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CHAPTER 5
The Immunometabolic Atlas: a

tool for design and
interpretation of metabolomics

studies in immunology

Pascal Maas∗, Ilona den Hartog∗, Alida Kindt, Sonja Boman, Thomas Hankemeier,
Coen van Hasselt. The Immunometabolic Atlas: A tool for design and interpretation of
metabolomics studies in immunology. PLoS One 17:5 (2022). (∗ Shared first authors)
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Abstract

Immunometabolism, which concerns the interplay between metabolism and the immune
system, is increasingly recognized as a potential source of novel drug targets and
biomarkers. In this context, the use of metabolomics to identify metabolic characteristics
associated with specific functional immune response processes is of value. Currently,
there is a lack of tools to determine known associations between metabolites and
immune processes. Consequently, interpretation of metabolites in metabolomics studies
in terms of their role in the immune system, or selection of the most relevant metabolite
classes to include in metabolomics studies, is challenging. Here, we describe the
Immunometabolic Atlas (IMA), a public web application and library of R functions to infer
immune processes associated with specific metabolites and vice versa. The IMA derives
metabolite-immune process associations utilizing a protein-metabolite network analysis
algorithm that associates immune system-associated annotated proteins inGeneOntology
to metabolites. We evaluated IMA inferred metabolite-immune system associations
using a text mining strategy, identifying substantial overlap, but also demonstrating
a significant chemical space of immune system-associated metabolites that should be
confirmed experimentally. Overall, the IMA facilitates the interpretation and design
of immunometabolomics studies by the association of metabolites to specific immune
processes.
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5.1 Introduction

Immunometabolism, or the interplay of immunology and metabolism, has received
increasing interest because of its role in the function and regulation of immune system
processes in health and disease. Metabolites with e.g., pro- or anti-inflammatory
functions may be of interest as biomarkers or drug targets for inflammation and immune
system-associated pathologies such as infection, cancer, and various auto-immune
diseases [120, 121, 14]. Significant knowledge gaps related to the relationship between
metabolism and immune function remain to be elucidated. To this end, metabolomics
technologies can facilitate the identification and quantification of metabolites in relation
to the immune system in experimental models and clinical studies.

For biochemical and functional interpretation of metabolomics study results, different
computational tools can be used: biochemical pathways analysis can be executed using
tools such as MetaboAnalyst or KEGG, and for functional analysis, STITCH can be
employed [27, 26, 28]. However, inferring the relationship of metabolites with immune
system processes remains challenging. In contrast, for the analysis of genes, gene
expression, and proteins, such biological interpretation is straightforward through the
use of high-quality annotated ontologies such as Gene Ontology [122, 123].

For hypothesis-driven metabolomics studies that require absolute quantification of
measured metabolites, targeted metabolomics methods are preferred over untargeted
metabolomics methods. However, targeted mass spectrometry-based metabolomics
studies measure by design only a subset of metabolites and metabolite classes at once.
Guidance in the selection of the most relevant subset of metabolites for the immune
process of interest is therefore of relevance. However, tools to facilitate the design of
targeted metabolomics studies by pre-selection of metabolites of interest are lacking.

To address the current hurdles of hypothesis generation and biological interpretation
of metabolomics studies, we developed the Immunometabolic Atlas (IMA). The
IMA enables inference of immune system associated functions, and vice versa,
to determine relevant metabolites with specific immune system processes. We
infer metabolite-immune process associations utilizing a protein-metabolite network
analysis algorithm that associates immune system-associated annotated proteins
(Figure 5.1), leveraging protein-metabolite interaction databases [124, 125] and protein
annotations of immune system processes in Gene Ontology (GO). We then characterize
the global metabolite-immune process coverage and perform validation through
text mining-derived immune system associations. The application of the IMA is
demonstrated in a case study and is made available as an R package and public web
application.
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Figure 5.1 A conceptual overview of the Immunometabolic Atlas (IMA). The IMA provides
associations between metabolites and immune processes of interest through the generation and
evaluation of a protein-metabolite interaction network.

