferroni-corrected threshold.
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individuals with diabetes based on clinical
measures identified a severe insulin resis-
tance diabetes subgroup, which por-
tended an increased risk of CKD and fatty
liver disease (4); when the genetics of
�1,000 individuals in the severe insulin
resistance diabetes subgroup were stud-
ied, there was enrichment for obesity and
lipodystrophy genetic cluster alleles, but
no enrichment for liver/lipid alleles was
detected (40). Thus, it remains unclear
how the liver/lipid genetic cluster, pre-
sumably related to liver lipid metabolism
and increased liver-mediated insulin resis-
tance, also predisposes to reduced renal
function, and merits further investigation.
A number of outcomes had study-

wide significant associations with the
b-cell cluster pPS, but none replicated
at nominal significance in a second anal-
ysis model and thus were thought to
represent either collider bias (for DBP
only seen in the T2D-adjusted model) or
complete mediation by T2D (for SBP,
HTN, CAD only seen in the T2D-unad-
justed model). As the b-cell cluster is
the cluster most strongly associated
with fasting glucose and HbA1c (7), it is
possible that it was particularly impacted
by changes in model adjustment for T2D.
While the T2D-case subject only results

were overall directionally consistent with
the full population analyses (including
noncase subjects), none reached study-
wide significance. The lack of associations
seen in T2D case subjects could poten-
tially reflect the smaller sample size (5.5%
of the full data set) and/or noise intro-
duced by looking at a disease population
that is likely to have additional other con-
tributions to these outcomes, such as
medication use and environmental risk
factors. We also did not observe any sig-
nificant interactions with T2D status and
pPS for any outcomes when assessed in
the UKBB (Supplementary Table 13),
potentially also indicating that each pPS
did not impact outcome risk differentially
in those with or without T2D. The lack of
association seen for the two outcomes
restricted to case subjects—age at T2D
diagnosis and insulin use—could be due
to a true lack of association or, alterna-
tively, may reflect limited power, espe-
cially as these particular outcomes can be
challenging to accurately capture.
One important limitation of this work is

the restriction to individuals of European
ancestry. The genetic clusters were origi-
nally constructed using studies of indivi-

duals of predominantly European ancestry
due to availability of trait GWAS summary
statistics in this population and to minimize
heterogeneity across studies included in
the clustering (7). We therefore focused on
populations of European ancestries in this
present work as an initial discovery analy-
sis; in ongoing work, we are performing
cluster analysis using T2D and trait GWAS
involving non-European ancestral groups.

Another limitation is the cross-sec-
tional nature of the analysis, which may
create a selection/survivor bias. We
attempted to look longitudinally at the
impact of the clusters on renal function
over time (median 4.4 years) in 13,000
UKBB participants with data available,
but were unable to detect an associa-
tion, which could potentially require a
longer follow-up interval. Future investi-
gation of the identified outcome associa-
tions in prospective studies with incident
outcomes will be informative.

In summary, by partitioning T2D genetic
loci by proposed mechanistic pathways,
we have identified differential associations
of loci with T2D-related outcomes. These
associations are best seen when analyzing
the full pPS as continuous variables, but
the same patterns were also noted in
analyses of the extremes of the distribu-
tions. Thus, there may be subgroups of
individuals who can be identified based
on genetic pPS as having a higher risk of
T2D-related outcomes, although risk of
these T2D outcomes conferred to such
individuals is predicted to be small in mag-
nitude. Expansion of genetic clusters to
include more related variants together
conferring large effect sizes would likely
be necessary before individual-level clinical
translation is possible. Nevertheless, our
findings suggest that genetically driven
pathways leading to T2D may also predis-
pose to other distinct clinical outcomes,
highlighting the benefit of separating T2D
risk loci into process-specific genetic clus-
ters and offering insight into mechanisms
of disease.
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