5.2 Methods

5.2.1 Assembly of immune process-metabolite interaction network

We constructed a database that contains associations between specific immune process
terms, proteins, and metabolites through the integration of publicly available databases
(Figure 5.2A). Through the integration of these resources, we constructed an interaction
network to associate metabolites with immune processes. In the following paragraphs,
the development of the immune process-metabolite interaction network is described.

5.2.1.1 Immune processes

Immune processes were retrieved as GO terms fromGeneOntology. The associated gene
names that were descendants of “Immune System Process” (GO:0002376) were acquired
using the EBI QuickGo application programming interface (API, version 2021-05-24)
[122, 123, 126].

5.2.1.2 Proteins and protein-immune process associations

Human proteins (Swiss-Prot) were retrieved from the UniProt database [127]. The
requested UniProt data included: entry (UniProt identifiers), protein name, cofactors,
EC number, transporter protein (TCDB), Ensembl transcript, and GO immune processes.
The reference to GO immune processes in the UniProt data was used to identify immune
system-related proteins.
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5.2.1.3 Metabolites

Metabolite names and associated metadata were obtained from the Human Metabolome
Database (HMDB, version 4.0). We only included metabolites that were known to either
have a biological role and/or were part of a naturally occurring process to exclude any
synthetic drugs. We also excluded any inorganic compounds. The retrieved HMDB data
included: name, class, superclass, accession (HMDB identifiers), ChEBI ID, UniProt ID,
biospecimen, cellular locations, and metabolic pathways.

5.2.1.4 Protein-protein interactions

Protein-protein interactions were obtained from STRING’s functional protein
association networks version 11.0 [124]. Ensembl transcripts from the UniProt data
were converted to Ensembl Protein IDs using the Ensembl API [128]. Subsequently,
STRING was parsed using these IDs to extract protein-protein interactions.

5.2.1.5 Metabolite-protein interactions

The UniProt identifiers in the HMDB data were used to connect the metabolites to the
proteins in the UniProt data, obtainingmetabolite-protein interactions. Proteins without
immune system-related GO terms were excluded from further analysis.

5.2.1.6 Metabolite-metabolite interactions

Metabolite-metabolite interactions for the obtained metabolites from HMDB were
retrieved using the Rhea-Annotated reactions database (RheaDB, release 118) [125].
We cross-referenced HMDB with ChEBI to extract interactions stored in Rhea. We
applied an all-versus-all method, where each reactant-product combination results in
an individual interaction.

5.2.1.7 Building the interaction network

To construct the interaction network for each immune process extracted from GO, first,
proteins involved in the immune processes were identified. Then, protein-metabolite,
protein-protein, and metabolite-metabolite interactions were added to the network. To
build an interaction network for metabolites of interest, proteins associated with the
metabolites of interest were identified. Related protein-metabolite, protein-protein, and
metabolite-metabolite interactions were then added to the network (Figure 5.2B). For
metabolites with only metabolite-metabolite interactions, no interaction network can be
constructed, because at least one protein-metabolite interaction is necessary to inherit
immune processes.
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Figure 5.2 Overview of (A) information and associations retrieved from available databases,
and (B) the study flow to build protein-metabolite interaction networks to associate metabolites
and immune processes of interest. First, the proteins that are associated with the immune
processes of interest are added to the network. Then, protein-protein, protein-metabolite, and
metabolite-metabolite interactions are added to the network to generate the final interaction
network for the immune processes of interest.

5.2.1.8 Inheritance of immune processes by metabolites

To associate metabolites to immune processes, an inheritance methodology was applied
(Figure 5.3B). In the default, first-order inheritance method, metabolites inherit the
immune processes of the directly neighboring proteins only. For second-order and
third-order inheritance, metabolites inherit both the immune processes of their direct
neighboring proteins and the first neighbors of that protein, two or three interaction
steps away, respectively. The preferred inheritance order can be defined by the user.

5.2.2 Evaluation of network-inferred metabolite and immune
processes

5.2.2.1 Overrepresentation analysis

We test for the overrepresentation of metabolites and immune processes in the
interaction network using Fisher’s exact test with multiple testing correction, using
the IMA metabolites and immune processes as background. Based on this, we rank
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by p-value to identify the most significant metabolites or immune processes associated
with either an immune process or metabolite set. The p-value for Fisher’s exact test was
computed as follows (Equation 5.1)

𝑝 − value Fishe𝑟 ′𝑠 exact 𝑡𝑒𝑠𝑡 =
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎!𝑏!𝑐!𝑑! (𝑎 + 𝑏 + 𝑐 + 𝑑)! (5.1)

Here, for metabolite-based overrepresentation analysis, a is the number of
associations of a specific metabolite to a specific immune process in the interaction
network (via multiple proteins), b is the number of associations of other immune
processes to the specific metabolite in the network, c is the total number of
associations of the specific metabolite to the specific immune process in the database
minus the number of associations of the specific metabolite to the specific immune
process in the network , and d is the total number of immune process associations
to the specific metabolite in the database minus the number of associations of other
immune processes to the specific metabolite in the network. For immune process-based
overrepresentation analysis, a is the number of appearances of a specific immune
process in the interaction network, b is the number of the immune process appearances
in the IMA database, c is the number of other immune processes in the network, and
d is the number of other immune processes appearances in the IMA database.

5.2.2.2 Metabolite centrality

We calculated metabolite centrality to determine the position of a metabolite in the
interaction network. A metabolite could be on the edge of a network with minimal
interactions, in the center of a network with a lot of interactions, or somewhere
in between. The centrality was calculated as harmonic closeness, which is a
distance-based centrality metric that is suitable for disconnected graphs, in contrast to
classical closeness. A high harmonic closeness value indicates a central position of the
metabolite in the network. For node i , the harmonic closeness is calculated by taking
the sum of all reciprocals of distance d to other node j (Equation 5.2). The centrality
was determined for each metabolite in the network separately.

Harmonic closeness (𝑖)
∑︁
𝑗≠𝑖

1
𝑑𝑖, 𝑗

(5.2)

5.2.2.3 Metabolite precision

Metabolite precision was computed to quantify how specific a metabolite is for a
certain immune process. The precision scorewas computed for eachmetabolite-immune
process association to allow discrimination between metabolites that are contributing
either to a single process or to multiple processes and between common and rare
metabolites that have comparable centrality scores. The precision of a metabolite for
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an immune process of interest is determined by the ratio of the metabolite associations
with the process of interest, compared to all its associations remaining in the IMA
database (Equation 5.3). A high metabolite precision value indicates that most of the
immune process associations the metabolite could have, according to the IMA database,
are present in the immune process network.

Precision score (𝑖, 𝑗) =
𝑁𝑖, 𝑗

𝑁𝑖 ·𝑉𝑗

(5.3)

Here, for metabolite i in process j , with N being the number of interacting nodes
of metabolite i and V the number of nodes in process j . The precision score is
corrected by the number of nodes in the process.

5.2.3 Evaluation of IMA metabolite-immune process association
performance through text mining

To evaluate the evidence available formetabolite-immune process associations identified
by the IMA, an external validation dataset was created using text mining. We selected
papers including one or more metabolites and immune processes that were also present
in the IMA database using the EuropePMC API on 6 March 2021 [129]. We included
EuropePMC-listed journal articles in which a metabolite and immune process term from
the IMA database was detected in the abstract, methods, results, supplement, figures,
and/or tables. Introduction and discussion sections were excluded since comparisons to
results of other studies are often made in these sections, possibly leading to biased text
mining results. Also, papers were only included if they were related to humans.

The text mining resulted in a list of PubMed identifiers (PMIDs) which were used
to find associations between metabolites and immune processes. These associations
were included in the quantitative text mining validation dataset. Metabolite-immune
process associations with only one occurrence in the text mining dataset were removed
to limit false positives. We excluded the superclass lipids and lipid-like molecules as
defined within HMDB from the validation because the complex nomenclature of these
metabolites made text mining unfeasible.

We characterized the IMA database by cross-referencing metabolites and processes
with the text mining database. Metabolites were grouped according to their presence
or absence in the IMA database. Furthermore, we evaluated the quality of the IMA
database by calculating the specificity, sensitivity, precision, accuracy, and F1-score
(Equation 5.4-5.8). The F1-score focuses on the positive predictions and leaves out the
True Negatives. The F1-score represents the performance of the IMA better than other
evaluation measures because it evaluates howwell associations are made instead of how
well associations are excluded.
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𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
True Negatives

True Negatives + False Positives
(5.4)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
True Positives

True Positives + False Negatives
(5.5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives

True Positives + False Positives
(5.6)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True Negatives + True Positives

True Negatives + True Positives + False Negatives + False Positives
(5.7)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
True Positives

True Positives + 1
2 (False Positives + False Negatives)

(5.8)

5.2.4 R package and Shiny application

We implemented the IMA in the R package IMatlas, which facilitates users to create
various graph-based analyses. The package includes an interactive R shiny application
that allows for a user-friendly interpretation of our interaction database. The app
adds extensions that are useful for additional analyses, including metadata from
HMDB and UniProt, and allows networks to be built using either one or multiple
immune processes, or by one or multiple metabolites. If one or multiple immune
processes are used as input, all connected metabolites that are in the Immunometabolic
Atlas database will be included in the graphical network. The app also features
two additional versions of interaction datasets, which allows users to determine the
strictness of the app. These datasets include proteins that are unrelated to the immune
system but do have an interaction with an immune system-related protein. The first
dataset includes neighbors of immune system-related proteins, whereas the second
dataset includes the second neighbors of an immune system-related protein. The
package and all other scripts used for analysis are available in our Github repository
https://github.com/vanhasseltlab/IMatlas.

5.3 Results

5.3.1 Development of the IMA database and metabolite-immune
process algorithm

The IMA database includes all child processes of the immune system process
(GO:0002376) and contains 97 525 metabolites, 3 101 proteins, 1 712 immune processes,
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664 metabolite-metabolite interactions, 172 291 protein-metabolite interactions, and
411 286 protein-protein interactions (Table 5.3).

We associated immune processes and metabolites in a stepwise process (Figure 5.3).
Immune processes were assigned to metabolites using a first, second, or third-order
inheritance strategy (Figure 5.3B). By default, first-order inheritance of immune
processes is used, in which metabolites only inherit immune processes from their
directly interacting protein. To determine if a metabolite of interest plays a central
role in the metabolite-immune process interaction network, a centrality score was
calculated (Figure 5.3C). Metabolites with a high centrality score are typically located
in a central point in the network and have multiple interactions with surrounding
metabolites and proteins, while metabolites with a low centrality score are less closely
connected to other metabolites or proteins in the network and are typically located
towards the edges of a network. To indicate how specific a metabolite is for a certain
immune process, the precision score was calculated (Figure 5.3D). The precision of a
metabolite for an immune process of interest is determined by the ratio of the metabolite
associations with the process of interest, compared with all its associations remaining
in the database. Metabolites with a high precision score are typically committed to a
smaller number of immune processes. To rank metabolites and immune processes in
the interaction network, we calculated a p-value that signifies the overrepresentation
of the metabolites and immune processes in the network in comparison to the ones in
the database using Fisher’s exact test (Figure 5.3E). This resulted in a performance table
with significance values for every metabolite and immune process within the network.
The significance value for overrepresentation of the immune process for a specific
metabolite is indicative of the strength of metabolite-immune process association.
The network-based significance value that indicates the overrepresentation of an
immune process within the entire network indicates the importance of the collection of
metabolites for the immune process. In summary, themetabolites and immune processes
in the network are ranked based on their metabolite centrality, precision and p-value,
and the immune process p-value (Figure 5.3A).

5.3.2 Overview of metabolism-immune response associations

To provide an overview of IMA-inferred metabolite-immune response process
associations, we categorized GO terms according to main high-level immune response
processes as defined in the standard textbook Janeway’s Immunobiology [130]. We
determined for each of these immune response processes the biochemical metabolite
superclasses of identified metabolites (Figure 5.4). We found significant differences in
metabolite classes associated with unique immune response processes (Figure 5.4A). The
average number of immune processes per protein is in the same order of magnitude for
all superclasses except for benzenoids (Table 5.4). Metabolites of the superclass of lipids
and lipid-like molecules, here referred to as ‘lipids’, were abundantly present with 90
280 occurrences (92.6%) but interacted with a relatively small portion of proteins (5.1%).
Excluding lipids from the analysis shows a lower average number of metabolites that
were associated with a specific immune process. There were 18,995 unique metabolites
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Figure 5.3 Overview of the IMA network-based interaction analysis. (A) Flowchart of the data
analysis of an interaction network using a first-order inheritance strategy. (B) The metabolite of
interest can inherit immune processes directly (1st order, default) or indirectly (2nd or 3rd order)
from neighboring proteins based on the order of inheritance chosen by the user. (C) The centrality
of a protein ormetabolite in a graphical network is determined using the harmonic closeness score.
This topology-based score is the highest for metabolites with multiple connections in a central
point in the network. (D) The precision of a metabolite for a process of interest is determined by
the ratio of its interactions within the process compared to all its interactions and represents the
commitment of a metabolite to the process of interest. (E) The overrepresentation of an immune
process (GO term) in an interaction network is evaluated using a Fisher’s Exact Test with FDR
multiple testing correction. The resulting significance levels can be used to rank immune processes
in a network.
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Figure 5.4 Overview of immune process and metabolite associations. (A) Distribution of the
biochemical metabolite classes identified for common immune processes in the IMA classified
according to the standard textbook Janeway’s Immunobiology, either including (left) or excluding
(right) lipids. (B) Distribution of the number of metabolites associated with specific immune
processes inferred from the IMA, using first-order inheritance, either for excluding lipids (orange)
or including all metabolites including lipids (blue).

associated with the main immune processes when lipids were included and 342 when
they were excluded. A large variation of the number of metabolites associated with
immune processes was present (Figure 5.4B). Excluding lipids results in a shift from
manymetabolites to smaller numbers of metabolites that are associated with an immune
process. The exclusion of the superclass of lipids and lipid-like molecules from these
results excludes several metabolite classes including fatty acyls, glycero(phospho)lipids,
and prenol lipids.

5.3.3 Validation of the metabolite-immune process associations

The methodology was validated by comparing the results from an interaction analysis
of all metabolites and immune processes in the IMA database to metabolite-immune
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process associations found in literature for the same metabolites and immune processes.
The immune system process interaction network was built using 1st order immune
process inheritance and resulted in 432 metabolites associated with 767 immune
processes.

Associations of metabolites and immune processes related to the immune system
process in literature were collected using a text mining approach. We identified 1 046
metabolites that were associated with 565 immune system processes (Table 5.5). The
overlap between associations found by the IMA and found in literature was 31.5% (290
metabolites in 398 processes, Figure 5.5).

Of all associations found in text mining and by the IMA, 58.7% of the metabolites
involved in metabolite-immune process associations were only found in literature
and not by the IMA (n = 614 metabolites). Of these, 398 metabolites were lacking
any interaction according to the IMA database and therefore remained undetected
using the IMA methodology. The 216 remaining metabolites with known interactions
could be classified as having either only metabolite-metabolite interactions and/or
protein-protein interactions. Metabolites that were only interacting with other
metabolites, and not with proteins, could not be detected because immune processes are
only inherited through proteins in the current IMA methodology. Metabolites that were
only interacting with proteins that were not in the immune system process (according
to GO), were also not included in the IMA database. Finally, 13.6% of the metabolites
that inherited an immune system process were only found using the IMA and not in
literature (n = 142). Of these, 55metabolites were identified in literature but were lacking
a link to the immune system. The remaining 87 metabolites were not found in any
immune-related studies through text mining.

The metabolite-immune process associations found in literature were considered as
the gold standard for the evaluation of the performance of different orders of immune
process inheritance. By default, the inheritance of processes was done through direct
protein interactions (first-order), but inheritance through indirect protein interactions
was also evaluated (second and third-order). Therefore, specificity, sensitivity, precision,
F1-score, and accuracy were calculated (Table 5.1). All methods of inheritance yielded
high specificity and accuracy values, indicating that the IMA is strict in linking processes
to metabolites. Relatively low values for precision and sensitivity were reported,
indicating discrepancies between the associations found in literature and made by the
IMA. Comparing direct- and indirect inheritance showed a higher precision for direct
inheritance, while indirect inheritance showed higher sensitivity. Since the IMA gives
high numbers of True Negatives, also the F1-score, which does not take the number
of true negatives into account, was calculated to quantify the difference between the
methods of inheritance. The F1-score favoured direct inheritance.
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Figure 5.5 Comparison of metabolites in IMA database and text mining dataset for validation.
(A) Text mining was used to identify co-occurrences of GO-terms and metabolites present in
the IMA database. Metabolites obtained from co-occurrences were compared with associations
found using IMA. (B) Sankey diagram of metabolites found in both IMA and text mining. 290
of 1 046 metabolites found are present in both IMA and text mining datasets. The portion
of non-overlapping metabolites can be explained based on exclusion criteria for the atlas. 614
metabolites were only found in literature, of which 398 have no known interaction to any proteins
or metabolites in the IMA. There were interactions found of the metabolites to other metabolites
(n=81), metabolites and proteins (42) or proteins (160), but these did not have an association to an
immune process in the IMA database. Of the 142 metabolites that were only found in the atlas, 87
could not be found in literature and 55 were found in literature but missed any connection to an
immune process.

Table 5.1 Absolute performance measure results of first, second, and third-order inheritance.

Order of inheritance Specificity Sensitivity Precision Accuracy F1-score
First order 0.99 0.11 0.29 0.97 0.16
Second order 0.85 0.43 0.07 0.84 0.12
Third order 0.73 0.49 0.04 0.73 0.08

5.3.4 Identification of possible biomarkers using network-based
interaction analysis

To identify which metabolites could be of interest for a specific immune process, we
reported the position of a metabolite in the network (centrality) and the exclusivity
of the metabolite for a certain immune process (precision, Figure 5.6B-C). Metabolites
with high centrality and precision scores might be of interest as biomarkers for the
associated immune process. Therefore, all metabolite-immune process associations
made by the IMAwere analyzed on centrality and precision. Only statistically significant
metabolite-immune process associations after FDR multiple testing correction were
included in the results (p < 0.05, Figure 5.6A, Table 5.6). To identify specific metabolic
biomarkers, we selected metabolite-immune process associations that were above the
set threshold of the mean plus two standard deviations for both centrality and precision.
After analysis of the associations in the current IMA association dataset, 48 metabolites
were found to be of interest as a potential biomarker in 47 immune processes. Several
metabolites were found to be involved in antigen processing viaMHC class 1B, including
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Figure 5.6 Precision-centrality plot of the significant metabolite-immune process associations in
the IMA excluding lipids. (A) For each metabolite in each immune process, the centrality and
precision were calculated and normalized to the network size. Metabolites with high centrality
and precision scores might be of interest as biomarkers for the associated immune process (B) The
centrality represents the position of a metabolite in the network. (C) The precision represents the
exclusivity of the metabolite for a certain immune process.

sphingosine, sphinganine, and dihydroceramide. Furthermore, we identified strong
relationships between several pyruvic acids and positive regulation of prostaglandin
secretion.

5.3.5 Positive regulation of T cell-mediated immunity

As an example, the interplay between metabolites and proteins for the immune process
of positive regulation of T cell-mediated immunity is demonstrated (GO:0002711,
Figure 5.7). The interaction network that was built for this process shows one big cluster
of proteins and metabolites, and some unconnected proteins (not shown). Unconnected
proteinsmay interact with non-immune-related proteinswhich are not considered in the
current IMAmethodology and indicate the current knowledge gap. Of the 8 metabolites
in the network, 5 were found to be significant for the immune process (p<0.05, Table 5.2).
These molecules are highly related as they interact with the same proteins. This results
in the same centrality value for each molecule; however, the precision varies as they can
interact with proteins in other processes. The exception here is 3-Dehydrospinganine,
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Figure 5.7 The interaction network of positive regulation of T cell-mediated immunity
(GO:0002711) shows the interplay between metabolites (green) and proteins (orange).

Table 5.2 Metabolites associated with positive regulation of T cell-mediated immunity. Fisher’s
exact test with FDRmultiple testing correction was used to calculate p-values, while centrality and
precision values are indicators of the importance of the metabolites in this process. Themetabolite
number in the table corresponds to the number in the interaction network in Figure 5.7.

Metabolite Metabolite superclass Centrality Precision P-value
Metabolite
number

in network
3-Dehydrosphinganine Organic oxygen compounds 0.30 0.63 <0.001 6
Phytosphingosine Organic nitrogen compounds 0.30 0.56 <0.001 7
Sphinganine Organic nitrogen compounds 0.30 0.45 <0.001 2
Sphingosine Organic nitrogen compounds 0.30 0.39 <0.001 1
Dihydroceramide Organicacids and derivatives 0.30 0.31 <0.001 8
S-Adenosylmethionine Nucleosides, nucleotides, and analogues 0.22 0.07 1.00 4
ADP Nucleosides, nucleotides, and analogues 0.22 0.01 0.58 5
ATP Nucleosides, nucleotides, and analogues 0.22 0.01 0.58 3

which only interacts with proteins involved in positive regulation of T cell-mediated
immunity, resulting in a precision of 1.00.

Several significant metabolites form a primary component for sphingolipids.
Sphingolipids are membrane lipids that function as ligands for sphingosine-1-phosphate
receptors (S1PR) and are especially associated with the determination of T cell
phenotypes [131]. Previous studies have shown that deficiency in S1PR can cause
failure in mature T cells leaving the thymus [132]. Finally, it has been shown
to be an important factor for coordinating adaptive immune responses through the
S1P1-Akt-mTOR pathway [133].
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Figure 5.8 IMA Rshiny application concept. (A) The application allows users to enter processes,
metabolites, proteins, or identifiers from a list to produce networks and calculate statistics.
This flexibility of input possibilities enables to obtain metabolites from immune processes and
vice versa. (B) Several visualizations have been included to visualize associations between
metabolites and processes. Here, we zoomed in on the connected part of the interaction network
of T cell-mediated immunity. (C, D) Example outputs for metabolites associated with positive
regulation of T cell-mediated immunity including centrality, precision, and p-values.

5.3.6 IMatlas R package and R shiny application

We have implemented the IMA as an R package and R shiny module. The IMA supports
several search modes to facilitate the construction of networks, using either immune
processes or metabolites as input (Figure 5.8). An interaction network is built and
evaluation metrics such as metabolite centrality and p-value are calculated. The IMA
supports bulk input of HMDB identifiers or GO terms to produce graphs that can be
adjusted using several thresholds using the settings panel. For example, confidence
thresholds used by STRING for protein-protein interactions can be increased to include
only very well-curated interactions. Other features include generating neighborhood
graphs of a given set of metabolites and the ability to search using (super)classes and/or
biochemical pathways. In summary, the application contains useful features to construct
network graphs for non-programmatic applications.
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5.4 Discussion

We describe the development of the Immunometabolic Atlas (IMA), which leverages
protein-metabolite interaction analysis to identify metabolites associated with immune
processes, and vice versa, and which can be used to interpret and design metabolomics
studies.

The IMA is based onmetabolites included on theHumanMetabolomeDatabase (HMDB),
which is a large, comprehensive, and well-annotated database of metabolites found
in humans, and is more complete than alternative human metabolite databases [134].
HMDB contains a large number of lipid metabolites, which were found to be associated
with many immune processes. Lipids are highly biologically relevant in various
biological functions as is also extensively studied within the field of lipidomics [135,
136]. In this study, the superclass of lipids and lipid-like molecules was excluded from
the validation and the example shown because the complex nomenclature of these
metabolites made text mining unfeasible. However, inclusion of the superclass lipids
and lipid-like molecules is available for researchers using the IMA. Not all lipids were
removed by excluding this superclass. For example, sphingolipids were included in the
example in Figure 5.7. Depending on the method of classification that is used, some
lipid metabolites will be classified as such, and some will be classified further into other
categories. The method of classification of metabolites by HMDB could be debated but
is considered to be out of the scope of this study.

Association between metabolites and immune processes was based on the inferred
protein-metabolite network, where proteins were associated with GO-associated
immune processes either through direct or higher-order inheritance based on
protein-protein interactions present. The rationale for this strategy is based on the
assumption that metabolites and proteins commonly interact: e.g., as enzyme-substrate
or co-factor [137]. Of course, the majority of proteins are not limited to a single
biological process. Evaluation of association strength of metabolite-immune processes
through classical over-representation analysis is important to identify those metabolites
or immune processes of primary interest [105]. Of note, the absolute p-value obtained
from the over-representation analysis should be interpreted with caution because in
the IMA not the whole metabolome for all human biological processes are used as
a background, but only the metabolites and immune system processes in the IMA
database.

To further interpret metabolites for their value as specific and selective biomarkers
or drug targets we have included computation of precision and centrality
network-structure inferred metrics. Centrality concerns the position of a metabolite
in a network and has been proposed before [138]. The precision score assesses how
specific the metabolite is for the associated process within the network. These metrics
may help to identify metabolites of increased interest as a biomarker for the specific
immune process, e.g. because they are more likely to have a specific function, as
inferred from the underlying network structure.
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We evaluated immune response-metabolite associations through a comparison of
literature text mining derived metabolite-immune process associations. We found that
a substantial part (67%) of the IMA associations overlapped with the associations found
in literature. Overall, the text mining approach identified a two times higher number of
associations than the IMA. We expect that this is related to the nature of methodology
used to identify associations, because of its intrinsic high likelihood of identifying
false-positive associations, which we attempted to reduce through applying several
filtering steps. Ultimately we found that the IMA yields a specificity of 73-99% and
sensitivity of 11-49% depending on the inheritance method used, which indicates our
method shows sufficient performance to be used as a tool for hypothesis generation or
to guide metabolomics study design.

A similar tool for the functional interpretation of metabolomics study results is STITCH
[28], which is a database incorporating known and predicted interactions between
metabolites and proteins. STITCH assigns processes to metabolites based on direct
interactions and a clustering-based algorithm. STITCH does not include topological
measurements, whereas in the IMA this is applied for easier interpretation of larger
networks. In contrast to the IMA, associations between GO biological processes and
metabolites can only be made in the direction of metabolites to processes, but not from
(immune) processes to metabolites.

Limitations of the current IMA include the lack of directionality of associations
in the protein-metabolite network, which could help in identifying biochemical
interactions that are most relevant and plausible. In addition, incorporation of data on
cell-type-specific as well as (sub-) cellular locations of metabolites or metabolite-protein
associations may help in refining metabolite-immune system associations inferred, in
particular, because of the complex and multi-cellular nature of the immune response.

We conclude that the developed IMA can be a relevant tool to guide researchers in the
field of immunometabolomics in the interpretation of immune-metabolomics data from
experiments or clinical studies and to guide the design of prospective metabolomics
studies in the field of immunology, which we facilitate by making our tool available
both as R package and user-friendly web-application. Finally, we expect that the
conceptual approach and developed algorithms for inferringmetabolite-immune process
associations through protein-metabolite interaction networks can be expanded towards
complete biological ontologies, and is not just limited to immune processes.
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5.5 Supporting information

Table 5.3 Contents of IMA database.

Type of data Number included in the IMA
Immune processes 1 712
Proteins 3 101
Metabolites 97 525
Immune process-protein associations 69 641
Protein-protein interactions 411 286
Protein-metabolite interactions 172 291
Metabolite-metabolite interactions 664

98



The
Im

m
unom

etabolic
A
tlas

Chapter 5

Table 5.4 Summary of superclass characteristics in the IMA

Superclass Number of
metabolites

Number of
proteins

Number of
unique immune processes

Metabolite / protein
ratio

Number of
immune processes

per protein

Number of
unique immune processes

per protein
Organic acids and derivatives 714 138 386 5 57 3
Organic nitrogen compounds 134 29 148 5 74 5
Organic oxygen compounds 1278 162 431 8 84 3
Benzenoids 966 24 166 40 116 7
Lipids and lipid-like molecules 90309 164 467 551 95 3
Nucleosides, nucleotides, and analogues 152 436 639 0 78 1
Organoheterocyclic compounds 1786 72 291 25 52 4
Phenylpropanoids and polyketides 1915 9 74 213 62 8
Alkaloids and derivatives 113 1 16 113 16 16
Organosulfur compounds 174 9 77 19 42 9
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Table 5.5 Text mining results listing papers that mention both metabolite and immune process
that is present in the IMA database.

This table is available as zip file (S3 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0268408

Table 5.6 All significant metabolite-immune process associations in the IMA.

This table is available as zip file (S4 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0268408
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